S4-4 Damping Paper

download S4-4 Damping Paper

of 26

Transcript of S4-4 Damping Paper

  • 7/25/2019 S4-4 Damping Paper

    1/26

    EFFECT OF DAMPING MODELLING

    ON RESULTS OF TIME-HISTORYANALYSIS OF R.C. BRIDGES

    Nigel Priestley, Michele Calvi,Lorenza Petrini, Claudio Maggi

    IUSS/University of Pavia

  • 7/25/2019 S4-4 Damping Paper

    2/26

    3. INITIAL STIFFNESS DESIGN

    DISPLACEMENT-EQUIVALENCE RULES

    Basic Tenet: Displacement of designed inelastic structure can be

    related to the elastic displacement of the initial-stiffness model bya displacement-equivalence rule

    e.g. Newmark and Hall, 1982:

    T=0: Equal accelerationT>0.5s: Equal displacement

    T 0.2s: Equal energy

    elastic

    inelastic

    Equal disp.

    Equal energy

    equal acc

    Displacement

    Strength

    Design Codes from differentcountries use different rules

  • 7/25/2019 S4-4 Damping Paper

    3/26

    19

    INFLUENCE OF ELASTIC DAMPING ON

    DISPLACEMENT-EQUIVALENCE RULEDisplacement-equivalence rules are based on Inelastic Time HistoryAnalysis (ITHA). The representation of the initial response has aconsiderable influence on the results:

    Elastic damping is typically added to represent the initialstages,and expressed as a % of critical damping typically 5%.There are two main ways this could be modelled: as initial-stiffnessproportional damping, or tangent-stiffness proportional damping:

    Initial-stiffness:damping alwaysproportional to thisslope

    Tangent stiffness:damping force reduceswhen stiffness reduces;

    increases whenstiffness increases

  • 7/25/2019 S4-4 Damping Paper

    4/26

    F

    gmakcm =++ &&&

    mkmc 22 ==

    SDOF MODEL

    kinitial

    Initial Stiffness damping: Constant Coefficient c, k=kinitial

    Tangent Stiffness damping: Damping coefficient varies in

    proportion to instantaneous stiffness: ck/kinitialNote: Peak displacement decreases as c increases

    MOST ANALYSES USE CONSTANT COEFFICIENT DAMPING

  • 7/25/2019 S4-4 Damping Paper

    5/26

    REASONS FOR ELASTIC DAMPING

    LINEAR HYSTERESIS RULE UP TO FIRST YIELD: Norepresentation of hysteretic damping in the elastic range

    FOUNDATION DAMPING: Soil flexibility, nonlinearity and

    radiation damping generally not modelled in analysis

    NON-STRUCTURAL DAMPING: Hysteretic response of non-structural elements; relative movement between structural andnon-structural elements may provide an effective damping force

  • 7/25/2019 S4-4 Damping Paper

    6/26

    DISCUSSION OF REASONS FOR ELASTIC DAMPING

    HYSTERESIS RULE: These are normally calibrated to model thefull hysteretic response in the non-linear range. Therefore the

    elastic damping should stop after yieldFOUNDATION DAMPING: After structural yield, the foundationforces remain essentially constant as structure deformsinelastically. Therefore foundation damping should cease.

    NON-STRUCTURAL ELEMENTS: Contribution is generally small(less than 1%) (particularly for bridges).

    CONCLUSION: TANGENT-STIFFNESS DAMPINGIS MOST APPROPRIATE

    (OTANI, 1981)

  • 7/25/2019 S4-4 Damping Paper

    7/26

    -0.1 0 0.1Displacement (m)

    -2000

    -1000

    0

    1000

    2000

    StiffnessForce

    (kN)

    -0.1 0 0.1Displacement (m)

    -2000

    -1000

    0

    1000

    2000

    DampingForce(kN)

    -0.1 0 0.1Displacement (m)

    -2000

    -1000

    0

    1000

    2000

    Stiffnes

    sForce(kN)

    -0.1 0 0.1Displacement (m)

    -2000

    -1000

    0

    1000

    2000

    DampingForce(kN)

    (a) Analysis with Initial Stiffness Damping

    (b) Analysis with Tangent Stiffness Damping

    SDOF, T=0.5 sec

    FORCED SINUSOIDAL

    INPUT OF T=1.0sec

    TAKEDA HYSTERESIS

    Initial-StiffnessDamping Ad=0.83Ah

    Tangent-StiffnessDamping Ad=0.15Ah

  • 7/25/2019 S4-4 Damping Paper

    8/26

    0 4 8 12 16 20Time (seconds)

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    Displacement

    (m)

    Tangent Stiffness

    Initial Stiffness

    RESPONSE OF SDOF MODEL, T=0.5sec

    TO 1.5*EL CENTRO 1940 NS

    max,TS=1.43

    max,IS

  • 7/25/2019 S4-4 Damping Paper

    9/26

    EXAMPLES OF HYSTERETIC MODELS USED

    TO TEST EQUAL-DISPLACEMENT

    TAKEDA BILINEAR E-P FLAG-SHAPE

    TAKEDA HYSTERESIS

  • 7/25/2019 S4-4 Damping Paper

    10/26

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    D

    isplacementRatio(/

    elastic

    )

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    DisplacementR

    atio(/

    elastic

    )

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    TS

    IS

    TS

    IS

    TS

    IS

    TS

    IS

    TS

    IS

    TS

    IS

    (a) r = 0.002

    (b) r = 0.05

    R=2R=4 R=6

    R=2 R=4 R=6

    TAKEDA HYSTERESIS

    BILINEAR ELASTO PLASTIC

  • 7/25/2019 S4-4 Damping Paper

    11/26

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    Dis

    placementRatio(/

    e

    lastic

    )

