Rheological behaviour of molten polymer, models and ... · Viscoelastic flows modelling ......

66
1 Rheological behaviour of molten polymer, models and experiments Rudy VALETTE Cemef – Mines Paristech

Transcript of Rheological behaviour of molten polymer, models and ... · Viscoelastic flows modelling ......

1

Rheological behaviour of molten polymer, models and experiments

Rudy VALETTE

Cemef – Mines Paristech

2

Cemef – Mines Paristech

Center for Material Forming

Polymer, pastes, composites, metals

Industrial partnership

Polymer processing

3

Examples of polymers

Polystyrene

Polypropylene

Polyethylene

4

Phenomenology

Density : ~water

« Melting » temperature : ~150°C (PE, PP, PS)

Viscosity : ~106 water

« Internal » structure : remains/relaxes over differents timescales

→→→→ memory, elasticity

« High » temperature : viscous + elastic

→→→→ visco-elastic fluid

5

« Internal » structure ?

Macromolecules, ex PE : -[CH2]-n

… 10 000 CH2 groups ; 1018 molecules per cm3 ; very flexible

Polydispersity :

etc …

molecular mass

distribution

6

Research topics

Link between structure and rheology

Viscoelastic flows modelling

→ Polymer processing flows :

- large deformations

- large deformation rates

- complex geometries

How pertinent are viscoelastic constitutive equations ?

Polymer processing flows: extrusion

flow instabilites interfacial instabilities

8

Which material ?

macromolecule :

... close view ...

0.2 nm

9

Which material ?

macromolecule :

... further away.

20 nm

10

Which material ?

macromolecule :

... further away :

free segments20 nm

11

Flexible chain

Degrees of freedom

« Free » equivalent segment

Conformation = = "random flight" of N segments of length b

φ θdof not dof

=

brr ii =rr

,

irr

↔↔↔↔ ∑= irRrr

Entropic elasticity

Energy kT

Relaxation: diffusion in the space of R

∑= irRrr

( )00 R

R

R

kTRF

rrr

12

Viscoelasticity

Relaxation of entropic elastic forces

Relaxation processes involve: - which object (chain, subchain) ?- which time ?- which distance/which topology ?

Role of the flow ?

Overview:- Scalings- Linear viscoelasticity/elastic dumbell- Topological constraints, tube model- Treatment of non-linear deformation (flow)- Some examples

14

Entropic elasticity

Statistical conformation = = end-to-end vector

Mean value :

Mean square :

Gaussian density distribution :

Statistical entropy :

Thermodynamic force :

∑= irRrr

0=Rr

( )( ) 2

0

22RNbrrR ji === ∑∑

rrr

( ) 2

3 20

2

2

32

3

2

0

=

R

R

eR

ψr

( )( )RkS tot

rψΩ= ln

( ) RR

kT

Rd

dSTRF

rr

rr

2

0

3=−=

Doi-Edwards 1986

15

Elastic dumbbell

Force:

Spring constant:

Einstein relation:

Relaxation time:

( ) RR

kTRF

rrr

2

0

3=

22

0

33

Nb

kT

R

kT=

bN

kTkTD

ζζ==

0

2222

0 θζ

θ NkT

bN

D

R b ===

Doi-Edwards 1986

16

Macroscopic scale

Force:

chains per unit volume

chains per unit surface

Stress:

Elastic modulus:

Relaxation time:

( ) RR

kTRF

rrr

2

0

3=

2N∝θ

ν

2

0

22

2

0

33

R

RkTR

R

kTr

rνν =

kTG ν=0

Doi-Edwards 1986

Relaxation function : experiment 1 on viscoelasticity

Response to a sudden macroscopic deformation

macroγ

microγ

Sample at rest (the arrows are proportional to the chains oriented and stretched in their direction)

Deformation a t=0 : stress = G0 x strain Stress decreases with time because microscopic strain γmicro decreases

Whatever γmacro : G(t) is constant (same ratio stress/strain)

