RMW3 08 Morita H

download RMW3 08 Morita H

of 50

Transcript of RMW3 08 Morita H

  • 8/14/2019 RMW3 08 Morita H

    1/50

    1

    Thermodynamics on SOG-Si

    Refining Processes

    Institute of Industrial Science,The University of Tokyo

    Kazuki Morita

    The 3rd Workshop on

    Reactive Metal Processing

  • 8/14/2019 RMW3 08 Morita H

    2/50

    2

    Recent Research Fields

    Physical Chemistry of High TemperatureProcessing (Steelmaking and Waste Management)

    Microwave Processing for Recycling and WasteTreatment

    Thermodynamics and Processing on Solar GradeSilicon (SOG-Si) Production

    Materials Production and Recycling

    Engineering Lab.(Formerly Ferrous Metallurgy Lab.)

  • 8/14/2019 RMW3 08 Morita H

    3/50

    3

    Contents

    1. Introduction

    2. Metallurgical refining for SOG-Si

    - Thermodynamic properties of impurities in molten Si alloys -

    - Optimized Process Combined with Leaching Treatment -

    3. Solidification refining of Si with Si-Al metls

    - Segregation ratios of impurities between solid Si and Si-Al melt -

    4. Conclusions and Future Work

  • 8/14/2019 RMW3 08 Morita H

    4/504

    Requirement for metallurgical refining process for SOG-Si

    Depending on off-grade Si for semiconductor

    Increase in solar cell production

    90 91 92 93 94 95 96 97 98 99 1001011021031040

    100

    200300

    400

    500

    600700

    800

    900

    10001100

    1200

    Amountofproduction(MW)

    YearFig. Amount of solar cell production by various processes.

    Total

    Poly Crystalline

    Single Crystalline

    AmorphousRibbon

    00 01 02 03 04

  • 8/14/2019 RMW3 08 Morita H

    5/505

    Possibility of Low Cost SOG-Si Production

    Can we remove impurities from MG-silicon

    by metallurgical refining processes ?

    MG-Si SOG-Si

    New Refining Process?

  • 8/14/2019 RMW3 08 Morita H

    6/506

    Ti

    Fe

    P

    Al

    Fig. Solar-cell efficiency versus impurity concentration for

    4-cm p-base devices.

    Fe, Ti, Al, P, B

    Impurtiry Content(ppma)

    Fe 1300

    Ti 220

    Al 3300

    P 30B 30

    Table 1 Impurity

    contents in MG-Si.

    Impurities and solar cell efficiency

  • 8/14/2019 RMW3 08 Morita H

    7/507

    -1600

    -1200

    -800

    -400

    0

    0 500 1000 1500 2000 2500

    4Cu+O2

    =2Cu2O

    2Fe+O2

    =2FeO

    2C+O2=2CO

    C+O2=CO

    2

    3/2Fe+O2

    =1/2Fe3

    O4

    2Mn+

    O2=2MnO

    Si+O2

    =SiO2

    4/3Ti+

    O2=2/

    3Ti2O3

    4/3Al+

    O2=2/

    3Al2O3

    2Mg+

    O2=2Mg

    O

    2Ca+

    O2=2

    CaO

    Temperature(K)

    G ib

    b s

    e ne

    rg y

    o f

    fo

    rma t i

    o n

    fo r

    o x i

    d e s(k

    J/ m

    o l O

    2)

    -1600

    -1200

    -800

    -400

    0

    0 500 1000 1500 2000 2500

    4Cu+O2

    =2Cu2O

    2Fe+O2

    =2FeO

    2C+O2=2CO

    C+O2=CO

    2

    3/2Fe+O2

    =1/2Fe3

    O4

    2Mn+

    O2=2MnO

    Si+O2

    =SiO2

    4/3Ti+

    O2=2/

    3Ti2O3

    4/3Al+

    O2=2/

    3Al2O3

    2Mg+

    O2=2Mg

    O

    2Ca+

    O2=2

    CaO

    Temperature(K)

    G ib

    b s

    e ne

    rg y

    o f

    fo

    rma t i

    o n

    fo r

    o x i

    d e s(k

    J/ m

    o l O

    2)

    Fe-FeO

    Al-Al2O3

    Mg-MgO

    Ca-CaO

    Si-SiO2

    Fig. Ellingham diagram for some

    representative elements.

