SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

download SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

of 76

Transcript of SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    1/76

    Produksi biodiesel dari minyak tumbuhan non-edible

    Ivana B. Bankovi c-Ili c, Olivera S. Stamenkovi c, Vlada B. Veljkovi c *

    Fakultas eknolo!i, "niversitas #is, $%&&& 'eskovac, Bulevar oslobodjenja $(), Serbia

    articleino

    Pasal sejarah+ iterima ( anuari (&$( iterima dalam bentuk direvisi ( iterima ( /aret Februari (&$( (&$( ersedia online(0 12ril (&$(

    3ata kunci+ biodiesel 3atalisis #on-edible oils 2roses o2timasi ransesteriikasi 2roses dua lan!kah

    abstrak

    karena biode!radabilitas dan tidak beracun biodiesel telah menjadi lebih menarik seba!ai bahan bakar alternati. Biodieseldi2roduksi terutama dari minyak nabati den!an transesteriikasi tri!liserida. ari alasan ekonomi dan sosial, minyak !oren!harus di!anti den!an yan! lebih rendah-biaya dan bahan baku yan! da2at diandalkan untuk 2roduksi biodiesel se2erti minyaktanaman non-edible. ulisan ini berba!ai metode untuk 2roduksi biodiesel dari minyak non-edible umum men!!unakan reaksialkoholisis. ujuan dari makalah ini adalah untuk menyajikan kemun!kinan 2en!!unaan minyak non-edible ke dalam 2roduksi

    biodiesel, untuk mem2ertimban!kan berba!ai metode untuk 2en!obatan minyak non-dimakan dan untuk menekankan 2en!aruhkondisi o2erasi dan reaksi 2ada tin!kat 2roses dan hasil ester. Perhatian khusus diberikan untuk kemun!kinan o2timasi, kinetikadan 2enin!katan 2roduksi biodiesel dari minyak non-edible.

    4 (&$( 5lsevier 'td 1ll ri!hts reserved.

    Isi

    $. Pen!antar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6%(( (. Bahan baku dan karakteristik 2roduk. . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6%(( (.$. enis bahanbaku untuk 2roduksi biodiesel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . 6%(( (.(. Palin!-di!unakan minyak non-dimakan untuk 2roduksibiodiesel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6%(6 (.6.

    Perbandin!an antara ester alkil dari minyak nabati dan non-dimakan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6%() 6. metode

    transesteriikasi untuk modiikasi non-edible minyak menjadi

    biodiesel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6%() 6.$. 7omo!en katalis 2rosestransesteriikasi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6%(8

    6.$.$. Proses satulan!kah. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 6%(8 6.$.(. ua lan!kah 9asam : basa; 2roses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6%( 6.(. 7etero!en katalis 2rosestransesteriikasi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6%6&

    6.(.$. Proses satulan!kah. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 6%6& 6.(.(. ua lan!kah 9asam : basa; 2roses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6%66 6.6. Proses transesteriikasi en

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    2/76

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6%)( ).6.6. Pen!!unaan 2emanas micro>ave. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6%)( ).6.). Pen!aruh co-

    solvent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 6%)) 8. 3esim2ulan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6%)) Pen!akuan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    6%)) ?eerensi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6%))

    *

    Penulis Sesuai. 1lamat 5-mail+. [email protected] 9VB Veljkovi c;

    $6%)-&6($ : A - melihat hal de2an 4 (&$( 5lsevier 'td 1ll ri!hts reserved. doi+$&,$&$% : j.rser.(&$(.&6.&&(

    "lasan5ner!i erbarukan dan Berkelanjutan $% 9(&$(; 6%($- 6%)0

    Isi daftar tersedia di SciVerse ScienceDirect

    erbarukan dan 5ner!i Berkelanjutan "lasanj ourna lho mepage: www.elsevier.com/locate/rser

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    3/76

    6%(( IB Bankovic-Ilic et al. : 5ner!i erbarukan dan Berkelanjutan "lasan $% 9(&$(; 6%($- 6%)0

    1. Pendahuluan

    Selama dekade terakhir konsumsi minyak bumi di seluruh dunia telah secara 2ermanen menin!kat karena 2ertumbuhan 2o2ulasimanusia dan industrialisasi, yan! telah menyebabkan habisnya cadan!an bahan bakar osil dan naiknya har!a minyak bumi. i

    sisi lain, bustion com- dari bahan bakar osil memberikan kontribusi 2alin! emisi !as rumah kaca, yan! menyebabkan 2olusiudara dan 2emanasan !lobal. Ba!ian trans2ortasi ham2ir se2enuhnya ber!antun! 2ada bahan bakar yan! berasal minyak bumi.Penin!katan jumlah kendaraan trans2ortasi, se2erti yan! di2erkirakan $C, bisa mem2en!aruhi stabilitas lin!kun!an itu iklim di

    seluruh 2lanet. Oleh karena itu, ada kesadaran yan! besar dalam substitusi bahan bakar diesel 2ada saat ini di seluruh duniaden!an, bahan bakar terbarukan yan! bersih se2erti biodiesel, yan! memiliki banyak keun!!ulan teknis atas bahan bakar osilse2erti !as buan! lebih rendah secara keseluruhan emis- sion dan toksisitas, biode!radasi, derivasi dari bahan baku terbarukan

    dan domestik, kandun!an sulur diabaikan, lash 2oint un!!ul dan eisiensi 2embakaran yan! lebih tin!!i. Biodiesel yan! da2atdi!unakan seba!ai bahan bakar murni atau seba!ai cam2uran den!an 2etrodiesel, yan! stabil di semua rasio. Produksi biodieseldihara2kan untuk mendoron! la2an!an kerja dan 2emban!unan ekonomi di daerah 2edesaan, untuk men!emban!kan 2en!!antijan!ka 2anjan! bahan bakar osil, men!uran!i keter!antun!an nasional 2ada im2or minyak bumi dan menin!katkan keamanan2asokan ener!i (C. /eski2un biodiesel memiliki banyak keuntun!an dalam berhubun!an den!an 2etrodiesel, tin!!inya har!a

    2roduksinya adalah 2en!halan! utama untuk 2en!!unaan komersial. Dhan! et al. 6C menunjukkan bah>a har!a biodiesel adalahsekitar &,8 "S A : ', dibandin!kan den!an &,68 "S A : ' untuk diesel minyak bumi. 7ar!a biodiesel terutama ter!antun! 2ada

    biaya bahan baku, har!a yan! membuat 0&-=8E dari total biaya biodiesel &0:&)C. Pen!!unaan minyak non-edible murah da2at

    menjadi cara untuk menin!katkan 2erekonomian 2roduksi biodiesel dan 2roduksi komersial 2ada skala try industri. 3arenakondisi iklim yan! berbeda, berba!ai ne!ara telah mencari berba!ai jenis minyak nabati non-dimakan untuk kemun!kinan2en!!unaan dalam 2roduksi biodiesel.

    Saat ini, minyak nabati adalah sumber daya utama untuk 2roduksi biodiesel dunia 9lebih dari =8E; %C. #amun, ada banyakalasan untuk tidak men!!unakan minyak nabati seba!ai bahan baku dalam 2roduksi biodiesel. Pen!!unaan minyak nabati dalam

    2roduksi biodiesel memiliki 2en!aruh terhada2 ketidakseimban!an !lobal untuk 2ermintaan 2asar dan 2asokan makanan den!anhar!a yan! tin!!i, 2en!uran!an sumber makanan dan 2ertumbuhan ka2asitas 2abrik komersial. en!an demikian, okus harus

    ber!eser ke sumber non-dimakan, yan! tidak di!unakan dalam nutrisi manusia dan bisa tumbuh di tanah tandus. /inyak darisumber daya ini, seba!ai suatu 2eraturan, tidak cocok untuk konsumsi manusia karena keberadaan senya>a beracun. /isalnya,senya>a beracun utama 2ada tanaman jarak 2a!ar yan! kursin 2rotein dan a!en 2encahar, risin 2rotein di 2abrik jarak, cerberin!lukosida dalam buah-buahan man!!a laut dan lavonoid 2on!amiin dan karajiin dalam minyak karanja %C. 1da bebera2a alasanlain untuk 2roduksi biodiesel dari minyak non-dimakan, selain biaya rendah dan ketidakmun!kinan 2en!!unaannya untukkonsumsi manusia. Pertama, ada banyak tanaman 2en!hasil minyak dalam jumlah besar minyak non edible di alam di seluruhdunia. 3emudian, tanaman minyak non-edible da2at den!an mudah dibudidayakan di lahan yan! tidak cocok untuk tanamanmanusia den!an biaya yan! jauh lebih rendah dibandin!kan 2erkebunan tanaman minyak nabati %C. 1khirnya, tumbuhnyatanaman ini men!uran!i konsentrasi GO

    ( di atmoser C. #amun, seba!ai kelemahan yan! serius,kebanyakan minyak non edible men!andun! kadar tin!!i asam lemak bebas 9FF1;, yan! menin!katkan biaya 2roduksi biodiesel0C.

    3imia, biodiesel adalah cam2uran ester asam lemak alkil 9F115s;, seba!ian besar serin! metil atau etil ester 9ames danF155s, masin!-masin!; yan! di2eroleh oleh alkoholisis tri!liserida 91H; dari minyak nabati dan lemak he>an, atau lebihte2atnya alkoholisis, den!an alkohol 9metanol atau etanol;. alam reaksi alkoholisis utive reversibel dan consec-, satu molacyl!lycerols bereaksi den!an satu mol alkohol dan satu mol ester terbentuk 2ada setia2 lan!kah dalam ketiadaan atau adanyakatalis. 1lkoholisis minyak nabati

    da2atkimia atau en

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    4/76

    edible dan biodiesel yan! dihasilkan dari mereka telah ditinjau dalam bebera2a la2oran 8,$&,$6-$%C. Bebera2a ulasan makalahmembahas 2endekatan yan! berbeda untuk men!uran!i kandun!an FF1 di bahan baku ious var- melalui transesteriikasi katalitikdan non-katalitik ),8,0,=,$&,$%-($C. Biaya dan dam2ak lin!kun!an dari 2roses 2roduksi biodiesel dibahas oleh bebera2a 2eneliti$(,((C. Sebuah 2erhatian khusus telah dibayarkan untuk 2roduksi biodiesel dari minyak jarak 2a!ar di India, /alaysia danIndonesia $,$=,(6-(8C. 1kan teta2i, metode 2roduksi biodiesel, dam2ak dari kondisi reaksi 2ada tin!kat keseluruhan 2roses danhasil ester serta o2timasi, kinetika dan 2enin!katan biodiesel duction 2ro dari minyak non-edible belum menarik 2erhatian

    mereka layak. /uru!esan et al. (%C men!analisis 2en!aruh variabel ke!iatan o2erasi 2ada reaksi transesteriikasi minyak non-dimakan, sementara 'eun! et al. 0C, Vyas et al. ($C dan Shahid dan amal (&C okus 2ada 2roses tertentu untuk 2roduksibiodiesel dari bahan baku ent-2erbedaan se2erti BioK co-solvent, su2erkritis, micro>ave, "SH dan dalam 2roses in situ.

    ulisan ini adalah revie> tentan! berba!ai metode untuk 2roduksi biodiesel - tion dari minyak non-edible umummen!!unakan reaksi alkoholisis. ujuan dari makalah ini adalah untuk menyajikan kemun!kinan 2en!!unaan minyak non-dimakan dalam 2roduksi biodiesel, untuk mem2ertimban!kan metode yan! berbeda untuk 2en!obatan minyak non-dimakanseba!ai bahan baku alternati dan untuk menekankan 2en!aruh bebera2a o2erasi dan reaksi ditions con- 2ada tin!kat 2roses danhasil ester. Perhatian khusus diberikan untuk kemun!kinan o2timasi, kinetika dan 2er- baikan 2roduksi biodiesel dari minyaknon-edible.

    2. Bahan baku dan karakteristik produk

    (.$. enis bahan baku untuk2roduksi biodiesel

    Bahan bakuuntuk 2roduksi biodiesel da2at secara tradisional kucin!- e!orian dan minyak jelantah 9di!unakan berminyak 2erlen!ka2an ba!aimana;. Selain itu,minyak al!a telah muncul dalam bebera2a tahun terakhir seba!ai kate!ori keem2at tumbuh bun!a karena kandun!an minyakyan! tin!!i dan 2roduksi biomassa yan! ce2at ),8,$%,($,(0C.

