Robotic Surgery - WPIusers.wpi.edu › ~mpopovic › pages › Biomechatronics_Chapter_15.pdf ·...

5
excerpt from the book: Biomechatronics, Popovic, Academic Press, Elsevier, 2019. (No of pages 668) ISBN 978-0-12-812939-5 https://doi.org/10.1016/C2016-0-04132-3 Copyright © 2019 Elsevier Inc. All rights reserved. Chapter 15, Pages 431-450 Robotic Surgery Pinar Boyraz* ,† , Ivo Dobrev , Gregory Fischer § , Marko B. Popovic § *CHALMERS UNIVERSITY OF TECHNOLOGY, GOTHENBURG, SWEDEN ISTANBUL TECHNICAL UNIVERSITY, ISTANBUL, TURKEY UNIVERSITY HOSPITAL ZURICH, UNIVERSITY ZURICH, ZURICH, SWITZERLAND § WORCESTER POLYTECHNIC INSTITUTE, WORCESTER, MA, UNITED STATES Abstract In this chapter, a general overview of robotic surgery will be provided while focusing on specific developments on hyperredundant, continuum, and soft-material robotic platforms. The chapter also provides a wide and comprehensive outlook on the implications of human-machine interaction and autonomy levels in robotic surgery. To better explain the new developments in robotic surgery front, two case studies are selected reporting on the state-of-the-art applications in robotic ear surgery and hyperredundant semiautonomous robotic platforms. CHAPTER OUTLINE 15.1 Overview of Robotic Surgery .................................................................................................. 431 15.1.1 Introduction: Traditional Robotic Surgery ...........................................................................432 15.1.2 Multiarm, Hyperredundant, Continuum, and Soft-Robotic Platforms for Robotic Endoscopy ........................................................................................................................434 15.2 Platform-Based Classification of Robotic Surgery .................................................................... 436 15.2.1 Multiarm Robotic Platforms for MIS ...................................................................................436 15.2.2 Hyperredundant Robotic Platforms ....................................................................................437 15.2.3 Continuum Robots for MIS ..................................................................................................437 15.2.4 Soft Robotics for Surgical Applications ................................................................................438

Transcript of Robotic Surgery - WPIusers.wpi.edu › ~mpopovic › pages › Biomechatronics_Chapter_15.pdf ·...

Page 1: Robotic Surgery - WPIusers.wpi.edu › ~mpopovic › pages › Biomechatronics_Chapter_15.pdf · autonomy levels in robotic surgery. To better explain the new developments in robotic

excerpt from the book: Biomechatronics, Popovic, Academic Press, Elsevier, 2019. (No of pages 668) ISBN 978-0-12-812939-5 https://doi.org/10.1016/C2016-0-04132-3 Copyright © 2019 Elsevier Inc. All rights reserved. Chapter 15, Pages 431-450

Robotic Surgery Pinar Boyraz*,†, Ivo Dobrev‡, Gregory Fischer§, Marko B. Popovic§

*CHALMERS UNIVERSITY OF TECHNOLOGY, GOTHENBURG, SWEDEN †ISTANBUL

TECHNICAL UNIVERSITY, ISTANBUL, TURKEY ‡UNIVERSITY HOSPITAL ZURICH,

UNIVERSITY ZURICH, ZURICH, SWITZERLAND §WORCESTER POLYTECHNIC INSTITUTE,

WORCESTER, MA, UNITED STATES

Abstract

In this chapter, a general overview of robotic surgery will be provided while focusing on specific

developments on hyperredundant, continuum, and soft-material robotic platforms. The chapter also

provides a wide and comprehensive outlook on the implications of human-machine interaction and

autonomy levels in robotic surgery. To better explain the new developments in robotic surgery front, two

case studies are selected reporting on the state-of-the-art applications in robotic ear surgery and

hyperredundant semiautonomous robotic platforms.

CHAPTER OUTLINE

15.1 Overview of Robotic Surgery .................................................................................................. 431

15.1.1 Introduction: Traditional Robotic Surgery ...........................................................................432

15.1.2 Multiarm, Hyperredundant, Continuum, and Soft-Robotic Platforms for

Robotic Endoscopy ........................................................................................................................434

15.2 Platform-Based Classification of Robotic Surgery .................................................................... 436

15.2.1 Multiarm Robotic Platforms for MIS ...................................................................................436

15.2.2 Hyperredundant Robotic Platforms ....................................................................................437

15.2.3 Continuum Robots for MIS ..................................................................................................437

15.2.4 Soft Robotics for Surgical Applications ................................................................................438