    Strong Affinity ofSilicon for Oxygen

    =

    Difficulty in

    Oxidation Treatment

  • 8/14/2019 RMW3 08 Morita H

    8/50

    8

    Si Standard : solid Si standard : solid

    GM solid

    0 - 0- liquid

    liquid solid

    Component X Si

    L

    L T1

    S+L

    S+L S

    Si Si

    (a) Small segregation coefficient

    Component XComponent X

    Component X

    T=T1

    Si

    GM

    (b) Large segregation coefficient

    T1

    T=T1

    Fig. Relationship between Gibbs free energy and phase diagram below

    melting point of silicon.

    P, B, C, etc.Most metallic

    impurities

  • 8/14/2019 RMW3 08 Morita H

    9/50

    9

    10-6 10-5 10-4 10-3 10-2 10-1 10010-1110-1010-910-810-710-610-510

    -410-310-210-1100101102103104

    segregation coefficient

    i

    mpurityco

    ntent(ppm

    w) after first

    solidification

    after secondsolidification

    Impurity content of MG-Si

    Required impurity content for SOG-Si

    Al

    NiCr

    Fe

    V

    Ti BP

    Fig. Removal of impurity in silicon by solidification refining.

  • 8/14/2019 RMW3 08 Morita H

    10/50

    10

    Thermodynamic properties of

    impurities in molten silicon alloys

    PhosphorousEquilibrated in a controlled phosphorous partial pressure

    Titanium and IronEquilibrated with lead

    Aluminum, Calcium and MagnesiumEquilibrated with Oxides

  • 8/14/2019 RMW3 08 Morita H

    11/50

    11

    Thermodynamics of P in Molten Silicon

    Gas Inlet Tube

    Porous Alumina Block

    Molten Si-P Alloy

    Graphite or Alumina Crucible

    Graphite Holder

    Mullite Tube

    Fig. Schematic Cross Section of Experimental Apparatus.

    Ar+P4(P2+P)

    To Ribbon Heater

    Temperature Controller

    Ar+P4

    Thermocouple

    SiliconePlug

    Red Phosphorus Ribbon Heater

    Ar

    Red Phosphorus Temperature 398-461K

    Argon Flow Rate 190cc/min

    Fig. Schematic cross section of the phosphorus vapor generator.

    To Ribbon Heater

    Temperature Controller

    Ar+P4

    Thermocouple

    SiliconePlug

    Red Phosphorus Ribbon Heater

    Ar

    Red Phosphorus Temperature 398-461K

    Argon Flow Rate 190cc/min

    Fig. Schematic cross section of the phosphorus vapor generator.

  • 8/14/2019 RMW3 08 Morita H

    12/50

    12

    0.05 0.1

    0.001

    0.002

    0[mass%P]

    PP

    1/2(atm1/2)

    2

    1750 1800 1850-80

    -70

    -60

    -50

    T(K)

    Freeenergychange(kJ/mol)

    1/2 P2(g)=P(mass%, in Si)G= -139,000+43.4T(J/mol)

    Fig. Relationship between equilibrium

    phosphorous partial pressure and

    phosphorous concentration of silicon at

    1823K.

    Fig. Temperature dependence of

    free energy change of phosphorous

    dissolution into silicon.

  • 8/14/2019 RMW3 08 Morita H

    13/50

    13

    10-6 10-5 10-4 10-3 10-2 10-110-1610

    -1510-1410-1310-1210-1110-1010

    -910-810-710-610-510-4

    [mass%P]

    P

    (atm)

    P

    P

    P

    P2P,

    P

    P2

    1 2 3 4

    0.01

    0.02

    0.03

    0Time (ks)(V

    /A)log([mass%P]0/[mass%P]t)(m

    ) Suzuki et al.estimated

    Yuge et al.