    Berba!ai jenis minyak nabati yan! da2at dimakan, ter!antun! 2ada cli yan! - mate dan kondisi tanah, yan! di!unakan seba!aibahan baku konvensional utama untuk 2roduksi biodiesel se2erti minyak ra2eseed di 3anada, minyak bun!a matahari di 5ro2a,minyak kedelai di 1S, minyak sa>it di 1sia en!!ara, minyak kela2a di Fili2ina, dll #amun, ce2at !ro>- in! 2o2ulasi dunia dankonsumsi manusia yan! luas dari minyak nabati da2at menyebabkan bebera2a masalah yan! si!niikan, misalnya, kela2aran dine!ara-ne!ara berkemban!. Oleh karena itu, minyak tumbuhan non-edible menjadi san!at menjanjikan alternati bahan bakuuntuk 2roduksi biodiesel karena 2ermintaan besar untuk minyak nabati seba!ai makanan, har!a yan! lebih tin!!i dari minyaknabati dibandin!kan den!an bahan bakar osil dan biaya yan! lebih rendah dari non-edible budidaya tanaman minyak. #amun,akan selalu ada kom2etisi antara

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    5/76

    IB Bankovic-Ilic et al. "lasan : 5ner!i erbarukan dan Berkelanjutan $% 9(&$(; 6%($- 6%)0 6%(6

    abel $ 3andun!an minyak dalam biji dan kernel dari bebera2a tanaman non-edible.

    #ama konten nama Oil lokal Botanical,E ?eerensi

    Bibit, >t.E 3ernel, >t.E

    atro2ha curcas jatro2ha, ratanjyot (&-%& )&-%& $%C Pon!amia 2innata 3aranja, 2un!am (8-8& 6&-8& $%C 1an dan limbah minyak !oren! yan! terbatas, sehin!!atidak mun!kin untuk 2ro- 2ermintaan 2roduksi biodiesel vide seluruh dunia. Pencarian sumber terbarukan lainnya yan!dibutuhkan untuk memberikan jumlah yan! di2erlukan bahan baku berminyak. alam bebera2a tahun terakhir minat yan! tin!!itelah muncul terhada2 2ro 2en!hasil biodiesel dari mikroal!a. 3euntun!an dari mikroal!a men!!unakan untuk 2roduksi

    biodiesel adalah+ biomassa jauh lebih tin!!i ke!iatan-2roduksi dari tanaman darat, bebera2a s2esies da2at terakumulasi hin!!a(&-8&E

    1H, tidak ada lahan 2ertanian di2erlukan untuk tumbuh biomassa dan mereka hanya di2erlukan sinar matahari dan bebera2asederhana dan nutrisi murah 60C.

    (.(. Palin!-di!unakan minyak non-dimakan untuk 2roduksi biodiesel

    Berba!ai minyak diekstrak dari biji atau kernel tanaman non-edible yan! bahan mentah untuk 2roduksi biodiesel. anamanminyak non-edible tant im2or- yan! jatro2ha 6,6=C, karanja 6,)&C, tembakau )$-)6C, /ahua )),)8C, nimba )%C, karet )0C,man!!a laut )C, jarak )=C, ka2as 8&,8$C, dll ari bahan baku tersebut, jarak 2a!ar, karanja, /ahua dan minyak kastor yan!

    2alin! serin! di!unakan dalam sintesis biodiesel.

    di banyak ne!ara, minyak !oren! tidak di2roduksi di cuku2 jumlah untuk memenuhi 2ersyaratan untuk di!unakan manusiadan harus diim2or. Oleh karena itu, har!a biodiesel yan! dihasilkan dari edi- minyak ble jauh lebih tin!!i dari 2etrodiesel. 7alyan! menarik dari 2roduksi biodiesel dari minyak nabati adalah India, di mana sekitar )%E dari jumlah yan! dibutuhkan untuk

    2ersyaratan domestik diim2or (6C. Oleh karena itu, minyak non-dimakan dari 2ohon jarak, karanja, neem, /ahua dan tanaman

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    6/76

    lainnya adalah satu-satunya kemun!kinan untuk 2roduksi biodiesel. abel $ menyajikan rin!kasan 2ada tanaman berminyak danisi minyak biji atau kernel mereka berdasarkan survei literature lebar. 7anya bebera2a, yan! 2alin! 2entin! dan 2alin! serin!di!unakan minyak non-edible di2ilih untuk diskusi lebih lanjut.

    atro2ha tanaman meru2akan salah satu sumber minyak 2otensial yan! 2alin! menjanjikan untuk 2roduksi biodiesel di South-5ast 1sia, 1merika en!ah dan Selatan, India dan 1rika. 7ari ini, itu adalah bahan baku utama untuk duction 2ro biodiesel dine!ara-ne!ara berkemban! se2erti India, di mana 2roduksi tahunan sekitar $8.&&& t (6C. 7al ini da2at tumbuh ham2ir kemana

    saja, 2ada tanah limbah, ber2asir dan !aram, di ba>ah kondisi iklim yan! berbeda serta di ba>ah rendah atau tin!!i curah hujandan embun beku. 5levasi culti- yan! mudah, tan2a 2era>atan intensi dan usaha yan! minimal. Its siklus hidu2 sehat 6&-8& tahunmen!hilan!kan re2lantation tahunan. 3andun!an minyak jarak 2a!ar bervariasi ter!antun! 2ada jenis s2esies, ta2i ini adalahtentan! )&-%&E dalam biji dan )%-8E dalam kernel $(C. atro2ha memiliki siat sebandin! den!an diesel, se2erti nilai kalordan cetane number 8=C. Ini memiliki 2otensi besar seba!ai bahan bakar alternati karena tidak memerlukan modiikasi mesin(6C. /asalah serius den!an minyak jarak 2a!ar adalah toksisitas ke2ada oran!-oran! dan he>an $C.

    3aranja adalah 2ohon 2en!ikat nitro!en mem2roduksi benih den!an kandun!an minyak mendasar di antara keduanya. Iniadalah 2olon!an, ukuran medium 2ohon hardy den!an ce2at tumbuh, yan! asli ke India, 1merika Serikat, Indonesia,

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    7/76

    6%() IB Bankovic-Ilic et al. "lasan : 5ner!i erbarukan dan Berkelanjutan $% 9(&$(; 6%($- 6%)0

    abel siat ( Fisiko-kimia metil ester dari berba!ai dimakan dan non-edible oils.a

    sayur minyak ensity, k! : m6 viskositas kinematik

    2ada )& LG, mm( : s

    Getane jumlah Gloud titik, titik LG lash, LG stabilitas oksidasi 2ada

    $$& LG, h

    dimakan minyak biji rami =( 6,08 - -6, - &,( ra2eseed ( ),)) 8),) -6,6 - 0,% Sunlo>er & ),)) )=,& 6,) $6 &,= 3edelai) ),&) )8,& $,& $0 (.$ Peanut 6 ).=& 8).& 8.& $0% (.& Palm 0% 8.0& %(.& $6.& $%) ).& bekatul 8 ),=%-&,6 &,) Goconut&0 (,06-&,& $$& 68,8 Olive - ),8& 80,&-$0 6.6

    #on-edible minyak Gastor == $8,(8 - -$6,) - $.$ atro2ha & ).& 8(.6$ (.0 $68 (.6 3aranja ),& 88,)-$8& /ahua 8& 6,=8%,%$-(& - #eem ) 8.($ 80.6 $),)-0,$ embakau ),(6 8$,%-$%8,) &,

    Standar 5#$)($) %&-=&& 6,8-8,&M 8$ &,6 maKM $&$M %

    a Berdasarkan data yan! diambil dari %-,$&,$%,(=,8)C.

    1ustralia, Fili2ina dan /alaysia. /inyak 3aranja memiliki banyak sika2 sub beracun yan! tidak memun!kinkan 2en!!unaannyaseba!ai minyak !oren!. Produksi tahunan minyak karanja di India adalah 88.&&& t (6C, yan! hanya %E saat di!unakan )&C. 7al

    ini da2at dibudidayakan untuk menin!katkan kualitas tanah, dan tanah habis da2at di!unakan kembali untuk tujuan 2ertanian %C.

    Gastor tanaman mudah tumbuh seba!ai !ulma dan memiliki 2ersyaratan ekolo!is yan! sama se2erti 2ohon jarak. Ini adalahasli India, Ghina, Brasil, bebera2a ne!ara eks-"ni Soviet dan hailand. India mem2roduksi sekitar &,06 /t tahunan, yan!meru2akan %&E dari 2roduksi castor dunia $(C. /inyak jarak benar-benar larut dalam alkohol dan memiliki viskositas hin!!a 0kali lebih tin!!i dari minyak nabati lainnya %&C. Viskositas tin!!i minyak jarak mentah adalah masalah untuk di!unakanlan!sun! seba!ai bahan bakar.

    /ahua dan 2ohon neem, menen!ah ke 2ohon-2ohon besar yan! ditemukan di seba!ian besar India dan Burma, meru2akansumber si!niikan dari minyak. 7am2ir seluruh 2ohon neem da2at di!unakan untuk berba!ai ke2erluan dalam 2en!obatan danseba!ai 2estisida dan 2u2uk or!anik. Produksi tahunan nimba dan minyak /ahua di India adalah $&&.&&& t dan $&.&&& t,masin!-masin! (6C. 3ernel dari /ahua men!andun! hin!!a 8&E minyak $%C, yan! berisi sekitar (&E FF1 membuat 2roseduruntuk biodiesel 2ro duksi dari minyak ini san!at di2erlukan ))C.

    aerah-daerah utama 2roduksi 2ohon 3usum terletak di India, Sri 'anka, imor dan a>a. Pahit dalam rasa dan beracun,minyak 3usum memiliki sekitar 8-$$E FF1. /inyak murni tidak da2at di!unakan seba!ai bahan bakar karena viskositas yan!tin!!i. Produksi minyak 3usum di India adalah (8.&&& ton : tahun (6C.

    Sea man!!a 2ohon, terkenal seba!ai N2ohon bunuh diriN, tumbuh di India, /ada!askar, /alaysia, Sri 'anka dan 3amboja./emiliki kandun!an minyak yan! tin!!i 98)E;, bijinya meru2akan sumber layak untuk 2roduksi biodiesel, yan! telah di!unakansejauh ini hanya dalam 2roses transesteriikasi den!an katalis 2adat tertentu )C.

    Junani dan urki adalah dua 2rodusen utama ka2as di "ni 5ro2a dan dunia. 3a2as adalah sumber salah satu minyak nabatitermurah memiliki viskositas ekstrim dan ke2adatan tin!!i. Produksi minyak biji ka2as halus di urki 2ada tahun $==0 adalah(&.8)% t %$C. #amun, 2roduksi tanaman tidak konsisten sesuai den!an luas 2anen dan kondisi iklim.

    Bebera2a minyak non-edible telah diisolasi dari berba!ai tanaman di seluruh dunia se2erti /orin!a oleiera %(-%)C,1r!emone meKicana 88C, hevetia 2eruviana %8C , hlas2i arvense %%C, 5u2horbia lathyris, Sa2ium sebierum 8%C, Pistaciachinensis b!e 80C atau atura stramo- nium 8C. i sam2in! banyak ke!unaan obat dan nilai !ieed,adalah asli 1merika "tara dan 5urasia. 7al ini san!at disesuaikan den!an berba!ai kondisi matic cli-, toleran terhada2 tanah yan!

    belum ditanami dan membutuhkan in2ut minimal 2ertanian 92u2uk, 2estisida, air;. /akanan dari biji ted deat- tidak da2atdi!unakan seba!ai 2akan ternak karena kandun!an tin!!i !lukosinolat. 3arena kandun!an minyak yan! tin!!i 9(&-6%E;, bidan!

    biji nycress 2ena-meru2akan bahan baku diterima untuk 2roduksi biodiesel %%C. 5. lathyris dan hasil ju!a sejumlah besar S.sebierum minyak dalam biji mereka. erutama, tanaman keduanya berasal dari Gina dan disesuaikan den!an alkali, !aram,kerin! dan tanah asam 8%C.