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    DisplacementRatio(/

    elastic

    )

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    TS

    IS

    TS

    IS

    TS

    IS

    TS

    IS

    TS

    IS

    TS

    IS

    (a) r = 0.002

    b r = 0.05

    R=2 R=4 R=6

    R=2 R=4 R=6

    BILINEAR ELASTO-PLASTIC

    FLAG HYSTERESIS

  • 7/25/2019 S4-4 Damping Paper

    12/26

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    DisplacementRatio(/

    elastic

    )

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    DisplacementRat

    io(/

    elastic

    )

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    0.8

    1.2

    1.6

    2

    2.4

    TS

    IS

    TS

    IS

    TS

    IS

    TS

    IS

    TS

    IS

    TS

    IS

    (a) = 0.35

    R=2 R=4 R=6

    R=2 R=4 R=6

    FLAG HYSTERESIS

  • 7/25/2019 S4-4 Damping Paper

    13/26

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    Displacement

    RatioTS

    /IS

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    0 0.4 0.8 1.2 1.6 2Period (seconds)

    1

    1.2

    1.4

    1.6

    1.8

    2

    (a) Takeda (dash:r=0.002, solid:r=0.05) (b) Bilinear (dash:r=0.002,solid:r=0.05) (c) Flag (dash:=0.35,solid:=0.70)

    R=6

    R=6R=4

    R=4

    R=2

    R=6

    R=4

    R=2

    R=4

    R=6

    R=6

    R=4

    R=2

    TANGENT/INITIAL STIFFNESS DISPLACEMENTRATIOS

    TAKEDA BILINEAR E-P FLAG

  • 7/25/2019 S4-4 Damping Paper

    14/26

    SHAKE-TABLE TESTS ON BRIDGE PIERS

    Static test to calibrate Takeda hysteresis rule

    Chose accelerogram to emphasize differencebetween initial and tangent stiffness response

    Dynamic test with high ductility demand

    cm

  • 7/25/2019 S4-4 Damping Paper

    15/26

    Pier cross-section

    Column

    50cm

    200cm

    288

    cm

    88cm

    Spiral 6/3 cm

    Spiral 6/6 cm

    G

    Footing

    Deck mass

    156cm

    88cm

    45cm

    28cm

    1810

    Spiral 6

    MODEL DIMENSIONS

    fc = 39MPa

    fy = 514MPa

    Mass = 7.8tonnes

  • 7/25/2019 S4-4 Damping Paper

    16/26

  • 7/25/2019 S4-4 Damping Paper

    17/26

    -100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

    Displacement [m]

    Force[kN]

    SeismoStruct simulation

    Experimental test

    STATIC TEST + SEISMOSTRUCT SIMULATION

  • 7/25/2019 S4-4 Damping Paper

    18/26

    STATIC TEST + TAKEDA SIMULATION

    -100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

    Displacement [m]

    Force

    [kN]

    Experimental test

    Ruaumoko simulation

    1 6

  • 7/25/2019 S4-4 Damping Paper

    19/26

    -1.6

    -1.2

    -0.8

    -0.4

    0

    0.4

    0.8

    1.2

    1.6

    0 5 10 15 20 25 30 35 40

    Time [s]

    cceerato

    n

    g

    MORGAN HILL RECORD SCALED TO 1.2g PGA

  • 7/25/2019 S4-4 Damping Paper

    20/26

  • 7/25/2019 S4-4 Damping Paper

    21/26

    VIDEO

  • 7/25/2019 S4-4 Damping Paper

    22/26

    DYNAMIC TEST + TAKEDA SIMULATION

    0 4 8 12 6 10Time (sec)

    -0.1

    0

    0.1

    -0.05

    0.05

    0.15

    -0.15

    Disp

    lacement(m

    )Experiment

    Tangent Stiffness

    Initial Stiffness

    DYNAMIC TEST + SEISMOSTRUCT SIMULATION

  • 7/25/2019 S4-4 Damping Paper

    23/26

    DYNAMIC TEST + SEISMOSTRUCT SIMULATION

    0 4 8 12 6 10

    Time (sec)

    -0.1

    0

    0.1

    -0.05

    0.05

    0.15

    -0.15

    Displac

    ement(m)

    Experiment

    Tangent-Stiffness

    Initial Stiffness

  • 7/25/2019 S4-4 Damping Paper

    24/26

    DYNAMIC TEST + SEISMOSTRUCT SIMULATION

    0 4 8 12 6 10Time (sec)

    -0.1

    0

    0.1

    -0.05

    0.05

    0.15

    -0.15

    Disp

    lacement(m

    )

    Experiment

    No damping

    PEAK DISPLACEMENTS INITIAL 10 2sec

  • 7/25/2019 S4-4 Damping Paper

    25/26

    PEAK DISPLACEMENTS, INITIAL 10.2sec

    Positive Peak

    (mm)

    Negative Peak

    (mm)

    Experiment 110 109

    SeismoStruct0% damping

    99 108

    Takeda

    Tangent-Stiff.

    114 112

    TakedaInitial-Stiff.

    60 74

  • 7/25/2019 S4-4 Damping Paper

    26/26

    CONCLUSIONS

    Common sense indicates that initial-stiffness is

    inappropriate for elastic damping If tangent-stiffness is appropriate for elasticdamping, then the equal-displacement approximation

    is non-conservative Shake-table testing supports tangent-stiffnessproportional damping for Takeda modelling