Page 2: Robotic Surgery - WPIusers.wpi.edu › ~mpopovic › pages › Biomechatronics_Chapter_15.pdf · autonomy levels in robotic surgery. To better explain the new developments in robotic

15.2.5 Hybrid Robotic Platforms ....................................................................................................440

15.3 Human-Machine Interaction in Robotic Surgery ...................................................................... 441

15.4 Autonomy Levels in Robotic Surgery ....................................................................................... 442

15.5 Case Studies ........................................................................................................................... 443

15.5.1 Automated Ear Surgeries .....................................................................................................443

15.5.2 Reconfigurable and Hyperredundant Robotic Platforms .....................................................446

15.6 Conclusion and Future Trends ................................................................................................ 447

References .................................................................................................................................... 447

Biomechatronics. https://doi.org/10.1016/B978-0-12-812939-5.00015-X

© 2019 Elsevier Inc. All rights reserved.

[chapter content intentionally omitted]

References

[1] A.R. Lanfranco, A.E. Castellanos, J.P. Desai,W.C.Meyers, Robotic surgery: a current perspective, Ann.

Surg. 239 (1) (2004) 14–21.

[2] J.S. Rassweiler, R. Autorino, J. Klein, A.Mottrie, A.S. Goezen, J.-U. Stolzenburg, et al., Future of robotic

surgery in urology, BJU Int. 120 (2017) 822–841.

[3] J. Jayakumaran, S.D. Patel, B.K. Gangrade, D.M. Narasimhulu, S.R. Pandian, C. Silva, Robotic assisted

laparoscopy in reproductive surgery: a contemporary review, J. Robot. Surg. 11 (2017) 97–109.

[4] T. Arulampalam, S. Patterson-Brown, A.J. Morris, M.C. Parker, Natural orifice transluminal endoscopic

surgery, Consensus Statement, Ann. R. Coll. Surg. Engl. 91 (2009) 456–459.

[5] M.E.Hagen, M.K. Jung, F. Ris, J. Fakhro, N.C. Buchs, L. Buehler, P.Morel, Early clinical experience with

the da Vinci Xi surgical system in general surgery, J. Robot. Surg. 11 (2017) 347–353.

[6] K. Taniguchi, A. Nishikawa, M. Sekimoto, T. Kobayashi, et al., Classification, design and evaluation of

endoscope robots, in: S.H. Baik (Ed.), Robot Surgery, 2010, p. 172. ISBN 978-953-7619-77-0.

[7] A. Szold, R. Bergamaschi, I. Broeders, J. Dankelman, et al., European association of endoscopic

surgeons (EAES) consensus statement on the use of robotics in general surgery, in: Surgical Endoscopy,

Springer, 2014, pp. 1–36. Consensus Statement.

Page 3: Robotic Surgery - WPIusers.wpi.edu › ~mpopovic › pages › Biomechatronics_Chapter_15.pdf · autonomy levels in robotic surgery. To better explain the new developments in robotic

[8] B.P.M. Yeung, P.W.Y. Chiu, Application of robotics in gastrointestinal endoscopy: a review, World

Gastroenterol. 22 (5) (2016) 1811–1825.

[9] S.J. Phee, A.P. Kencana, V.A. Huynh, Z.L. Sun, S.C. Low, K. Yang, D. Lomanto, K.Y. Ho, Design of a master

and slave transluminal endoscopic robot for natural orifice transluminal endoscopic surgery, Proc. IMechE

Part C: J. Mech. Eng. Sci. 224 (2010) 1495–1503.

[10] T. Ogiwara, T. Goto, A. Nagm, K. Hongo, Endoscopic endonasal transsphenoidal surgery using the

iArmSoperationsupport robot: initial experience in 42 patients, Neurosurg.Focus. 42(5) (2017) 1–5. E10.

[11] K. Kume, Flexible robotic endoscopy: current and original devices, Comput. Assist. Surg. 21 (1) (2016)

150–159.

[12] P.R. Slawinski, K.L. Obstein, P. Valdastri, Emerging issues and future developments in capsule

endoscopy, Tech. Gastrointest. Endosc. 17 (2015) 40–46.

[13] M.E. Moran, Evolution of robotic arms, J. Robot. Surg. 1 (2007) 103–111.

[14] E. Abdi, M. Bouri, S. Himidan, E. Burdet, H. Bleuler, Third arm manipulation for surgical applications:

an experimental study, in: New Trends in Medical and Service Robots, 2016, pp. 153–163.

