Ring

68
 ArmorStart® DLR Reference Architecture Application Guide

description

ring

Transcript of Ring

  • ArmorStart DLR Reference Architecture

    Application Guide

  • Important User Information

    Because of the variety of uses for the products described in this publication, those responsible for the application and use of this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards.

    The illustrations, charts, sample programs and layout examples shown in this guide are intended solely for purposes of example. Since there are many variables and requirements associated with any particular installation, Rockwell Automation does not assume responsibility or liability (to include intellectual property liability) for actual use based upon the examples shown in this publication.

    Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (Publication SGI-1.1 available from your local Rockwell Automation sales office or online at http://www.rockwellautomation.com/literature/) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

    In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

    The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

    No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

    Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

    Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

    WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

    ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

    SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

    BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

    IMPORTANT Identifies information that is critical for successful application and understanding of the product.

  • General Precautions

    In addition to the precautions listed throughout this manual, the following statements, which are general to the system, must be read and understood.

    ATTENTION: This manual is intended for qualified service personnel responsible for setting up and servicing these devices. The user must have previous experience with and a basic understanding of electrical terminology, configuration procedures, required equipment, and safety precautions.

    WARNING: The National Electrical Code (NEC), NFPA79, and any other governing regional or local code will overrule the information in this manual. Rockwell Automation cannot assume responsibility for the compliance or proper installation of the ArmorStart LT or associated equipment. A hazard of personal injury and/or equipment damage exists if codes are ignored during installation.

    ATTENTION: The controller contains ESD (electrostatic discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing, or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, refer to Publication 8000-4.5.2, Guarding against Electrostatic Discharge, or any other applicable ESD protection handbooks.

    ATTENTION: Only personnel familiar with the controller and associated machinery should plan or implement the installation, startup, and subsequent maintenance of the system. Failure to do this may result in personal injury and/or equipment damage.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 3

  • Software Requirements

    This table lists the versions of software that are required.

    Additional Resources

    These documents and websites contain additional information concerning related Rockwell Automation products.

    You can view or download publications at http:/www.rockwellautomation.com/literature/. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative.

    Table 1 - Rockwell Automation Industrial Network Resources

    Software Version

    RSLinx Classic 2.56 or later

    RSLogix 5000 17.01 or laterDownload the most current version of the Add-On Profile fromhttp://www.rockwellautomation.com/support/downloads.html.

    BOOTP/DHCP Version 2.3 or later

    Resource Description

    http://www.ab.com/networks/ Rockwell Automation networks and communication website

    http://www.ab.com/networks/ethernet/ Rockwell Automation EtherNet/IP website

    http://www.rockwellautomation.com/services/networks/http://www.rockwellautomation.com/services/security/

    Rockwell Automation network and security services websites

    http://www.ab.com/networks/architectures.html Education series webcasts for IT and controls professionals

    EtherNet/IP Embedded Switch Technology Application Guide, Publication ENET-AP005 Describes how to install, configure, and maintain linear and Device-level Ring (DLR) networks using Rockwell Automation EtherNet/IP devices with embedded switch technology.

    EtherNet/IP Network Configuration User Manual, Publication ENET-UM001 Describes how to configure and use EtherNet/IP communication modules with a Logix5000 controller and communicate with various devices on the Ethernet network.

    EtherNet Design Consideration, Publication ENET-RM002 Provides details on ethernet design and infrastructure.

    EtherNet/IP Modules in Logix5000 Control Systems User Manual, Publication ENET-UM001 Provides details about how to configure your module.

    EtherNet/IP Embedded Switch Technology Application Guide, Publication ENET-AP005 Provides information about using products with embedded switch technology to construct networks with linear and ring topologies.

    EtherNet/IP Industrial Protocol White Paper, Publication ENET-WP001 Describes how to implement services and data objects on a TCP/UDP/IP based Ethernet network.

    Industrial Automation Wiring and Grounding Guidelines, Publication 1770-4.1 Provides general guidelines for installing a Rockwell Automation industrial system.

    Wiring and Grounding Guidelines, (PWM) AC Drives, Publication DRIVES-IN001 Describes wiring and grounding guidelines for Pulse Width Modulated (PWM) AC Drives.

    Product Certifications website,http://www.rockwellautomation.com/products/certification

    Provides declarations of conformity, certificates, and other certification details.4 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Table 3 - Product Selection Resources

    Rockwell Automation Support

    Rockwell Automation provides technical information on the Web to assist you in using its products. At http://www.rockwellautomation.com/support/, you can find technical manuals, a knowledge base of FAQs, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools.

    Installation Assistance

    If you experience a problem within the first 24 hours of installation, contact Customer Support.

    Table 2 - ODVA Resources

    Resource Description

    http://www.odva.org/ Open DeviceNet Vendors Association (ODVA) website

    http://www.odva.org/default.aspx?tabid=54 The CIP Advantage website CIP features and benefits How to get started

    Ethernet Media Planning and Installation Manual, ODVA publicationhttp://www.odva.org/Portals/0/Library/Publications_Numbered/PUB00148R0_EtherNetIP_Media_Planning_and_Installation_Manual.pdf

    Describes the required media components and how to plan for, install, verify, troubleshoot, and certify an Ethernet network.

    Network Infrastructure for EtherNet/IP: Introduction and Considerations, ODVA publicationhttp://www.odva.org/Portals/0/Library/Publications_Numbered/PUB00035R0_Infrastructure_Guide.pdf

    Provides an overview of the technologies used in EtherNet/IP networks and provides guidelines for deploying infrastructure devices in EtherNet/IP networks.

    Resource Description

    Industrial Controls catalog website, http://www.ab.com/catalogs/

    Industrial Controls catalog website

    ArmorStart LT Distributed Motor Controller Selection Guide, Publication 290-SG001 Product selection guide

    Table 4 - Cisco and Rockwell Automation Alliance Resources

    Resource Description

    http://www.ab.com/networks/architectures.html Rockwell Automation and Cisco Systems reference architecture website

    Converged Plantwide Ethernet (CPwE) Design and Implementation Guide, Publication ENET-TD001

    Represents a collaborative development effort from Rockwell Automation and Cisco Systems. The design guide is built on, and adds to, design guidelines from the Cisco Ethernet-to-the-Factory (EttF) solution and the Rockwell Automation Integrated Architecture. The design guide focuses on the manufacturing industry.

    United States or Canada 1.440.646.3434

    Outside United States or Canada

    Use the Worldwide Locator at http://www.rockwellautomation.com/support/americas/phone_en.html, or contact your local Rockwell Automation representative.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 5

  • New Product Satisfaction Return

    Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

    United States Contact your distributor. You must provide a Customer Support case number (call the phone number listed earlier, to obtain one) to your distributor to complete the return process.

    Outside United States Please contact your local Rockwell Automation representative for the return procedure.6 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Table of Contents

    Important Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2General Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Software Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Rockwell Automation Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Installation Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5New Product Satisfaction Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    Chapter 1Device-Level Ring (DLR) Basics Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    ArmorStart EtherNet IP Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9What is a DLR Network? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10DLR Network Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10DLR Network Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Number of Nodes on a DLR Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13DLR Network Fault Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    Chapter 2Construct and Configure a Device-Level Ring (DLR) Network

    Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15EtherNet Capacity Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Install Devices on a DLR Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Addressing Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    Using the BootP/DHCP Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Using the Rotary Network Address Switches . . . . . . . . . . . . . . . . . . . . 17Using the ArmorStart Internal Web Server . . . . . . . . . . . . . . . . . . . . . . 19

    Configure Supervisor Nodes on a DLR Network. . . . . . . . . . . . . . . . . . . . . 21Configure a Ring Supervisor in RSLogix 5000 Programming Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Adding an ArmorStart to RSLogix 5000. . . . . . . . . . . . . . . . . . . . . . . . . 22Enable a Ring Supervisor in RSLogix 5000. . . . . . . . . . . . . . . . . . . . . . . 27Configure and Enable a Ring Supervisor in RSLinx Classic Communication Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    Complete the Physical Connections of the Network . . . . . . . . . . . . . . . . . 33Verify Supervisor Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34IGMP Snooping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 7

  • Table of Contents

    Chapter 3Monitor a Device-level (DLR) Network

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Methods to Monitor a DLR Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Monitor Status Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39How to Access the ArmorStart EtherNet/IP Internal Web Server . . . . 44Monitor Diagnostics via MSG Instructions . . . . . . . . . . . . . . . . . . . . . . . . . 46

    Chapter 4Troubleshoot a Device-level (DLR) Network

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53General Solutions for Linear or DLR Networks . . . . . . . . . . . . . . . . . . . . . 53Duplicate IP Address Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Specific Issues on the DLR Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Network Recovery Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Device Port Debugging Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    Appendix ANetwork Usage Guidelines and Recommendations

    Network Usage Guidelines and Recommendations . . . . . . . . . . . . . . . . . . 61

    Appendix BRequired Firmware Revisions Required Firmware Revision for an Add-On Profile . . . . . . . . . . . . . . . . . 65

    Required Firmware Revision for RSLinx Communication Software. . . 668 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Chapter 1

    Device-Level Ring (DLR) Basics

    Introduction Prior to the introduction of products with embedded switch technology, the traditional EtherNet/IP network topology has been a star type. End devices are connected and communicate with each other via a switch.