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    8/76

    (.6. Perbandin!an antara ester alkil dari dimakan dan non-edible oils

    Bebera2a siat isiko-kimia 2entin! dari metil ester yan! dihasilkan dari sumber yan! berbeda da2at dimakan dan non-dimakan ditunjukkan 2ada abel (. ke2adatan tin!!i dari ester dari bebera2a dimakan 9biji rami; dan non -edible 9jarak; minyakadalah disebabkan adanya asam lemak yan! memiliki lebih dari dua ikatan !anda C. #amun, memiliki kandun!an tin!!i asamlemak jenuh, metil ester yan! dihasilkan dari minyak nimba memiliki titik a>an yan! jauh lebih tin!!i dari2ada yan! dihasilkandari minyak biji rami. itik nyala yan! tin!!i /ahua biodiesel adalah karena adanya ester den!an rantai memiliki lebih dari $(

    karbon. 3ela2a biodiesel memiliki titik nyala terkecil. Selanjutnya, biodiesel yan! dihasilkan dari bebera2a minyak non-dimakan9jatro2ha, nimba; memiliki kandun!an kecil linoleat dan asam linolenat, sehin!!a stabilitas oksidasi adalah lebih tin!!i dari

    biodiesel dari minyak biji rami. 3arena keberadaan asam lemak jenuh, ester yan! dihasilkan dari minyak kela2a memilikistabilitas oksidasi tertin!!i C.

    Bebera2a keuntun!an dari bahan bakar biodiesel yan! dihasilkan dari berba!ai bahan baku non edible oil, dibandin!kanden!an bahan bakar diesel, di mesin kom2resi 2en!a2ian ditunjukkan 2ada abel 6. keuntun!an utama dari biodiesel adalahmasalah yan! lebih rendah 2artikulat, karbon monoksida, hidrokarbon, nitro!en oksida dan emisi asa2, rasio kom2resi yan! lebihtin!!i terkait den!an tekanan injeksi yan! lebih tin!!i dan 2embakaran diusi yan! lebih tin!!i.

    3. Metode transesterifikasi untuk modifikasi non-minyak goreng ke dalambiodiesel

    minyak sayurda2at dikonversi menjadi biouel men!!unakan em2at cara+ blendin!, mikro-emulsi, 2irolisis dantransesteriikasi %0,%C. ?eaksi transesteriikasi reversibel yan! 2alin!

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    9/76

    IB Bankovic-Ilic et al. "lasan : 5ner!i erbarukan dan Berkelanjutan $% 9(&$(; 6%($- 6%)0 6%(8

    abel 6 3euntun!an bahan bakar biodiesel yan! dihasilkan dari berba!ai minyak non-edible.

    3elebihan bahan bakar 2emban!kit /inyak

    emisi atro2ha rendah P/, rasio kom2resi yan! lebih tin!!i terkait

    den!an tekanan injeksi yan! lebih tin!!i, 2embakaran diusi yan! lebih tin!!i 3aranja rendah #O

    K

    studi ester men!hasilkan lebih tin!!i dari =&E terca2ai, secara inde2enden dari jenis katalis yan! di!unakan, alkohol dan minyaktanaman.

    selain banyak keuntun!an, 2en!!unaan katalis homo!en memiliki banyak kelemahan. /asalah o2erasi terkait den!an2en!!unaan hidroksida alkali seba!ai katalis karena mereka berbahaya $0C. Selain itu, dalam ran!ka memenuhi kualitas 2rodukyan! ditentukan, emisi /ahua Ba>ah GO, 7G, #O

    K

    emisi, berkuran!nya jumlah asa2 3aret rendah emisi asa2 #eem rendah GO, #O

    K

    dan emisi asa2

    P/ - 2artikulat, #O

    K

    - oksida nitro!en, GO - karbon monoksida, 7G -. hidro karbon

    2roses melibatkan sejumlah cuci dan 2emurnian lan!kah 2ro- ducin! sejumlah besar air limbah, yan! tidak men!untun!kanlin!kun!an dan membutuhkan 2en!obatan yan! te2at. in!!inya jumlah air yan! di!unakan dalam mencuci dan 2en!obatanakibat dari limbah besar yan! dihasilkan menin!katkan biaya keseluruhan 2roses. "ntuk alasan ini, homo!en dikatalisasialkoholisis da2at dian!!a2 seba!aitra-

    metode umummen!konversi 1H dari minyak menjadi biodiesel dan solusi yan! 2alin! menjanjikan dari masalah minyakviskositas tin!!i. Faktor utama yan! mem2en!aruhi reaksi transesteriikasi dan di2roduksi ester men!hasilkan adalah+ rasiomolar alkohol+ minyak, jenis alkohol, jenis dan jumlah katalis, tem2eratur reaksi, tekanan dan >aktu, 2encam2uran intensitas

    serta isi FF1 dan air dalam minyak .reaksi transesteriikasi da2at non-katalis atau kucin!- alyah kondisi su2erkritis.

    /etode ditional untuk sintesis biodiesel, dan metode alternati telah dikemban!kan.

    Basis katalisis. asar katalis reaksi transesteriikasi serin! di!unakan untuk 2roduksi biodiesel dari minyak non-edible 9abel);. 3atalis basa san!at akti katalis dan murah sementara biodiesel berkualitas tin!!i di2eroleh dalam >aktu reaksi sin!kat $0C.3elemahan utama dari katalis basa adalah ketidakmun!kinan men!konversi FF1 untuk ester alkil dan 2embentukan sabun dihada2an FF1, yan! men!uran!i yield biodiesel dan mence!ah 2emisahan !liserol $C.

    7asil biodiesel yan! tin!!i 9lebih tin!!i dari =&E; dica2ai 2ada seba!ian besar studi, secara inde2enden dari jenis bahan bakudan alkohol. alam kasus ethanolysis minyak jarak den!an men!!unakan natrium ethoK- ide seba!ai katalis dan alkohol tin!!i+

    rasio molar minyak 9$%+ $;, ester hasil tertin!!i dari ==E dica2ai %C. u!a, dalam metanolisis reaksinya dari jarak dan tembakauminyak 9rasio molar 8,%+ $ dan $&+ $, masin!-masin!; hasil ester tin!!i =E di2eroleh 2ada $,8 jam 0$C dan 8 menit )C,

    masin!-masin! . i sisi lain, hasil yan! san!at rendah biodiesel dila2orkan untuk jarak 0(,00C dan man!!a laut )C 6.$.7omo!en katalis transesteriikasi 2roses

    minyak yan! memiliki kandun!an FF1 tin!!i.

    Sejauh ini, seba!ian besar 2eneliti telah men!!unakan

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    10/76

    metanol dan jaran! etanol homo!en katalis alkoholisis minyak non-edible melalui

    untuk 2roduksi biodiesel karena methanolysis lebihce2at dari 2roses satu dan dua lan!kah adalah subjek yan! 2alin! 2enelitian

    ethanolysis dan F1/5 hasil yan! lebih tin!!idibandin!kan hasil >ajahku. 2ada sintesis F115 dan yan! 2alin! serin! industri

    alam hal 2roduksi biodiesel dari minyak jarak,maksimal ditera2kan 2roduksi biodiesel. Bahan baku karakteristikse2erti

    yield F1/5 =&E dica2ai dalam $ jam 2ada %& LGsedan!kan maksimum seba!ai konten FF1 dan asam lemak kom2osisi 2en!aruh dominan

    >ajahku hasil hanya &E di2eroleh di 8 jam 2ada &LG %&C. #amun, 2emilihan jenis 2roses 2roduksi biodiesel.

    Gam2uran metanol dan etanol di!unakan untuk mem2roduksi biodiesel dari minyak jarak 2a!ar di hada2an "SH 0=C. en!ancara ini, 6.$.$. Satu-lan!kah 2roses

    keuntun!an kelarutan minyak yan! lebih baik dalametanol dari dalam metanol Pilihan antara katalis basa atau asam seba!ian besar ter!antun! 2ada

    di!unakan. u!a, ester cam2uran adalah kelarutan

    aditi lebih baik dari2ada isi FF1 9atau nilai asam; dalam bahan baku berminyak. 1sam nilai

    metil ester 0=C. o a eedstock is inluenced by the oilsource, the ty2e o culti-

    he alcohol+oil molar ratio usually used in thealcoholysis reac- vation and the oil stora!e mechanism. #on-edible oils, !enerally,

    tion o non-edible oils is %+$ )(,%&,0%C, althou!hsome researchers contain si!niicant amounts o FF1 that limit the use o hi!h eec-

    su!!est a much hi!her molar ratio such as $&+$)%,$,)C or tive base catalysts. ide ran!es o acid value or non-edible oils can

    even $$6+% C. he researchers !enerally a!ree thatthe increase be ound in the literature. For eKam2le, the acid value o jatro2ha

    o the initial alcohol+oil molar ratio increases the esteryield oil varies rom &.=( m! 3O7:! 0&C to ( m! 3O7:! 0C. FF1s rom

    %(,0(,$,6,),=C. 7o>ever, da Silva et al. %Csho>ed that oily eedstocks in the 2resence o base catalysts orm soa2s, >hich

    the ester yield did not increase >hen the alcohol+oilmolar ratio reduce F1/5 yield, cause catalyst loss and com2licate 2hase se2-

    increased above the molar ratio o $%+$. In the case ocastor oil aration. Base catalysts are 2reerable in the case o ve!etable oils

    ethanolysis, a hi!h yield is obtained at hi!herethanol+oil molar havin! a lo>er FF1 content. 1cid catalysts have lo> susce2tibil-

    ratios and lo>er catalyst concentrations or at lo>erethanol+oil ity to the 2resence o FF1 in the oily eedstock due to their ability

    molar ratios and hi!her catalyst concentrations,inde2endently o to simultaneously cataly

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    11/76

    #aO7 and 3O7. he initial catalyst concentration is avery im2or- yield. hereore, acid catalysts have been rarely a22lied in one-ste2

    tant actor inluencin! the 1H conversion de!ree.he o2timal 2rocesses.

    amount o the base catalyst is about $E 9based on oil>ei!ht;, able ) summarier cata- conditions or some homo!eneously catalyith the use o methanol or rarely

    #aO7 %&C. hen the #aO7 concentration >as 6.6E,the maKimum ethanol at tem2eratures belo> the boilin! 2oint o alcohol. Sulu-

    F1/5 yield >as only 88E, >hich >as eK2lained bythe coeKistence ric acid and alkali hydroKides 9#aO7 and 3O7; are the most-used

    o FF1 in the oil 0(C. he FF1 content in crudejatro2ha oil >as catalysts in transesteriication 2rocesses. 1lmost in all re2orted

    reduced rom 6.$E to &.(8E in the 2resence o #aO7 under the

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    12/76

    able ) 1 revie> o the homo!eneously one-ste2 transesteriication 2rocesses o dierent non-edible eedstocks.

