S domain analysis

download S domain analysis

of 20

Transcript of S domain analysis

  • 8/18/2019 S domain analysis

    1/20

    MAE140 Linear Circuits132

    s-Domain Circuit Analysis

    Operate directly in the s-domain with capacitors,inductors and resistors

    Key feature – linearity – is preserved

    Ccts described by ODEs and their ICs

    Order equals number of C plus number of L

    Element-by-element and source transformationNodal or mesh analysis for s-domain cct variables

    Solution via Inverse Laplace Transform

    Why?

    Easier than ODEsEasier to perform engineering design

    Frequency response ideas - filtering

  • 8/18/2019 S domain analysis

    2/20

    MAE140 Linear Circuits133

    Element Transformations

    Voltage sourceTime domain

    v(t) =vS (t)

    i(t)  = depends on cct

    Transform domain

    V(s) =V S (s)=L (vS (t))

     I(s)  = L (i(t)) depends on cct

    Current source

     I(s) =L (iS (t))

    V(s)  = L (v(t)) depends on cct

    + _ 

    i(t)

    vS 

    iS 

    v(t)

  • 8/18/2019 S domain analysis

    3/20

    MAE140 Linear Circuits134

    Element Transformations contd

    Controlled sources

    Short cct, open cct, OpAmp relations

    Sources and active devices behave identically

    Constraints expressed between transformed variables

    This all hinges on uniqueness of Laplace Transforms andlinearity

    )()()()(

    )()()()(

    )()()()(

    )()()()(

    2121

    2121

    2121

    2121

     s gV  s I t  gvt i

     srI  sV t rit v

     s I  s I t it i

     sV  sV t vt v

    =!=

    =!=

    =!=

    =!=

    " " 

    µ µ 

    )()()()(

    0)(0)(

    0)(0)(

     sV  sV t vt v

     s I t i

     sV t v

     P  N  P  N 

    OC OC 

    SC SC 

    =!=

    =!=

    =!=

  • 8/18/2019 S domain analysis

    4/20

    MAE140 Linear Circuits135

    Element Transformations contd

    Resistors

    Capacitors

    Inductors

    )()()()(

    )()()()(

     sGV  s I  s RI  sV 

    t Gvt it  Rit v

     R R R R

     R R R R

    ==

    ==

    i R

    v R

     s

    i sV 

     sL s I  Li s sLI  sV 

    id v L

    t idt 

    t di Lt v

     L L L L L L

     L L L

     L

     L

    )0()(

    1)()0()()(

    )0()(

    1

    )(

    )(

    )(0

    +=!=

    +==

     "   # # 

     R sY  R s Z   R R

    1)()(   ==

     sC  sY  sC 

     s Z  C C   ==   )(

    1)(

     sL sY  sL s Z   L L

    1)()(   ==

    vC 

    iC 

    v L

    i L+   +   +

     s

    v s I 

     sC  sV Cv s sCV  s I 

    vd iC 

    t vdt 

    t dvC t i

    C C C C C C 

    C C 

    )0()(

    1)()0()()(

    )0()(

    1

    )(

    )(

    )(0

    +=!!=

    +==

     "   # # 

  • 8/18/2019 S domain analysis

    5/20

    MAE140 Linear Circuits136

    Element Transformations contd

    Resistor

    Capacitor

    Note the source transformation rules apply!

     I  R(s)

    V  R(s)

    +

    -

    v R(t)

    +

    -

    vC (t)

    +

    -

    i R(t)

    iC (t)

     R   R

    C  sC 

    1

    )0(C CvV C (s)

    +

    -

     I C (s)

    V C (s)

    +

    -

     I C (s)

    + _  s

    vC    )0(

     sC 

    1

    )()(   s RI  sV  R R

      =

     s

    v

     s I  sC  sV Cv s sCV  s I   C 

    C C C C C 

    )0(

    )(

    1

    )()0()()(   +=!!

    =

  • 8/18/2019 S domain analysis

    6/20

    MAE140 Linear Circuits137

    Element Transformations contd

    Inductors  si sV  sL s I  Li s sLI  sV    L L L L L L )0()(1)()0()()(  +=!=

    i L(t)

        +    _

    v L(t)

    -

    +

     sL

     Li L(0)

     I  L(s)

    +

    V  L(s)

    -

     I  L(s)

    V  L(s)

    +

    -

     sL  s

    i L   )0(

  • 8/18/2019 S domain analysis

    7/20

    MAE140 Linear Circuits138

    Example 10-1 T&R p 456

    RC cct behaviorSwitch in place since t=-", closed at t=0. Solve for vC(t).

    Initial conditions

    s-domain solution using nodal analysis

    t-domain solution via inverse Laplace transform

     R

    V  A

    t=0

     R

     sC 

    1)0(C Cv

     I 2(s)

     I 1(s)

    vC +

    -

    )(1

    )()(

    )()( 21   s sCV 

     sC 

     sV  s I 

     R

     sV  s I  C 

    C C ===

     AC    V v   =)0(

    )()(1

    )(   t ueV t v

     RC  s

    V  sV    RC 

     Ac A

    !