    The EtherNet/IP embedded switch technology offers alternative network topologies for interconnecting EtherNet/IP devices. It embeds switches into the end devices themselves.

    ArmorStart with EtherNet/IP Overview

    The ArmorStart with EtherNet/IP incorporates the advantages of distributed motor control, EtherNet/IP communication, and Embedded Switch Technology. The ArmorStart EtherNet/IP family includes full voltage or Sensorless Vector Control AC drive motor starters designed for most of your critical applications. ArmorStart with EtherNet/IP is a simple, seamless, and cost-effective method of integrating pre-engineered starters, I/O, and network capabilities in your On-Machine architecture. The dual port 10/100 Mbps embedded Ethernet switch supports Linear and Device Level Ring Topologies, in addition to the traditional star topology.

    Topic Page

    Introduction 9

    ArmorStart with EtherNet IP Overview 9

    What is a DLR Network 10

    DLR Network Elements 10

    DLR Network Operation 12

    Number of Nodes on a DLR Network 13

    DLR Network Fault Management 14

    IMPORTANT Products with EtherNet/IP embedded switch technology have two ports to connect to a linear or DLR network in a single subnet.These ports cannot be used as two Network Interface Cards (NICs) connected to two different subnets. The two ports share one IP Address and MAC Address.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 9

  • Chapter 1 Device-Level Ring (DLR) Basics

    What is a Device-level Ring (DLR) Network?

    A DLR network is a single-fault tolerant ring network intended for the interconnection of automation devices. This topology is also implemented at the device level. No additional switches are required.

    The graphic below shows an example of an ArmorStart LT, Bulletins 291 and 291E, and an ArmorStart Distributed Motor Controller, Bulletin 280E in a DLR network.

    Figure 1 - Example DLR Network

    The advantages of the DLR network include:

    Simple installation

    Media resiliency to a single point of failure on the network

    Fast recovery time when a single fault occurs on the network (

  • Device-Level Ring (DLR) Basics Chapter 1

    Supervisor Node

    A DLR network requires at least one node to be configured as a ring supervisor. Currently, several Rockwell Automation products support the ring supervisor functionality.

    Active Ring Supervisor

    When multiple nodes are enabled as supervisor, the node with the numerically highest precedence value becomes the active ring supervisor; the other nodes automatically become back-up supervisors.

    The ring supervisor provides the following primary functions: Verifies the integrity of the ring Reconfigures the ring to recover from a single fault Collects diagnostic information for the ring

    Back-up Supervisor Node

    At any point in time, there will be only one active supervisor on a DLR network. However, we recommend that at least one other supervisor-capable node be configured to act as a back-up supervisor. During normal operation, a back-up supervisor behaves like a ring node. If the active supervisor node operation is interrupted, for example, it experiences a power-cycle, the back-up supervisor with the next numerically highest precedence value becomes the active supervisor.

    If multiple supervisors are configured with the same precedence value (the factory default value for all supervisor-capable devices is 0), the node with the numerically highest MAC address becomes the active supervisor.

    We recommend that you: Configure at least one back-up supervisor Configure your desired active ring supervisor with a numerically higher

    IMPORTANT Out of the box, the supervisor-capable devices have their supervisor function disabled so they are ready to participate in either a linear/star network topology, or as a ring node on an existing DLR network.In a DLR network, at least one of the supervisor-capable devices must be configured as the ring supervisor before physically closing the ring. If not, the DLR network will cause significant network issues that can only be resolved by disconnecting the final connection.

    IMPORTANT While a back-up supervisor is not required on a DLR network, it is recommended that at least one back up ring supervisor be configured for the ring network.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 11

    precedence value as compared to the back-up supervisors

  • Chapter 1 Device-Level Ring (DLR) Basics

    Keep track of your networks supervisor-precedence values for all supervisor-enabled nodes

    For more information about how to configure a supervisor, see Construct and Configure a Device-level Ring Network on page 15.

    Ring Node

    A ring node is any node that operates on the network to process data that is transmitted over the network or to pass on the data to the next node on the network. When a fault occurs on the DLR network, these reconfigure themselves and relearn the network topology. Additionally, ring nodes can report fault locations to the active ring supervisor.

    DLR Network Operation During normal network operation, an active ring supervisor uses beacon and other DLR protocol frames to monitor the health of the network. Back-up supervisor nodes and ring nodes monitor the beacon frames to track ring transitions between Normal (all links working) and Faulted (the ring is broken in at least one place).

    Two beacon-related parameters can be configured:

    Beacon interval - Frequency at which the active ring supervisor transmits a beacon frame through both of its ring ports

    Beacon timeout - Amount of time that supervisor or ring nodes wait before timing out the reception of beacon frames and taking appropriate action

    These parameters impact Network Recovery Performance. For information on

    IMPORTANT Do not connect non-DLR (single port) devices directly to the DLR network. Non-DLR devices should be connected to the network through 1783-ETAP, 1783-ETAP1F, or 1783-ETAP2F EtherNet/IP taps like the examples shown below: 12 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

    these performance times, see page 58. For information on how to set these parameters, see Construct and Configure a Device-level Ring Network on page 15.

  • Device-Level Ring (DLR) Basics Chapter 1

    During normal operation, one of the active supervisor nodes network ports is blocked for DLR protocol frames. However, the active supervisor node continues to send beacon frames out of both network ports to monitor network health. The following graphic shows the use of beacon frames sent from the active ring supervisor.

    Figure 2 - Normal DLR Network Operation

    A second category of ring nodes, known as announce frame ring nodes, can be designed to participate in a DLR network. The active supervisor sends announce frames out one of its ports, once per second or on detection of a ring fault. DLR networks with announce frame ring nodes have slightly longer recovery times than beacon frame nodes.

    Number of Nodes on a DLR Network

    Rockwell Automation recommends that you use no more than 50 nodes on a single DLR or linear network. If your application requires more than 50 nodes, we recommend that the nodes are segmented into separate, but linked, DLR networks.

    With smaller networks: There is better management of traffic on the network The networks are easier to maintain There is a lower likelihood of multiple faults Recovery time is shorter

    Additionally, on a DLR network with more than 50 nodes, network recovery times from faults are higher than those listed in Network Recovery Performance on page 58.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 13

  • Chapter 1 Device-Level Ring (DLR) Basics

    DLR Network Fault Management

    The network may occasionally experience faults that prevent the normal transmission of data between nodes. The DLR network can protect your application from interruptions resulting from a single fault. To maintain the resiliency of your ring, your application should monitor the health of the ring. The ring may be faulted while all higher-level network functions, such as I/O connections, are operating normally.

    Fault location information is available from the active supervisor. For more information on how to obtain fault location information, see Monitor a DLR Network on page 37.

    After a fault occurs, the active supervisor reconfigures the network to continue sending data on the network.

    Network Reconfiguration after a Fault

    The following graphic shows the network configuration after a failure occurs, with the active ring supervisor passing traffic through both of its ports, thus, maintaining communication on the network.14 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Chapter 2

    Construct and Configure a Device-level Ring Network with ArmorStarts

    Introduction Use this chapter to learn how to construct and configure a DLR network.

    Ethernet Capacity Tool The EtherNet/IP Capacity Tool is free software that is intended to help in the initial layout of your EtherNet/IP network by calculating resources (Connections, Packets per Second) used by a proposed network. You choose icons to indicate the type and number of nodes on the network, along with associated parameters such as Update Rate desired. The tool then calculates the resources used and what is still available. This format makes it easy to try different configurations/parameters and see how the outcome is affected.