    Feedstock 9oil; y2e, volume o reactor, cm6:y2e

    o a!itator, a!itation intensity, r2m

    y2e o alcohol 1lcohol+oil

    Gatalyst:loadin!,

    em2erature, LG O2timal reaction conditions ?eerence molar ratio,

    >t.E to the oil mol:mol

    ?eaction conditions Jield

    9conversion;, E:ime, min

    atro2ha Flask, $&&&:Q /ethanol 8.%+$ #aO7:&.8Q$.8 6&Q%& %& LGR $E #aO7 =:%& 0$C

    Pilot 2lant, (8&a:Q /ethanol 8.%+$ #aO7:&.8Q$.8 6&Q%& %& LGR $E #aO7 =%:=& Hlass tube, $8:/a!netic, )&& /ethanol &.$Q&.0+$b #aO7:&.8Q6.& %8 &.0+$bR 6.6E #aO7 88:$(& 0(C Batch reactor, Q:Q, 6&& /ethanol =+$ #aO7:&. )8 9=%.6;:6& 06C

    5thanol =+$ #aO7:&. )8 9=6.$);:6& Q /ethanol $(+$ #aO7:$ %8 =.0c:0 0)C Batch reactor,Q:Q, 8&&& /ethanol 3O7:Q (6 %:$(& 08C Batch reactor, (():/echanical, =&& /ethanol %+$ 3O7:$ )&Q%& 8& LG =0.$:$(& 0%CFlask, 8&&:/echanical, %&& /ethanol %+$ #aO7:$ %& )0.(d:%& 00C

    &.)+$j 7

    (

    :$ %& =(.d:()& ouble-necked lask, $&&:/a!netic, Q

    SO

    ) /ethanol 6+$Q$&+$ 3O7:$ ( and )8 )8 LGR %+$ 9=8;:$& 0C

    3O7:$ ( and )8 )8 LGR %+$ 9==;e:$& Flask, 8&:Q /iKtureo

    methanol and ethanol 6+6 mol:mol

    %+$ 3O7:&.08 =d:0 0=C

    atro2ha 3aranja

    Pilot 2lant tank, Q:

    /ethanol

    %+$

    3O7:$

    %8

    =$:$&

    &C /echanical, Q

    /ethanol%+$

    3O7:$

    %8

    =:$& 3aranja Q /ethanol 6+$ and $&+$ 3O7:$ )8 and %& $&+$R %& LG 9=(;:=& $C

    /ethanol $&+$ 3O7:$ %& 9=8;e:=& Q /ethanol (0+$ 3O7:$e %& Q (C

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    13/76

    #eem Q /ethanol $&+$ #aO7:&.0 %&Q08 Q=):%.8Q h )%C

    5thanol $&+$ Flask, Q:Q, )8&Q8&& /ethanol )+$R %+$R +$ 3O7:$Q6 88, %&, %8 %+$R %& LGR (E 3O7 6.):%& 6C

    obacco Flask, $&&&:Q /ethanol %+$ #aO7:$.8 88 9%;:=& )(C Flask, $&&&:Q, %&& /ethanol )+$Q$&+$ 3O7:&.8Q$.8 )&Q%&$&+$R )& and 8& LGR $E 3O7 =:8 )C

    /ethanol )+$Q$&+$ #aO7:&.8Q$.8 )&Q%& 8& LGR $&+$R &.8E #aO7 =:8

    Gastor Batch reactor, (8&:/a!netic, Q /ethanol %+$ #aO7, 3O7, #aOG7

    6

    ,

    %& 3OG7

    6

    8:%& %&C 3OG7

    6

    :&.( 5thanol %+$ & #aOG7

    6

    &:6&& Flask, (8&:/a!netic, %&& 5thanol $(+$Q(&+$ #aOG

    (

    :&.8Q$.8 6&Q& 6& LGR $%+$R $E =6.$:6& 8C Flask,(8&:/a!netic, )&& 9laboratory;

    7

    8

    O#a 9==;e:6& %C

    Batch reactor, $&&&:/echanical, )&& 9lar!e scale;

    5thanol %+$Q6=+$ #aO7 and

    6&Q& 6& LGR $%+$R $E G

    (

    7

    8 G

    (

    7

    8

    O#a:&.8Q$.8 $=+$ #aO7:$ (&Q& 6& LG =.:$&

    /echanical shaker =.%8+$Q$(.68+$ 3O7:$.66Q(.$0 6& $$+$R $.08E 3O7 &:=&

    Soybean and castor 9(8+08,

    >:>;

    Batch reactor, 8&:/a!netic, Q /ethanol 6)+% #aO7:$+% Q 0:$Q$& h! 0C

    Gottonseed and castor

    98&+8&, >:>;

    %:$Q$& h!

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    14/76

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    15/76

    able ) 9Gontinued;

    Feedstock 9oil; y2e, volume o reactor, cm6:y2e

    o a!itator, a!itation intensity, r2m

    em2erature, LG O2timal reaction conditions ?eerence

    ?eaction conditions Jield

    9conversion;, E:ime, min

    5thanol 0+$ #aO7:$Q( & $R (E #aO7 %:%&, =&i:%& Flask, $&&&: /ethanol 6+$Q=+$#aO7:&.8Q$.8 %& %+$R $E #aO7 =.8:%& =C /a!netic, )&&

    /ahua ouble-necked lask,

    $&&:/a!netic, Q

    y2e o alcohol 1lcohol+oil

    Gatalyst:loadin!, molar ratio,

    >t.E to the oil mol:mol

    /ethanol 6+$Q$&+$ 3O7:$ ( and )8 )8 LGR %+$ 9=8;:$& 0C

    3O7:$ ( and )8 )8 LGR %+$ 9==;e:$& Flask, 8&&:Q/ethanol ).8+$Q=+$ 7

    (

    =&C5thanol &Q8 =(:6&& Butanol $$Q$(& =8.):6&&

    Fodder radish 3ettle reactor, $&&&:/echanical,

    8&&Q6(&&

    SO

    )

    :$.&Q0.& %8Q0& =+$R %E 7

    (

    SO

    )

    5thanol %+$Q$)+$ #aOG7

    (

    G7

    6

    :&.=Q$.8 6%Q%& 6& LGR %+$R $.6E =0.=:0& =$C

    Gastor Batch reactor, (8&:/a!netic, Q /ethanol %+$ 7

    (

    :&.( %& 8:)& %&C 7Gl:&.( 08:()& 5thanol %+$ 7

    (

    SO

    )

    :&.( & %8:()& 7Gl:&.( 08:)&

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    16/76

    /orin!a oleiera Beker, Q:/a!netic, )&& /ethanol $+$Q8+$b 3O7:&.8Q$.8 6&Q%& %& LGR 6+$bR $E 3O7 (:%& %(C

    a Ga2acity, dm6:day. b>:>. c /icro>ave irradiation. d "ltrasonic 2o>er+ ($& . e 7F as co-solvent. /olar ratio. ! 1vera!eo dierent reaction times rom $ to $& h. h ($E o an eKit micro>ave 2o>er o $.( k.

    i "ltrasonic 2o>er+ (&& R reuency+ () k7

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    17/76

    6%( IB Bankovic-Ilic et al. : ?ene>able and Sustainable 5ner!y ?evie>s $% 9(&$(; 6%($Q 6%)0

    o2timum reaction conditions 0$C. #aO7 neutralias decreased belo> or increased above the o2timum, there >as nosi!niicant chan!e in the biodiesel yield 0$C. Gom2arin! the ty2e o catalyst in the same o2eratin! conditions 9alcohol ty2e,tem2er- ature and alcohol+oil molar ratio;, Parlak et al. )C re2orted that the same ester yield >as obtained usin! $E 3O7 and&.8E #aO7. Beside 3O7 and #aO7, 2otassium and sodium methoKides are also used as base catalysts. he catalytic eiciency

    o hydroKide ion >as !enerally inerior to that o methoKide ion %&C.

    ierent reaction times or com2letin! the base catalyer 98 min; )C andmuch hi!her 98 h; %&C reaction times in the case o tobacco seed and castor oil, res2ec- tively. It is kno>n that the conversionrate increases >ith the reaction time =(C. Ghitra et al. 0$C used our dierent reaction times in order to o2timied that the esters yield increased >ith reaction time. Furthermore, althou!h the yield obtained by a2anes et al.06C is sli!htly lo>er than that re2orted by Ghitra et al. 0$C, the reaction time is three times shorter.

    he reaction tem2erature inluences both the reaction rate and the yield o esters =(C and should be maintained belo> theboilin! 2oint o alcohol =6,=)C. he o2timal tem2erature or methanolysis o non-edible oils is about %&Q%8 LG, althou!h someresearchers recommend lo>er tem2erature such as 6& LG in the case o castor oil %,=8C and 8& LG in the case o jatro2ha06,0%C, tobacco seed )(,)C and mahua oil 0C. In order to o2timiith the increase in reactiontem2erature and the maKimum yield o ester is obtained at %& LG.

    Ghitra et al. 0$C 2erormed the biodiesel 2roduction on both laboratory- and lar!e-scale ater havin! o2timihat lo>er avera!e ester yield >as achieved by the lar!e-scale 2roduc- tion than in the laboratory conditions. "sin! castoroil, da Silva et al. %C 2erormed scale u2 >ith times hi!her oil amount and ound that the same ester concentration >asobtained at both levels.

    1cid catalysis. Besides many disadvanta!es like the slo>er reac- tion rate, the hi!her alcohol+oil molar ratio reuirement, alo>er catalyst activity and a need or hi!her 2rocess tem2erature, the use o acid catalyst in the transesteriication reaction hassome im2ortant advanta!es $=C such as the tolerance and less sensi- tivity to>ards the hi!h FF1s 2resence in the lo>-costeedstocks 9M %E; ($C and the 2ossibility o simultaneously accom2lishment o esteriication and transesteriication. he most

    used acid catalysts are suluric, 2hos2horic, hydrochloric, etc.

    Biodiesel yield >as u2 to about =&E in several studies related to acid-catalyas needed, com2ared to the base catalyo-ste2 9acid:base; 2rocesses

    o take advanta!es o both base and acid catalysts, t>o-ste2 9acid:base; 2rocesses or biodiesel 2roduction rom non-edibleoils >ith a hi!h FF1 content have been develo2ed. he t>o-ste2 2ro- cess consists o acid cataly $E;. he base catalyay to achieve a hi!h biodiesel yield >ithin a short reaction time at mild reaction conditions,com2ared to one-ste2 2rocess. By usin! an acid catalyst 9mainly suluric acid; in the irst ste2 o the 2rocess, the slo> reaction

    2roblem is over- come, and the soa2 ormation is eliminated. he only disadvanta!e o the t>o-ste2 transesteriication 2rocess is

    the hi!her 2roduction cost as com2ared to conventional, one-ste2 2rocess. 1 revie> o t>o-ste2 homo!eneously alcoholysis2rocesses em2loyin! dier- ent non-edible oils are 2resented in able 8. Im2ortant variables aectin! the acid value in the irstand the ester yield in the second ste2 are the ty2e o eedstock and alcohol, alcohol+oil molar ratio, catalyst concentration,reaction tem2erature and reaction time.

    Grude and reined, deodoriay to utilio dierent methods o biodiesel 2roduction sho>s thatF1/5 yield achieved by the t>o-ste2 acid:base-cataly

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    18/76

    obtained by the one-ste2 base-catalyere re2orted by en! et al. 00C>orkin! >ith jat- ro2ha oil >ith $&.)8E o FF1s. In the base catalyn to only )0.(E;, >hile a much hi!her ester yield 9=%.)E; >as obtained in the t>o ste2 2rocess. o decreasethe initial hi!h FF1 content in crude mahua oil belo> $E, Hhad!e and ?aheman ))C carried out a t>o-sta!e 2retreatment

    2rocess o esteriication catalyith removal o a methanolQ>ater miKture by settlin! ater each ste2. Ocaet al. $&6C have develo2ed a novel base:acid 2rocedure or the ethyl esters 2roduction rom castor oil. he base catalyed by the on 2ot addition o suluric acid, >hich im2roves the se2ara- tion oF155s rom !lycerol because o breakin! soa2 ormation and increases FF1s yield in the esters 2hase. 1t the end o the secondste2, the acid-catalyard, the acid-catalyhich are varied in the ran!e o %+$ to $+$ in the both ste2s,inde2endently o the ty2e o cat- alyst. ith increasin! the molar ratio o methanol+oil in the irst ste2, the acid value is shar2lyreduced at irst, then decreases !rad- ually and stays constant at the end )&,)),8%,8,0(,00,=C, >hile the ester yield continuouslyincreases )&,=%C. he decrease o the acid value is due to the eect o >ater 2roduced durin! the esteri- ication o FF1, >hich

    2revents urther reaction. hereore, there is an o2timum alcohol+oil molar ratio reuired to com2lete the esteriication 2rocess. Inthe second ste2, relatively less amount o methanol is reuired or reducin! the acid value, because some o FF1s have been

    already esteriied durin! the irst ste2, and less amount o >ater is 2roduced durin! the reaction ))C. he lo> level o remainedFF1 rom the irst ste2 aects the transesteriication reaction. he esters yield increases to the o2timal value and more or lessremains the same >ith urther increasin! the methanol+oil molar ratio 6,)6,8(,8%,8,=%,=0C. his is attributed to a more diicultse2aration o !lycerol due to its emulsiication >ith methyl esters =0C.

