RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3...

21
1 Ring Oscillator under Laser: Poten5al of PLL based Countermeasure against Laser Fault Injec5on Wei He * , Jakub Breier * , Shivam Bhasin * Noriyuki Miura + , Makoto Nagata + * Physical Analysis and Cryptographic Engineering (PACE), Nanyang Technological University, Singapore + Graduate School of System InformaJcs, Kobe University, Japan FDTC’16, August 16, 2016, Santa Barbara, US.

Transcript of RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3...

Page 1: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

1  

Ring  Oscillator  under  Laser:    Poten5al  of  PLL  based  Countermeasure  against  

Laser  Fault  Injec5on  

Wei  He*,  Jakub  Breier*,  Shivam  Bhasin*  Noriyuki  Miura+,  Makoto  Nagata+      *  Physical  Analysis  and  Cryptographic  Engineering  (PACE),      Nanyang  Technological  University,  Singapore      +    Graduate  School  of  System  InformaJcs,      Kobe  University,  Japan  

   FDTC’16,    August  16,  2016,  Santa  Barbara,  US.    

Page 2: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

2  

Ø  Fault  A?ack   (FA)   exploits   the   inten5onally   triggered   faulty  data  or  faulty  physical  behaviors  from  the  target  devices,  in  order  to  study  the  device  proper5es,  or  extract  confiden5al  informa5on  about  internals.    

 •  Evalua5on  of  fault  tolerance  of  cri5cal  system       (hash  working  environment,  e.g.,  high  energy  cosmic  ray)  •  Assistant  means  for  reverse  engineering  •  Break  SCA  countermeasure  •  Induce   sensiJve   computaJon   errors   in   cryptosystem   for  

retrieving   crypto   keys   (e.g.,   DFA,   Algebraic   FA,   FSA,   round  reduc5on,  etc.)  

 

Purposes  of  Fault  InjecJons  in  Circuit  

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

Page 3: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

3  

Laser-­‐Induced  Fault  on  Transistor  

VSS

N+N+

0PMOS

VDD

LASER

observedcurrent

P substrate

a transient can befurther

propagated

Ø  Temporary  photocurrent  induced  by  laser  radia5on.    •  Example:  A  laser  injec5on  into  drain  of  the  NMOS  of  a  CMOS  inverter  

can  temporarily  turn  the  PMOS  ON.  

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

•  In  real  IC,  laser  radiates  numerous  transistors  simultaneously,  hence  the  fault  mechanism  induced  in  IC  is  complicated.  

•  Laser   also   impact   signal   propaga5on   in   rou5ngs   because   of   its  charging  and  discharging  effects  on  parasi5c  capacitance.  

Page 4: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

4  

Countermeasure  against  Fault  InjecJons  

Ø  Algorithm-­‐Intrinsic  Countermeasure:  

•  Original   algorithm   is   modified,   for   being   for5fied   with  detec5on  capability  of  abnormal  values.  

 ²  Algorithm  implemented  by  mul5  rails.        (  Dual-­‐rail  comparison;  Triple-­‐rail  majority  vo5ng  )    

²  Concurrent  Error  Detec5on  (CED).            (  Parity  computa5on  and  comparison  )    

•  Heavy!  •  Can  only  detect  Already-­‐INJECTED  faults,  e.g.,  cannot  predict  

coming  injec5on  a?empt.  –  no  Security  Margin,  low  detec5on  coverage.  

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

Page 5: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

5  

Countermeasure  against  Fault  InjecJons  

Ø  Sensor  based  Countermeasure  

  Requirements  of  eligible  sensors  •  Logically  independent  from  the  protected  algorithm.  •  More   sensi5ve   under   injec5on   impact   (laser,   EM,   clock,  

power,  temperature,  etc)  •  Be  able  to  predict  on-­‐going  injec5ons  in  advance  

 –  Power/Spa5al  Security  Margin.      