    To download the Ethernet Capacity Tool, go to: http://www.ab.com/go/iatools

    Topic Page

    Ethernet Capacity Tool 15

    Install Devices on a DLR Network 16

    ArmorStart Addressing Configuration 17

    Using the BootP/DHCP Server 17

    Using the Rotary Network Address Switches 17

    Using the ArmorStart Internal Web Server 19

    Configure Supervisor Nodes on a DLR Network 21

    Configure a Ring Supervisor in RSLogix 5000 21

    Adding an ArmorStart to RSLogix 5000 22

    Enable a Ring Supervisor in RSLogix 5000 27

    Configure and Enable a Ring Supervisor in RSLinx Classic 29

    Complete the Physical Connections of the Network 33

    Verify Supervisor Configuration 34

    IGMP Snooping 35Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 15

  • Chapter 2 Construct and Configure a Device-level Ring Network with ArmorStarts

    Install Devices on a DLR Network

    The next step to configure a DLR network, is to connect all devices to the network. One connection should be left unmade. That is, temporarily omit the physical connection between two nodes on the ring network, because the factory default settings of DLR devices are set to operate in linear/star mode or as ring nodes on existing DLR networks.

    For more information on installing the EtherNet/IP network (cable requirements, maximum distance, etc) refer to the EtherNet/IP Media Planning and Installation Manual, which can be downloaded here:

    http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/enet-rm002_-en-p.pdf

    Figure 3 - Example Device-level Ring Topology with One Connection Left Unmade

    Use the installation instructions below for each device to connect it to the network. Publication Numbers can be downloaded at http://www.rockwellautomation.com/literature/literature.html

    IMPORTANT If your DLR network is fully connected without a supervisor configured, a network storm may result, rendering the network unusable until one link is disconnected and at least one supervisor is enabled.

    Description Installation Instructions Cat.No.

    ControlLogix EtherNet/IP module 1756-IN612 1756-EN2TR

    EtherNet/IP tap 1783-IN007 1783-ETAP

    ArmorStart LT Motor Controller 290-UM001 291E-FAZ-G2

    ArmorStart Motor Controller 280G-UM001 280E-F12Z-10A-CR-316 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

    Stratix 6000 Ethernet Switch 1783-IN004 1783-EMS08T/A

  • Construct and Configure a Device-level Ring Network with ArmorStarts Chapter 2

    ArmorStart Addressing Configuration

    Before using the ArmorStart in an EtherNet/IP network, an IP address, subnet mask, and optional Gateway address must be configured. This section describes how to set up the IP Address of an ArmorStart in three different ways: using the BootP/DHCP Server, the Rotary Network Address Switches, and the internal web server.

    Note: When using the AOP, it is not configuring the IP Address of the ArmorStart, it is just assigning the same IP address that was set-up using the Rotary Network Address Switches or the web page, so that communication is established.

    Using the BootP/DHCP Server

    The Rockwell Automation BootP/DHCP utility is a standalone program that incorporates the functionality of standard BootP software with a user-friendly graphical interface. It is located in the Utils directory on the RSLogix 5000 installation CD. The ArmorStart EtherNet/IP adapter must have DHCP enabled (factory default) to use the utility.

    DHCP (Dynamic Host Configuration Protocol) software automatically assigns IP addresses to client stations logging onto a TCP/IP network. When DHCP is enabled (factory default enabled), the unit will request its network configuration from a BootP/DHCP server. Any configuration received from a DHCP server will be stored in non-volatile memory. The ArmorStart EtherNet/IP will remember the last successful address if the DHCP is enabled. The possibility exists that the adapter will be assigned a different IP address, which would cause the adapter to stop communicating with the ControlLogix controller.

    Using the Rotary Network Address Switches

    The three rotary network address switches can be found on the I/O section of the ArmorStart. The rotary network address switches are set to 999 and the DHCP is enabled as the factory default. The ArmorStart reads these switches first to determine if the switches are set to a valid IP address between 1254. When switches are set to a valid number, the IP address will be 192.168.1._ _ _ [switch setting].

    RJ45 RJ45 Ethernet cable ENET-IN001A 1585J-M8PBJM-2

    RJ45 M12 Ethernet cable ENET-IN001A 1585D-M4TBJM-1

    M12 M12 Ethernet cable ENET-IN001A 1585D-M4TBDE-2

    Description Installation Instructions Cat.No.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 17

  • Chapter 2 Construct and Configure a Device-level Ring Network with ArmorStarts

    To set up the IP Address using the rotary network address switches:

    1. Remove the protective caps from the rotary switches.

    2. Set the Network IP address by adjusting the three switches on the front of the I/O module using a flat head screwdriver.

    3. Set up the switches in a range from 001 to 254. In this example they are set to a.1. When the switches are set to a valid number, the adapters IP address will be 192.168.1.xxx (where xxx represents the number set on the switches). In this example the IP address is 192.168.1.163. The adapters subnet mask will be 255.255.255.0 and the gateway address is set to 0.0.0.0. A power cycle or a type 1 network reset is required for any new IP address switch setting to take effect.

    Note: The user cannot change the IP address from 192.168.1.xxx when using the IP address switches. The top three octets are fixed. DHCP or the embedded web server must be used to configure the address to a value different than 192.168.1.xxx. Also, the adapter will not have a host name assigned, or use any Domain name System when using the rotary switch settings.

    4. If the switches are set to an invalid value (such as 000 or value greater than 254), the adapter will check to see if the DHCP is enabled. If so, the adapter requests an address from a DHCP server. The DHCP server will also assign other Transport Control Protocol (TCP) parameters. If DHCP is not enabled, the adapter will use the IP address (along with other TCP configurable parameters) stored in nonvolatile memory.18 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Construct and Configure a Device-level Ring Network with ArmorStarts Chapter 2

    Using the ArmorStart Internal Web Server

    Rockwell Automation provides an internal embedded web server with each EtherNet/IP version of ArmorStart. The internal web server allows you to view information and configure the ArmorStart via a web browser. The internal web server can be used to set up the ArmorStart IP address by performing the following this steps:

    1. Open your preferred internet web browser.

    2. Enter the IP address of the desired ArmorStart. For this example, use 192.168.1.163.

    Note: 192.168.1.163 is not the factory default IP address.

    3. The web server shown below should appear in your web browser.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 19

  • Chapter 2 Construct and Configure a Device-level Ring Network with ArmorStarts

    4. Click in the administrative settings folder to expand it and the following is displayed:

    5. Click in the Network Configuration tab and a prompt to enter a User Name and a Password is displayed. Enter the pre-set User Name and Password or if they have not been set up previously, use the default User Name. The default User Name is Administrator and there is no password set by default.

    6. After the appropriate User Name and Password is entered, the screen below is displayed. From this screen, the Ethernet Configuration can be changed. For example, the default IP address shown is changed from 192.168.1.163 to 10.10.10.101. After a power cycle the new address must be used to access the web page, and the other devices on the network would also require their IP addresses to be reconfigured.20 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Construct and Configure a Device-level Ring Network with ArmorStarts Chapter 2

    Configure Supervisor Nodes on a DLR Network

    After the devices are installed on the DLR network, at least one supervisor node must be configured. Ring nodes do not require any DLR network configuration.

    Before a DLR network can be completed, (install your devices on the network and make all physical connections) a ring supervisor must be configured and enabled in:

    RSLogix 5000 programming software, or RSLinx Classic communication software

    This section shows how to use RSLogix 5000 programming software, beginning on page 22, and RSLinx Classic communication software, beginning on page 29, to configure and enable a ring supervisor.

    Configure a Ring Supervisor in RSLogix 5000 Programming Software

    To configure the 1756-EN2TR module or the 1783-ETAP, 1783-ETAP1F, or 1783-ETAP2F taps as a ring supervisor, use the devices Add-on Profile (AOP) in RSLogix 5000 programming software, version 17.01, or later.

    For more information regarding the Required Add-On Profile Revision required, go to Appendix B.