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    19/76

    able 8 1 revie> o the t>o-ste2 9acid:base; cataly

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    20/76

    SO

    )

    9=6;:$(& =%C II /ethanol 6+$Q=+$ 3O7:&.8Q(.& )&Q$&& %& LG, =+$, (E 3O7 =8:$(& Batch reactor, $8&&:Q, )&& I /ethanol (+Q(+6a 7

    (

    SO

    )

    :&.8Q6 (&Q& %8 LG, 6+0a, $E 7

    (

    SO

    )

    , 9=8;:$& =0C II /ethanol 6+0a #aO7:&.8Q6 (&Q& 8& LG, 6+0a, $E #aO7 =&.$:$& Flask, 8&&:/echanical, %&& I /ethanol&.$%+$Q&.)Q$a 7

    (

    :$Q%a %& &.)+$a, )E 7(

    a 9.8;:%& 00C II /ethanol &.$%+$Q&.)Q$a #aO7:&.Q$.% %& &.()Q$a, $.)E #aO7 =%.)d:6& Flask, $&&&:/echanical, %&& I/ethanol +$Q$&+$ 7

    (

    SO

    )

    SO

    )

    SO

    )

    :&.(Q$.& %& +$, &.)E 7

    (

    SO

    )

    9=(;:6& 8%C II /ethanol %+$ 3O7:&.%Q$.( %& %+$, $E 3O7 %.(:6& Stock tank, 8& I /ethanol &.$%+$Q&.)+$a 7

    (

    :$Q)a Q &.6(+$, 6E 7

    (

    a 9=$.);:Q =C II /ethanol +$#aO7:$.( Q Q 9==.6;e:$&

    atro2ha Batch reactor, Q:/echanical, Q I /ethanol 7

    (

    SO

    )

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    21/76

    SO

    )

    SO

    )

    :Q 08C II /ethanol 3O7:Q (6 06:$(&

    3aranja Flask, Q:/a!netic, $&&& I /ethanol 6+$Q=+$ 7

    (

    SO

    )

    :&.(8Q( )&Q& 8& LG, %+$, $E 7

    (

    SO

    )

    9=);:)8 =%C

    Q

    II /ethanol 6+$Q=+$ 3O7:&.6Q$.& )&Q& 8& LG, =+$, &.8E 3O7 &:6& I /ethanol %+$ 7

    (

    SO

    )

    :&.8 %8 9=$;:Q )&C II /ethanol %+$ 3O7:$ %8 =0:Q Flask, Q:elon stirrer, 6&& I /ethanol &.$+$Q&.8+$c 7

    (

    SO

    )

    :&.8Q8 66.6+$c, 6.06E 7

    (

    SO

    )

    9$.;:6.$0 ==C II/ethanol &.$+$Q&.8+$c 3O7:&.8Q$.8 =.6+$ 966.)+$c;, $.66E 3O7 =.=!:(.8 acketed reactor, $&&&:i!ital stirrer, %&&Q%8&

    I /ethanol %+$ 7

    (

    SO

    )

    :$ 6& and %& %& LG, $8+$ 9=8;:Q $&&C II /ethanol %+$ 3O7:$ 6& and %& %& LG,$8+$ 9=0;:%&

    /iKture o mahua and simaroubaGonical lask, (8&:Q, (6& I /ethanol /ahua oil+ &.6)Q&.6%a

    :$.)Q$.)=a $=.60+$, $).6E Q:8=Q=& )8C

    Simarouba oil+ &.(0Q&.)&a

    7

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    22/76

    (

    SO

    )

    7

    (

    SO

    )

    :$.)Q$.8)a Q:)&Q=&

    II /ethanol 8+$ 3O7 %& =:6&

    3usum Flask, $&&&:/echanical, $(&& I /ethanol %+$Q$(+$ 7

    (

    :&.8Q$.(8a )&Q%) 8& LG, $&+$, $E 7

    (

    a 9=%;:%& 8(C II /ethanol

    %+$Q$(+$ 3O7:&.8Q$.$ )&Q%8 8& LG, +$, &.0E 3O7 =8:%&

    obacco Flask, Q:/a!netic, )&& I /ethanol ).8+$Q$+$ 7

    (

    SO

    )

    SO

    )

    SO

    )

    :$Q( %& $6+$, (E 7

    (

    SO

    )

    9=);:8& )6C II/ethanol %+$ 3O7:$ %& =$:6&

    Gastor Flask, $&&:/a!netic, 6&& I 5thanol )&+$ 7

    (

    SO

    ):$ %& Q:%& 8C II 5thanol (&+$ 3O7:$ %& 9=8.6;:%& Flask, $&&:/a!netic, 6&& I 5thanol )&+$ 7

    (

    SO

    )

    :$ %& Q:%& $&$C II 5thanol (&+$ 3O7:$ %& 9=8.%;h:%&

    Palm:rubber blend 9$+$; Flask, Q:Q, 6%& II /ethanol %+$Q$&+$ 3O7:&.8Q( )8Q%8 88 LG, +$, (E 3O7 9=%;:6 $&(C

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    23/76

    atura stramonium I /ethanol %+$Q$&+$ 7

    (

    SO

    )

    :&.)Q$ %& +$, &.%E 7

    (

    SO

    )

    9=;:6& 8C

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    24/76

    6%6& IB Bankovic-Ilic et al. : ?ene>able and Sustainable 5ner!y ?evie>s $% 9(&$(; 6%($Q 6%)0

    Inde2endently o the ty2e o non-edible oil, a number o researchers have used suluric acid as an acid catalyst 9the reuiredamount varied rom &.) to 8E; in the irst sta!e and 3O7 or #aO7 as a base catalyst 9the reuired amount varied rom &.8 to(E; in the second sta!e o the 2rocess. he catalyst amount aects the ester yield >hich irstly, increases and then starts todecline >hen the acid or base concentration increases above the o2timal values 9&.8E and (E, res2ectively; 6,8%,=%,=C. 1lo>er amount o acid catalyst than the o2timal one in the irst ste2 does not reduce the acid value to the desired limit, >hereas a

    hi!her amount results in darkenin! o the 2roduct 8(,8%,8C. 1lternatively, >hen the transesteriica- tion o 2retreated oils iscarried out at a base catalyst concentration hi!her than the o2timal one, the amount o soa2 !enerated durin! the reactionincreases, and the ester yield is reduced 8(,8%C.

    5K2eriments >ith non-edible oils have been 2erormed or var- ious reaction times bet>een &.) and % h. ith the 2ro!ress othe reaction u2 to the o2timal reaction time, the F1/5 yield increases ra2idly. In the acid-catalyhen thereaction time is lon!er than the o2timal one, the 2hysical a22earance and color o the oils become darker 8%C.

    /ost o researchers have been conducted their eK2eriments at tem2eratures close to the boilin! 2oint o alcohol 6,8(,=%,=0C.he maKimum ester yield is obtained in the ran!e o tem2erature rom 8& to %& LG. he reaction tem2erature or 2rocessin! non-edible oils should be maintained belo> %& LG because the sa2oniication o 1Hs by the base catalyst is much aster than thealcoholysis reaction 6,=%C. 1lso, the base-catalyith mechanical or ma!netic a!itators. here is only one t>o-ste2 transesteriication 2rocess, >hich is carried out in the continuous mode =C. he hi!h 1H conversion 9about ==.)E; >asobtained in a reactor >ith micro>ave irradiation. he reactor >as develo2ed to convert jatro2ha oil to alkyl ester usin! #aO7 asa catalyst and to com2are its 2erormance >ith traditional reactors. It >as con- cluded that the t>o-ste2 continuous micro>ave

    2rocess mi!ht ind a 2ractical a22lication in the biodiesel 2roduction rom non-edible oils.

    6.(. 7etero!eneously catalyhich reduces the >aste >ater amount. he additional beneit o the hetero!eneous catalyst use is the 2ossi-

    bility o their easy re!eneration and reuse that make the biodiesel synthesis 2rocess cost-eective $&)C. 7o>ever, a majordisadvan- ta!e o usin! hetero!eneous catalysts is a lo> reaction rate caused by diusion limitations in the three-2hase 9oilQalcoholQcatalyst; reaction miKture $&8C, as >ell as the com2leK catalyst 2re2aration ollo>ed by a si!niicant contribution to the

    environmental im2act in some cases. ?ecent researches have been ocused to>ards lo> cost and eco-riendly hetero!eneouscatalysts >ith a hi!h catalytic activity $&%Q$&=C. Henerally, the 2re2aration o this ty2e catalyst involves >ashin!, dryin!,crushin!:2o>derin! and calcinatin! at hi!h tem2eratures.

    Various com2ounds >ere investi!ated as hetero!eneous cata- lysts or non-edible ve!etable oils alcoholysis. able %summari

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    25/76

    able % he revie> o the catalyst ty2e and reaction conditions a22lied in hetero!eneously catalyt.E to the oil

    &Q$& $(+$R ).ER $%& LG %:% $$&C

    1mberlyst $8:$Q(& 8=:% ?ound-bottom lask, 8&:/a!netic

    /ethanol )+$Q$)+$ /ontmorillonite

    3SF:$Q(&

    %8 $%+$R $( >t.E 3 on #aJ 06:6 $$$C

    ?ound-bottom lask, $8&:/a!netic

    /ethanol=+$, $%+$, (&+$ 3:#aJ t.E;:) /ethanol 8+$Q(8+$ Ga/!O:$Q$& %8 $8+$R )E 96;:% $$(C

    GaDnO:$Q$& 9$;:% Flask, 8&&:6&&Q0&& /ethanol 6+$Q$8+$ 3#O

    6

    :$Q 0& $(+$R %ER %&& r2m 9);:% $$6C ?ound-bottom

    lask, 8&::1l

    (

    O

    6

    30 and 65 Mg/Zr = 2:1; 65 C (100)/0.75 [114]

    Batch reactor Parr ))(, 6&&:/echanical

    /ethanol 88+$ /!QDr miKed oKide

    >ith /!:Dr >ei!ht ratios o $+$, (+$ and 6+$:$&

    :$.8Q$&.8 $8&Q$=& $$+$R .%ER $( LG =):% $$8CFlask, $&& /ethanol %+$Q$8+$ GaO:&.8Q( 8&Q0& =+$R $.8ER 0& LG 9=6;:(.8 $$%C ?ound-bottom lask:/echanical, 6&&

    /ethanol =+$Q$+$ /!

    &.0

    Dn

    $.6

    1l

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    26/76

    (:6

    O

    6

    100/3 [117]

    ?ound-bottom lask, $&

    /ethanol %+$ GaO, 'iQGaOR

    %& GaO T Fe

    (

    9SO

    )

    ;

    6

    R 'a

    (

    QDnOR

    'iQGaOT Fe

    (

    9SO

    )

    ;

    6 'a

    (

    O

    6 O

    6

    :1l

    (

    O

    6

    R 'a

    &.$

    Ga

    &.=

    /nO

    6

    R GaO T Fe

    (

    9SO

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    27/76

    )

    ;

    6

    R 'iQGaOT Fe

    (

    9SO

    )

    ;

    6

    :8

    Mg/La = 3:1; 65 C 100/0.5 [118]

    atro2ha 92retreated; 5rlenmeyer lask,

    (8R "ltrasound () k7ei!ht ratios:8

    1mbient and %8

    =.8:&.(8 $$=C

    atro2ha Flat bottom SS6$%

    stainless steel reactor, $&&:/a!netic, $0&

    /ethanol 8+$Q$8+$ #a:SiO

    (

    :$Q8 Q 8&E am2litudeR &.0 s:sR

    =+$R 6E

    $(&C

    3aranja ?ound-bottom

    lask

    /ethanol $8+$ odecatun!esto2hos2horic

    $0& (& >t.E P1:Glay 9=6;: 9P1; su22orted on

    9=6;: 3-$& clay:8

    /ethanol 6+$Q$8+$ 'i:GaO >ith 'i ion

    68Q8 'i:GaO >ith 'i ion

    M==:(

    $($C amount rom $ to

    amount o $.08 >t.ER

    M==:$ 6 >t.E:$Q$&

    $(+$R 8ER %8 LG 3aranja Q /ethanol $&+$ /ontmorillonite 3-$&R

    $(& DnO 96;:() $C 7 QDeoliteR DnO:&.$ Parr reactor, 8&&:%&&

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    28/76

    /ethanol %+$Q$8+$ 'i:GaOR #a:GaOR

    6&Q%8 'i:GaOR $(+$R (ER %8 LG =).=Q=&.6b: $((C 3:GaO:&.8Q$& Gerbera odollam Batch reactor /ethanol $&+$/ontmorillonite