    1823K 1867K

    Ikeda et al.

    estimated

    Fig. Relationship between equilibrium

    partial pressure of P, P2 and phosphorouscontent of silicon at 1823K.

    Fig. Relationship between time

    for vacuum treatment and(V/A)

    log([mass%P]0/[mass%P]t).

    Hertz-Knudsen equation

    iii

    i

    XpRT

    M

    dt

    dy

    =

    0

    2

  • 8/14/2019 RMW3 08 Morita H

    14/50

    14

    Fig. Schematic Cross Section of Experimental Apparatus.

    Gas Inlet Tube

    Porous AluminaBlock

    Graphite Crucible

    Graphite Holder

    Mullite Tube

    Graphite Lid

    Molten Si-M

    (M:Fe,Ti)

    Molten Lead

    Fig. Phase diagram of Si-Pb system.

    Thermodynamics of Ti and Fe in Molten Silicon

    Si Pb

  • 8/14/2019 RMW3 08 Morita H

    15/50

    15

    0 0.02 0.04 0.06-6

    -5

    -4-3

    -2

    -1

    XFe in Si

    lnXFeinPb-lnXFein

    Si-14.1

    XPbinS

    i

    -23.8

    XSiinPb+4.91

    lnXFe in Pb-lnXFe in Si-14.1XPb in Si-23.8XSi in Pb+4.91

    =-3.56(0.40)+3.17(5.46)XFe in Si

    Fe(l) in Si=2.8510-2

    FeFe

    in Si=3.17

    0 0.025 0.05 0.075 0.1-9

    -8

    -7

    -6

    XTi in Si

    lnXTiinPb-lnXTiinSi-13.2

    XPbin

    Si

    -10

    .8XSiinPb-1.7

    4

    lnXTi in Pb-lnXTi in Si-13.2XPb in Si

    = -7.71+3.97X

    Ti in Si

    Ti(l) in Si=4.4810-4

    TiTi

    in Si=3.97

    -10.8XSi in Pb-1.74

    Fig. Relationsip betweenXTi in Si andlnXPb in Pb lnXPb in Si at 1723K.Fig. Relationsip betweenXFe in Si andlnXPb in Pb lnXPb in Si at 1723K.

  • 8/14/2019 RMW3 08 Morita H

    16/50

    16

    Ti and Fe are stable in molten silicon.

    Removal of Ti and Fe by chemical

    reaction (i.e. oxidation, chlorination) is

    considered to be impossible.

    Double solidification process is required.

  • 8/14/2019 RMW3 08 Morita H

    17/50

    17

    Fig. Schematic Cross Section of Experimental Apparatus.

    Graphite

    Holder

    Al2O3-Al6Si2O13 Crucible

    Molten Si-Al Alloy

    SiO2 Crucible

    Molten Si-Ca Alloy

    Molten SiO2 satd.

    CaO-SiO2 Slag

    SiO2 Crucible

    Molten Si-Mg Alloy

    Molten MgSiO3, SiO2satd.MgO-SiO2-Al2O3 Slag

    MgSiO3, SiO2pellet

    Thermodynamics of Al, Ca and Mg in Molten Silicon

    Al

    Ca

    Mg

  • 8/14/2019 RMW3 08 Morita H

    18/50

    18

    5.4 5.6 5.8

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    -3.6

    -3.4

    -3.2

    -3

    -2.8

    -2.6

    104/T(K-1)

    logAl(l),

    logMg(l)

    logCa(l)

    Ca

    Mg

    Al

    172317731823

    T(K)

    Fig. Temperature dependence of the activity coefficient of aluminum,

    calcium, and magnesium in molten silicon relative to pure liquid.

    51.411300ln

    55.114300

    ln

    452.03610ln

    Ca

    Al

    +=

    +=

    +=

    T

    T

    T

    Mg

  • 8/14/2019 RMW3 08 Morita H

    19/50

    19

    1 2 3 4 5 6

    10

    20

    30

    0

    1000

    2000

    3000

    0

    P

    Ca

    Al

    Fig. Relationship between vacuum time and impurity content of silicon at 1823K.