    To configure a ring supervisor in RSLogix 5000 programming software, follow these steps:

    IMPORTANT The steps to configure a ring supervisor via software are basically the same for the 1756-EN2TR module and the 1783-ETAP, 1783-ETAP1F, and 1783-ETAP2F taps. This example shows how to configure the 1756-EN2TR module.Only the 1783-ETAP, 1783-ETAP1F, and 1783-ETAP2F taps in the I/O Configuration must be configured if you plan to enable the tap as a ring supervisor. If the tap will not be used as a ring supervisor, we recommend that it is not added to the I/O Configuration.Additionally, to configure a 1783-ETAP, 1783-ETAP1F, or 1783-ETAP2F tap as a supervisor via software or with its DIP switches, an IP address must first be assigned. The tap does not require an IP address if it is used as a ring node or has its supervisor function enabled by a DIP switch.For more information on how to use a tap switch to configure it as a ring supervisor, see Chapter 5 in the EtherNet/IP Embedded Switch Technology Manual. To download the manual, go to: http://literature.rockwellautomation.com/idc/groups/literature/documents/ap/enet-ap005_-en-p.pdfRockwell Automation Publication 290E-AT001A-EN-P - November 2012 21

  • Chapter 2 Construct and Configure a Device-level Ring Network with ArmorStarts

    Adding an Armorstart to RSLogix 5000

    This section will show how to add an ArmorStart to RSLogix 5000.

    1. Open RSLogix 5000.

    2. Select File > New to create a new project.

    3. Enter the name of the project and select your controller from the Type drop down menu. For this example, a 1756-L63 and software revision 20 will be used. Then click OK.22 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Construct and Configure a Device-level Ring Network with ArmorStarts Chapter 2

    4. Add the 1756-EN2TR module to your project.a. Right-click 1756 Backplane and choose New Module.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 23

  • Chapter 2 Construct and Configure a Device-level Ring Network with ArmorStarts

    b. Select the module.c. Click Create.

    5. To add a new module to the tree, right-click on Ethernet and select New Module. This allows a new ArmorStart to be added to the Logix Project.24 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Construct and Configure a Device-level Ring Network with ArmorStarts Chapter 2

    6. Select the ArmorStart in your application and click OK.

    7. Enter a Name for this ArmorStart and an Ethernet address. For this example, the Private Network setting will be used. This should be set to match the IP address switch setting on the ArmorStart. Then press OK.

    Note: Refer to ArmorStart Addressing Configuration on page 17 to set an IP address on the device.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 25

  • Chapter 2 Construct and Configure a Device-level Ring Network with ArmorStarts

    8. Complete configuration information for the module in your RSLogix 5000 project.

    The following graphic shows the I/O configuration for an example DLR network.

    9. Download the program to the Logix controller.

    10. Go online with the controller and leave it in Program mode.26 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Construct and Configure a Device-level Ring Network with ArmorStarts Chapter 2

    Enable Ring Supervisor in RSLogix 5000 Programming Software

    After 1756-EN2TR module or 1783-ETAP, 1783-ETAP1F, or 1783-ETAP2F taps have been added to your RSLogix 5000 programming software project, the ring supervisor mode must be enabled.

    If using RSLogix 5000 programming software to configure the ring supervisor and monitor diagnostics on the DLR network, the controller must be online.

    To enable the 1756-EN2TR module or 1783-ETAP, 1783-ETAP1F, or 1783-ETAP2F tap as a ring supervisor, follow these steps.

    The steps to enable a ring supervisor are basically the same for the 1756-EN2TR module or 1783-ETAP, 1783-ETAP1F, or 1783-ETAP2F tap. This example shows how to do it for the 1756-EN2TR module.

    1. For your project online, with the controller, double-click on a supervisor-capable device in the I/O configuration tree.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 27

  • Chapter 2 Construct and Configure a Device-level Ring Network with ArmorStarts

    2. Click the Network tab to Enable Supervisor Mode.

    Configuration takes effect immediately; you do not need to click Apply or OK.

    3. Click the Advanced button on the Network tab.

    4. Configure supervisor-related parameters, as shown in the screen shot below.

    For these parameters, you must click Set after entering a value.

    5. Click Set.28 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Construct and Configure a Device-level Ring Network with ArmorStarts Chapter 2

    Configure and Enable a Ring Supervisor in RSLinx Classic Communication Software

    A ring supervisor can be configured for the DLR network through RSLinx Classic communication software.

    For more information regarding the Required RSLinx Classic Communication software Revision required, refer to Appendix B.

    To configure a ring supervisor in RSLinx Classic Communication Software, follow these steps.

    This example is for the 1783-ETAP tap. Follow these steps.

    1. Launch RSLinx Classic Communication Software.

    2. Browse to the DLR network that is being set up.

    IMPORTANT For Beacon Interval, Beacon Timeout, and Ring Protocol VLAN ID, we recommend that the default values be used.

    Functionality Description Default Setting

    Supervisor Precedence A supervisor precedence number may be configured for each device that is configured as a ring supervisor. The highest possible supervisor precedence value is 255.When multiple nodes are enabled as supervisors, the node with the highest precedence value is assigned as the active ring supervisor; the other nodes automatically become back-up supervisors.We recommend that you: configure at least one back-up supervisor node set the desired Active Ring Supervisor with a relatively high supervisor-

    precedence value compared to the back-up node(s) keep track of the networks supervisor-precedence valuesIf multiple supervisors are configured with the same precedence value (the factory default value for all supervisor-capable devices is 0), the node with the numerically highest MAC address becomes the active supervisor.

    0

    Beacon Interval Beacon interval is the frequency of the active ring supervisor transmitting a beacon frame through both of its Ethernet ports. This parameter is user configurable for any time between 200 S and 100 mS.For more information on how this parameter relates to network performance, see page 61.

    400 S

    Beacon Timeout The beacon timeout is the amount of time that nodes wait before timing out the reception of beacon frames and taking appropriate action. Supervisors support a range from 400S to 500mS.For more information on how this parameter relates to network performance, see page 61.

    1960 S

    Ring Protocol VLAN ID Reserved for future use. 0Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 29

  • Chapter 2 Construct and Configure a Device-level Ring Network with ArmorStarts

    If the Electronic Data Sheet (EDS) file is not installed on the module configured to be the ring supervisor, it will appear with a question mark (?). To obtain and use the EDS file:

    right-click the module and choose to upload the EDS file from the device, or

    download the EDS file from: http://www.rockwellautomation.com/rockwellautomation/support/networks/eds.page?

    3. Access the supervisor-capable nodes properties.a. Right-click the node.b. Choose Module Configuration.

    The General tab appears with information about the module.

    4. Click the Network tab to Enable Supervisor Mode.30 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

    Configuration takes effect immediately; there is no need to click Apply or OK.

  • Construct and Configure a Device-level Ring Network with ArmorStarts Chapter 2

    5. Click the Advanced button to configure supervisor-related parameters.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 31

  • Chapter 2 Construct and Configure a Device-level Ring Network with ArmorStarts

    IMPORTANT For Beacon Interval, Beacon Timeout, and Ring Protocol VLAN ID, use the default values.

    Functionality Description Default Setting

    Supervisor Precedence

    You may configure a supervisor precedence number for each device configured as a ring supervisor. The highest possible supervisor precedence value is 255.When multiple nodes are enabled as supervisor, the node with the highest precedence value is assigned as the active ring supervisor; the other nodes automatically become back-up supervisors.We recommend that you: configure at least one back-up supervisor node set the desired Active Ring Supervisor with a relatively high supervisor-

    precedence value compared to the back-up node(s) keep track of the networks supervisor-precedence valuesIf multiple supervisors are configured with the same precedence value (the factory default value for all supervisor-capable devices is 0), the node with the numerically highest MAC address becomes the active supervisor.

    0

    Beacon Interval Beacon Interval is the frequency to which the active ring supervisor transmits a beacon frame through both of its Ethernet ports. This parameter is user configurable for any time between 200 S and 100 mS.For more information on how this parameter relates to network performance, see page 58.

    400 S

    Beacon Timeout The beacon timeout is amount of time nodes wait before timing out the reception of beacon frames and taking appropriate action. Supervisors support a range from 400 S to 500 mS.For more information on how this parameter relates to network performance, seepage 58..

    1960 S

    Ring Protocol VLAN ID

    Reserved for future use. 0

    Enable IGMP Snooping

    For more information on IGMP Snooping, see page 35. Enabled

    Enable IGMP Querier

    For more information on IGMP Querier, see page 35. Disabled

    Enable Device Port Debugging Mode

    For more information on Device Port Debugging Mode, see page 59. Disabled32 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Construct and Configure a Device-level Ring Network with ArmorStarts Chapter 2

    Complete the Physical Connections of the Network

    After the ring supervisor nodes are configured and enabled, the physical connection of the network must be completed to establish a complete DLR network.

    The figure below shows an example DLR network with all physical connections complete.

