ROTTA, E. H.a,*, BITENCOURT, C. S. , MARDER, L ... · CEM AEM CEM AEM + - E CA D CC E • Different...

22
ROTTA, E. H. a,* , BITENCOURT, C. S. a , MARDER, L. a , BERNARDES, A. M. a a. LACOR, PPGE3M, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul * Corresponding author, [email protected]

Transcript of ROTTA, E. H.a,*, BITENCOURT, C. S. , MARDER, L ... · CEM AEM CEM AEM + - E CA D CC E • Different...

ROTTA, E. H.a,*, BITENCOURT, C. S.a, MARDER, L.a, BERNARDES, A. M.a

a. LACOR, PPGE3M, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul* Corresponding author, [email protected]

• Phosphorus (P) is an essential nutrient for all life forms;

• Demand of food and commodities industry phosphate rock– One of the 20 critical raw materials1;

• Excessive P loads inserted on natural water bodies:– Eutrophication2;

1. Introduction

Researches ontechnologies to

phosphorusrecovery from

wastewater

1. European Commission, 2014. Memo 14/377.7. Brussels, BE;

2. Shepherd, J.G., Sohi, S.P., Heal, K. V, 2016. Water Research. 94, 155–165.

• Different processes wereproposed to the recoveryand concentration of P:– Biochar adsorption2;

– Crystallization3;

– Precipitation4 and;

– Membrane-based process5

• Electrodialysis6;

1. Introduction

3. Le Corre, K.S., Valsami-Jones, E., Hobbs, P., Parsons, S.A., 2009. Critical Reviews in Environmental Science and Technology. 39, 433–477;

4. Qiu, G., Ting, Y., 2014. Bioresource Technology. 170, 221–229;

5. Xie, M., Shon, H.K., Gray, S.R., Elimelech, M., 2016. Water Research. 89, 210–221;

6. Ebbers, B., Ottosen, L.M., Jensen, P.E., 2015. Electrochimica Acta. 181, 90–99.

• Different processes wereproposed to the recoveryand concentration of P:– Biochar adsorption2;

– Crystallization3;

– Precipitation4 and;

– Membrane-based process5

• Electrodialysis6;

1. Introduction

3. Le Corre, K.S., Valsami-Jones, E., Hobbs, P., Parsons, S.A., 2009. Critical Reviews in Environmental Science and Technology. 39, 433–477;

4. Qiu, G., Ting, Y., 2014. Bioresource Technology. 170, 221–229;

5. Xie, M., Shon, H.K., Gray, S.R., Elimelech, M., 2016. Water Research. 89, 210–221;

6. Ebbers, B., Ottosen, L.M., Jensen, P.E., 2015. Electrochimica Acta. 181, 90–99.

CEM CEMAEM AEM

+ -

E DCA CC E

• Different processes wereproposed to the recoveryand concentration of P:– Biochar adsorption2;

– Crystallization3;

– Precipitation4 and;

– Membrane-based process5

• Electrodialysis6;

1. Introduction

3. Le Corre, K.S., Valsami-Jones, E., Hobbs, P., Parsons, S.A., 2009. Critical Reviews in Environmental Science and Technology. 39, 433–477;

4. Qiu, G., Ting, Y., 2014. Bioresource Technology. 170, 221–229;

5. Xie, M., Shon, H.K., Gray, S.R., Elimelech, M., 2016. Water Research. 89, 210–221;

6. Ebbers, B., Ottosen, L.M., Jensen, P.E., 2015. Electrochimica Acta. 181, 90–99.

CEM CEMAEM AEM

+ -

E DCA CC E

HPO42-

HPO4-

Na+

• P recovery from sewage sludge ash (SSA):– SSA by-product of dewatered sewage sludge combustion in an

incinerator7,8;

1. Introduction

7. Guedes, P., Couto, N., Ottosen, L.M., Ribeiro, A.B., 2014. Waste Management. 34, 886–892;

8. Ottosen, L.M., Jensen, P.E., Kirkelund, G.M., 2016. Waste Management. 51, 142–148;

• P recovery from sewage sludge ash (SSA):– SSA by-product of dewatered sewage sludge combustion in an

incinerator7,8;

• The objective of this work was to test the technical feasibility of a5-compartment ED cell in the treatment of a phosphate containingsolution aiming the recovery of P from municipal wastewater;

1. Introduction

7. Guedes, P., Couto, N., Ottosen, L.M., Ribeiro, A.B., 2014. Waste Management. 34, 886–892;

8. Ottosen, L.M., Jensen, P.E., Kirkelund, G.M., 2016. Waste Management. 51, 142–148;

2.1. Solutions

• Phosphate containing solution:

• Electrolytic solution:

2. Materials and Methods

Salts Concentration

NaH2PO4.H2O 0.33 g L-1

Na2HPO4.7H2O 0.65 g L-1

Salt Concentration

Na2SO4 4 g L-1

2.2. Electrodialysis Cell

• Membranes:– CEM: HDX100;

– AEM: HDX200;

– Supplied by Hidrodex®;

– 16 cm²;

• Electrodes:– Ti/70TiO230RuO2;

– 16 cm²

2. Materials and Methods

2.3. Determination of the limiting current density

• Current-Voltage Curves (CVC) method9;

• 2 mA each 30 seconds;

• Duplicate.