    Time(ks)

    massppmP

    mass

    ppmAl,massppmCa

    0.739m2

    40.3m2

    mass of Si : 1000kg

    surface area

    P, Al, Ca and Mg can be

    removed by vacuum melting.

    Mg

  • 8/14/2019 RMW3 08 Morita H

    20/50

    20

    Vacuum melting by electron beam

    Vacuum

    Plasma melting with water vapor

    Directional solidification

    MG-Si

    ArgonSOG-Si

    Removal of P, (Al, Ca) Removal of B, C

    Removal of Fe,Ti,Al

    First step purification Second step purification

    Directional solidification

    Removal of Fe,Ti,Al

    Lower cost refining process is desired to be developed

    NEDO SOG-Si Manufacturing Process

    (Operated in JFE Steel Co.)

  • 8/14/2019 RMW3 08 Morita H

    21/50

    21

    Is there any way to reduce the timesof solidification refining?

    If the treatment of MG-Si can

    remove 90% of Ti and Fe,

    Possibility of Acid Leaching

  • 8/14/2019 RMW3 08 Morita H

    22/50

    22

    Si-Ca-Fe or Ti

    dissolved at 1723K

    Cooling to 1300K

    (CaSi2 formation)

    Acid leaching with

    aqua regia

    Chemical analysis

    Acid Leaching Test with Ca Addition

    Porous Alumina

    Block

    Graphite Crucible

    Graphite HolderAr

  • 8/14/2019 RMW3 08 Morita H

    23/50

    23

    Removal Fraction of Fe

  • 8/14/2019 RMW3 08 Morita H

    24/50

    24

    Fig. Phase Diagram of the Si rich corner for theCa-Fe-Si System [calculated by Thermo-Calc]

    Eutectic Point

    XCa/XFe6.4

    Secondary Phase

    CaSi2 or FeSi2 ?

    Consideration of Removal Behavior of

    Fe with the Ca-Fe-Si Phase Diagram

  • 8/14/2019 RMW3 08 Morita H

    25/50

    25

    Fig.

    (a) SEM micrograph of Si-Ca-Fe alloy.

    (b) Microstructure of Si-Ca-Fe alloy.

    (c) Concentration profile by EPMA line analysis.

    Si-3.26%Ca-0.424%Fe, 4.4K/min

  • 8/14/2019 RMW3 08 Morita H

    26/50

    26

    Fig.

    (a) SEM micrograph of Si-Ca-Fe alloy.

    (b) Microstructure of Si-Ca-Fe alloy.

    (c) Concentration profile by EPMA line analysis.

    Si-2.41%Ca-0.685%Fe, 4.4K/min

  • 8/14/2019 RMW3 08 Morita H

    27/50

    27

    Vacuum melting by electron beam

    Vacuum

    Plasma melting with water vapor

    Directional solidification

    MG-Si

    Argon

    SOG-Si

    Removal of P, (Al, Ca) Removal of B, C, (Al, Ca)

    Removal of Fe,Ti,Al

    First step purification Second step purification

    Directional solidification

    Removal of Fe,Ti,Al

    NEDO SOG-Si Manufacturing Process

    (Operated in JFE Steel Co.)

    P : 30 < 0.1ppmw B : 5-10 0.1-0.3 ppmw

    Acid leaching treatment with Ca addition

    Removal of Fe and Ti

  • 8/14/2019 RMW3 08 Morita H

    28/50

    28

    Vacuum melting by electron beam

    Vacuum

    Plasma melting with water vapor

    Directional solidification

    MG-Si

    Argon

    SOG-Si

    Removal of P, (Al, Ca) Removal of B, C, (Al, Ca)

    Removal of Fe,Ti,Al

    First step purification Second step purification

    Directional solidification

    Removal of Fe,Ti,Al

    NEDO SOG-Si Manufacturing Process

    (Operated in JFE Steel Co.)