    Figure 4 - Example Device-level Ring Topology with All Connections Complete Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 33

  • Chapter 2 Construct and Configure a Device-level Ring Network with ArmorStarts

    Verify Supervisor Configuration

    The configuration and overall DLR network status can be verified in either RSLogix 5000 programming software or RSLinx Classic communication software.

    1. Access the supervisor nodes properties as shown previously in this chapter.

    2. Click the Network tab.

    3. Check the Network Topology and Network Status Fields.

    For a 1756-EN2TR module or the 1783-ETAP, 1783-ETAP1F, and 1783-ETAP2F tap, the supervisor configuration can also be verified through the modules diagnostic web pages. For more information on monitoring diagnostics via an EtherNet/IP modules web pages, see Monitor a DLR Network starting on page 37.34 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Construct and Configure a Device-level Ring Network with ArmorStarts Chapter 2

    IGMP Snooping This functionality is enabled by default in the 1783-ETAP, 1783-ETAP1F, and 1783-ETAP2F taps, and is commonly used to manage multicast traffic on the network. When in use, this functionality allows the tap to multicast data to only those devices that need the data rather than to all devices connected to the network.

    For snooping to work, there must be a device present that is running a querier. Typically, the device is a router or a switch, such as the Stratix 6000, Stratix 8000, or Stratix 8300 managed switch.

    Once DHCP is enabled the switch could change the IP addresses on the ArmorStarts depending on network demand, which could cause RSlogix5000 to loose communication with the device, as connectivity is established via the AOP in the initial configuration.

    IGMP Querier This functionality is disabled by default. The IGMP Querier functionality enables a 1783-ETAP, 1783-ETAP1F, or 1783-ETAP2F tap or switch, such as a Stratix managed switch, to send out a query to all devices on the network. It determines what multicast addresses are of interest to a specific node or a group of nodes.

    The IGMP Querier functionality should be enabled for at least one node on the network. The 1783-ETAP, 1783-ETAP1F, or 1783-ETAP2F tap, managed switches, and routers are examples of devices that support IGMP Querier functionality.

    IMPORTANT If DHCP for the Armostart is still required, the Internet Group Management Protocol (IGMP) snooping on the E-tap must be disabled via the AOP.

    IMPORTANT If the IGMP Querier functionality is not enabled for at least one node on the network, multicast traffic on the network may eventually create network performance issues.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 35

  • Chapter 2 Construct and Configure a Device-level Ring Network with ArmorStarts

    However, for all devices that are configured on the network with the IGMP Querier parameter enabled, an IP address other than the factory default value must also be set for those devices. If multiple devices on the network enable this functionality, only the node with the lowest IP address becomes the active IGMP Querier node.

    IGMP Version

    If the IGMP Querier is enabled, a Querier Version must be selected. The default version is Version 2.36 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Chapter 3

    Monitor a DLR Network

    Introduction Use this chapter to learn how to monitor the DLR network.

    Methods to Monitor a DLR Network

    Network diagnostic information can be retrieved from the ring supervisor-capable devices using the following:

    RSLogix 5000 programming software status pages

    RSLinx communication software status pages

    Device web pages

    EtherNet/IP Device Level Ring (DLR) network diagnostics faceplate

    Programmatically through the use of a MSG instruction

    RSLogix 5000 Programming Software Status Pages

    RSLogix 5000 programming software, version 17.01 or later must be used and the appropriate AOPs installed, to use the softwares profile status pages.

    RSLinx Communication Software Status Pages

    To monitor the network with this method, the RSLinx communication software, version 2.55 or later must be used.

    Topic Page

    Methods to Monitor a DLR Network 37

    Monitor Status Pages 39

    Monitor ArmorStart Internal Web Server 44

    Monitor via Faceplate Integration 45

    Monitor Diagnostics via MSG Instructions 46Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 37

  • Chapter 3 Monitor a DLR Network

    ArmorStart Internal Web Server

    Rockwell Automation provides an internal embedded web server with each ArmorStart EtherNet/IP. The internal web server allows you to view information and configure the ArmorStart via a web browser. The ArmorStart EtherNet/IP can also be set up from the web server to send e-mail notifications. The embedded web server is used to access configuration and status data. It provides the user with the ability to view and modify the device configuration without having access to RSLogix 5000. Security in the form of an administrative password can be set. The default login is Administrator. There is no password set by default.

    EtherNet/IP Device Level Ring (DLR) Network Diagnostics Faceplate

    The diagnostics faceplate contains two major components:

    Logic code (encapsulated in an Add-On Instruction) that allows the controller to retrieve real-time DLR network status information

    HMI faceplate graphics to allow the data to be visualized on an operator interface

    Programmatically Through the Use of a MSG Instruction

    For more information on how to monitor the DLR network via MSG Instructions, see page 46.38 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Monitor a DLR Network Chapter 3

    Monitor Status Pages Both RSLogix 5000 programming software and RSLinx Classic communication software offer status pages that can be used to monitor the networks performance.

    RSLogix 5000 Programming Software Status Pages

    Monitor the networks diagnostic information through the RSLogix 5000 programming software when the software is online.

    To monitor the network in RSLogix 5000 programming software, follow these steps.

    1. Verify that the project is online.

    2. Access the active supervisor nodes properties.a. Right-click the modules entry in the Controller Organizer.b. Click properties.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 39

  • Chapter 3 Monitor a DLR Network

    3. Use the Network tab to monitor diagnostics.40 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Monitor a DLR Network Chapter 3

    RSLinx Communication Software

    To monitor the network in RSLinx communication software, follow these steps.

    1. Click RSWho to browse the network.

    2. Access the property pages for the active supervisor node.a. Open the driver that shows the nodes on the DLR network.b. Right-click the node that you want to monitor performance.c. Click on the choice that you need to access.

    Multiple choices appear.

    These options are shown in the following sections.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 41

  • Chapter 3 Monitor a DLR Network

    Module Configuration

    This series of tabs provides: General information Connection information Module information Internet protocol Port configuration Network information

    The example below shows a ring fault between nodes at IP addresses 10.88.80.21 and MAC ID 00-00-BC-02-48-D5.42 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Monitor a DLR Network Chapter 3

    There are multiple fields used to monitor network diagnostics.

    Field Definition

    Network Topology Possible values here can be Linear or Ring.

    Network Status Displays if the network is operating normally (Normal) or has experienced a fault (Ring Fault), as shown in the previous example screen.

    Active Ring Supervisor Displays the IP address or MAC address of the active ring supervisor.

    Active Supervisor Precedence For more information on this field, see Active Ring Supervisor on page 11.

    Enable Ring Supervisor Configurable field that lets you to set the node as a ring supervisor.

    Ring Faults Detected Number of faults detected on the network since the last module power cycle or counter reset.

    Supervisor Status Displays whether this node is the active ring supervisor (Active), a back-up supervisor (Back-up), a ring node, or part of a linear network.

    Last Active Node on Port 1 The last node the active ring supervisor can communicate with on Port 1. This value is an IP address or a MAC ID and remains latched until the Verify Fault Location button is clicked.

    Last Active Node on Port 2 The last node the active ring supervisor can communicate with on Port 2. This value is an IP address or a MAC ID and remains latched until the Verify Fault Location button is clicked.

    Status Displays whether a fault exists on the ring.

    IMPORTANT If the Network Topology field = Ring and the Network Status field = Normal, the Last Active Node fields will display the last fault information even though it has been corrected.To clear the last fault information from these fields, click Verify Fault Location. You may see a message informing you that the supervisor is no longer in fault mode and the fields will be cleared.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 43

  • Chapter 3 Monitor a DLR Network

    How to Access the ArmorStart EtherNet/IP Internal Web Server

    Open your preferred internet web browser, and enter the IP address of the desired ArmorStart. For this example, 192.168.1.22 will be used.

    Use the links on the left-most navigation bar to see each available web page. The screen below shows Ring Statistics for the ArmorStart 280E. 44 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Monitor a DLR Network Chapter 3

    EtherNet/IP Device Level Ring (DLR) Network Diagnostics Faceplate Overview

    The EtherNet/IP Device Level Ring (DLR) network diagnostics faceplate provides basic DLR network status information to the user to assist with monitoring and troubleshooting a DLR network.