2. Materials and Methods

9. Bernardes, A.M., Ferreira, J.Z., Rodrigues, M.A.S., 2014. Springer Berlin Heidelberg, Berlin, Heidelberg.

2.3. Determination of the limiting current density

• Current-Voltage Curves (CVC) method9;

• 2 mA each 30 seconds;

• Duplicate.

2. Materials and Methods

9. Bernardes, A.M., Ferreira, J.Z., Rodrigues, M.A.S., 2014. Springer Berlin Heidelberg, Berlin, Heidelberg.

V

+ -

V

ilim

Power Supply

2.4. Electrodialysis experiments

• ED tests were carried out in triplicate;

• Room temperature;

• Conductivity, pH and cell potential were monitored;

• Solution aliquots were collected at pre-established time andsubmitted to ion chromatography analysis;– Study of the ions transfer;

– Efficiency of the ED process to remove and recover phosphate;

2. Materials and Methods

𝑝𝑒% = 𝐶𝑖 − 𝐶𝑡

𝐶𝑖× 100

3. Results and Discussions

3.1. Limiting current density

• HDX100:– one plateau

– one ilim– typical behavior10;

10. Scarazzato, T., Buzzi, D.C., Bernardes, A.M., Romano Espinosa, D.C., 2015. Journal of Cleaner Production. 91, 241–250.

3. Results and Discussions

3.1. Limiting current density

• HDX100:– one plateau

– one ilim– typical behavior10;

• HDX200:– two plateaus

– two ilim– differs from the

conventional;10. Scarazzato, T., Buzzi, D.C., Bernardes, A.M., Romano Espinosa, D.C., 2015. Journal of Cleaner Production. 91, 241–250.

3.1. Limiting current density

3. Results and Discussions

Presence of twoplateaus11

Different phosphorus-containing species12

pH conditions

11. Pismenskaya, N., Nikonenko, V., Auclair, B., Pourcelly, G., 2001. Journal of Membrane Science. 189, 129–140;12. Puigdomenech, I., 2004. Inorganic Chemistry, Royal Institute of Technology, Stockholm, Sweden.

3.2. Evaluation of Electrodialysis

• 0.53 mA cm-2;

– 75% of ilim,AEM113;

• 15 hours;– 200 µS cm-1 (water supply);

3. Results and Discussions

13. Buzzi, D.C., Viegas, L.S., Rodrigues, M.A.S., Bernardes, A.M., Tenório, J.A.S., 2013. Minerals Engineering. 40, 82–89.

3.2. Evaluation of Electrodialysis

• Conductivity

3. Results and Discussions

CEM CEMAEM AEM

+ -

H2PO4-

HPO4-

Na+

E CA D CC E

SO42-

Na+

SO42-

Na+

3.2. Evaluation of Electrodialysis

• pH

3. Results and Discussions

pH in the dilutedcompartment

Water Dissociation

OH-

Pass throughthe AEM

H+

Shifts theequilibrium to

the formation ofH3PO4

3.2. Evaluation of Electrodialysis

• Cell voltage

3. Results and Discussions

↑ solution electrical resistance

Removal of the number of ionsavailable in D compartment

↓ pH ofcentral

compartment

Formation ofH3PO4

3.2. Evaluation of Electrodialysis

• While the pe% for Na+ is over than 92%, phosphate-containingspecies reported a lower value, around 61%, possibly due to H3PO4

availability;

3. Results and Discussions

Ionic specie Percent Extraction (pe%)

Phosphate-containing species (HxPO4

x-3)(60.82 ± 6.48) %

Sodium (Na+) (92.21 ± 1.21) %

• CVCs showed an unusual behavior for the AEM (HDX200);

• Further experiments should be done to try to achieve higher

phosphate species recovery;

– Controlling the solution pH;

– operating in a continuous way or;

– changing successively the solution in the diluted compartment.

4. Conclusions

Changes on pH conditions in D compartment

Formation of H3PO4

pe% of P-containingspecies wasrestricted

Acknowledgements