    =

    +

    =

  • 8/18/2019 S domain analysis

    8/20

    MAE140 Linear Circuits139

    Example 10-2 T&R p 457

    Solve for i(t)

    KVL around loop

    Solve

    Invert

    + _ 

     R

    V  Au(t)  Li(t)   +    _

    + _ 

     R

     sL I(s) s

    V  A

     Li L(0)

    )( sV  L

    +

    -

    0)0()()(   =++!   L A

     Li s I  sL R s

     

    i(t ) =V  A

     R" V  A

     Re" Rt 

     L+ i L (0)e

    " Rt  L

    $ % 

    ' ( u(t ) Amps

     

     I (s) =

    V  A L

    s s + R

     L( )

    +

    i L (0)

    s+  R L

    =

    V  A R

    s+

    i L (0) "V  A

     R

    # $ % 

    & ' ( 

    s+  R L

  • 8/18/2019 S domain analysis

    9/20

    MAE140 Linear Circuits140

    Impedance and Admittance

    Impedance is the s-domain proportionality factorrelating the transform of the voltage across a two-terminal element to the transform of the currentthrough the element with all initial conditions zero

    Admittance is the s-domain proportionality factorrelating the transform of the current through atwo-terminal element to the transform of thevoltage across the element with initial conditionszero

    Impedance is like resistance

    Admittance is like conductance

  • 8/18/2019 S domain analysis

    10/20

    MAE140 Linear Circuits141

    Circuit Analysis in s-Domain

    Basic rulesThe equivalent impedance Zeq(s) of two impedances Z1(s)

    and Z2(s) in series is

    Same current flows

    The equivalent admittance Yeq(s) of two admittances Y1(s)and Y2(s) in parallel is

    Same voltage

    )()()( 21   s Z  s Z  s Z eq   +=

     I(s)

    V(s)   Z2

    Z1+

    -( ) ( ) s I  s Z  s I  s Z  s I  s Z  sV  eq   )()()()()( 21   =+=

    )()()( 21   sY  sY  sY eq   +=

     I(s)

    V(s)   Y1

    +

    -

    Y2)()()()()()()( 21   sV  sY  sV  sY  sV  sY  s I  eq=+=

  • 8/18/2019 S domain analysis

    11/20

    MAE140 Linear Circuits142

    Example 10-3 T&R p 461

    Find ZAB(s) and then find V2(s) by voltage division

    + _ 

     L

    v1(t)   RC 

    A

    B

    v2(t)

    +

    -

    + _ 

     sL

    V 1(s)   R

    A

    B

    V 2(s)

    +

    -

     sC 

    1

    #+

    ++=

    +

    +=+=

    11

    11)(

    2

     RCs

     R Ls RLCs

     sC  R

     sL sC 

     R sL s Z eq

    )()()(

    )()( 121

    12   sV 

     R sL RLCs

     R sV 

     s Z 

     s Z  sV 

    eq!"

    #$%

    &

    ++

    =

    !!"

    #

    $$%

    &=

  • 8/18/2019 S domain analysis

    12/20

    MAE140 Linear Circuits143

    Superposition in s-domain ccts

    The s-domain response of a cct can be found as thesum of two responses

    1. The zero-input response caused by initial conditionsources with all external inputs turned off 

    2. The zero-state response caused by the external sources

    with initial condition sources set to zeroLinearity and superposition

    Another subdivision of responses

    1. Natural response – the general solution

    Response representing the natural modes (poles) of the

    cct2. Forced response – the particular solution

    Response containing modes due to the input

  • 8/18/2019 S domain analysis

    13/20

    MAE140 Linear Circuits144

    Example 10-6 T&R p 466

    The switch has been open for a long time and is closedat t=0.

    Find the zero-state and zero-input components of V2(s)

    Find v(t) for IA=1mA, L=2H, R=1.5K#, C=1/6 µF

     I  A

    v(t)

         t    =      0

     R   C  L

    +

    -

    V(s)

     R sL

    +

    - s

     I  A

     sC 

    1

     RCI  A

     R Ls RLCs

     RLs

     sC  R sL

     s Z eq++

    =

    ++

    =211

    1)(

     LC  s

     RC  s

     s RI  RCI  s Z  sV 

     LC  s

     RC  s

     I 

     s I  s Z  sV 

     A Aeq zi

     A

     Aeq zs

    11)()(

    11)()(

    2

    2

    ++

    ==

    ++

    ==

  • 8/18/2019 S domain analysis

    14/20

    MAE140 Linear Circuits145

    Example 10-6 contd

    Substitute values

     LC  s

     RC  s

     s RI  RCI  s Z  sV 

     LC  s

     RC  s

     I 

     s

     I  s Z  sV 

     A Aeq zi

     A

     Aeq zs

    11)()(

    11)()(

    2

    2

    ++

    ==

    ++

    ==

     

    V  zs(s) =6000

    (s+1000)(s+ 3000)=

    3

    s+1000+

    "3

    s+ 3000

    v zs(t ) =   3e"1000t 

    " 3e"3000t [ ]u(t )