    The diagnostics faceplate contains two major components:

    Logic code (encapsulated in an Add-On Instruction) that allows the controller to retrieve real-time DLR network status information

    HMI faceplate graphics to allow the data to be visualized on an operator interface

    The DLR diagnostics faceplate application can be downloaded from the Rockwell Automation Sample Code website at http://samplecode.rockwellautomation.com

    Besides the individual Logix and View project components, a demo application is also included with the downloaded file.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 45

  • Chapter 3 Monitor a DLR Network

    Monitor Diagnostics via MSG Instructions

    Network diagnostic information can also be obtained programmatically via MSG instructions in RSLogix 5000 programming software. For example, you can:

    Get all ring diagnostic information Get a ring participant list Get the active supervisor Clear rapid ring faults Verify a fault location Reset a fault counter Enable and configure a ring supervisor

    This information can be displayed on an HMI device or manipulated in the project code.

    Figure 5 - Example Use of MSG Instruction

    This example describes how to retrieve diagnostic information from the DLR network. Follow these steps.

    1. Enter a MSG instruction into the rung of logic.

    2. Configure the MSG instruction to retrieve ring diagnostic information service, as shown in the following screen shots.

    IMPORTANT Make sure the tag created is sized appropriately to hold all of the data that you are reading or writing. For more information, see page 48.46 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Monitor a DLR Network Chapter 3

    3. Configure the MSG instructions communication path to point to the active supervisor node.

    The path on the following screen is one example path.

    IMPORTANT When using the Custom Get_Attributes_All (01) service, pointing to an active supervisor node will retrieve all of the attributes listed in Retrieve All Diagnostic Information Attribute Description on page 50.Pointing to a non-supervisor node will retrieve only the Network Topology and Network Status attribute information.Pointing to backup supervisor node will retrieve the current active supervisors IP address.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 47

  • Chapter 3 Monitor a DLR Network

    Use Specific Values on the Configuration Tab

    Use the values on the Configuration tab of your MSG instruction to perform specific services. Sample DLR network diagnostic application code, for example, Add-on Instruction or HMI faceplate graphics, is available on the Rockwell Automation Sample Code Library. For more information about the Rockwell Automation Sample Code Library, see: http://www.rockwellautomation.com/solutions/integratedarchitecture/resources5.html

    This request only works if there are fewer than 40 nodes on the network. If there are more nodes than will fit in a single message, an error will be returned. Use a Destination Length of 54 bytes if using firmware revision 3.x or later for the 1756-EN2TR module or firmware revision 2.x or later for the 1783-ETAP,

    Request Description Message Type

    Service Type

    Service Code (HEX)

    Class (HEX)

    Instance Attribute (HEX)

    Source Element

    Source Length (Bytes)

    Destination Destination Length (bytes)

    Retrieve All Ring Diagnostic Information

    Information for this request is listed in Retrieve All Ring Diagnostic Information on page 49.

    CIP Generic Custom 1 47 1 NA LeftBlank

    0 Tag 50or54

    Request Ring Participant List

    Information for this request is listed in Request the Ring Participant List on page 51

    CIP Generic Get Attribute Single

    e 47 1 9 NA NA Tag 10/node

    Get Active Supervisor

    Obtain the IP address and MAC ID of the active supervisor on the DLR network

    CIP Generic Get Attribute Single

    e 47 1 a NA NA Tag 10

    Acknowledge Rapid Ring Faults Condition

    Request supervisor to resume normal operation after encountering a rapid ring fault condition

    CIP Generic Custom 4c 47 1 NA NA NA NA

    Verify a Fault Location

    Request supervisor to update Last Active Node values

    CIP Generic 4b 47 1 NA NA NA NA NA

    Reset the Ring Fault Counter

    Reset the number of ring faults detected on the DLR network

    CIP Generic Set Attribute Single

    10 47 1 5 Tag 2 NA NA

    Enable and Configure a Ring Supervisor

    Information for this request is listed in Enable and Configure a Ring Supervisor on page 52.

    CIP Generic Set Attribute Single

    10 47 1 4 Tag 12 NA NA48 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

    1783-ETAP1F, or 1783-ETAP2F taps.

  • Monitor a DLR Network Chapter 3

    Retrieve All Ring Diagnostic Information

    By performing the Retrieve All Ring Diagnostic Information request on an active supervisor, the MSG instruction returns the following information.

    RSLogix 5000 programming software may display the value in this field as negative numbers. To better understand the value, we recommend you view it in HEX format.

    Destination Tag Attribute Name Description Possible Values

    SINT [0] Network Topology Current network topology mode 0 = Linear

    1 = Ring

    SINT [1] Network Status Current status of the network 0 = Normal

    1 = Ring Fault

    2 = Unexpected Loop Detected

    3 = Partial Network Fault

    4 = Rapid Fault/Restore Cycle

    SINT [2] Ring Supervisor Status Ring supervisor active status flag 0 = Node is functioning as a backup

    1 = Node is functioning as the active ring supervisor

    2 = Node is functioning as a normal ring node

    3 = Node is operating in a non-DLR topology

    4 = Node cannot support the currently operating ring parameters, thatis, Beacon Interval and/or Beacon Timeout

    Ring Supervisor Config Ring Supervisor configuration parameters

    SINT [3] Ring Supervisor Enable Ring supervisor enable flag 0 = Node is configured as a normal ring node (default configuration)

    1 = Node is configured as a ring supervisor

    SINT [4] Ring Supervisor Precedence Precedence value of a ring supervisor Valid value range = 0255

    0 = Default value

    SINT [5-8] Beacon Interval Duration of ring beacon interval Valid value range = 200 s100 ms

    Default = 400 s

    SINT [9-12] Beacon Timeout Duration of ring beacon timeout Value value range = 400 s500 ms

    Default value = 1960 s

    SINT [13-14] DLR VLAN ID Valid ID to use in ring protocol messages Valid value range = 04094

    Default value = 0

    SINT [15-16] Ring Faults Count Number of ring faults since power up Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 49

  • Chapter 3 Monitor a DLR Network

    Retrieve All Diagnostic Information Attribute Description

    This destination tag is available only with the 1756-EN2TR module, firmware revision 3.x or later, 1783-ETAP, 1783-ETAP1F, and 1783-ETAP2F taps, firmware revisions 2.x or later. If using the 1783-ETAP tap, firmware revision 1.x, your program does not include this destination tag.

    RSLogix 5000 programming software may display the value in this field as negative numbers. To better understand the value, we recommend you view it in HEX format.

    Destination Tag Attribute Name Description Possible Values

    Last Active Node on Port 1 Last active node at the end of the chain through port 1 of the active ring supervisor during a ring fault

    SINT [17-20] Device IP address Any valid IP address value

    A value = 0 indicates no IP address has been configured for the device.

    SINT [21-26] Device MAC address Any valid Ethernet MAC addressLast Active Node on Port 2 Last active node at the end of the

    chain through port 2 of the active ring supervisor during a ring fault

    SINT [27-30] Device IP address Any valid IP address value

    A value = 0 indicates no IP address has been configured for the device.

    SINT [31-36] Device MAC address Any valid Ethernet MAC addressSINT [37-38] Ring Protocol Participants

    CountNumber of devices in the ring protocol participants list

    Active Supervisor Address IP and/or Ethernet MAC address of the active ring supervisor

    SINT [39-42] Supervisor IP address Any valid IP address value

    A value = 0 indicates no IP address has been configured for the device.

    SINT [43-48] Supervisor MAC address Any valid Ethernet MAC address

    SINT [49] Active Supervisor Precedence

    Precedence value of the active ring supervisor

    SINT [50-53] Capability Flags Alerts you that the device is capable of operating as a supervisor and beacon-based ring node.

    0x2250 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Monitor a DLR Network Chapter 3

    Request the Ring Participant List

    When requesting the Ring Participant List service on the DLR network, the MSG instruction returns the following information.

    Request the Ring Participant List Attribute Description

    This attribute will return an array of the data shown, one entry for each node. The Ring Protocol Participants Count attribute determines the number entries.

    This tag displays only IP addresses for ring participants that have been configured with one. For example, you may have a 1783-ETAP tap connected to the network that has not been assigned an IP address. In that case, no address is shown for the 1783-ETAP tap.

    RSLogix 5000 programming software may display the value in this field as negative numbers. To better understand the value, we recommend you view it in HEX format.

    Unlike destination tag SINT [0-3], where IP addresses are displayed only for ring participants configured with an IP address, this tag displays MAC addresses for all ring participants because every ring participant has a MAC address.

    Destination Tag Attribute Name Description Possible Values

    Ring Protocol Participants List

    List of devices participating in ring protocol

    SINT [0-3] Device IP address Any valid IP address value

    A value = 0 indicates no IP address has been configured for the device.