    P : 30 < 0.1ppmw B : 5-10 0.1-0.3 ppmw

    Acid leaching treatment with Ca addition

    Removal of Fe, Ti, P and B

    Reduction of

    processing time

    Phase diagrams for the Si-Al system

  • 8/14/2019 RMW3 08 Morita H

    29/50

    29

    Solidification refining of Si with Si-Almelt at low temperature.

    Low eutectictemperature

    Fig. Phase diagram of Si-Al system.

    Removal of impurities byuse of enhanced segregationat low temperature

    Phase diagrams for the Si Al system

    MG-Si

    (98-99%)Pure Al

    Segregation ratiomeltAlSiini

    Sisolidini

    iX

    Xk

    =

  • 8/14/2019 RMW3 08 Morita H

    30/50

    30

    Segregation ratios of impurities

    between solid Si and Si-Al melt

    Thermodynamics of impurity elements in solid Si

    Evaluation of low temperature Si refining process

    Segregation ratios of impurities between Si-Al melt and solid Si

    Al, B, P

    Fe,Ti, etc.

    Experimentally determined

    Theoretically determined

    Determination for segregation ratios of P and B

  • 8/14/2019 RMW3 08 Morita H

    31/50

    31

    Fig. Diffusion coefficient of impurity elements in solid silicon.

    Al, P, B Considerably smalldiffusion coefficient in solid Si

    Solidification method to

    attain the equilibrium

    Diffusion coefficient of impurity elements in solid Si

    Determination for segregation ratios of P and B

  • 8/14/2019 RMW3 08 Morita H

    32/50

    32

    1 2

    Solid Si

    Si-Al melt

    Solid Si

    T2

    T1

    Tm,A

    C1sC1

    l C2l C2

    s A

    Component B

    Distance

    a) b)

    T

    emp.

    LS

    L+S

    Fig. Schematic diagrams of the temperature gradient zone melting.

    (a) Portion of phase diagram. (b) Temperature gradient in system.(c) Physical system comprising (A+B)molten zone traveling through solid A.

    c)

    Temperature Gradient Zone Melting(TGZM) method

    Precipitated Si

    Determination for segregation ratios of P and B

  • 8/14/2019 RMW3 08 Morita H

    33/50

    33

    Temperature Gradient Zone Melting MethodAl and P contents in solid silicon -

    EPMA analysisAr atmosphere 24-72h

    Temperature Gradient 10-40K/cm

    1

    2

    3

    4

    5 6 8

    10

    11

    97

    12

    Fig. 1. Schematic diagram of an experimental apparatus: 1-SiC heating element; 2-thermocouple

    connected to PID controller; 3-gas outlet tube; 4-stainless steel holder; 5-single crystalline silicon; 6-aluminum foil; 7-mullite tube; 8-thermocouple for measuring temperature of molten zone; 9-porous

    alumina boat 10-gas inlet tube; 11-alumina plate; 12-Sponge titanium

    Distribution of P (and Al) between

    solid Si and Si-Al-P alloy

    - Red phosphorus stuck Al foil

    Distribution of B (and Al) between

    solid Si and Si-Al-B alloy

    - Prepared Al-B foil

    Experimental method

    Determination for segregation ratios of P and B

  • 8/14/2019 RMW3 08 Morita H

    34/50

    34

    Fig. Photo of a TGZM specimen after

    the experiment.

    10mm

    B A

    Fig. Intensity profiles of Ka radiation of aluminum and

    phosphorus of the sample (accelerating voltage of 15kV,sample current of 200nA, sampling step of 10m).

    100 200 300 400 500 600

    100

    200

    300

    400

    0

    Distance (m)

    IntensitiesofK

    radiationof

    alu

    minumandphosphorus

    PAl

    (a) Single crystalline Si (d) Single crystalline Si(c) Si-Al zone

    (b) Migrated region

    Segregation ratio

    Sample after TGZM experiment

    Segregation ratios of P and B

  • 8/14/2019 RMW3 08 Morita H

    35/50

    35

    Segregation ratios of P and B

    1200 1400 16000.01

    0.05

    0.1

    0.5

    1

    5

    Temperature (K)

    Se

    gregationratio

    P

    B

    Segregation ratios are smaller at low temperature.