Relaxation function : experiment 1 on viscoelasticity

Stress relaxation is faster when far from equilibrium

micromicro

dt

θ

γ 1−=

τθ

τ 1−=

dt

d

19

Linear (separable) response of a simple viscoelastic fluid

Step strain :

t=0 rest,

t>0 constant shear

log time

log shear modulus

macroγ

θγτ /

0)(/ teGtG

−==

0Gθ0G

s210−

fraction of unrelaxed segments

Viscosity function : experiment 2 on viscoelasticity

Response to a continuous macroscopic deformation

macroγ&

microγ

Stress = ,τ = G0&γmacroθ γmicro = &γmacroθ

Viscosity function : experiment 2 on viscoelasticity

Response to a continuous macroscopic deformation

drag

dtdtd micromacromicro γθ

γγ1

−= &

macromicro γθγ &=

relax

Stationary :

Stress :macromicro GG γθγτ &

00 ==

Viscosity : θη 0G=

Response in steady shear

Steady shear:

t=0 rest,

t>0 onstant shear rate,

log time ~ deformation

log shear stress

tV γ&=

elastic: slope G

Viscous: viscosity Gθ

)1(/ /θθγτ teG

−−=&

GθG

23

Steady shear

Shear rate:

Drag (affine deformation)/relaxation balance → stress:

Viscosity:

Weissenberg effect:

γ&

θγτ &0G=

bNNbG ζνθη 2

0 ==

Long chains are entangled

Entanglements : topological constrains between chains

Courtesy K. Kremer, from Everaers et al., Science, 2004

a

Long chains are entangled

Entanglements: topological constrains between chains

Courtesy K. Kremer, from Everaers et al., Science, 2004

Long chains are entangled

Entanglements: topological constrains between chains

Courtesy K. Kremer, from Everaers et al., Science, 2004

aa

kT

R

R

R

kTF ≅≅

00

rr

Long chains are entangled

Entanglements: topological constrains between chains

Relaxation: diffusion out of a « tube », reptation dynamics

convenient mean field model (to make self-similar !)

From T.C.B. McLeish group, Leeds University

Long chains are entangled

Entanglements: topological constrains between chains

Relaxation: diffusion out of a « tube », reptation dynamics

Tube survival probability Doi-Edwards 1986

Long chains are entangled

Entanglements: topological constrains between chains

Tube length L = Za, scales as N

Disengagement time:

a

0

322

θζ

θ NkT

NN

D

L bd ∝∝=

a =10−9 m

Z = 5− 50

N / Z = 25

θZ=1 ≈ 0.1s

30

Macroscopic scale

Elastic modulus:

Relaxation time:

Tension on each segment:

3Nd ∝θ

a

kT3

kTG eN ν=0

a

31

Linear response of an entangled polymer melt

Step strain :

t=0 rest,

t>0 constant strain

log time

log shear modulus

macroγ

Pa910

Pa610

s210−

s010

fast retraction along tube contour

reptation(disengagement)

2N∝ 3

N∝

32

Linear response of an entangled polymer melt

Step strain :

t=0 rest,

t>0 constant strain

log time

log shear modulus

macroγ

Pa910

Pa610

s210−

s010

retraction

reptation

2N∝ 3

N∝

molecular mass

distribution

33

Linear response of an entangled polymer melt

Step strain :

t=0 rest,

t>0 constant strain

log time

log shear modulus

macroγ

Pa910

Pa610

s210−

s010

retraction

reptation

2N∝ 3

N∝3G33θG

2G22θG

1G11θG

... iiGθ Spectrum fitted using conventional rheometers

34

Steady shear

Shear rate:

Drag (affine deformation)/relaxation balance → stress:

Viscosity:

Shear thinning: rotation of segments

dθγ /1<&

dNG θγτ &0=

dNG θη 0=

dθγ /1>&

θ0NG

log viscosity

log shear rate

-1

dθ/1

Doi-Edwards 1986

35

Rheometric tools

Cone-plate rheometer: mechanical spectroscopy (linear regime)

Capillary rheometer: steady shear viscosity

Piston

Pressure transducer

Die

36

Sodium source

λ = 589nm

Picture

polarizer

45° λ/4

135° λ/4

analyzer

Robert et al. 2003

Flow-induced birefringence: stress measurements

Cw

kλσ =∆

Stress-optical law:

Schweizer et al., Rheo Acta 2005

w

Used to test pertinence of constitutive equations

37

Constitutive equation (3D)

Stress: (autocorrelation)

B conformation tensor:

At rest:

Affine deformation:

