Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel...

38
Runge-Kutta convolution quadrature for acoustic scattering Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach, 15. 02. 2010 L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 1 / 23

Transcript of Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel...

Page 1: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Runge-Kutta convolution quadrature for acousticscattering

Lehel Banjai

Max-Planck Research GroupMPI for Mathematics in the Sciences, Leipzig

Oberwolfach, 15. 02. 2010

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 1 / 23

Page 2: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Outline of the talk

1 Convolution quadrature: Introduction and convergence analysis

2 Easy (, robust, and efficient) implementation

3 Acoustic scatteringConvergence orderQualitative convergence propertiesNumerical experiments

4 Conclusions

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 2 / 23

Page 3: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Time convolution

Non-sectorial operators

LetK (s) be analytic and |K (s)| ≤ C (σ)|s|µ, Res > σ > 0.

We will consider time convolutions,

Operational notation

if K (s) = Lk(s) =∫∞

0 e−stk(t)dt and g(t) ≡ 0, for t < 0,

K (∂t)g :=

∫ t

0k(t − τ)g(τ)dτ :=

∫σ±i∞

estK (s)Lg(s)ds,

Motivation for the notation

For K (s) = s and g(0) = 0

K (∂t)g = ∂tg .

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 3 / 23

Page 4: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Time convolution

Non-sectorial operators

LetK (s) be analytic and |K (s)| ≤ C (σ)|s|µ, Res > σ > 0.

We will consider time convolutions,

Operational notation

if K (s) = Lk(s) =∫∞

0 e−stk(t)dt and g(t) ≡ 0, for t < 0,

K (∂t)g :=

∫ t

0k(t − τ)g(τ)dτ :=

∫σ±i∞

estK (s)Lg(s)ds,

Motivation for the notation

For K (s) = s and g(0) = 0

K (∂t)g = ∂tg .

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 3 / 23

Page 5: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Time convolution

Non-sectorial operators

LetK (s) be analytic and |K (s)| ≤ C (σ)|s|µ, Res > σ > 0.

We will consider time convolutions,

Operational notation

if K (s) = Lk(s) =∫∞

0 e−stk(t)dt and g(t) ≡ 0, for t < 0,

K (∂t)g :=

∫ t

0k(t − τ)g(τ)dτ :=

∫σ±i∞

estK (s)Lg(s)ds,

Motivation for the notation

For K (s) = s and g(0) = 0

K (∂t)g = ∂tg .

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 3 / 23

Page 6: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Convolution quadrature, Ch. LubichApproximation in the form of a discrete convolution:∫ tn

0k(tn − τ)g(τ)dτ ≈

n∑j=0

ω∆tn−j(K )g(tj), tj = j∆t

=n∑

j=0

ω∆tj (K )g(tn − tj),

g(t) ≡ 0, t < 0

Taking the Laplace transform, s = σ + iω, σ > 0,

K (s)Lg(s) ≈

∞∑j=0

ω∆tj (K )e−sj∆t

Lg(s).

So we need a function of ∆t, e−s∆t ,K that approximates K (s)

e.g. K (s) ≈ K(F (e−s∆t ,∆t)

)with F (e−s∆t ,∆t) ≈ s.

NB: Require ReF (e−s∆t ,∆t) > 0 for Res > 0.

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 4 / 23

Page 7: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Convolution quadrature, Ch. LubichApproximation in the form of a discrete convolution:∫ tn

0k(tn − τ)g(τ)dτ ≈

n∑j=0

ω∆tn−j(K )g(tj), tj = j∆t

=∞∑j=0

ω∆tj (K )g(tn − tj), g(t) ≡ 0, t < 0

Taking the Laplace transform, s = σ + iω, σ > 0,

K (s)Lg(s) ≈

∞∑j=0

ω∆tj (K )e−sj∆t

Lg(s).

So we need a function of ∆t, e−s∆t ,K that approximates K (s)

e.g. K (s) ≈ K(F (e−s∆t ,∆t)

)with F (e−s∆t ,∆t) ≈ s.

NB: Require ReF (e−s∆t ,∆t) > 0 for Res > 0.