    Low temperature refining is effective.

    Segregation ratio between

    solid Si and Si-Al melt

    Segregation coefficient

    between solid/liquid Si.

  • 8/14/2019 RMW3 08 Morita H

    36/50

    36

    s

    i

    s

    i

    l

    i

    l

    i aRTGaRTG lnln00+=+

    0

    0

    lnlnlns

    i

    l

    i

    fus

    i

    l

    i

    s

    i

    iRT

    G

    X

    Xk

    +

    ==

    Equality in chemical potential of impurity between solid Si

    and Si-Al melt

    1)

    2)

    Activity coefficients in solid Si and Si-Al melt

    Based on the reported thermodynamic data

    Derivation of segregation ratio of impurity

    elements between solid Si and Si-Al melt

    Segregation ratios between solid Si and Si-Al melt

    < S ti ffi i t b t lid/li id Si

  • 8/14/2019 RMW3 08 Morita H

    37/50

    37

    < Segregation coefficients between solid/liquid SiSegregation ratio between Si-Al me lt

    and solid SiElement

    1073K 1273K 1473K

    Segregation coefficient

    between solid/liquid Si at

    m.p. of Si(6-3)

    Fe 1.710 -11 5.910 -9 3.010 -7 6.410 -6

    Ti 3.810 -9 1.610 -7 9.610 -7 2.010 -6

    Cr 4.910 -10 2.510 -8 2.510 -7 1.110 -5

    Mn 3.410 -10 4.510 -8 9.910 -7 1.310 -5

    Ni 1.310 -9 1.610 -7 4.510 -6 1.310 -4

    Cu 9.210 -8 4.410 -6 2.510 -5 4.010 -4

    Zn 2.210 -9 1.210 -7 2.110 -6 1.010 -5

    Ag 1.910 -8 1.710 -6 6.610 -6 5.010 -5

    Au 1.510 -11 6.110 -9 3.610 -7 2.510 -5

    Ga 2.110 -4 8.910 -4 2.410 -3 8.010 -3

    In 1.110 -5 4.910 -5 1.510 -4 4.010 -4

    Sb 3.410 -3 3.710 -3 8.210 -3 2.310 -2

    Pb 9.710 -5 2.910 -4 1.010 -3 2.010 -3

    Bi 1.310 -6 2.110 -5 1.710 -4 7.010 -4

    P 4.010 -2 8.510 -2 1.610 -1 3.510 -1

    B 7.610 -2 2.210 -1 4.910 -1 8.010 -1

    Al 1.410 -4 4.910 -4 1.210 -3 2.810 -3

    Impurity contents of Si after low temperature

  • 8/14/2019 RMW3 08 Morita H

    38/50

    38

    10-6

    10-5

    10-4

    10-3

    10-210

    -1

    100

    101

    102

    103

    Contents of MG-Si Allowable contents for SOG-SContents after solidification refining with Si-Al meltContents after ordinary solidification refining

    Impurityco

    ntent(ppmw

    )

    Fe Ti P B

    Impurity contents of Si after low temperature

    solidification refining with Si-Al melt at 1273K and

    ordinary Si solidification refining of MG-Si.

    Contents after purification; Ci =ki Ciini Initial content

    (MG-Si)at 1273K

    Si

    Viewing the development of the solidification

  • 8/14/2019 RMW3 08 Morita H

    39/50

    39

    refining of Si with Si-Al melt at low temperature

    Fig. Phase diagram of Si-Al system.

    Si bathAl bath

    Si-Al melt

    Poly or Single Crystalline ?