[15] Z. Li, D. Milutinovic, J. Rosen, Design of a multi-arm surgical robotic system for dexterous

manipulation, J. Mech. Robot. 8 (061017) (2016) 10.

[16] H. Zhao, J. Tian, D. Li, C. Ai, Design of a multi-arm robot for mandible reconstruction surgery, Appl.

Mech. Mater. 654 (2014) 187–190.

[17] O. Salomon, A. Wolf, Inclined links hyper-redundant elephant-trunk-like robot, J. Mech. Robot. 4

(2012). 6 pp.

[18] Z. Li, H. Ren, P.W.Y. Chiu, R. Du, H. Yu, A novel constrained wire-driven flexible mechanism and its

kinematic analysis, Mech. Mach. Theory 95 (2016) 59–75.

[19] M.M. Tonapi, I.S. Godage, A.M. Vijaykumar, I.D. Walker, A novel continuum robotic cable aimed at

applications in space, Adv. Robot. 29 (6) (2015) 861–875.

[20] G.S. Chirikjian, J.W. Burdick, A modal approach to hyper-redundant manipulator kinematics, IEEE

Trans. Robot. Autom. 10 (3) (1994) 343–354.

[21] G.S. Chrikjian, J.W. Burdick, Kinematically optimal hyper-redundant manipulator configurations, IEEE

Trans. Robot. Autom. 11 (6) (1995) 794–806.

[22] G.S. Chrikjian, Hyper-redundant manipulator dynamics: a continuum approximation, Adv. Robot. 9

(3) (1994) 217–243.

[23] N.C. Cho, H. Jung, J. Son, K.G. Kim, A modular control scheme for hyper-redundant robots, Int. J. Adv.

Robot. Syst. 12 (2015) 91.

[24] A. Bajo, N. Simaan, Hybrid motion/force control of multi-backbone continuum robots, Int. J. Robot.

Res. 35 (4) (2016) 422–434.

Page 4: Robotic Surgery - WPIusers.wpi.edu › ~mpopovic › pages › Biomechatronics_Chapter_15.pdf · autonomy levels in robotic surgery. To better explain the new developments in robotic

[25] J.Wang, S.Wang, J. Li, X. Ren, R.M. Briggs, Development of a novel robotic platform with controllable

stiffness manipulation arms for laparoendoscopic single-site surgery (LESS), J.Med. Robot. Comput. Assist.

Surg. 14 (2018) 1–16.

[26] J. Burgner-Kahrs, C. Rucker, H. Choset, Continuum robots for medical applications: a survey, IEEE

Trans. Robot. 31 (6) (2015).

[27] H. Su, G. Li, D.C. Rucker, R.J. Webster III, G. Fischer, A. Concentric Tube, Continuum robot with

piezoelectric actuation for MRI-guided closed-loop targeting, Ann. Biomed. Eng. 44 (10) (2016) 2863–

2873.

[28] P. Qi, C. Qui, H. Liu, J.S. Dai, L.D. Seneviratne, K. Althoefer, A novel continuum manipulator design

using serially connected double-layer planar springs, IEEE/ASME Trans. Mechatr. 21 (3) (2016) 1281–1292.

[29] H. Abidi, G. Gerboni, M. Brancadoro, J. Fras, A. Diodato, M. Cianchetti, H. Wurdemann, K. Althoefer,

Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery, Int. J. Med.

Robot. Comput. Assist. Surg. 14 (2018) 1–9.

[30] M.D. Gilbertson, G. McDonald, G. Korinek, J.D. Van de Ven, T.M. Kowalewski, Serially actuated

locomotion for soft robots in tube-like environments, IEEE Robot. Autom. Lett. 2 (2) (2017) 1140–1147.

[31] G. Smoljkic, G. Borghesan, A. Devreker, A.V. Poorten, B. Rosa, H. De Praetere, J. De Schutter, D.

Reynaerts, J.V. Sloten, Controlof a hybrid robotic system for computer-assisted interventions in dynamic

environments, Int. J. CARS 11 (2016) 1371–1383.

[32] A. Singh, E. Singla, S. Soni, A. Singla, Kinematic modeling of a 7-degree of freedom spatial hybrid

manipulator for medical surgery, Proc. IMechE Part H: J. Eng. Med. 232 (1) (2018) 12–23.

[33] A.K. Mishra, E. Del Dottore, A. Sadeghi, A.Mondini, B. Mazzolai, SIMBA: tendon-driven modular

continuum arm with soft reconfigurable gripper, Front. Robot. AI 4 (4) (2017) 1–10.