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 4 / 23

Page 8: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Convolution quadrature, Ch. LubichApproximation in the form of a discrete convolution:∫ t

0k(t − τ)g(τ)dτ ≈

n∑j=0

ω∆tn−j(K )g(tj), tj = j∆t

=∞∑j=0

ω∆tj (K )g(t − tj), g(t) ≡ 0, t < 0

Taking the Laplace transform, s = σ + iω, σ > 0,

K (s)Lg(s) ≈

∞∑j=0

ω∆tj (K )e−sj∆t

Lg(s).

So we need a function of ∆t, e−s∆t ,K that approximates K (s)

e.g. K (s) ≈ K(F (e−s∆t ,∆t)

)with F (e−s∆t ,∆t) ≈ s.

NB: Require ReF (e−s∆t ,∆t) > 0 for Res > 0.

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 4 / 23

Page 9: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Convolution quadrature, Ch. LubichApproximation in the form of a discrete convolution:∫ t

0k(t − τ)g(τ)dτ ≈

n∑j=0

ω∆tn−j(K )g(tj), tj = j∆t

=∞∑j=0

ω∆tj (K )g(t − tj), g(t) ≡ 0, t < 0

Taking the Laplace transform, s = σ + iω, σ > 0,

K (s)Lg(s) ≈

∞∑j=0

ω∆tj (K )e−sj∆t

Lg(s).

So we need a function of ∆t, e−s∆t ,K that approximates K (s)

e.g. K (s) ≈ K(F (e−s∆t ,∆t)

)with F (e−s∆t ,∆t) ≈ s.

NB: Require ReF (e−s∆t ,∆t) > 0 for Res > 0.

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 4 / 23

Page 10: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Convolution quadrature, Ch. LubichApproximation in the form of a discrete convolution:∫ t

0k(t − τ)g(τ)dτ ≈

n∑j=0

ω∆tn−j(K )g(tj), tj = j∆t

=∞∑j=0

ω∆tj (K )g(t − tj), g(t) ≡ 0, t < 0

Taking the Laplace transform, s = σ + iω, σ > 0,

K (s)Lg(s) ≈

∞∑j=0

ω∆tj (K )e−sj∆t

Lg(s).

So we need a function of ∆t, e−s∆t ,K that approximates K (s)

e.g. K (s) ≈ K(F (e−s∆t ,∆t)

)with F (e−s∆t ,∆t) ≈ s.

NB: Require ReF (e−s∆t ,∆t) > 0 for Res > 0.L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 4 / 23

Page 11: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Linear Multistep formulas

BDF11− e−s∆t

∆t= s+sO(s∆t) Trapez.

2

∆t

1− e−s∆t

1 + e−s∆t= s+sO((s∆t)2).

i.e., take the choice F (ζ,∆t) = δ(ζ)∆t - δ- generating fn of LMS.

Re δ(ζ) > 0 for |ζ| < 1 ⇐⇒ A-stability =⇒ Order ≤ 2.

Method of proof (Lubich ’94):

K (∂t)g − K (∂∆tt )g =

∫σ+iR

est

K (s)− K

(δ(e−s∆t)

∆t

)Lg(s)ds

In the case |s∆t| ≤ 1 use approximation property and for |s| > 1/∆t use∫|s|>1/∆t

∣∣∣∣K (s)− K

(δ(e−s∆t)

∆t

)∣∣∣∣ |s|−r |Lg (r)(s)||ds|.

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 5 / 23

Page 12: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Linear Multistep formulas

BDF11− e−s∆t

∆t= s+sO(s∆t) Trapez.

2

∆t

1− e−s∆t

1 + e−s∆t= s+sO((s∆t)2).

i.e., take the choice F (ζ,∆t) = δ(ζ)∆t - δ- generating fn of LMS.

Re δ(ζ) > 0 for |ζ| < 1 ⇐⇒ A-stability =⇒ Order ≤ 2.

Method of proof (Lubich ’94):

K (∂t)g − K (∂∆tt )g =

∫σ+iR

est

K (s)− K

(δ(e−s∆t)

∆t

)Lg(s)ds

In the case |s∆t| ≤ 1 use approximation property and for |s| > 1/∆t use∫|s|>1/∆t

∣∣∣∣K (s)− K

(δ(e−s∆t)

∆t

)∣∣∣∣ |s|−r |Lg (r)(s)||ds|.

