RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit)...

49
RPA : LaFeAsO, -(ET) 2 Cu(SCN) 2 , EtMe 3 Sb[Pd(dmit) 2 ] 2 中村 和磨 (東大工, A03-9) 

Transcript of RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit)...

Page 1: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

RPA :

LaFeAsO, -(ET)2Cu(SCN)2, EtMe3Sb[Pd(dmit)2]2

中村 和磨 (東大工, A03-9) 

Page 2: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Post constrained RPA Project: Reduction of spatial dimension

KAZUMA NAKAMURA (A03-9) YOSHIHIDE YOSHIMOTO (A02-5) MASATOSHI IMADA (A03-9)

Acknowledge: YOSHIRO NOHARA (Max Plank Institute)

KN-Yoshimoto-Nohara-Imada, J. Phys. Soc. Jpn. 79, 123708 (2010)

z2 z3

z1

z4

z1

z2z3

z4

Page 3: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Aim and Background

Strong correlation and quantum fluctuation from first principles and prediction of new phases and functions of correlated materials

Ab initio construction of effective model describing Low-energy property

Model analysis of derived model considering strong correlation and quantum fluctuation in high accuracy

LDA+Dynamical-Mean-Field Theory, V. I. Anisimov, et al. J. Phys. Cond. Mat., 9, 767 (1997) LDA+path-integral-renormalization-group; Y. Imai, I. V. Solovyev, M. Imada, PRL 95, 176405 (2005)

Page 4: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

(1) Iron-bansed superconductors:

(2) Organic compounds:

(3) Alkali-cluster-in-zeolite systems:

- KN-Arita-Imada, JPSJ 77, 093711 (2008) - Miyake-KN-Arita-Imada, JPSJ 79, 044705 (2009) - Misawa-KN-Imada, JPSJ, 80, 023704 (2011) - KN-Yoshimoto-Nohara-Imada, JPSJ 79, 123708 (2010)

- KN-Koretsune-Arita, PRB 80, 043941 (2009)

- KN-Yoshimoto-Kosugi-Arita-Imada, JPSJ 78, 083710 (2009) - Shinaoka-Misawa-KN-Imada, in preparation

(4) Transition metal and its oxides: - KN-Arita-Yoshimoto-Tsuneyuki, PRB 74, 235113 (2006) - Miyake-Aryasetiawan-Imada, PRB 80, 155134 (2009)

(5) Excited states of semiconductors: - KN-Yoshimoto-Arita-Tsuneyuki-Imada, PRB 77,195126(2008)

Feasibility Studies (2006-prenent)

(6) Review: - Imada-Miyake, JPSJ 79, 112001 (2010)

Page 5: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

1) Basis function

2) Transfer integral

3) Screened Coulomb, Screened exchange

Low-energy Hamiltonian

1) Maximally localized Wannier function (Marzari- Vanderbilt 1997, Souza-Marzari-Vanderbilt 2002)

2) Matrix elements for DFT Kohn-Sham Hamiltonian

Page 6: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Occupied (O)

Virtual (V)

Target (T)

Ef

RPA polarizability:

(1)

(2)

(3)

(4)

3) constrained RPA; Original idea Aryasetiawan et.al. 2004, Solovyev-Imada 2005 Practical detail KN-Arita-Imada, JPSJ 77, 093711, 2008

Page 7: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

LaFeAsO: constrained RPA

bare constrained RPA full RPA

1/r

1/(6.7r)

Inte

racti

on

(eV

)

r (Angstrom)

KN-Arita-Imada, JPSJ 77, 093711 (2008)

LaFeAsOcRPA is 3D interaction with long-range tail decaying with power

Page 8: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

What‘s the problem ? We derive ab initio parameters for 3D model, while we solve 2D model in the analysis stage

Considering strong quantum fluctuation effects with high accuracy is considerably difficult for the 3D model

We have serious problem on “dimensional inconsistency” LaFeAsO is quasi-2D system Derived model = 3D model, Analyzed model = 2D model FeAs layer

LaO layer

Page 9: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Reducing 3D to 2D

3D 2D

KEY IDEA: renormalize spatial dimension “Dimensional Downfolding”

We extend cRPA idea to the degree of freedom of “spatial space”

delete

delete

Interlayer interaction

Intralayer interaction

Renormalized interaction

Page 10: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Interlayer screening

(d)

;

Page 11: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Computational details:

1.

2.

3.

4.

5.