    3SF:)R

    2/Zr

    (

    ):6 )C

    +$ SO

    )

    $88 SO

    )

    /6; 8:1; 180 C 2/Zr

    (

    :% $&

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    29/76

    able % 9Gontinued;

    Feedstock 9oil; y2e, volume o

    reactor, cm6:y2e o a!itator, a!itation intensity, r2m

    em2erature, LG O2timal reaction conditions ?eerence

    ?eaction conditions Jield 9con-

    version;, E:ime, h

    Gastor Batch reactor, $&&:/a!netic

    1lcohol 1lcohol+oil molar

    Gatalyst:loadin!, >t.E ratio, mol:mol

    to the oil

    O:8 )&Q%& (=+$R %& LG (&:6 $(6C

    Stainless steel reactor

    /ethanol %+$Q68+$ Dn

    8

    9O7;

    9#O

    6

    ;

    (

    U(7

    (

    2 !"#$ %&'ar

    2 !"#$ %&'ar ra#"& "

    (

    ratio iO

    (

    (8:$ $()C

    Flask, (8&:/echanicalR Flask, (8&, /icro>ave 9)& and ((& ;

    /ethanol %+$ iO

    (

    :SO

    )

    $(& iO

    (

    :SO

    ) :7

    (

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    30/76

    SO

    )

    o 8,

    :7(SO) 8 $& and (&:8c /ethanol %+$ SiO

    (

    :96&Q8&;E 7

    (

    SO

    )

    R

    1mbient and

    / irradiation )& R

    9=8;:&.& $(8C 1l

    (

    O

    6

    :8&E 3O7:$&

    %&

    1l

    (

    O

    6

    :8&E 3O7

    5thanol %+$ SiO

    (

    9M=8;:&.66

    ?ound-bottom uart< lask, (8&, /icro>ave 9(.)8 H7

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    31/76

    (

    SO

    )

    =):$ $(%C

    ?ound-bottom uart< lask

    /ethanol 6+$Q$+$ 9)&Q%&;E 7

    (

    SO

    )

    :G:$Q0 88Q0& $(+$R 88E 7

    (

    SO

    )

    :GR 8ER %8 LG

    $(0C

    Gonventional heatin!, (8&:/echanical, %&&

    0=:)

    /icro>ave 9(.)8 H7

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    32/76

    6

    ,

    88Q8 #a

    (

    GO

    6

    R $+$R 0.8ER

    =&:( #a

    (

    GO

    6

    :$.8Q=.8

    %8 LGR ((&

    Gottonseed 1utoclave, (8& /ethanol 6+$Q$+$ iO

    (

    2;

    2; 12:1; Zr

    (

    (6& LG

    M=&: $(C

    Gottonseed Batch reactor,

    (8&:/echanical

    -SO

    )

    (&&Q(6& iO

    (

    -SO

    ) -SO

    )

    2/2

    M=&:6 $(=C

    "sed cottonseed ?ound-bottom

    lask

    /ethanol %+$Q$+$ 3F: -1l

    (

    O

    6

    >ith

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    33/76

    8&Q% 3F-1l

    (

    O

    6

    mass ratio o 3F-1l

    (

    O

    6

    mass ratio o

    8&.6%ER $(+$R )ER %8 LG (&.($ to8&.6%E:$Q8

    M==:&.08 $6&C

    1cidiied cottonseed 1utoclave,

    (8&:/a!netic

    /ethanol 6+$Q$8+$ 'i:GaO, #a:GaO, 3:GaO

    68Q08 'i:GaO >ith 'i ion >ith 'i ion amount

    amount o $.8 >t.ER rom &.8 to 8 >t.E:$Q

    $(+$R 8ER %8 LG :$Q8 $&Q((& =+$R 6ER (&& LG =(:% $6$C

    ?ubber seed atro2ha Galo2hyllum '. 92innai; 3aranja

    /ethanol 6+$Q$(+$ SO

    )

    2/"

    (

    -SiO

    (

    elon-lined steel

    /ethanol $8+$ 3

    )

    Dn

    )

    Fe9G#;

    %

    CU%7

    (

    OU(9tert-

    $0& 9=0;:

    $6(C autoclave,

    BuO7;:6

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    34/76

    90;: $&&:rotatin!, 8&

    9);: 9;: Jello> oleander Batch

    /ethanol (&+$d 1sh o banana 9/. reactor:/a!netic

    Balbisiana; trunk

    6( =%:6 %8C

    /orin!a oleiera Pressuri

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    35/76

    IB Bankovic-Ilic et al. : ?ene>able and Sustainable 5ner!y ?evie>s $% 9(&$(; 6%($Q 6%)0 6%66

    catalyst su22ort on the carriers, >hich 2rovide a hi!her s2eciic surace area $66C or by a22lyin! the a22ro2riate 2retreatment toincrease the catalyst acidity or basicity $$$,$$%,$6)C. he activ- ity o hetero!eneous catalysts is attributed to the 2resence o thelar!e amount o stron! basic $$),$$,$6&C, acid $6(C or both basic and acid $$8C sites. he catalytic activity o an im2re!natedcat- alyst de2ends on the ty2e o the active catalyst as >ell as on the used catalyst 2recursor. 3umar and 1li $6&C have re2ortedthat the activity o alkaline ion im2re!nated GaO de2ends on the metal ion ty2e as >ell as on the metal salt used in the catalyst

    2re2ara- tion. 1ccordin! to their results, 'i:GaO obtained by im2re!nation o 'i

    (

    adsor2tion on the catalyst surace, the active sites leachin! into the solution and the catalyst structure colla2se $68C. In order toavoid the catalyst active sites blockin! >ith or!anic residues or 2oison- in! >ith atmos2heric GO

    (

    , researchers use dierent re!eneration methods+ >ashin! >ith methanol and dryin! $$),$$8,$$=C,>ash- in! >ith methanol and heKane ollo>ed by dryin! and calcination at a desired tem2erature $$(C, dryin! and calcination$$6C and recyclin! the catalyst >ith !lycerol $$0C.

    he laboratory scale continuous 2rocess o hetero!eneously catalyas develo2ed by Sree2ras-anth et al. $6(C. he 2rocess >as conducted in a iKed-bed, do>n GO

    62ossesses the hi!hest surace area and basic stren!th, and

    lo> reactor. he catalyst 93

    ) conseuently, thehi!hest activity in the alcoholysis reaction.

    he ty2e o a hetero!eneous catalyst or the biodiesel 2roduc- tion rom non-edible ve!etable oils de2ends on the FF1 contentin the eedstock. he most oten used non-edible oil in 2revious investi!ations o hetero!eneously catalyith the lo>er FF1 content $$6,$$%,$$=C. ueto the acid solid catalysts ability to simultaneously catalyith the hi!h FF1 content. Some researchers also em2loyed the modiied catalysts, >hicheKhibited dual basic and acidic sites $$$,$$8C or the miKture o acid and base catalysts $$0C, >hich allo> oil conversion to

    biodiesel in a one-ste2 2ro- cess o simultaneous esteriication and alcoholysis. he 2revious researches o hetero!eneouslycatalyith a hi!h catalytic activity. he most-usedmethods or the catalyst 2re2aration are im2re!nation and co-2reci2itation usually by usin! metal nitrates, ollo>ed by dryin!and reuently calcination at a desired tem2er- ature.

    he alkyl esters yield obtained in hetero!eneously catalyei!ht ratio o (+$ $$)C, /!:'a miKed oKides >ith a /!:'a >ei!ht ratio o6+$ $$C, 'i:GaO $($,$6&C and miKture o base 9GaO and 'i-GaO; and acid 9Fe

    (

    Dn)

    Fe9G#;

    %

    CU%7

    (

    OU(9tert-BuO7;; >as crushed, sieen ceramic

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    36/76

    beads into the reactor. he reactants 9unreined rubber seed oil and n- octanol at the alcohol+oil molar ratio $8+$; >ere ed usin! asyrin!e 2um2 >ith the total lo> rate ( m':h. he reaction >as carried out at $0& LG under atmos2heric 2ressure. he obtainedrubber seed conversion >as =.(E, and no loss in the catalytic activity >as noticed ater 8( h $6(C. Pen! et al. $6$C have

    2ro2osed a con- tinuous biodiesel 2roduction 2rocess rom chea2 ra> eedstocks >ith the hi!h FF1 content, such as non-edibleoils, soa2stocks and >aste cookin!, oil by solid acid catalysis. he 2roduction 2rocess >as carried out in a seuence o threereactors >ith a countercur- rent lo> o va2orias recycled in a distillation to>er, >hile the

    oil 2hase >as reined at a biodiesel vacuum distillation to>er. "sin! the 2ro2osed continuous 2ro- cess, a biodiesel demonstration2roduction 2lant havin! an annual ca2acity o $&,&&& t >as built $6$C.

    6.(.(. >o-ste2 9acid:base; 2rocesses

    Several studies deal >ith the use o hetero!eneous catalysts in the t>o-ste2 2rocess 9able 0;. he used oily eedstocks havehi!h acid values bet>een $&.8 m! 3O7:! oil $68C and ().0% m! 3O7:! $6=C. 7etero!eneous catalysts are used either tocatalyled!e, a com2letely hetero!eneous t>o-ste2

    2rocess has not been develo2ed yet as a ste2 is still homo!eneously cataly years to ind a chea2er catalyst or a catalyst >ith a sim2le 2re2aration methodthat reduces the biodiesel 2roduction cost. For eKam2le, GaO 2re2ared rom >aste chicken e!!shells by calcination is used as acatalyst in the t>o-ste2 biodiesel 2roduction 2rocess rom mahua $6C and karanja $60C oil, and the F1/5 yields o =8E are

    9SO

    )

    ;

    6

    ; catalysts $$0C have the hi!hest catalytic activity

    achieved. he sim2le calcination is used or 2re2arin! SO

    )

    2/"

    (or non-edible oil methanolysis at mild reaction conditions. he

    $6%C and SO

    ) total conversion o oily eedstock isachieved at %&Q%8 LG and >ithin a relatively short reaction time 9able %;.

    he major advanta!e o hetero!eneous catalysts is the 2os- sibility o their reusin!, >hich enables the continuous 2rocessdevelo2ment. /ost researches o hetero!eneously catalyith the catalyst reusability, and dierent resultsare obtained. 3

    )

    2/Zr

    (

    $6=C, >hich are eective catalysts or FF1 esteriication reaction in a t>o-ste2 2rocess 2rovidin! =E and =)E FF1 conversion,res2ectively. 1s in the case o one-ste2 2rocess, catalyst reuse is attractive rom the 2oint o the continuous 2ro- cess

    develo2ment. GaO $6C and hydrotalcite >ith /!:1l molar ratio 6+$ $68C are reused or $& runs ater >ashin! and calcinationand or runs ater >ashin! >ith ethanol, res2ectively, >ithout Dn

    )

    Fe9G#;

    %

    CU%7

    (

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    37/76

    OU(9tert-BuO7; $6(C, SO

    )

    2/"

    (

    -

    any si!niicant loss in the F1/5 yield. he bestreusability 2eror- SiO

    (

    $6$C and iO

    (

    -SO

    )

    2; Zr

    (

    -SO

    )

    2 [12*] !+r+ ,#a-'+ a#a',#,

    mance is sho>n in the case o SiO

    (

    U7F, >hich isrecycled 6& times suitable or lon!-term use, but no catalyst re!eneration meth-

    >ithout the catalyst re!eneration and >ith theunchan!ed F1/5 ods are re2orted. 1luminum oKide-modiied /!QDn catalyst

    yield $6)C. 9/!