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 5 / 23

Page 13: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Linear Multistep formulas

BDF11− e−s∆t

∆t= s+sO(s∆t) Trapez.

2

∆t

1− e−s∆t

1 + e−s∆t= s+sO((s∆t)2).

i.e., take the choice F (ζ,∆t) = δ(ζ)∆t - δ- generating fn of LMS.

Re δ(ζ) > 0 for |ζ| < 1 ⇐⇒ A-stability =⇒ Order ≤ 2.

Method of proof (Lubich ’94):

K (∂t)g − K (∂∆tt )g =

∫σ+iR

est

K (s)− K

(δ(e−s∆t)

∆t

)Lg(s)ds

In the case |s∆t| ≤ 1 use approximation property and for |s| > 1/∆t use∫|s|>1/∆t

∣∣∣∣K (s)− K

(δ(e−s∆t)

∆t

)∣∣∣∣ |s|−r |Lg (r)(s)||ds|.

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 5 / 23

Page 14: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Runge-Kutta methodsEvaluate g at stages tj + cl∆t, c = (c1, . . . , cm)T

L (g(tj + cl∆t))ml=1 = ecs∆tLg(s).

K (s)ecs∆t ≈ K

(δ(e−s∆t)

∆t

)ecs∆t .

For RKc A

bTand R(∞) = 0: δ(ζ) = A−1 − ζA−1

1bTA−1.

For method with stage order q we have

δ(e−s∆t)

∆tecs∆t = secs∆t + sO((s∆t)q).

Further reduction of order for µ > 1 due to:

‖δ(e−s∆t)/∆t‖ ≤ C max(|s|,∆t−1).

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 6 / 23

Page 15: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Runge-Kutta methodsEvaluate g at stages tj + cl∆t, c = (c1, . . . , cm)T

L (g(tj + cl∆t))ml=1 = ecs∆tLg(s).

K (s)ecs∆t ≈ K

(δ(e−s∆t)

∆t

)ecs∆t .

For RKc A

bTand R(∞) = 0: δ(ζ) = A−1 − ζA−1

1bTA−1.

For method with stage order q we have

δ(e−s∆t)

∆tecs∆t = secs∆t + sO((s∆t)q).

Further reduction of order for µ > 1 due to:

‖δ(e−s∆t)/∆t‖ ≤ C max(|s|,∆t−1).

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 6 / 23

Page 16: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Runge-Kutta methodsEvaluate g at stages tj + cl∆t, c = (c1, . . . , cm)T

L (g(tj + cl∆t))ml=1 = ecs∆tLg(s).

K (s)ecs∆t ≈ K

(δ(e−s∆t)

∆t

)ecs∆t .

For RKc A

bTand R(∞) = 0: δ(ζ) = A−1 − ζA−1

1bTA−1.

For method with stage order q we have

δ(e−s∆t)

∆tecs∆t = secs∆t + sO((s∆t)q).

Further reduction of order for µ > 1 due to:

‖δ(e−s∆t)/∆t‖ ≤ C max(|s|,∆t−1).

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 6 / 23

Page 17: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Runge-Kutta methodsEvaluate g at stages tj + cl∆t, c = (c1, . . . , cm)T

L (g(tj + cl∆t))ml=1 = ecs∆tLg(s).

K (s)ecs∆t ≈ K

(δ(e−s∆t)

∆t

)ecs∆t .

For RKc A

bTand R(∞) = 0: δ(ζ) = A−1 − ζA−1

1bTA−1.

For method with stage order q we have

δ(e−s∆t)

∆tecs∆t = secs∆t + sO((s∆t)q).

Further reduction of order for µ > 1 due to:

‖δ(e−s∆t)/∆t‖ ≤ C max(|s|,∆t−1).

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 6 / 23

Page 18: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Convergence order

For sufficiently smooth and compatible data convergence of O(∆tp)for A-stable linear multistep methods; (Lubich 1994)

For sufficiently smooth and compatible data convergence ofO(∆tq+1−µ) for A-stable RK methods (Banjai, Lubich 2010).