6.

with

with

Page 12: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

xy yz

z2 x2-y2 zx

LaFeAsO: Band & Wannier

FeAs

LaO

t 300 meVt 10 meV

FeAs

LaO

Typical quasi-2D system, good target of present study

Page 13: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

LaFeAsO: 2D downfolded

Inte

racti

on

(eV

)

r (Angstrom)

2D-cRPA

bare 3D-cRPA

full RPA

2D-cRPA

Page 14: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

SummaryWe developed a new ab initio downfolding scheme for deriving effective low-energy models in low dimensions

It justify 2D short-ranged Hubbard models as effective models from first principles

Nakamura-Yoshimoto-Nohara-Imada, J. Phys. Soc. Jpn. 79, 123708 (2010)

Inte

racti

on

(eV

)

r (Angstrom) r (Angstrom)

Page 15: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Performance Report for Massively-Parallel Project For constrained-RPA code

KAZUMA NAKAMURA (A03-9) YOSHIHIDE YOSHIMOTO (A02-5)

Acknowledge: YOSHIRO NOHARA (Max Plank Institute) YUICHIRO MATSUSHITA (OSHIYAMA Lab) HIROAKI ISHIZUKA (MOTOME Lab)

Page 16: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Computational cost

Nk Nb Nb NPW

Nk

cost (Nk )2(Nb)

2 NPW

(Nk )2(Nb)

2 NPW

NkNbNPWO(10) O(10)

NkNb=

= 10,000 (if Nk =100, Nb =1,000)

Page 17: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Need of development for “distributed-memory RPA code”

Need: distributed-memory code

Memory size of ~ 400 Gbyte with Nband=2000, Nk=125, NPW = 100000

The data cannot be stored by single node alone

EtMe3Sb[Pd(dmit)2]2

Page 18: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

For massively parallelization I

occ

unocc

occ

unocc

occ

unocc

1 2 3 4 5 6 7 8 9 10

Step1

Step2

Step3

occ

unoccStep4

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

Division of data;

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Calc

Data split

Data send to MPI

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Proposed by YOSHIHIDE YOSHIMOTO

Page 19: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

For massively parallelization II

1 2 3 4 5 6 7 8 9 10

Step9

Step6

Step7

1 2 3 4 5 6 7 8 9 10

Step8

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

10 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

9 10 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10

10 1 2 3 4 5 6 7 8 9

Data Rotation MPI_SENDRECV

Calc

Calc

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

Data Rotation MPI_SENDRECV

9 10 1 2 3 4 5 6 7 8

Page 20: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

core=128

- 8MPI*4OMP/comm ( ; )

- 4comm (q ; )

MPI_COMM_SPLIT

MPI_COMM_SPLIT

(q1) (q2) (q3) (q4)

Page 21: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Performance of our Code: Benchmark for small

System: SrVO3

Page 22: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

SrVO3@kashiwa 2q

n time(sec) 1 341.4 - - - 4(1x4) 89.9 98.2 94.9 3.8 8(2x4) 49.5 97.7 86.2 6.9 12(3x4) 33.8 98.3 84.1 10.1 16(4x4) 27.3 98.1 78.2 12.5

(n=MPI OMP)

Page 23: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

SrVO3@kashiwa 20q

+ (n=COMM MPI OMP)

n time(sec) 1 3590 - - - 8( 1x2x4) 492 98.6 91.3 7.3 32( 4x2x4) 126 99.6 89.3 28.6 80(10x2x4) 51 99.8 87.6 70.1 160(20x2x4) 26 99.9 85.8 137.3

Page 24: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Test Run at 2011/1/14: 2048-cores calculation

Performance of our code: Benchmark for large

system: C60

Page 25: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

C60@kashiwa 1q

n time(sec) 1 15639.1 - - - 4( 1x4) 4077.0 98.6 95.9 3.8 8( 2x4) 2108.3 98.9 92.7 7.4 16( 4x4) 1071.3 99.4 91.2 14.6 32( 8x4) 542.6 99.6 90.1 28.8 64(16x4) 297.9 99.7 82.0 52.5

(n=MPI OMP)

Page 26: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

C60@kashiwa 32q+ (n=COMM MPI OMP)

n time(sec) 64( 1x16x4) 9202.83 - - - 128( 2x16x4) 4657.06 99.98 98.81 126.72 256( 4x16x4) 2352.64 99.99 97.79 250.24 512( 8x16x4) 1166.69 100.00 98.60 504.96 1024(16x16x4) 589.33 100.00 97.62 999.04 2048(32x16x4) 305.81 100.00 94.04 1925.76

Page 27: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Product Run at 2011/2/11: 4096-cores calculation