    &.0

    Dn

    $.6

    1l

    (:6

    O

    6

    ; can be recycled ive times >ith the dro2 in the F1/5 yield o 6E and %E durin! re!eneration and reusabil-

    6.6. 5nell-kno>n that li2ases, enater-2oor media. hereore, li2ase-catalyith maintainin! the conversion hi!her than

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    38/76

    teriication reaction is carried out in non-aueousenvironments &E $$(C. 7o>ever, in most cases, the hetero!eneous catalysts

    such as solvent-ree systems, or!anic and ionic liuids,!aseous are recycled u2 to three times ater >hich a si!niicant decrease in

    media and su2ercritical luids. he advanta!es o this2rocess are the F1/5 yield is observed $$6,$$0,$$=,$(&C. Gatalyst deactiva-

    simultaneously catalysis 91H alcoholysis and FF1esteriication;, tion can be caused by three main reasons+ 2roduct and by-2roduct

    easy recovery o !lycerol, the use o eedstock >ith hi!h FF1

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    39/76

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    40/76

    /1.5 / 65 (*1)a/1 [137] M+#$an&' 6:112:1 Ca

    (&-#a"n+d @r&%

    chicken e!!shells;:$Q6.8

    )8Q08 +$R (.8ER %8 LGR

    %&& r2m

    =8:(.8

    /ahua ?ound-bottom lask, $&&&:/echanical,

    $&&&

    I /ethanol %+$Q$(+$ 7

    (

    SO

    )

    :&.8Q(, v:v )8Q%8 %+$R $.8 9v:v;R 88 LG 9=$;a:$ $6C II /ethanol 8+$Q=+$ GaO9obtained rom

    chicken e!!shells;:$.8Q6.&)8Q0& +$R (.8ER %8 LG =8:(.8

    #eem ?ound-bottom lask:/echanical I /ethanol 6+$Q$(+$ SO

    )

    2/Zr

    (

    /0.51.5 30*0 *:1; 1; 65 C (*4)a/2 [13*] M+#$an&'

    6:1 /1 60 *5/2

    a FF1 conversion. b >t.E o methanol to the oil. c methanol+FF1 molar ratio. d vol.E o 7

    (

    SO

    )

    to the oil. e vol.E o methanol to the oil.

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    41/76

    IB Bankovic-Ilic et al. : ?ene>able and Sustainable 5ner!y ?evie>s $% 9(&$(; 6%($Q 6%)0 6%68

    content and a minimal uantity o >aste >ater !enerated. he main dra>back in the use o the enaste !eneration rom catalyst se2arationand absence o cata- lyst makes the !lycerol recovery easier. he main disadvanta!es o su2ercritical reaction are the easy

    de!radation o 2roduced esters at an eKtremely hi!h tem2erature and the hi!h cost o the a22aratus. he additional dra>backs arethe hi!h 2ressure and tem2erature and the lar!e amount o alcohol used $C. Go-solvents and sub- critical alcohol could be addedinto reaction miKture to reduce the o2eratin! costs ($C.

    he revie> o the o2eratin! conditions a22lied in su2ercritical one- and t>o-ste2 2rocesses in various batch and continuousreac- tors is !iven in able =. 1 hi!her alcohol+oil molar ratio is reuired to 2ush non-catalytic su2ercritical alcoholysis or>ardand to com- 2lete conversion >hen oil contains a hi!h FF1 amount $80C. he yield o 2roduced esters increased >ith increasin!the molar ratio o alcohol to oil %$,$80,$8,$%$,$%(C, 2erha2s due to the increased contact area bet>een alcohol and 1H. 1$&&E F1/5 yield >as achieved in the case o lo>er content o FF1 9only (E; in the eed- stock, com2ared to those obtained>ith the oils >ith hi!her FF1 contents $8C.

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    42/76

    Similar results are obtained by the transesteriication o non- edible oils >ith su2ercritical methanol and ethanol $%$Q$%6C.Both alcohols have similar reactivity at the su2ercritical tem2erature and 2roduce similar contents o the esters. 7o>ever, theconversion de!ree is hi!her >ith su2ercritical methanol than >ith su2ercritical ethanol =,%$C.

    Fe> researchers have studied the eect o the reaction tem- 2erature and 2ressure on su2ercritical alcoholysis. he increase othe reaction tem2erature avorably inluences the ester yield, inde2endently o the ty2e o eedstock =,%$,$8%,$8,$%$Q$%6C. hecommon reaction tem2erature is hi!her than the critical tem2eratures o methanol 9()& LG; and ethanol 9()) LG;. 1lso,

    a22roKimately the com2lete 1H conversion can be achieved at a 2ressure o (& /Pa $80,$%$,$%(C. he increase o the reaction2ressure inluences the ester yield $80,$8C. his eect is 2roba- bly due to the increase o the density >ith increasin! the2ressure, >hich causes an increase in the solvent 2o>er o the su2ercritical luid $80C. In the reaction o crude jatro2ha oil >ithmicro-#aO7 under the 2ressure ran!in! rom ) to $).8 /Pa, only a little dier- ence in the ester yield is observed $8%C. Someresearchers have sho>n that the conversion under su2ercritical conditions is com- 2leted in a very short time and there >as nose2aration 2roblem $80,$8C inherent to conventional catalytic 2rocesses.

    ?ecently, some researchers have a22lied a novel t>o-ste2 2rocess as a 2romisin! alternative to the one-ste2 su2ercriticalmethod. It consists o the hydrolysis o 1Hs in subcritical >ater 9on (0& LG; and the subseuent su2ercritical esteriication othe 2roduced and se2arated atty acids non-catalytically in su2ercrit- ical methanol $8=,$%&C or dimethyl carbonate %=C. In this>ay, the F1/5 yield >as increased, com2ared to the conventional base- catalyhich is not aected by the hi!h FF1 content %=C. 1lso, this 2roduct is a non-acidic oneand does not to deteriorate a eedstock >ith a hi!h content o 2oly-unsaturated atty acids. 7o>ever, the cost o dimethyl

    carbonate is much hi!her than that o methanol or ethanol.In the transesteriication o non-edible oil >ith su2ercritical methanol in the 2resence o micro-#aO7 as the catalyst, a hi!h

    yield

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    43/76

    able he revie> o the reaction conditions o the li2ase-catalyt.E to molar ratio,

    the oil mol:mol

    'i2ase source 9en

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    44/76

    viscosum 5thanol )+$ Pseudomonas

    ce2acia

    Gelite $& 8& Q )Q8 8 9=;: $)=C

    atro2ha 3aranja

    Scre> ca22ed tube, Q:/a!netically, $8&

    Pro2an-(-ol $+$Q8+$ Gandida antractica

    9#ovo ca22ed tube, Q:/a!netically, $8&

    5thyl acetate 6+$Q$6+$ Gandida antractica

    9#ovo

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    45/76

    /ethanol $.8+$Q%+$ Gandida antractica

    9#ovo

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    46/76

    able = 1 revie> o the o2timal o2eratin! conditions a22lied in su2ercritical transesteriication 2rocesses o dierent non-edibleeedstocks.

    Feedstock 9oil; y2e, volume o reactor, cm6:y2e

    o a!itator, a!itation intensity, r2m

    em2erature, LG Pressure, /Pa O2timal reaction conditions ?eerence

    ?eaction conditions Jield

    9conversion;, E:ime, min

    atro2ha Gylindrical autoclave,

    (8&:/a!netic, )&&

    y2e o acyl acce2tor

    1cyl acce2tor 9ater;+oil molar ratio, mol:mol

    Gatalyst:loadin!, >t.E to the oil

    /ethanol $+$Q6%+$ /icro

    ()&Q(0& )Q$).8 (8& LG, 0 /Pa, ()+$, #aO7:&.(Q&.

    &.E #aO7

    =&.8:( $8%C

    Stainless steel vessel, $&&:Q, =%& /ethyl acetate (8+$Q8=+$ Q 6&&Q6)8 $&Q6& 6)8 LG, (& /Pa, )(+$ 9$&&;:8& $80C Bench-scalereactor, 60&&:/echanical, Q

    /ethanol $&+$Q)6+$ Q (6=Q6)& 8.0Q.% 6(& LG, .) /Pa, )6+$ $&&:) $8C

    I ste2+ ater I+($0+$ Q I+ (88Q68& I+ (8Q6( I+ (0& LG, (0 /Pa I+ Q:(8 %=C II ste2+ imethyl carbonate

    II+$)+$ II+ (0&Q68& II+ %Q$= II+ 6&& LG, = /Pa II+=0:$8a

    ubular reactor, $&&&:Q I ste2+ ater I+ Q Q I+ (8&Q(=& I+ $$ I+ (0& LGI+ 9=(.$;:%& $8=C

    II ste2+ /ethanol II+6+$b II+ (8&Q(=& II+ $$ II+ (=& LG II+9==;:$8a ubular reactor, $&&&:Q I ste2+ ater I+ $&+$b Q I+ (8&Q6$& I+ $$I+ (=& LGI+ 9=).;:%& $%&C

    II ste2+ /ethanol II+ 6+$Q0+$b II+ (8&Q(=& II+ $$ II+ (=& LG, 6+$ II+9=.6;:=a

    atro2ha Batch reactor, $$:Q /ethanol $&+$Q0&+$ Q (&&Q)&& (& )&& LG, 8&+$ 9=8;:6& $%$C

    5thanol $&+$Q0&+$ (&&Q)&& 9=);:(& 3aranja /ethanol $&+$Q0&+$ (&&Q)&& (& )&& LG, 8&+$ 9=8;:(& 5thanol $&+$Q0&+$ (&&Q)&&9=);:6&

    atro2ha Batch reactor, /ethanol $+$Q%+$ #ovo

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    47/76

    Gastor ubular rector, 0:Q /ethanol (+$Q$&+$ #ovo

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    48/76

    6%6 IB Bankovic-Ilic et al. : ?ene>able and Sustainable 5ner!y ?evie>s $% 9(&$(; 6%($Q 6%)0

    o biodiesel 9=&.8E; >ith the best 2ro2erties >as obtained $8%C. ith increasin! the catalyst loadin!, the reaction rate increasesshar2ly u2 to the maKimum value and then stays constant. 1lso, the increase o the reaction tem2erature has a avorable inluenceon the F1/5 yield.

    Biodiesel can be also synthesiith jatro2ha oil, ?athore and /adras $%$C have re2orted that the conversion o jatro2ha oil is lo>er >ith methanolthan >ith ethanol, due to the denaturin! eect o methanol on the enever, >orkin! >ith castor oil, Varma and /adras$%(C have sho>n com2letely contrary results.

    4. Optimiation of non-edible oils transesterifi!ation

    ).$. he statistical o2timiay o investi!ation by varyin! one 2rocessvariable >hile others are hold constant are time-consumin! and eK2ensive. Instead, the statistical methods, kno>n as desi!n oeK2eriments, are reuently used as a 2o>er tool or the 2rocess o2timiith the central com2osite rotatable desi!n 6=,8,=8C, actorial desi!n (6 %C, BoKQBehnken

    actorial desi!n =,==C or the combination o ractional actorial and oehlert eK2erimental desi!n =$C, as >ell as a!uchitechniue $&(C and !eneric al!o- rithm cou2led >ith artiicial neural net>ork )8C. hese methods estimate not only the eectso individual 2rocess variables but also the interactions bet>een them, thus allo>in! a better kno>l- ed!e o the 2rocess,determinin! the o2timal levels o the 2rocess variables and develo2in! more economic and more eicient 2ro- cesses.