Numerical example: Kµ(s) = sµ

1−e−s . Applying the 3-stage Radau IIA

method (stage order 3) for g(t) = e−0.4t sin6 t.

N µ = −1 µ = −1/2 µ = 1/2 µ = 1

4 0.04 0.04 0.18 0.688 0.05 0.06 0.15 0.75

16 0.05 0.04 0.19 0.8032 0.04 0.03 0.20 0.8164 0.04 0.02 0.20 0.81

128 0.04 0.03 0.20 0.81

Relative `2 error divided by (∆t)4−µ.

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 7 / 23

Page 19: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Convergence order

For sufficiently smooth and compatible data convergence of O(∆tp)for A-stable linear multistep methods; (Lubich 1994)

For sufficiently smooth and compatible data convergence ofO(∆tq+1−µ) for A-stable RK methods (Banjai, Lubich 2010).

Numerical example: Kµ(s) = sµ

1−e−s . Applying the 3-stage Radau IIA

method (stage order 3) for g(t) = e−0.4t sin6 t.

N µ = −1 µ = −1/2 µ = 1/2 µ = 1

4 0.04 0.04 0.18 0.688 0.05 0.06 0.15 0.75

16 0.05 0.04 0.19 0.8032 0.04 0.03 0.20 0.8164 0.04 0.02 0.20 0.81

128 0.04 0.03 0.20 0.81

Relative `2 error divided by (∆t)4−µ.L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 7 / 23

Page 20: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Solving the triangular Toeplitz system

0BBBB@ω0 0 · · · 0

ω1 ω0

. . ....

.... . . 0

ωN · · · ω1 ω0

1CCCCA0BBB@

φ0

φ1

...φN

1CCCA =

0BBB@g0

g1

...gN

1CCCAProblem: O(N2) to solve, ω∆t

j implicitly definedN-number of time steps.

Solution [Hairer et. al ’86]: O(N log2 N)- solve the same small system T many times.- apply the Toeplitz matrix using FFT.

- The system T can also be solved by FFT[Banjai, Sauter ’09]

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 8 / 23

Page 21: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Solving the triangular Toeplitz system

0BBBB@ω0 0 · · · 0

ω1 ω0

. . ....

.... . . 0

ωN · · · ω1 ω0

1CCCCA0BBB@

φ0

φ1

...φN

1CCCA =

0BBB@g0

g1

...gN

1CCCAProblem: O(N2) to solve, ω∆t

j implicitly definedN-number of time steps.

Solution [Hairer et. al ’86]: O(N log2 N)- solve the same small system T many times.- apply the Toeplitz matrix using FFT.

- The system T can also be solved by FFT[Banjai, Sauter ’09]

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 8 / 23

Page 22: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Approximation by Helmholtz operators [Banjai ’09]

Toeplitz matrix =

λ−n−1Λ−1

λn+1

ωn+1

λn

ωn · · ·

λ1

ω1

λn+2

ωn+2. . .

. . .

λ2

ω2...

. . .. . .

...

λ2n+1

ω2n+1 · · ·

λn+1

ωn+1

Λ

Where 0 < λ < 1 and Λ = diag(1, λ, . . . , λn).

(−1)l2n+1∑j=0

λjωjζ−lj2n+2 = (−1)lK () +O(λ2n+2)

where ζ2n+2 = e2πi/(2n+2).

Careful: restricted accuracy epsλ−n + λ2n+2 ∼ eps2/3.

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 9 / 23

Page 23: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Approximation by Helmholtz operators [Banjai ’09]

Toeplitz matrix =

λ−n−1Λ−1

λn+1ωn+1 λnωn · · · λ1ω1

λn+2ωn+2. . .

. . . λ2ω2...

. . .. . .

...λ2n+1ω2n+1 · · · λn+1ωn+1

Λ

Where 0 < λ < 1 and Λ = diag(1, λ, . . . , λn).