    Discussion of the Si solidification method

    from Si-Al melt

    Refining test

    Discussion for separating of solid Si from Si-Al

  • 8/14/2019 RMW3 08 Morita H

    40/50

    40

    melt by flotation

    Holding Si-55.3at%Al alloy (liquidus temp. 1273K) at 1173K for 12h

    Si saturated, solid fraction = 0.168

    Needle like Si grains

    Preparation Melting in the

    induction furnace and rapid cooling

    (solid Si < 2.33g/cm3, Al-25.8%Si 2.45g/cm3)

    Separation of solidified Si from Si-Al

  • 8/14/2019 RMW3 08 Morita H

    41/50

    41

    p

    melt using electromagnetic force Induction furnace1

    3

    7

    12

    11

    54 6

    8

    109

    2

    Si-55.3at%Al alloy (liquidus,1273K) was melted and held at

    1323K in the induction furnace

    Measuring the surfacetemp. of the melt by

    the infrared pyrometer

    Cooling and Solidifying the

    sample by lowering from the

    position of induction coil

  • 8/14/2019 RMW3 08 Morita H

    42/50

    42

    Solidified Si-Al alloy using

    induction furnace

    Agglomeration of solidified Si by electromagnetic stirring

    Bottom

    1cm

    Agglomeration mechanism of Si under

  • 8/14/2019 RMW3 08 Morita H

    43/50

    43

    Si-Al melt Solidified Si

    Inductioncoil

    J

    B

    J

    BInduced flow

    F

    Difference in inducedswirl current to the

    perpendicular direction

    Solidification of Si at lower

    position

    Downward bulk flowAgglomeration of Si grainsto the bottom of the sample

    gg

    the fixed alternative magnetic field

    Solidification refining test

    Experimental method Synthesized MG-Si was alloyed to Si-

  • 8/14/2019 RMW3 08 Morita H

    44/50

    44

    Fig. Schematic cross section ofexperimental apparatus.

    Alumina block

    Gas inlet tube

    Induction coil

    Graphite crucible

    Quartz tube

    Prism

    Molten alloy

    Melting and holding at 1323K

    or 1223K

    Cooling and solidifying the sampleby lowering from the coil

    Measuring the surface temp.

    by infrared pyrometer

    p

    Crashing the Si agglomerated part

    (> 840m), then acid cleaningSample No. Fe Ti Al B P

    PrSi-1 4500 691 1280 56 36

    PrSi-2 2160 248 1560 36 19

    Synthesized MG-Si was alloyed to Si-

    55.3at%Al(liquidus, 1273K) or Si-64.6

    at%Al(liquidus, 1173K) with pure Al

  • 8/14/2019 RMW3 08 Morita H

    45/50

    45

    Sample No Source Fe Ti B P Al

    SR-1 PrSi-1 13 (99.7%) 5.2 (99.2%) 0.81 (98.6%) 0.93 (97.4%) 599 (53.1%)

    SR-2 PrSi-1 13 (99.7%) 2.7 (99.6%) 0.88 (98.4%) 1.2 (96.7%) 534 (58.1%)

    SR-3 PrSi-2 20 (99.1%) 2.8 (98.9%) 0.71 (98.1%) 0.72 (96.3%) 575 (63.1%)

    SR-4 PrSi-2 27 (98.8%) 4.5 (98.2%) 1.90 (94.8%) 1.0 (95.1%) 602 (61.3%)

    SR-5 PrSi-1 47 (99.0%) 7.7 (98.9%) 0.98 (98.3%) 0.42 (98.8%) 538 (57.8%)

    SR-6 PrSi-1 36 (99.2%) 5.6 (99.2%) 0.99 (98.2%) 0.66 (98.2%) 453 (64.5%)

    Fe, TiWell reduced but not as well as predicted valuesB, P Effectively removed

    Impurity contents of refined Si in the test run (ppmw)

    High ability for purification was confirmed.

    Proposal of refining process for SOG-Si

  • 8/14/2019 RMW3 08 Morita H

    46/50

    46

    Vacuum melting by electron beam

    Reduction of SiO2 in arc furnace

    Removal of P, (Al, Ca)

    Removal of Fe,Ti,Al

    Directional solidification

    Alloying of silicon with Al

    SOG-Si

    Solidification refining with Si-Al melts

    Pre-refined Si (5N except Al)

    Proposal of refining process for SOG Si

    Acid cleaning

    C l i d F t W k

  • 8/14/2019 RMW3 08 Morita H

    47/50

    47

    Conclusions and Future Work

    The optimum metallurgical refining

    process for SOG-Si was thermodynamicallyassessed.