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

Cipher  fault  sensi5ve  region

Sensor  detec5on  region

min.power  (sensor-­‐alarm)

min.power  (cipher-­‐fault)

 power

Power  Security  Margin Spa2al  Security  Margin

Page 6: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

6  

Digital  Ring  Oscillator  under  Laser  

Ø  Frequency   ripple   of   RO   can   be   temporarily   incurred   under  external   electrical   impacts   in   vicinity,   such  as   intensive   EM/laser  pulse,  or  power/clock  glitch      

fstart-up (en)

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Amplit

ude

Time Samples

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Amplit

ude

Ampli

tude

Ampli

tude

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Time Samples

Time Samples

(Observable  frequency  ripple  on  high-­‐frequency  RO)

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

RO  Frequency  without  laser  impact

RO  Frequency  with  laser  impact

Page 7: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

7  

Phase-­‐Locked  Loop  (PLL)  Sensor  System  

Ø  PLL  is  a  widely  used  analog  component  in  circuit.  

•  Be  consisted  by:  (1)  Phase-­‐Frequency  Detector  (PFD),  Low  Pass  Filter  (LF),  Voltage-­‐controlled  Oscillator  (VCO).  

•  For  providing  phase  locked  clock  using  the  feedback  loop.  •  A  disturbance  in  PLL  clock  input  may  temporarily  unlock  PLL.    

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

1/N

Phase-Frequency Detector

(PFD)

Low-Pass Filer (LPF)

Voltage-Controller Oscillator

f fNCLKIN1

CLKFBIN

RST

CLKOUT0CLKOUT1CLKOUT2CLKOUT3CLKOUT4CLKOUT5

CLKFBOUT

LOCKED

Alarm

Input from RO

RO Watchdog

laser injection

Locked

Alarminjection detected vigilantvigilant

Page 8: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

8  

Exemplary  Xilinx  FPGA  Architecture  

6-LUT

Carry Chain

FF-D

6-LUT FF-C

6-LUT FF-B

6-LUT FF-A

6-LUT

Carry Chain

FF-D

6-LUT FF-C

6-LUT FF-B

6-LUT FF-A

Slice

Slice

CLBSwitch-Box

Routing channel

interconnects between Slices and routing

channels

Ø  Virtex-­‐5  FPGA  is  used  as  the  a?ack  target  •  SRAM  based   FPGA,  manufactured   in   65   nm   process,   encapsulated  

by  flip-­‐chip  package.  •  CLB  (  slice  pair  )  array  with  peripheral  components.  •  Switch-­‐box   provides   rich   interconnects   between   slice   pins   and  

external  rou5ng  channels.  

Ø  So,  a  CLB  and  a  switch-­‐box  forms  a  basic  logic  cluster  in  Xilinx  FPGA    

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

Page 9: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

9  

Target  Block  Cipher  –  PRESENT80  

•  Round   data   registers   are   the  target   logics   for   laser   injec5on  a?acks.    

•  The   5ming   of   injec5on   focuses  on  the  last  round  data  registers.  

S S …. S S

ciphertext

64

4

4

pLayer

64

plaintext

64

round keys

64

64DQ

round_ctrl

round data registers

Ø  Lightweight   symmetric   PRESENT-­‐80   is   selected   as   the   a?ack  cipher,  implemented  on  target  Virtex-­‐5  FPGA  

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

Page 10: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

10  

Ring  Oscillator  ImplementaJon  on  FPGA  

Ø  Two  implementa5ons  have  been  schemed.  •  A  1-­‐inverter  RO  is  implemented,  covering  9  CLBs  (40  data  registers).  

Rou5ng   path   is   properly   controller,   to   enforce   passing   through  (“route-­‐thru”)  3  corner  CLBs.  

•  A  1-­‐inverter   RO   is   implemented, passing   through   the  4   LUTs   in   a  single  slice.    

target slice for 1-inverter RO and 4 round data

register bits

RO output

RO routing loop1 Inverter and

enable

the used PLL

round data registers

RO output

(Single  slice  RO:  protect  4  registers)  (RO  covering  9  CLBs:  protect  40  registers)  

210  MHz   260  MHz  

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

Page 11: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

11  

Experimental  Setup  of  Laser  Fault  InjecJon  

Ø  Setup  specifics  –  RISCURE  Pulse  Laser  Injector  plalorm.  •  X-­‐Y  2D  motorized  stage, with  0.05  um  step  size,  diode  pulse   laser  

(NI):  1064  nm  •  5x  (10W),  20x  (8W)  magnifica5on  lens,  with  10  MHz  pulse  repe55on  •  Laser  spot  size:  60x14um2  (5x),  15x3.5um2(20x)  •  Virtex-­‐5  FPGA  (vlx50t)  on  Genesys  commercial  board  •  SASEBO-­‐GII  used  for  bridging  cipher  and  RISCURE  GUI  on  PC    