(−1)l2n+1∑j=0

λjωjζ−lj2n+2 = (−1)lK

(δ(λζ−l

2n+2)/∆t)

+O(λ2n+2)

where ζ2n+2 = e2πi/(2n+2).

Careful: restricted accuracy epsλ−n + λ2n+2 ∼ eps2/3.

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 9 / 23

Page 24: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Approximation by Helmholtz operators [Banjai ’09]

Toeplitz matrix =

λ−n−1Λ−1

λn+1ωn+1 λnωn · · · λ1ω1

λn+2ωn+2. . .

. . . λ2ω2...

. . .. . .

...λ2n+1ω2n+1 · · · λn+1ωn+1

Λ

Where 0 < λ < 1 and Λ = diag(1, λ, . . . , λn).

(−1)l2n+1∑j=0

λjωjζ−lj2n+2 = (−1)lK (sl) +O(λ2n+2)

where ζ2n+2 = e2πi/(2n+2).

Careful: restricted accuracy epsλ−n + λ2n+2 ∼ eps2/3.

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 9 / 23

Page 25: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Remarks on the algorithm

A block time stepping method: at each (block) time step a smalllower triangular Toeplitz system (T ) needs to be solved (directly orvia the decoupling [Banjai, Sauter ’09]).

Update of the right-hand side done in parallel at each block time step.

For the latter step we need to compute

K (sl), with sl = δ(λζl)/∆t, ζNl = 1.

Due to A-stability eigenvalues of δ(λζl) in the right half-plane.

Is δ(ζ) diagonalizable for |ζ| < 1?

For 2 step Radau IIA δ(ζ) diagonalizable for ζ 6= 3√

3− 5For 3 step Radau IIA δ(ζ) diagonalizable for

ζ, ζ 6= 0.004598175 · · ·+ i0.069213506 · · ·

Costs O(mN log2 N) + O(Nm3), with diagonalization cost O(Nm3)essentially negligible if discretization in space necessary.

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 10 / 23

Page 26: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Acoustic scattering application

Let u satisfy, for bounded Ω ⊂ R3 with Γ = ∂Ω

∂2t u −∆u = 0 in Ωc × [0,T ]

u(x , 0) = ∂tu(x , 0) = 0 in Ωc

u(x , t) = g(x , t), on Γ× [0,T ]

Then u can be written as

u(x , t) =

∫ t

0

∫Γ

δ(t − τ − |x − y |)4π|x − y |

φ(y , τ)dΓydτ.

Find φ such that

g(x , t) =

∫ t

0

∫Γ

δ(t − τ − |x − y |)4π|x − y |

φ(y , τ)dΓydτ, (x , t) ∈ Γ× [0,T ].

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 11 / 23

Page 27: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Since Lδ(t − |x − y |) = e−s|x−y | we need to solve (compute)

g = V (∂t)φ ⇐⇒ φ = V−1(∂t)g

where

V (s)ϕ :=

∫Γ

e−s|x−y |

4π|x − y |ϕ(y)dΓy .

Convolution weights ωj(V ) : H−1/2(Γ)→ H1/2(Γ)

ω∆tj (V )ϕ =

∫Γ

ωj(|x − y |/∆t)

4π|x − y |ϕ(y)dΓy ,

that isωj : R≥0 → Rm×m, ω0(d) = e−δ(0)d .

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 12 / 23

Page 28: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Convolution weights: kernel functions

BDF2 Trapezoid

For both methods ωj ≈ 0 for d > Cj∆t.

For BDF2 ωj(d) ∼ dbj/2c for d → 0 and ωj ≈ 0 for j∆t > Cjdiam(Γ).[Hackbusch, Kress, Sauter ’06]

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 13 / 23

Page 29: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Convolution weights: kernel functions

Radau IIA, order 3: (ωj(d))11 (ωj(d))22

For m-stage Runge-Kutta method ωj : R→ Rm×m

Again ωj(d) ∼ d j for d → 0; ω0(d) = e−A−1d .

Again ωj ≈ 0 for j∆t > Cjdiam(Γ).

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 14 / 23

Page 30: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Convergence order

V (s) is analytic for Re s > σ0 > 0 and

‖V−1(s)‖H−1/2(Γ)←H1/2(Γ) ≤ C (σ0)1

Res|s|2, Bamberger, Ha Duong 1986.