    &rd"ng #& da "'a +# a'. [8586] #$+ a#a',# '&ad"ng #$+ a'& $&':&"' %&'ar ra#"& and #$+"r

    "n#+ra#"&n, $a+ #$+ gr+a#+,# "%a# &n #$+ 9AA "+'d !$"'+ #$+ +D+#, &@ #$+ r+a#"&n #+%+ra#r+

    and #$+ "n#+ra#"&n #+%+ra#r+a#a',# '&ad"ng !+r+ n ,"gn"@ "an#. Caa'an#+ +# a'. [*5] $a+

    r+&r#+d #$a# #$+ +#$an&':a,#&r &"' %&'ar ra#"& #$+ a,,"% $dr&E"d+ a#a',# '&ad"ng #$+ r+a

    #"&n #"%+ a, !+'' a, #$+ "n#+ra#"&n -+#!++n '&ad"ng and r+a#"&n #"%+ ar+ +D+#"+ &n #$+ +,#+r,

    "+'d "n -$ '"n+ar and Fadra#" %&d+' a# #$+ *5 &nGd+n+ '++'. $+ a#a',# '&ad "ng "n>+n+,

    #$+ +,#+r "+'d "n a n+ga#"+ %ann+r. Ha''+ +# a'. [*1] $a+ arr"+d a &%r+$+n,"+ ,#d &n #$+

    "n>+n+ &@ #$+ r&+,, ar"a-'+, &n #$+ Ia$an, ,a#", +#$' +,#+r, "+'d. n Gr,# ,#ag+ ,"ng a

    2(51) @ra#"&na' @a#&r"a' d+,"gn #$+ +,#a- '",$+d &n#rar #& $+r r+,+ar$+r, #$a# #$+ +#$an&':&"'%&'ar ra#"& "n #$+ rang+ 6:114:1 $ad n& ,"gn"Gan# "n>+n+ &n #$+ +,#+r, "+'d !$"'+ #$+ %&,#

    ,"gn"Gan# ar"a-'+ !a, ag"#a#"&n "n#+n,"# !$"$ aD+#+d #$+ r+a#"&n n+ga#"+'. $+ r+a#"&n #"%+

    r+a#"&n #+%+ra#r+ and a#a',# '&ad"ng !+r+ ,#d"+d "n #$+ n+E# ,#ag+ ,"ng #$+ J&+$'+r# d+,"gn &@

    +E+r"%+n#,. $+ r+a#"&n #"%+ and Fadra#" #+r% &@ r+a#"&n #+%+ra#r+ &,"#"+' "n>+n+ 9AA

    "+'d !$"'+ #$+ r+a#"&n #+%+ra#r+ and #$+ Fadra#" #+r% &@ a# a',# '&ad"ng $a+ #$+ n+ga#"+

    +D+# &n #$+ r&+,,. $+ "%a' r+a#"&n &nd"#"&n, @&r a$"+"ng #$+ %aE"%% -"&d"+,+' "+'d ar+

    ,a'' &-#a"n+d - ,"ng #$+ IM and #$+ %a#$+%a#"a' %&d+' &%"ng @r&% #$+ "%"Ka#"&n

    ,#d [8586*1*5].

    he t>o-ste2 2rocess o biodiesel synthesis rom non-edible oil is rarely statistically o2timiari et al. 6=C o2timieen methanol+oil molar ratio and catalyst loadin! >ere si!niicant inreducin! the acid value. he F1/5 yield >as aected by linear and uadratic terms o methanol+oil molar ratio and reactiontime, as >ell as by their interaction. In the o2timio-ste2 karanja biodiesel synthesis under micro>ave irradiation,3amath et al. ==C consid- ered methanol+oil molar ratio, catalyst loadin! and irradiation time. he statistically si!niicant terms

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    49/76

    in reducin! FF1 content >ere lin- ear and uadratic terms o all variables, the most im2ortant actor bein! catalyst loadin!, >hichaected the FF1 content ne!atively. he most im2ortant actors aectin! F1/5 yield in the second 2rocess ste2 are methanol+oilmolar ratio, catalyst loadin!, interac- tion methanol+oil molar ratio-irradiation time as >ell as uadratic terms o all variables,havin! a ne!ative eect on the F1/5 yield. Based on 2olynomial model and ?S/, the o2timal reaction condi- tions or bothste2s >ere established, and 2redicted results >ere validated eK2erimentally. Only 'iao and Ghun! =C o2timi rate or a con- tinuous micro>ave assisted methanolysis o jatro2ha oil usin!

    BoKQBehnken actorial desi!n. he si!niicant eect on F1/5 yield had all three variables, interactions bet>een the catalystloadin! and the methanol+oil molar ratio and bet>een the catalyst amount and the lo> rate, as >ell as the uadratic term o thecatalyst amount. Based on the ?S/ methodolo!y, the maKimum F1/5 yield >as ound to be ==.6%E under the ollo>in!o2timal reaction condi- tions+ methanol+oil molar ratio o $&.0)+$, #aO7 amount o $.(%E and lo> rate o $.%( m':min. Jusu2and 3han $&(C studied the inluence o the methanol+oil molar ratio, reaction tem2erature and 3O7 loadin! on the base-cataly

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    50/76

    IB Bankovic-Ilic et al. : ?ene>able and Sustainable 5ner!y ?evie>s $% 9(&$(; 6%($Q 6%)0 6%6=

    hi!hest F1/5 yield >ere established, and the 2redicted F1/5 val- ues >ere in a!reement >ith the eK2erimentally obtained data9able %; conirmin! the model accuracy.

    he ?S/ based on central com2osite desi!n >as used by Su et al. $)6C, >ho investi!ate the inluence o ive im2ortant reac-tion variables or F1/5 2roduction rom jatro2ha oil usin! diethyl carbonate as acyl acce2tor and #ovoell as the interaction

    bet>een tem- 2erature and amount o added >ater had a si!niicant 2ositive eect on the F1/5 yield. he amount o added>ater and the uadratic terms o all variables eKce2t the li2ase amount had a si!- niicant but ne!ative eect on the esters

    2roduction. he o2timal values o 2rocess variables >ere estimated by solvin! the re!res- sion euation. he 2redicted F1/5yield under o2timal reaction conditions >as =0.0E, >hich a!reed >ell >ith the eK2erimentally obtained yield o =%.(E. eOliveira et al. )=C o2timiater amount, enater amount and tem2erature and ethanol+oil molar ratio >ere statistically si!niicant in a

    2ositive manner. he re!ression euation 2re- dicted o2timal reaction conditions under >hich the 2redicted F155 yield 9(E and

    ==.%E; a!reed >ell >ith the eK2erimentally values o $.)E and =E or #ovoith three and t>o variables, res2ectively. Based on the uadratic re!ression model, the ethanol+oil molar ratio is the mostim2ortant actor inluencin! the reaction ne!atively, ollo>ed by the reaction time and tem2erature, both havin! a 2ositive eect.he statisti- cally si!niicant inluence on the F155 yield had the interaction bet>een reaction time and tem2erature and theuadratic term o ethanol+oil molar ratio, both in a ne!ative manner. he studies o methanolysis sho>ed that the reactiontem2erature and reaction time, as >ell as the interaction bet>een them had a statistically si!niicant and 2ositive eect on theF1/5 yield. he o2timal reac- tion conditions >ere established based on the ?S/ and model euation. he ?S/ model >asused or the o2timit.E; and reaction time 9$Q() h; >ere o2timiell as theinteraction bet>een reaction tem2erature and catalyst loadin! si!niicantly aect the F1/5 yield in a 2ositive manner, the mostim2ortant ac- tor bein! the catalyst loadin!. he si!niicant eect o 7

    (

    SO

    )

    >as eK2lained by its role o catalyst not only in the reactiveeKtraction 2rocess but also in acceleratin! the oil eKtraction due to a better solubility o li2id and oil in the acidic solvent. Basedon the re!res- sion model, the hi!hest F1/5 yield o ==.E could be obtained >ith the ollo>in! 2rocess variables+ reactiontem2erature o %& LG, methanol+seed ratio o $&.8 m':!, ($.E o 7

    (

    SO

    )

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    51/76

    and reaction time o $& h.

    ).(. he kinetics o non-edible oils transesteriication

    he alcoholysis reaction kinetics is indis2ensable or the 2ro- duction 2rocess develo2ment and the reactor desi!n, o2erationand scale-u2. he undamental understandin! o the alcoholysis reac- tion kinetics is necessary or develo2ment o mathematicalmodels describin! the reaction rate and the 2roduct yield. he kinetic stud- ies 2rovide 2arameters that are used or 2rediction othe reaction 2ro!ress under 2articular reaction conditions, 2rocess analysis and control.

    In the studies o the homo!eneous catalyo sta!es are >ell-reco!nihich is chemically controlled. he initial sta!e is caused

    by the incom2lete miscibility o the non2olar and 2olar reactants, and it is observed at lo>er reaction tem2eratures and a!itationintensities. he mass transer limitations have been included in modelin! the overall 2rocess kinetics only in a e> studies oedible oils methanoly- sis $%8,$%%C. 3armee et al. (C noticed that the oily eedstock, alcohol and catalyst could ualitativelyalert the kinetics o alcohol- ysis reaction. In the case o jatro2ha oil, the methanolysis reaction >as uite ra2id es2ecially at theearly reaction sta!e, com2ared to mahua and the edible oils 0C.

    he kinetics o the homo!eneously catalyere used 9able $&;. Some com2leK models are based on the ste2>ise reversible alcoholysis reaction (,$%0C and

    sometimes include side sa2oniication reactions 0%C. 7o>ever, there are sim- 2le models that assume the irreversible overallreaction 8$,0,%C. Bikou et al. $%0C studied the eect o >ater content in ethanol on the cottonseed oil ethanolysis reaction

    kinetics. he de2en- dence o both the reaction rate and euilibrium constants are >ell correlated. his result allo>s assessin! i itis 2reerable to use anhy- eKtraction o atro2ha curcas kernels, and the su2ercritical

    drous, hi!h-2rice ethanol or ethanol containin! acertain amount methylation o the hydrolyo 9reac-

    o >ater. For the 2on!amia oil methanolysis, 3armeeet al. (C tion tem2erature and reaction time; and three 9reaction time,

    observed that the astest reaction >as the or>ardreaction o the methanol+FF1 volume ratio and reaction tem2erature; actors >ere

    irst ste2 9methanolysis o 1H to diacyl!lycerols,1H;, >hile the statistically evaluated or oil hydrolysis and methylation o the

    second ste2 9reaction o 1H to monoacyl!lycerols

    /1H; >as the hydrolyere eective on theslo>est ste2. he most com2leK kinetics model, >hich

    includes oil hydrolysis. In the su2ercritical methylation 2rocess, the reac-

    sa2oniication reactions o all !lycerides and esters,>as develo2ed tion tem2erature and reaction time had a 2ositive eect >hile the

    or the methanolysis o a jatro2ha oilQ>aste ood oilmiKture 0%C. methanol+FF1 volume ratio had a ne!ative eect on the F1/5 yield

    he com2arison o the second-order kinetics based onthe ste2- $8=C. Ghen et al. $%&C o2timiise methanolysis reaction, and the ne> 2ro2osedkinetic model ro2ha curcas crude seeds oil and the su2ercritical methylation o

    sho>ed that the latter had smaller deviation romeK2erimental the hydrolyas obtained at (=& LG in

    data. %& min under $$ /Pa, at >ater+oil volume ratioo $&+$ and acetic

    evelo2ment o sim2le kinetic models >hich itted>ell eK2er- acid amount o (.8 vol.E. he o2timum conditions or the su2ercrit-

    imental data is avorable, because they do not reuire

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    52/76

    com2leK ical methylation 2rocess 96+$ methanol+FF1 volume ratio, (=& LG

    com2utation o their 2arameters. he overall reactiono castor oil and = min; resulted in the FF1 conversion o =.6E.

    ethanolysis in the kinetically controlled re!ion >as described by

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    53/76

    able $& 1 survey on the reaction mechanism and kinetics model o homo!eneously cataly

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    54/76

    (

    1HC/eO7C T k

    2

    /1HCF1/5C

    = k

    $

    1HC5tO7C

    6

    1

    1HCF155C

    6

    2

    6

    k

    1

    $%0C

    atro2ha /ahua

    = k

    (

    1HC5tO7C

    [M][9AA]

    $

    1HC5tO7C

    1HCF155C

    /ethanol ( and )8 One ste2 reaction 9overall reaction;

    d1HC

    d/1HC dt

    = k

    6

    /1HC5tO7C

    6

    3

    ['][9AA]

    (

  • 7/25/2019 SalinanterjemahanBankovi Ili 2012 Renewable and Sustainable Energy Reviews.pdf

    55/76

    1HC5tO7C

    6

    k

    2

    /1HCF155C

    dt

    (

    /eO7C 0C

    Gottonseedb /ethanol %& One irreversible reaction 9overall reaction;

    k1HC

    d1HC dt

    k1HC 8$C

    5thanol &

    Gastor 5thanol 6&Q0& One irreversible reaction 9overall reaction;

    d1HC dt

    k1HC %C

    atro2haQ>aste ood oil miKture

    d1HC

    d1HC dt

    = [](

    $

    1HC/eO7C T k

    1

    [J][9MA]

    8

    1HC;

    d/1HC dt

    dt

    O7C9k

    $