Because when no relaxation

33 02

0

0 BGR

RRG N

T

N ==

rr

τ

( ) ( ) 3

2

0

2

0

RdRR

RR

R

RRT

R

T rrrrrr

r∫= ψ

dsR

nRRGdsnfd

T

N 2

0

03

rrrrr

==τ

( )vBBv

R

RvR

R

RRv

dt

dB T

TTrr

rrrrrr

∇+∇=∇

+∇

=2

0

2

0

d

dtψ

rR( )d

rR3( ) = 0

IB3

1=

38

Constitutive equation (3D)

Stress:

B conformation tensor:

At rest:

Affine deformation:

Relaxation:

33 02

0

0 BGR

RRG N

T

N ==

rr

τ

( ) ( ) 3

2

0

2

0

RdRR

RR

R

RRT

R

T rrrrrr

r∫= ψ

dsR

nRRGdsnfd

T

N 2

0

03

rrrrr

==τ

( )vBBv

R

RvR

R

RRv

dt

dB T

TTrr

rrrrrr

∇+∇=∇

+∇

=2

0

2

0

−−∇+∇= IBvBBv

dt

dB T

3

11

θ

rr

IB3

1=

Upper-convectedMaxwell model

Why choosing differential models for B ?

Maxwell model: closed form from Smoluchowski equation

But general kinetic theory models (Likthman et al., Öttinger & Kröger et

al, etc ..) involve too many refinements for polymer processing and require closure approximations

Integral models (KBKZ 1962-63, Doi-Edwards 1986, Wagner et al. 1976-2012) require lots of computational ressources to be solved in

practice

39

Constitutive equation (3D)

Evolution equation for , tube model:

- take Maxwell model

- trace(B) is mean square chain stretch:

-

- rescale B so that trB=1

−−∇+∇= IBvBBv

dt

dB T

3

11

θ

rr

2

0R

RRB

Trr

=

( ) ( )11

2 −−∇= trBBvtrdt

dtrB

θ

r

( )

−−∇−∇+∇= IBBBvtrvBBv

dt

dB T

3

112

θ

rrrLarson 1988

40

2

0

.

R

RRtrB

rr

=

Test of reptation differential model

Evolution equation for , tube model:

-

- Marrucci & Ianniruberto (1996): convective constrain release

relaxation is accelerated by retraction

-

- linear viscoelasticity spectrum + β fitted from steady shear

2

0R

RRB

Trr

=

( )

−−∇−∇+∇= IBBBvtrvBBv

dt

dB T

3

112

θ

rrr

41

1

θ=

1

θ+ 2β tr ∇uB( )

Valette, Mackley, Hernandez 2006

θ0NGlog viscosity

log shear rate

slope

1

θ=

1

θd

+ ∇u

Piston 1

Piston 2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5 2,75 3 3,25 3,5 3,75

Temps (s)P

erte

de

char

ge

(bar

s)

Flow:

- start

- flow

- relax

Measure:

- birefringence

- pressure drop

- strain rate ~1/θd

Valette, Mackley, Hernandez, JNNFM 2006

Equations : momentum equationincompressibilitytransport equations for conformation tensors

Splitting : Perturbed Stokes problem ← extra-stress

Stabilization : « solvent » part (discretization)

SUPG (transport)

Time : implicit Euler

Approximation : P, Conformation (linear continuous)Velocity (quadratic continuous)

Numerics: finite elements

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5 2,75 3 3,25 3,5 3,75

Temps (s)

Per

te d

e ch

arg

e (b

ars)

a : 0.06s

b : 0.28s

c : 0.84s d : 1.20s e : 2.85s f : 2.89s

g : 2.96s

h : 3.40s|

a|

b|

c|

d|

e|

f|

g|

h

polymer

symmetry½ gap

Valette, Mackley, Hernandez, JNNFM 2006

Valette, Mackley, Hernandez, JNNFM 2006

Valette, Mackley, Hernandez, JNNFM 2006

Solving it with suitable numerical methods, then compute birefringence

0.06s 0.28s 0.84s 1.20s

2.85s 2.89s 2.96s 3.40s

Valette, Mackley, Hernandez, JNNFM 2006

Solving it with suitable numerical methods, then compute pressure drop

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5 2,75 3 3,25 3,5 3,75

Temps (s)

Per

te d

e ch

arg

e (b

ars)