For all the other operators, transmission problem, FEM-BEM coupling. . . see Sayas, Laliena 2009.

But, for circle numerical experiments suggest

‖V−1‖ = supn

(1 + n2)−1/2|λn(s)|−1 . |λ0(s)|−1 =

∣∣∣∣ 2s

1− e−2s

∣∣∣∣ .

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 15 / 23

Page 31: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

A non-convex domain

Discretized by 14440 triangles.

g(x , t) = cos(ωπ(t − α.x))e−( t−α.x−Aσ )

2

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 16 / 23

Page 32: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

101

10−2

10−1

100

N

error

3-stage Radau IIAO( 1

N3 )

We plot the error for a fixed x ∈ Γ

‖ϕN(x , ·)− ϕ2N(x , ·)‖`2 =

∆tN∑

j=0

(ϕN(x , tj)− ϕ2N(x , tj))2

1/2

.

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 17 / 23

Page 33: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Qualitative convergence properties

101

102

103

10−2

10−1

100

101

N (mN for the Radau IIA)

erro

r

BDF2Trapezoid2 stage Radau IIA3 stage Radau IIA

Relative `2 error plotted for V−1(∂∆tt )g with

g(x , t) = e−0.4t cos(8πt) sin6(t)(Y l0 + Y l

20), t ∈ [0, 6].

NB: We are solving both the interior and exterior problem!

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 18 / 23

Page 34: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

A non-convex domain

Discretized by 14440 triangles.

g(x , t) = cos(0.5π(t − α.x))e−( t−α.x−40.5 )

2

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 19 / 23

Page 35: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Total field inside the cavity

2 3 4 5 6 7 8 9 10−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t

uto

t(0

,t)

Radau IIA, N = 60BDF2, N = 180Radau IIA, N = 80BDF2, N = 240

Computations done with on a large parallel cluster.

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 20 / 23

Page 36: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Numerical results II: Long time stability

0 10 20 30 40 50 60 70 80−8

−6

−4

−2

0

2

4

6

8

t

A(x

,t)

50 55 60 65 70 75 80−8

−6

−4

−2

0

2

4

6

8

t

A(x

,t)

Unit sphere discretized by 8192 triangles, BDF2 with N = 960, 3-stageRadau IIA N = 320, ωj ≈ 0 for large enough j .

g(x , t) =

0, if t − α.x − 1 < 0,

e−1

t−α.x−1 sinπ(t − α.x − 1), if t − α.x − 1 ≥ 0.

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 21 / 23

Page 37: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Conclusions

Analysis and construction of a multistep-multistage convolutionquadrature.

Efficient, robust, easily parallelizable algorithm for the solution of theresulting system.

Very good performance of Radau IIA methods even at moderateaccuracies

Very good long time stability properties.

One of the main advantages: a time-domain method that usesexclusively the Laplace transform of the distributional fundamentalsolution.

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 22 / 23

Page 38: Runge-Kutta convolution quadrature for acoustic scatteringhiptmair/org/Oberwolfach/Slides10/...Lehel Banjai Max-Planck Research Group MPI for Mathematics in the Sciences, Leipzig Oberwolfach,

Issues open or undiscussed

Efficient space computationI H-matrices for inversion of operators on the diagonalI FMM with diagonal expansions for V (sl) with Imsl 1I Making use of sparsity of Galerkin discretization of operators ωj .I Long time computations when strong Huygens’ principle is missing

(Volker Gruhne).

Search for optimal multistep-multistage method

How does the shape of the domain effect µ in ‖V−1(s)‖ ≤ C |s|µ andhence convergence rates of the RK-CQ? Is there a domain for whichµ = 2 is reached?

How about more general problems? (see [Laliena, Sayas ’09]).

Can we give a rigorous answer to the question: How do I choose ∆t?

Non-smooth, non-compatible data, i.e. slow decay of Lg(s)? (seework of M. Schanz and his group)

L. Banjai (MPI Leipzig) RK boundary integral methods Oberwolfach, 15. 02. 2010 23 / 23