    SINT [4-9] Device MAC address Any valid Ethernet MAC addressRockwell Automation Publication 290E-AT001A-EN-P - November 2012 51

  • Chapter 3 Monitor a DLR Network

    Enable and Configure a Ring Supervisor

    When performing the Enable and Configure a Ring Supervisor request on a supervisor-capable device, configure the MSG instruction with the following information.

    Enable and Configure a Ring Supervisor Attribute Description

    RSLogix 5000 programming software may display the value in this field as negative numbers. To better understand the value, we recommend you view it in HEX format.

    Source Tag Attribute Name Description Possible Values

    Ring Supervisor Config Ring Supervisor configuration parameters

    SINT [0] Ring Supervisor Enable Ring supervisor enable flag 0 = Node is configured as a normal ring node (default configuration)1 = Node is configured as a ring supervisor

    SINT [1] Ring Supervisor Precedence Precedence value of a ring supervisor

    Valid value range = 02550 = Default value

    SINT [2-5] Beacon Interval Duration of ring beacon interval

    Valid value range = 200 s100 000 sDefault = 400 s

    SINT [6-9] Beacon Timeout Duration of ring beacon timeout

    Value value range = 400 s500 000 sDefault value = 1960 s

    SINT [10-11] DLR VLAN ID Valid ID to use in ring protocol messages

    Valid value range = 04094Default value = 052 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Chapter 4

    Troubleshoot a DLR Network

    Introduction Use this chapter to learn how to troubleshoot the DLR network.

    General Solutions for Linear or DLR Networks

    Before attempting to correct specific faults on the linear or DLR network, we recommend that you first take the following actions when a fault appears.

    For a DLR network: Verify that at least one node has been configured as a supervisor

    on the network and that Network Topology = Ring. Verify that all cables on the network are securely connected

    to each device. Verify that all devices that require an IP address have one assigned

    correctly. Check the Network Status field on the active supervisor nodes status

    page to determine the fault type. For a linear network:

    Verify that none of the nodes are configured as a supervisor on the network and that Network Topology = Linear.If any nodes on a linear network are configured as a supervisor, it may impact communication to other devices connected to the network.

    Verify that all cables on the network are securely connected to each device.

    Verify that all devices that require an IP address have one assigned correctly.

    If the fault is not cleared after completing the actions listed above, use the tables in the rest of this chapter to troubleshoot issues specific to a DLR network or a linear network.

    Topic Page

    General Solutions for the Linear or DLR Networks 53

    Duplicate IP Address Detection 54

    Specific Issues on the DLR Network 55

    Network Recovery Performance 58

    Device Port Debugging Mode 59Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 53

  • Chapter 4 Troubleshoot a DLR Network

    Duplicate IP Address Detection

    Some EtherNet/IP communication modules support duplicate IP address detection. The module verifies that its IP address does not match any other network devices IP address when performing either of these tasks:

    Connect the module to an EtherNet/IP network

    Change the modules IP address

    If the modules IP address matches that of another device on the network, the modules EtherNet/IP port transitions to Conflict mode. In Conflict mode, these conditions exist:

    OK status indicator is blinking red

    Network (NET) status indicator is solid red

    On some EtherNet/IP communication modules, the module status display indicates the conflict

    The display scrolls:OK Duplicate IP

    For example: OK 10.88.60.196 Duplicate IP - 00:00:BC:02:34:B4

    On some EtherNet/IP communication modules, the modules diagnostic webpage displays information about duplicate IP address detection

    For more information on which EtherNet/IP communication modules support displaying duplicate IP address on their diagnostic webpage, see the Technical Note titled Logix modules Duplicate IP address detection enhancement, #118216, in the Technical Support Knowledgebase available at http://www.rockwellautomation.com/knowledgebase/.54 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Troubleshoot a DLR Network Chapter 4

    Specific Issues on the DLR Network

    Use the following table to troubleshoot possible specific issues on the DLR or linear network that are not solved by the actions described on the previous page.

    Issue Description Solution

    Supervisor Reports a Ring Fault A link on the DLR network may be broken: intentionally, for example, because of adding or deleting nodes but not making all

    physical connections to restore the setup of the network with/without the node. unintentionally, for example, because a cable is broken or a device malfunctions.When this fault occurs, the adjacent nodes to the faulted part of the network are displayed in the Ring Fault group and the Network Status field = Ring Fault.The screen shot below shows the Ring Fault section with IP addresses appearing for the last active nodes. The faulted node is between nodes 10.88.80.115 and 10.88.80.208. If the IP address of either node is not available, the software will display the nodes MAC ID.

    Once the fault is corrected, the ring is automatically restored, and the Network Status field returns to Normal.

    Determine where the fault condition exists and correct it.Click the Refresh Communication link as needed to update the Ring Fault information to determine where the fault condition exists.Finally, DevicePort Debugging Mode functionality on the 1783-ETAP tap, may be used to analyze a suspicious node.For more information, refer to Device Port Debugging Mode on page 59.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 55

  • Chapter 4 Troubleshoot a DLR Network

    Issue Description Solution

    Rapid Ring Fault When a Rapid Ring Fault occurs, the following events occur: The active supervisor will block traffic on port 2, resulting in possible network

    segmentation, that is, some nodes may become unreachable. The Link 2 status indicator on the active supervisor is off. As soon as the fault occurs, for both RSLogix 5000 programming software and

    RSLinx communication software, the Status field = Rapid Fault/Restore Cycles.

    Any of the following may cause a Rapid Ring Fault: 5 intentional disconnections/reconnections of a node from the network within 30

    seconds A duplex mismatch between two connected devices Electromagnetic noise on the network Unstable physical connections, such as intermittent connectorsGiven the nature of a Rapid Ring Fault, the Last Active Node information may not be accurate when a Rapid Ring Fault condition is present.

    Multiple possible solutions exist. For the disconnections and reconnections issue, no

    solution is required.Clear the fault after reconnecting the device to the network permanently. For the duplex mismatch issue, reconfigure the duplex

    parameters to make sure they match between the devices.

    For the electromagnetic noise issue, determine where the noise exists and eliminate it or use a protective shield in that location.

    For the unstable connections issue, determine where they exist on the network and correct them.

    Check the media counters for all devices on the network. The device with the highest media counter count is most likely causing the Rapid Ring Fault.

    Remove devices from the network one by one. If the Rapid Ring Fault disappears after a device is removed, that device is causing the fault.

    DevicePort Debugging Mode functionality on the 1783-ETAP tap may be used to analyze a suspicious node.

    For more information, refer to Device Port Debugging Mode on page 59. Finally, the Beacon Interval or Timeout configuration

    may not be appropriate for the network.However, if these values need to be changed, we recommend that you contact Rockwell Automation technical support.Once the fault is fixed, click Clear Fault. 56 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Troubleshoot a DLR Network Chapter 4

    Issue Description Solution

    Partial Fault Condition A partial network fault occurs when traffic is lost in only one direction on the network because a ring member is not forwarding beacons in both directions, for example, a component failure.The active ring supervisor detects a partial fault by monitoring the loss of Beacon frames on one port and the fault location appears in the Ring Fault section of the Network tab. When a partial fault is detected, the active ring supervisor blocks traffic on one port. At this point, the ring is segmented due to the partial fault condition. The nodes adjacent to the faulted part of the network are displayed in the Ring Fault group with either IP addresses or MAC IDs for each node displayed.When this fault occurs the Network Status field = Partial Fault Condition.Once the fault is corrected, it automatically clears, and the Network Status field returns to Normal.

    Determine where the fault condition exists and correct it.Additionally, the DevicePort Debugging Mode functionality, also known as Port Mirroring, on a 1783-ETAP, 1783-ETAP1F, or 1783-ETAP2F tap may be used to analyze a suspicious node.For more information, refer to Device Port Debugging Mode on page 59.

    Media Counter Errors or Collisions

    The media counters screen displays the number of physical layer errors or collisions. The screen below indicates where to check for errors encountered. Error levels are displayed depending on what caused the error. For example, an Alignment Error is displayed in the Alignment Error field.

    On a DLR network, it is not uncommon to see low levels of media counter errors. For example, if the network breaks, a low level of media counter errors appears. With a low level of media counter errors, the value typically does not continuously increase and often clears.A high level of media counter errors typically continues to increase and does not clear. For example, there is a mismatch of speed between two linked nodes, a high level of media counter errors appears, steadily increasing and not clearing.To access the RSLinx screen above, browse the network, right-click on the device, select Module Properties and click the Port Diagnostics tab.