Carreau, compressible

Rolie Poly, incompressible

Rolie Poly, compressible

0

1

2

3

4

5

6

7

8

9

10

11

12

13

2,8 2,85 2,9 2,95 3 3,05

Temps (s)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0 0,05 0,1 0,15 0,2 0,25

Temps (s)

Per

te d

e ch

arg

e (b

ars)

Carreau, compressible

Rolie Poly, incompressible

Rolie Poly, compressible

- - Viscous compressible__ VE incompressible__ VE compressible

- - Viscous compressible__ VE incompressible__ VE compressible

Predictions of tube-based differential models are ≈≈≈≈ OK

Flows were not as strong as polymer processing flows:

Birefringence:- measure of stress- not linked to a measure of strain (rate)

dθγ /1>>&

Flows stronger than 1/θθθθd

Take chain retraction dynamics into account:

- stress is still

- partition of B:

-

-

- not really satisfactory predictions

3GB=τ

SB 2λ=

( )

−−∇−∇+∇= IBBBvvBBv

dt

dB

d

T

3

11:2

θ

rrr

McLeish & Larson 1998

( ) ( )11

−−∇= λθ

λ

r

Bvtrdt

d r

Koventry, Valette, Mackley 2004

Planar elongational flow Coventry, Mackley, Valette 2004

Pis

ton

1

« Purely » elongational :

- 3 s-1

- birefringence

- polystyrene

- compare different models

Pis

ton

2

Planar elongational flow Coventry, Mackley, Valette 2004

Same physics, different expressions

(closure approximation) :

- Rolie-Poly

- Pompom

- DXPompom

Too many adjustable parameters !!!!

Flows stronger than 1/θθθθd

Take chain retraction dynamics and finite extensibility into account:

- stress is still

- finite extensibility: chains are no more Gaussian:- rest dimension- unfolded chain length- max extension square- modulus

- single equation partition for B:

3GB=τ

GftrBN

NGG =

−→

1

( )IftrBItrB

Bf

vBBvdt

dB

r

T 13

1

3−−

−−∇+∇=

θθ

rr

Marrucci & Ianniruberto 2003

bNR =0

NbR =max

( ) NRR =2

0max /

( )( )11

11111

−+

−+=

ftrB

ftrB

drd β

β

θθθθ

53

Measure Vx (axial)

Spatial resolution 35 μμμμm, velocity resolution 50μμμμm/s

Test constitutive equations using LDV

D. Hertel, PhD, LSP Erlangen

Computation

Velocity+gradients

Stress?

Rheometry :Linear regime: spectrum Capillary: steady shear

Optical rheometer

Boukellal, Durin, Valette, Agassant 2011

Optical rheometer: on symmetry axis get velocity

Boukellal, Durin, Valette, Agassant 2011

Optical rheometer: on symmetry axis deduce strain rate

Boukellal, Durin, Valette, Agassant 2011

Optical rheometer: compute stress and compare

Boukellal, Durin, Valette, Agassant 2011

Conclusion

Models are OK for moderately fast flows and simple chain topologies

No adjustable parameters (modulo uncertainties)

Predictive constitutive models for complex topologies and faster flows remain a challenge

Polymer processing flows: instabilities

Very strong flows rθγ /1>>&

Combeaud, Demay, Vergnes 2004

Polymer processing flows: instabilities

flow instabilites interfacial instabilities

Polymer processing flows: coextrusion instabilities

interfacial instabilities

Valette, Laure, Demay, Agassant 2003

Polymer processing flows: coextrusion instabilities

interfacial instabilities

inside flow cell / after cooling

Valette, Laure, Demay, Agassant 2004a

Polymer processing flows: coextrusion instabilities

interfacial instabilities: solve direct model -> convective instability

forced system: Level-set + SUPG method

Valette, Laure, Demay, Fortin 2002

Polymer processing flows: coextrusion instabilities

interfacial instabilities: solve direct model -> convective instability

wavepacket: Discontinuous Galerkin method

Valette, Laure, Demay, Fortin 2001

Polymer processing flows: coextrusion instabilities

interfacial instabilities: linear stability of 2 layer viscoelastic Poiseuille flow

Valette, Laure, Demay, Agassant 2004b

Polymer processing flows: instabilities

flow instabilites interfacial instabilities