[34] D.J. Kiely, W.H. Gotlieb, S. Lau, X. Zeng, V. Samouelian, A.V. Ramanakumar, et al., Virtual reality

robotic surgery simulation curriculum to teach robotic suturing: a randomized controlled trial, J. Robot.

Surg. 9 (2015) 179–186.

[35] C. Pacchierotti, F. Ongaro, F. Van den Brink, C. Yoon, D. Prattichizzo, et al., Steering and control of

miniaturized untethered soft magnetic grippers with haptic assistance, IEEE Trans. Autom. Sci. Eng. Inst.

Electr. Electron. Eng. 15 (1) (2018) 290–306.

[36] J. Buzzi, G. Ferrigno, J.M. Jansma, E. DeMomi, On the value of estimating human arm stiffness during

virtual teleoperation with robotic manipulators, Front. Neurosci. 11 (2017), 528.

[37] E. Bauzano, B. Estebanez, I. Garcia-Morales, V. Munoz, Collaborative human-robot system for HALS

suture procedures, IEEE Syst. J. 10 (3) (2016) 957–966.

[38] ISO Standard, IEC/TR 60601-4-1:2017, Medical Electrical Equipment- Part 4-1: Guidance and

Interpretation-Medical Electrical Equipment and Medical Electrical Systems Employing a Degree of

Autonomy.

[39] R.Muradore, P. Fiorini, G. Akgun,D.E. Barkana, M. Bonfe, F. Boriero, A. Caprara, et al., Development

of a cognitive robotic system for simple surgical tasks, Int. J. Adv. Robot. Syst. 12 (37) (2015) 1–20.

Page 5: Robotic Surgery - WPIusers.wpi.edu › ~mpopovic › pages › Biomechatronics_Chapter_15.pdf · autonomy levels in robotic surgery. To better explain the new developments in robotic

[40] F. Ferraguti, N. Preda, A. Manurung, M. Bonfe, O. Lambercy, R. Gassert, et al., En energy tank-based

interactive control architecture for autonomous and teleoperated robotic surgery, IEEE Trans. Robot. 31

(5) (2015) 1073–1088.

[41] K. Watanabe, T. Kanno, K. Ito, K. Kawashima, Human-integrated automation of suturing task with

one-master two-slave system for laparoscopic surgery, in: IEEE Int Conf. on Advanced Intelligent

Mechatronics (AIM), Banf, Alberta, Canada, 2016.

[42] M. Fard, A.K. Pandya, R.B. Chinnam, M.D. Klein, R.D. Ellis, Distance-based time series classification

approach for task recognition with application in surgical robot autonomy, Int. J. Med. Robot. Comput.

Assist. Surg. 13 (e1766) (2017) 1–9.

[43] R.F. Labadie, R. Balachandran, J. Mitchell, J.H. Noble, O. Majdani, D. Haynes, M. Bennett, B.M.

Dawant, J.M. Fitzpatrick, Clinical validation study of percutaneous cochlear access using patient

customized micro-stereotactic frames, Otol.Neurotol.: Off. Publ. Am. Otol. Soc. Am.Neurotol. Soc. Eur.

Acad. Otol. Neurotol. 31 (1) (2010) 94.

[44] J.H. Noble, F.M. Warren, R.F. Labadie, B.M. Dawant, J.M. Fitzpatrick, Determination of drill paths for

percutaneous cochlear access accounting for target positioning error, Proc. SPIE 6509 (2007) 650925.1–

650925.10.

[45] R.F. Labadie, J.H. Noble, B.M. Dawant, O. Majdani, R. Balachandran, J.M. Fitzpatrick, Clinical validation

of percutaneous cochlear implant surgery: initial report, Laryngoscope 118 (2008) 1031–1039. 18401279.

[46] N. Gerber, B. Bell, K. Gavaghan, C. Weisstanner, M. Caversaccio, S. Weber, Surgical planning tool for

robotically assisted hearing aid implantation, Int. J. Comput. Assist. Radiol. Surg. 9 (1) (2014) 11–20.

[47] R. Torres, G. Kazmitcheff, D. De Seta, E. Ferrary, O. Sterkers, Y. Nguyen, Improvement of the insertion

axis for cochlear implantation with a robot-based system, Eur. Arch. Otorhinolaryngol. 274 (2) (2017) 715–

721.

[48] P.R. Nasdar, P. Boyraz, T. Ortmaier, A. Raatz, Development of compliant hyper-redundant

mechanisms for robotic catheters and analysis of controllability, Deutche Gesselschaft fuer Robotik (DGR)

Days (2016) 29–30 Leipzig, Germany.