ONOFF

X-Y

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

Page 12: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

12  

Chip  PreparaJon  

Ø  Virtex-­‐5  target  FPGA  is  mechanically  process  to  facilitate  injec5on.  •  Virtex-­‐5  is  flip-­‐chip  package  •  Heat  sink  metal  lid  is  removed  •  Substrate  is  thinned  down  from  300  um  to  100  um,  to  reduce  energy  

absorp5on  and  refrac5on  side-­‐effect.  

milled down layer

front-side (multiple metal layers)

300 um

100 um

back-side (substrate)

diode laser

objective lens

high-energy laser core

objective lens

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

Page 13: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

13  

Experimental  EvaluaJon  –  Regional  CLBs  Ø  Surface  LFI  scan  to  regional  CLBs,  targe5ng  to  9-­‐CLB  covered  RO.  

•  20x  and  5x  objec5ve  lens  are  tested  respec5vely  •  Scan  matrix:  240x200=48,000  injec5on  points  •  Point-­‐of-­‐Interest  (POI)  distribu5on  matches  CLB  array  on  FPGA  •  Different  alarm  densi5es  are  shown  using  20x  and  5x  laser  •  Cipher   faults   only   appeared   using   5x   lens,   no   fault   reported   with  

20x.  

5,600 5,700 5,800 5,900 6,000 6,100

X (µm)

10,150

10,200

10,250

10,300

10,350

10,400

10,450

10,500

10,550

10,600

10,650

10,700

10,750

10,800

10,850

10,900

10,950

11,000

11,050

11,100

11,150

11,200

11,250

11,300

11,350

11,400

11,450Y

(µm

)

5,600 5,650 5,700 5,750 5,800 5,850 5,900 5,950 6,000 6,050 6,100

X (µm)

10,600

10,650

10,700

10,750

10,800

10,850

10,900

10,950

11,000

11,050

11,100

11,150

11,200

11,250

11,300

11,350

11,400

11,450

11,500

11,550

11,600

Y (µ

m)

CLBs for placing cipher data register

CLBs for positioning the other 3 corners of the RO loop

CLBs for placing the inverter of the 1-inverter RO

(a) with 20x objective lens (b) with 5x objective lens

Key  ObservaJon:  Alarm  can  also  be  triggered  from  injec5ons  to  neighboring  CLBs.    

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

Page 14: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

14  

Experimental  EvaluaJon  –  Regional  CLBs  

Ø  Analysis  of  LFI  disturbance  propaga5on  in  FPGAs.  

substrate layer

Affected !

no affection !

Affected ! Injection Location !

no affection !no affection !

metal layers

CLB/Switch Box

Transistor layer

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

Page 15: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

15  

Experimental  EvaluaJon  –  Security  Margin  

Ø  A   be?er   sensor-­‐based   countermeasure   should   be   more   sensi5ve  against  injec5on  impact.  •  Scan  area:  roughly  300x400  um2  •  Only  consider  the  5x  experimental  result  •  Lowest  power  to  trigger  countermeasure  is:  64%  of  full  power  •  Lowest  power  to  induce  cipher  faults  is:  91%  (except  2  outliers)  

60

65

70

75

80

85

90

95

100

Pow

er (%

)

5,700 5,750 5,800 5,850 5,900X (µm)

10,900

10,950

11,000

11,050

11,100

11,150

11,200

11,250

11,300

Y (µ

m)

60

65

70

75

80

85

90

95

100

Pow

er (%

)

5,700 5,750 5,800 5,850 5,900X (µm)

10,900

10,950

11,000

11,050

11,100

11,150

11,200

11,250

11,300

Y (µ

m)

Ø  Both  Power  and  SpaJal  security  margin  have  been  observed.  