    Some example solutions include: Check for a mismatch of speed and/or duplex between

    two linked nodes. Verify that all cables on the network are securely

    connected to each device. Check for electromagnetic noise on the network. If you

    find it, eliminate it or use a protective shield in that location. Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 57

  • Chapter 4 Troubleshoot a DLR Network

    Network Recovery Performance

    When measuring the networks performance with regard to dealing with fault conditions, consider the network recovery time. Network recovery is the time for all of the following to take place:

    1. The supervisor node recognizes that a fault exists on the network.

    2. The supervisor node reconfigures the network because of the fault.

    3. The supervisor node communicates to the network nodes that a fault condition exists.

    4. The network nodes reconfigure themselves because of the fault.

    With the default beacon interval value of 400 mS and beacon timeout value of 1960 mS, the worst-case time for network recovery times are:

    2890 mS for a copper DLR network. This recovery time is based on 100 m copper segments between nodes on the network.

    3140 mS for a fiber-optic DLR network. This recovery time is based on 2 kM fiber-optic cable segments between nodes on the network.

    When considering the values listed above, keep in mind:

    Recovery time may actually occur faster than the times listed.

    The recovery times listed above assume that your networks nodes are operating at 100 Mbps speed and full-duplex mode. We recommend that your nodes generally operate in this mode for DLR networks.

    If other node conditions exist, such as a node operating at 10 Mbps full-duplex, or 10/100 Mbps half-duplex, the recovery times will vary from the times listed above.

    If this is the case for your application, the beacon interval and beacon timeout will need to be changed. We recommend that you first contact Rockwell Automation technical support if these parameters need to be changed.

    The value assumes that the majority of the traffic on your network is EtherNet/IP traffic.58 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Troubleshoot a DLR Network Chapter 4

    Device Port Debugging Mode

    This functionality is disabled by default. Device Port Debugging mode, which is similar to port mirroring, can be used to monitor data received on the 1783-ETAP, 1783-ETAP1F, or 1783-ETAP2F taps two network ports. Monitor the data over the device port to a device, such as a personal computer running a protocol analyzer application for advanced network debugging or analysis.

    When device port debugging is used on a 1783-ETAP, the device connected to the 1783-ETAP taps front port receives all of the data traversing the ring (both directions).

    Device Port Debugging Example Network

    When using the Device Port Debugging mode functionality, insert the 1783-ETAP, with the network analyzer connected to the device port. It is inserted at the spot on the ring network where the node in question is located. The graphic below shows a 1783-ETAP tap inserted in the network.

    IMPORTANT This functionality should be used only when troubleshooting the network and not in normal network operation. Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 59

  • Chapter 4 Troubleshoot a DLR Network

    Combined total network bandwidth of the traffic received on the two 1783-ETAP, 1783-ETAP1F, or 1783-ETAP2F taps ports connected to the network should not exceed the taps device port capacity. The speed setting determines the device ports capacity.

    Configure the device port on a 1783-ETAP, 1783-ETAP1F, or 1783-ETAP2F tap to either of two speed settings:

    100 Mbps - default setting 10 Mbps

    If the bandwidth exceeds the capacity of the taps device port, some frames from the ring will be dropped before reaching the device port. These dropped frames do not impact the traffic on the rest of the DLR network.

    The device port setting determines how much network traffic the 1783-ETAP, 1783-ETAP1F, or 1783-ETAP2F tap can handle before dropping frames. The circled section in the graphic below shows the Port Buffer Utilization of the Device Port. In this example the value is zero because a ring fault exists on the network.60 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Appendix A

    Network Usage Guidelines and Recommendations

    Consider the following guidelines and recommendations when using a DLR or linear network.

    Guideline/Recommendation Explanation

    Use fewer than 50 nodes on a single DLR network.If your application requires more than 50 nodes, we recommend that the nodes are broken into separate, but linked, DLR networks.

    If you use more than 50 nodes on a single DLR network: Your network has a greater chance of multiple faults

    occurring on the network Network recovery times from faulted DLR network

    are higher

    Do not configure a supervisor on a linear network. If your linear network includes non-DLR nodes and has a supervisor-enabled node on the network, it may impact communication to non-DLR devices connected to the linear network.

    If you must connect a device that is running at 10 Mbps to a DLR or linear network, do so through a 1783-ETAP, 1783-ETAP1F, or 1783-ETAP2F tap device port.

    The 1783-ETAP, 1783-ETAP1F, and 1783-ETAP2F taps can operate at 100 Mbps on the DLR network; this is the optimal speed for a network. If you connect a 10 Mbps device directly to the network, instead of through a tap, the linear or DLR network traffic slows to 10 Mbps.Additionally, if the 10 Mbps device is connected to the network without a 1783-ETAP tap, network recovery times are significantly impacted.

    Configure multiple supervisor nodes per ring. If your DLR network only has one supervisor and the supervisor experiences a fault, none of the other nodes become the active supervisor. In this case, the network becomes a linear network until the fault is corrected and the DLR network restored.Another reason to configure multiple supervisor nodes is for replacing an active supervisor node with an out-of-box replacement; the new device will not be enabled as a supervisor (by default) and there would still be no supervisor on the network.Rockwell Automation Publication 290E-AT001A-EN-P - November 2012 61

  • Appendix A Network Usage Guidelines and Recommendations

    Guideline/Recommendation Explanation

    Connect switches to a DLR network via 1783-ETAP, 1783-ETAP1F, or 1783-ETAP2F taps.

    If switches are connected to the DLR network without the use of a 1783-ETAP, 1783-ETAP1F, or 1783-ETAP2F tap, the network may experience unpredictable behavior and network performance is unknown.

    Run all nodes on the DLR network at 100 Mbps and in Full-Duplex mode.

    These configuration values provide the best performance for your network.Additionally, we recommend that you: Use auto-negotiate for all nodes on the DLR network Do not use auto-negotiate on one node and then force

    speed on the next node linked to it

    In a linear network, the number of nodes to use is application specific, based on the considerations described in the next box.

    When determining the number of nodes to use on a linear network, consider the following: There is a delay per node as information is transmitted

    to each successive node used on the network The typical delay on a linear network with 100 m

    copper segments between nodes is 30 mS The typical delay on a linear network with 2 kM

    fiber-optic segments between nodes is 40 mS

    The greater the number of nodes on the network, the longer the total time for information to be transmitted across the entire network. The single point of failure possibility is greater with

    each additional connection Troubleshooting the network may be more difficult

    with a higher number of nodes

    The total time for information to be transmitted across the entire network, and its effect on how many nodes to use on a linear network, is related to the Requested Packet Interval (RPI).Verify that the total time to transmit information from the first node to the last node on the network is less than the RPI. Make sure the network is not loaded beyond 90% of capacity.62 Rockwell Automation Publication 290E-AT001A-EN-P - November 2012

  • Network Usage Guidelines and Recommendations Appendix A

    Guideline/Recommendation Explanation

    Do not physically close a DLR network without a supervisor configured on the network.

    A DLR network without a supervisor node results in a network storm.If you do close the DLR network without a supervisor configured, break the ring and configure at least one supervisor before physically reconnecting the network.

    Use the default values for the following: Beacon Interval Beacon Timeout Ring Protocol VLAN ID

    Changing the default values for the parameters Beacon Interval, Beacon Timeout, and Ring Protocol VLAN ID, can result in unpredictable network behavior and negatively impacted network performance.The default values are optimized for a network with: 50 or fewer nodes are on the network All nodes are operating at 100 Mbps and full-duplex

    mode At least 50% of the network traffic bandwidth being

    EtherNet/IP trafficIf you think the values of the Beacon Interval, Beacon Timeout, or Ring Protocol VLAN ID need to be changed, for example, if any node on ring is not operating at 100 Mbps and full-duplex mode, we recommend that you first contact Rockwell Automation technical support.

    If DHCP for the ArmorStarts is still required, you will need to disable Internet Group Management Protocol (IGMP) snooping on the E-tap via the AOP.

    IGMP Snooping is enabled by default in the 1783-ETAP, 1783-ETAP1F, and 1783-ETAP2F taps, and is commonly used to manage multicast traffic on the network. When in use, this functionality allows the tap to multicast data to only those devices that need the data rather than to all devices connected to the network.Once DHCP is enabled the switch could change the IP