Constrained RPA for dmit

Page 28: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

- Nk=75 (5 5 3), - Nband = 1000 (Nocc= 464, Npocc= 4, Nvir= 532), - Ecut( ) = 36 Ry (100,000 PWs), - Ecut( ) = 4.0 Ry (3,200 PWs)

Condition of product run:

- SGI Altix ICE 8400EX sytem - X5570(4core) 2 - Ifort 11.1, SGI-oriented MPI, InfiniBand - 4096 core (4comm 128MPI 8omp) - Total time = 43h19min

Architecture and performance:

Page 29: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Dielectric function: dmit and -bedt

dmit -bedt

|q + G| (a.u)

M(q

+G

)

|q + G| (a.u)

- 4096 cores - 43h19min - kashiwa

- 128 cores - 384h (16days) - SR11000@ITC - 1/6 of dmit

Page 30: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Ener

gy (

eV)

Convergence:

12.5eV

|q +G| (a.u)

M(q

+G

)

20.0eV

| G| ( )

(q)

|q +G| (a.u)

dmit-bedt

egy

(eV

)

Page 31: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

3D-cRPA Interaction: dmit and -bedt

dmit -bedtIn

tera

cti

on

(eV

)

r (Angstrom) r (Angstrom)

bare 3D-cRPA

Unfortunately dmit yet to be converged…

Page 32: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

APPENDIX

Page 33: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

z1

z2z3

z4

z2

z3

Computational data:

Page 34: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

-Cu(SCN)2: Band & Wannier

t 65 meV

t 0.1 meV

Geometry

Wannier

Page 35: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

-Cu(SCN)2: 2D downfolded In

tera

cti

on

(eV

)

r (Angstrom)

2D-cRPA

bare 3D-cRPA

full RPA

2D-cRPA

Page 36: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Screening length

c=16.4Å

-Cu(SCN)2LaFeAsO

zero at 8.4Å zero at 16.4Å

c=8.4Å

Thus, screening length of interlayer screening corresponds to the c value

Inte

racti

on

(eV

)

r (Å) r (Å)

Page 37: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

z2 z3

z1

z4

Feynman Diagram for Screened interaction

Coulomb interaction between electrons at z1 and z4 are screened by RPA polarization of

(z2,z3)

Page 38: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

z1

z2z3

z4

z1

z2

z3

z4

Interlayer screening

z1

z2

z3

z4

Electrons at z1 and z4 are in target layer, while screened electrons exist in z2 and z3 on other layer

z1

z2

z3

z411111111

other types of interlayer screening:

Page 39: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Computational details:

(2) Fourier transform of

(1) Target-band-RPA

wave vector in BZ

reciprocal lattice vector

in-plane, out-of-plane

(0) Below is post-cRPA story

Page 40: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

z1

z2z3

z4

Layer 1

Layer 2 = target

Layer 3

z2

z3

Page 41: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

z2

z3

z1

z2

z3

z41

Layer 1

Layer 2 = target

Layer 3

Page 42: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

z2

z3

z1

z2

z3

z4

Layer 1

Layer 2 = target

Layer 3

Page 43: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

z2

z3

z1

z2

z3

z4

Layer 1

Layer 2 = target

Layer 3

Page 44: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

z1

z2

z3

z4

z2

z3

Layer 1

Layer 2 = target

Layer 3

We have to cut this polarization to avoid double counting of it

Page 45: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

(3) Polarization cutting

CUT0

Page 46: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

(4) Inverse FT of cut

(5) 2D dielectric function 2D

g , g’ : reciprocal lattice vector of super lattice

Page 47: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

(6) 2D screened Coulomb

(7) 2D screened exchange

Page 48: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

LaFeAsO: cRPA (previous slide)

Inte

racti

on

(eV

)

r (Angstrom)

bare 3D-cRPA

full RPA

3D-cRPA3D-cRPA3D-cRPA

full RPA

Page 49: RPA LaFeAsO, -(ET) 2Cu(SCN) 2, EtMe 3Sb[Pd(dmit) 2computics-material.jp/jpn/symposium/20110301/pdf/04_1545_1605... · Constrained RPA for dmit - Nk =75 (5 5 3), - N band ... 2D-cRPA

Program structurePolarization

do q = 1, Nk

do = 1, Npair

do k = 1, Nk

call FFT module to calculate

enddo

call TETRAHEDRON module to calculate

do G=1, NPW

do G’=1, NPW

do = 1,N

  do k=1, Nk

enddo

enddo

enddo

enddo

enndo

enddo