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

Page 16: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

16  

Experimental  EvaluaJon  –  Single  CLB  

Ø  Power  level  related  fault  distribu5on  using  3D  plopng.  •  X/Y: scan  plan  •  Z:  laser  injec5on  power  level  •  50  injec5ons  into  each  loca5on,  with  rising  power  level  by  step  of  1%  

Key  ObservaJons:    •  Significantly  higher  chance  to  trigger  alarm  

than  inducing  cipher  fault  without  alarm  •  Lowest  power  to  trigger  alarm  start  from  

62%  of  full  power  •  Lowest  power  to  induce  cipher  fault  starts  

from  90%  of  full  power  •  Outstanding  power  and  spaJal  security  

margin  

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

Page 17: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

17  

Experimental  EvaluaJon  –  Single  CLB  

Ninjected 752

Nundetected   54

Ncountermeasure   5759

Ø  Quan5fy  the  security  escala5on  using  the  proposed  LFI  sensor.  1.  Only  consider  injected  faults  2.  Or,  consider  all  abnormality  (alarm+fault)  

DetecJon  Rate:  chance  to  detect  the  injected  faults  

92.82%  

InjecJon  Success  Rate:  chance  to  inject  faults  without  triggering  alarm  

0.94%  

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

Page 18: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

18  

Concluding  Remarks  

Ø  Work  Summary  •  A  RO-­‐PLL  based  sensor  for  detec5ng  laser  fault  injec5on  is  presented  •  The  effec5veness  of   the  proposed  system   is   thoroughly  validated  on  

Xilinx  FPGA  •  Experiments  show  no5ceable  power  and  spa5al  security  margin  •  Experimental   results  show  that   the  detec5on  sensi5vity   is  high,  with  

detec5on  rate  of  92.82%,  and  injec5on  success  rate  of  0.94%  •  Explore   the   fault   mechanism   on   silicon   chip,   and   the   detec5on  

features  on  FPGAs  

Ø  Future  Work  •  Improve  the   logic  and  validate  the  detec5on  capability  against  other  

fault  a?acks  •  Protec5on  enhancement  on  other  func5onal  blocks,  such  as  BRAMs  

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

Page 19: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

19  

Thanks  for  your  a?en5on!    

Ques5ons?

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

Page 20: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

20  

Ø  Doable  fault  perturba5on  methodologies  on  ICs:  

•  Power  System:  Power  Glitch,  Under-­‐Powering     [J  Blomer,  et  al:  Fault  based  crytanalysis…  2003]  •  Clock  Tree:Clock  Glitch,Over-­‐Clocking  

 [M  Agoyan,  et  al:  On  cri2cal  paths  and  ..,  2010]  •  Temperature  Rise:  slowing  down  electrons/holes  mobility     [Hamid,  H.B.E.,  et  al:  The  sorcerer’s  appren2ce  ..,  2004]      •  EM  Disturbance: Eddy  current  caused  by  intense  magne5c     field  from  a  high  transient  current  pulse  in  near-­‐field  

 [A  Dehbaoui,  et  al:  Injec2on  of  transient  faults…,  2012]  •  OpJcal  Disturbance:Laser,  Intense  White  Light  

 [SP  Skorobogatov,  et  al:  Op2cal  fault  induc2on…,  2003]  

ü  Global  ü  Low-­‐precision  ü  Low-­‐cost

ü  Local  ü  High-­‐precision  ü  Expensive

FI  Approaches  on  Chip  

FDTC’16, Santa  Barbara,  US,  Aug  16  2016  

Page 21: RingOscillatorunderLaser ...conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_4_2.pdf · 3 LaserInduced $Fault$on$Transistor$ VSS N+ N+ 0 PMOS VDD LASER observed cu rent P

21  

Further  Discussions  

Ø  Frequency  Sensi5vity  vs  Protec5on  Coverage.  •  Higher   RO   RO   frequency   brings   in   higher   detec5on   sensi5vity,   while  

results  in  smaller  protec5on  area  •  Disturbance  propaga5on  in  FPGA  enlarges  protec5on  coverage  •  Full  protec5on  to  large  cipher  can  be  protected  by  several  sensors  

Ø  Accidental  “unlock-­‐alarm”  due  to  PVT  factors.  •  Power-­‐Voltage-­‐Temperature  varia5on  affect  electrical  performance  of  

silicon  circuit  •  If  not  malicious  disturbance  (sharp  voltage/power  change)  imposed  by  

a?acker,  PVT  parameters   in  circuit  are  slight,  and  changing  gradually,  which  can  be  recalibrated  by  PLL  feedback  loop  

FDTC’16, Santa  Barbara,  US,  Aug  16  2016