Roping in uncertainty measuring the tensile strength of steel wire...

15
Roping in uncertainty – measuring the tensile strength of steel wire ropes Riaan Bergh 27 September 2016

Transcript of Roping in uncertainty measuring the tensile strength of steel wire...

  • Roping in uncertainty – measuring the tensile strength of steel wire ropes

    Riaan Bergh

    27 September 2016

  • 2

    Presentation outline

    The test environment

    Why test?

    The detail

    The outcome

    The process

  • 3

    Why do we test new ropes?

    Riaan Bergh - September 2016 - [email protected] - 011-482 1300

    Theory vs. Practice

    Rope strength depends on:

    • Material properties of wires

    • Wire uniformity

    • Rope construction

    mailto:[email protected]

  • 4

    Why do we test ropes in service?

    Riaan Bergh - September 2016 - [email protected] - 011-482 1300

    mailto:[email protected]

  • 5

    High force, high stakes environment

    Riaan Bergh - September 2016 - [email protected] - 011-482 1300

    • MFL Tensile tester

    o 15 000 kN capacity testing from 750 kN (5% of FS)

    o 2 m stroke length, 8 m daylight

    • Laboratory space 1200m2, not climate controlled

    • Calibration duration, cost

    • No CRM, no PT schemes

    • No re-test of the same UUT

    mailto:[email protected]

  • 6

    Enter uncertainty…

    ? Instrumentation

    ? Environment e.g. temperature and humidity

    ? Variability

    ? Resolution of force measurement

    ? Electromagnetic noise

    ? Test method

    ? Personnel

    Riaan Bergh - September 2016 - [email protected] - 011-482 1300

    mailto:[email protected]

  • 7

    The estimation process

    The GUM method

    • Model the measurement

    • Identify and quantify all sources of error

    • Evaluate all sources of error to obtain the uncertainty

    contribution

    • Combine uncertainty contributions

    • Calculate the degrees of freedom for the combined

    uncertainty

    • Choose level of confidence

    • Calculate the expanded uncertainty, U

    • Report the result

    Riaan Bergh - September 2016 - [email protected] - 011-482 1300

    mailto:[email protected]

  • 8

    The detail – Mathematical model

    Riaan Bergh - September 2016 - [email protected] - 011-482 1300

    C

    C

    mailto:[email protected]

  • 9

    Sources of error

    • Accuracy of machine force measurement system

    • Accuracy of reference load cell – uncertainty quoted by

    calibration lab

    • Resolution of force measurement

    • Repeatability

    • Reproducibility

    • Effect of temperature

    Riaan Bergh - September 2016 - [email protected] - 011-482 1300

    mailto:[email protected]

  • 10

    Uncertainty budget

    Riaan Bergh - September 2016 - [email protected] - 011-482 1300

    mailto:[email protected]

  • 11

    Temperature effect

    Riaan Bergh - September 2016 - [email protected] - 011-482 1300

    -1.00%

    -0.75%

    -0.50%

    -0.25%

    0.00%

    0.25%

    0.50%

    0.75%

    1.00%

    -3 2 7 12

    Seas

    on

    al d

    iff

    fro

    m m

    ean

    ro

    pe

    BF

    Difference from mean BF (n = 12)

    Winter diff frommean [%]

    Summer diff frommean [%]

    Summer: +0.3%Winter: -0.3%

    ΔT = 20°C (12 months to date)

    mailto:[email protected]

  • 12© CSIR 2013

    The outcome – Example 1 at 852 kN working point

  • 13© CSIR 2013

    The outcome – Example 2 at 1965 kN working point

  • 14

    Room for improvement

    • Temperature effect

    • Control lab temperature

    • Condition specimens prior to testing

    • Apply a temperature correction to test result

    • Accuracy of machine force measurement

    • Apply correction

    • Adjust machine force calculation polynomial coefficients

    • Uncertainty of reference load cell

    • Load cell?

    • Calibration laboratory

    Riaan Bergh - September 2016 - [email protected] - 011-482 1300

    mailto:[email protected]

  • Thank you.