     

    V  zi (s) =1.5s

    (s+1000)(s+ 3000)=

    "0.75s+1000

    +2.25

    s+ 3000

    v zi (t ) =   "0.75e"1000t 

    + 2.25e"3000t [ ]u(t )

    V(s)

     R sL

    +

    - s

     I  A

     sC 

    1

     RCI  A

  • 8/18/2019 S domain analysis

    15/20

    MAE140 Linear Circuits146

    Example 10-11 T&R (not in 4th ed)

    Formulate node voltage equations in s-domain

    + _ 

     R1

    v1(t)  +

    -

     R2C 2

    C 1   R3   v x(t)

    +

    -

    µ v x(t) v2(t)

    +

    -

    + _ 

     R1

    V 1(s)  +

    -

     R2

    C 2vC2(0)

     R3   V  x(s)

    +

    -

    µ V  x(s) V 2(s)

    +

    -1

    1

     sC 

    C 1vC1(0)

    2

    1

     sC 

    A B C   D

  • 8/18/2019 S domain analysis

    16/20

    MAE140 Linear Circuits147

    Example 10-11 contd

    Node A: Node D:

    Node B:

    Node C:

    + _ 

     R1

    V 1(s)  +

    -

     R2

    C 2vC2(0)

     R3   V  x(s)

    +

    -

    µ V  x(s) V 2(s)

    +

    -1

    1

     sC 

    C 1vC1(0)

    2

    1

     sC 

    A B C   D

     

    V  B (s)"V  A (s)

     R1

    +

    V  B (s)"V  D(s)

     R2

    +

    V  B (s)

    1sC 1

    +

    V  B (s) "V C (s)

    1sC 2

    "C 1vC 1(0)"C 2vC 2(0) = 0

    )()( 1   sV  sV  A   =   )()()(   sV  sV  sV  C  x D   µ µ    ==

     

    "sC 2V  B (s)+   sC 2 +G3[ ]V C (s) = "C 2vC 2(0)

  • 8/18/2019 S domain analysis

    17/20

    MAE140 Linear Circuits148

    Example 10-16 T&R (not in 4th ed)

    Find vO(t) when vS(t) is a unit step u(t) and vC(0)=0

    Convert to s-domain

    + _ 

     R1vS (t)     +

      -C 

      R2 vO(t)+

    A   B   C   D

    + _ 

     R1

    V S (s)     +  -

     R2

    V O(s)

    +

     sC 

    1

    CvC (0)

    V  A(s)  V  B(s)   V C (s)   V  D(s)

  • 8/18/2019 S domain analysis

    18/20

    MAE140 Linear Circuits149

    Example 10-16 contd

    Nodal AnalysisNode A:

    Node D:

    Node C:

    Node B:

    Node C KCL:Solve for VO(s)

     Invert LT

    + _ 

     R1

    V S (s)     +  -

     R2

    V O

    (s)+

     sC 

    1

    CvC (0)

    V  A(s)  V  B(s)   V C (s)   V  D(s)

    )()(   sV  sV  S  A   =

    )()(   sV  sV  O D   =

    )0()()()( 11   C S  B   Cv sV G sV  sC G   =!+

    0)(   = sV C 

    )0()()( 2   C O B   Cv sV G s sCV   !

    =

    !!

    C  R s R

     R

     sC  R

     s

     s

     R

     R

     sV 

    C  R s

     s

     R

     R sV 

     sC G

    G

    C  sG

     sV  S S O

    12

    1

    12

    1

    12

    1

    1

    21

    111

    1

    )(1

    )()(

    +

    !"=##

    $

    %

    &&

    '

    (

    +

    !"=

    ##

    $

    %

    &&

    '

    (

    +

    !"=

    ###

    $

    %

    &&&

    '

    (

    +

    "=

    )()(   1

    2

    1 t ue R

     Rt v

      C  R

    O

    !!

    =

  • 8/18/2019 S domain analysis

    19/20

    MAE140 Linear Circuits150

    Features of s-domain cct analysis

    The response transform of a finite-dimensional,lumped-parameter linear cct with input being asum of exponentials is a rational function and itsinverse Laplace Transform is a sum of exponentials

    The exponential modes are given by the poles of the

    response transformBecause the response is real, the poles are either

    real or occur in complex conjugate pairs

    The natural modes are the zeros of the cct

    determinant and lead to the natural responseThe forced poles are the poles of the input transform

    and lead to the forced response

  • 8/18/2019 S domain analysis

    20/20

    MAE140 Linear Circuits151

    Features of s-domain cct analysis

    A cct is stable if all of its poles are located in theopen left half of the complex s-plane

    A key property of a system

    Stability: the natural response dies away as t$"

    Bounded inputs yield bounded outputs

    A cct composed of Rs, Cs and Ls will be at worstmarginally stable

    With Rs in the right place it will be stable

    Z(s) and Y(s) both have no poles in Re(s)>0

    Impedances/admittances of RLC ccts are “PositiveReal” or energy dissipating