    Possibility of solidification refining of Si

    with Si-Al melt was clarified. Solidification

    and separation of Si from the melt is the

    major problem to solve for the practical

    process.

    A k l d t

  • 8/14/2019 RMW3 08 Morita H

    48/50

    48

    Acknowledgments

    Present data are based on two Doctoral

    Dissertations by Takahiro Miki (1999),now a research associate of Tohoku

    University, and Takeshi Yoshikawa(2005), now an assistant professor of

    Osaka University.

    Periodical Journal Publication List 1

  • 8/14/2019 RMW3 08 Morita H

    49/50

    49

    Metallurgical Refining

    T.Miki, K.Morita and N.Sano :Metallurgical and Materials Transactions B, 27B(1996),937-942, Thermodynamics of Phosphorus in Molten SiliconT.Miki, K.Morita and N.Sano :Metallurgical and Materials Transactions B, 28B(1997),861-867, Thermodynamic Properties of Titanium and Iron in Molten SiliconT.Miki, K.Morita and N.Sano :Metallurgical and Materials Transactions B, 28B(1997),861-867, Thermodynamic Properties of Titanium and Iron in Molten SiliconT.Miki, K.Morita and M.Yamawaki :Journal of the Mass Spectrometry Society ofJapan47(1999), 72-75, Measurements of Thermodynamic Properties of Iron in MoltenSilicon by Knudsen Effusion MethodT.Miki, K.Morita and N.Sano :Materials Transactions, JIM, 40 (1999), 1108-1116,Thermodynamic Properties of Si-Al, -Ca, -Mg Binary and Si-Ca-Al, -Ti, -Fe TernaryAlloys 66(2002), 459-465, K.Morita and T.Miki :Intermetallics, 11(2003), 1111-1117, Thermodynamics on Solar-Grade-Silicon RefiningG.Inoue, T.Yoshikawa and K.Morita :High Temperature Materials and Processes,22(2003), 221-226, Effect of Calcium on Thermodynamic Properties of Boron in MoltenSiliconT.Shinpo, T.Yoshikawa and K.Morita :Metallurgical and Materials Transactions B,35B(2004), 277-284, Thermodynamic Study of the Effect of Calcium on Removal ofPhosphorus from Silicon by Acid Leaching Treatment

    Periodical Journal Publication List 2

  • 8/14/2019 RMW3 08 Morita H

    50/50

    50

    Solidification Refining

    T.Yoshikawa and K.Morita :J.Electrochem. Soc., 150(2003), G465-G468, SolidSolubilities and Thermodynamic Properties of Aluminum in Solid Silicon

    T.Yoshikawa and K.Morita :Science and Technology of Advanced Materials, 4(2003), 531-537, Removal of Phosphorus by the Solidification Refining with SiAl Melts

    T.Yoshikawa and K.Morita :Journal of Physics and Chemistry of Solids, 66(2005), 261-265,Thermodynamics of Solid Silicon Equilibrated with Si-Al-Cu Liquid AlloysT.Yoshikawa and K.Morita :Materials Transaction, 46(2005), 1335-1340,Thermodynamic Property of B in Molten Si and Phase Relations for the Si-Al-B SystemT.Yoshikawa and K.Morita :ISIJ International, 45(2005), 967-971, Refining of Si by theSolidification of Si-Al Melt with Electromagnetic ForceT.Yoshikawa and K.Morita :Metallurgical and Materirals Transactions B, 36B(2005), 731-736, Removal of B from Si by the Solidification Refining with SiAl MeltsT.Yoshikawa, K.Arimura and K.Morita :Metallurgical and Materirals Transactions B,36B(2005), 837-842, B Removal by Ti Addition in the Solidification Refining of Si with SiAl MeltsT.Yoshikawa and K.Morita :Journal of Alloys and Compounds, 420(2006), 136-144Activity Measurements of Al and Cu in Si-Al-Cu Melt at 1273 and 1373 K by theEquilibration with Molten Pb