RFoF Link Design Guideline

download RFoF Link Design Guideline

of 12

Transcript of RFoF Link Design Guideline

  • 7/30/2019 RFoF Link Design Guideline

    1/12

    www.opticalzonu.com email:info@opticalzonu.com2011OpticalZonuCorporation.Allrightsreserved.Contentsaresubjecttochangewithoutnotice.

    Applic

    ationN

    ote

    RFOverFiber

    DesignGuideOverview

    Providedby

    OPTICALZONUCORPORATION

  • 7/30/2019 RFoF Link Design Guideline

    2/12

    LastUpdatedJune8,2011

    www.opticalzonu.com email:info@opticalzonu.com2011OpticalZonuCorporation.Allrightsreserved.Contentsaresubjecttochangewithoutnotice.

    Applic

    ationN

    ote

    Whyusefiber?

    TransmissionofRFandMicrowaveSignalsviawaveguidesorcoaxialcablesuffershighinsertion

    loss and susceptibility to interference (EMI). SingleMode FiberOpticAnalogRF (akaRFoF)

    Transceivers provide an excellent alternative for this type of application. Fiber Optic

    transmissionofferssignificantadvantagesforthereliabletransportofRFsignalsintheirnative

    format over many types of optical networks and across a broad range of frequencies. For

    analog type signals, especially at high frequencies, in which premium performance at high

    SpuriousFreeDynamicRange(SFDR)isdesirable,therearebutafewmethodstoachievesuch

    agoal.

    Lesssignaldegradationpermeter

    Highersignalcarryingcapacity/bandwidth

    Lesscostlypermeter Lighterandthinnerthancopperwire

    Freefromelectromagneticinterference(Poorweatherdoesnotaffectsignal)

    Lowertransmitterlaunchingpower

    Flexible(usedinmedicalandmechanical imagingsystems)

    Functionality&HowitWorks?

    The incoming RF signal is input to the Transmitter Module, which contains RF signal

    conditioning,provides complex impedancematchingbetween50Ohm input impedance and

    theLaser,LaserBiasControl,APC,MonitoringandAlarmelectronics.ThetransmittermoduleutilizesanIntensityModulationschemetoconvertRFtolight,whichistransportedthroughan

    opticalfiberintotheOpticalReceiver.TheReceiverModuleconvertsthemodulatedlightback

    intoanRFsignal.TherecoveredRFsignalisagaincomplex impedancematchedandamplified

    before itbecomesavailableattheoutputofthereceiver.Generallythephotodiode isahigh

    impedance current source with an impedance around 2 kohms, followed with several

    amplifiers.Thebroadbandmatchingisachievedwithvarietyofschemesthatwillbedictatedby

    the overall user modulation bandwidth and Noise density and Intermodulation distortion

    requirements.TherearemanytypesofRFOFDirectmodulationtransmitters includingCWDM

    grade,butformostpart. Thefollowingtwotypescovermajorityofapplications.

    ThetwotypesofLinksare,withoutanyLowNoiseAmplifiers(LNA)andotherwithLNAbuiltin.

    TypicalRFoF Linkwithout LNAhasaGainoffering from1dB+/ 1,buthigherGain is

    availablebasedoncustomeroverallbandwidth,NFandIIP3requirements.

    Typical RFoF Linkwith LNA has a Gain offering from 20dB +/ 1, but higher Gain is

    availablebasedoncustomeroverallbandwidth,NFandIIP3requirements.

  • 7/30/2019 RFoF Link Design Guideline

    3/12

    LastUpdatedJune8,2011

    www.opticalzonu.com email:info@opticalzonu.com2011OpticalZonuCorporation.Allrightsreserved.Contentsaresubjecttochangewithoutnotice.

    Applic

    ationN

    ote

    RFAttenuationvs.OpticalLoss

    1dBoofopticallosscorrespondsto2dBeofRFloss.

    Thephotodiodegeneratedcurrentcanbecalculatedfromthefollowingexpression:

    Ipd=rpdxPopt Where,

    Ipd =photodiodecurrent(A),

    rpd=smallsignalphotodioderesponsitivity(A/W),

    Popt=opticalpowerdetectedbyphotodiode(W).

    TheoutputRFpowercanalsobecalculatedusingthephotoDiodegeneratedcurrent

    Prf=Ipd^2xRloadWhere

    Prf=powerdeliveredtoloadresistanceconnectedtophotodiode(W),

    Rload=loadresistanceconnectedtophotodiode().

    WithsomeSimplesubstituting:

    Prf=rpd^2xPopt^2xRload

    Thus the convertedRFpower is related to the squareof theopticalpower,anddue to this

    relationship, a 1dB loss of optical powerwillbecome a 2dB loss of RF power. To eliminate

    confusionbetweenopticallossesandelectricallossestheunitdBoanddBehasbeenadopted

    respectively.

    SimpleRFoverFiberLinkBlockDiagram

    LNA

    DC Power

    CurrentSource

    RF

    Input

    DC Power

    Laser

    Complex

    impedanceMatching

    Bias-T

    Complex

    impedance

    Matching

    PA

    High Gain

    Power Amplifier

    Low Noise

    Ampl if ier

    RF

    RF+DC

    DC

    RFOutput

    FO TX: Fiber Optic

    Transmitter

    FO RX: Fiber Optic

    Receiver

    Photo

    Diode

    Fiber

    OpticalIsolator

  • 7/30/2019 RFoF Link Design Guideline

    4/12

    LastUpdatedJune8,2011

    www.opticalzonu.com email:info@opticalzonu.com2011OpticalZonuCorporation.Allrightsreserved.Contentsaresubjecttochangewithoutnotice.

    Applic

    ationN

    ote

    LinkGain

    RFoFTotalLINKGAIN

    RFoFTotalLinkGain(dB)=GT

    LNAGain(dB)=GLNA

    OpticalTXRFEOefficiency(mW/mA)= TX (includes50ohmstoLaserMatching losses

    andLaserslopeefficiency)

    OpticalRXRFOEefficiency(mA/mW)= RX(includes matching losses of PD high

    impedanceto50ohmsandPDresponsitivitylosses)

    Fibercablelosses(dB)=Lopt(includesfiberlosses,andcouplingorsplicesetc)

    GT(dB)=GLNA(dB)+20log(TX. RX) 2Lopt

    OutputOpticalPower

    (mW)

    Laser Current (mA)

    ThresholdCurrent(mA)

    Typical Laser Diode Transferfunction Curve.

    Slope Efficiency =?P/? I (mW/mA)

    Laser Bias

    Current

    InputOptical

    Power

    (mW)

    Photodiode outputCurrent

    Typical Photo Diode Transferfunction Curve.

    Photodiode

    ResponsitivityAmp/Watt

    Fiber Losses

  • 7/30/2019 RFoF Link Design Guideline

    5/12

    LastUpdatedJune8,2011

    www.opticalzonu.com email:info@opticalzonu.com2011OpticalZonuCorporation.Allrightsreserved.Contentsaresubjecttochangewithoutnotice.

    Applic

    ationN

    ote

    EffectsofLaserSlopeEfficiency

    InallLaserstheslopeefficiencyparameterisverytemperaturesensitive.AstheLaser

    temperaturechanges,sodoestheslopeefficiencyoftheLaser,andconsequently,alloftheothercriticalLaserparameterssuchasGain,OMI,NF,IP3,etc..Thetemperaturecharacteristics

    oftheLaserdiodearesuch,thatasthethresholdcurrentincreases,theslopeefficiencyofthe

    Laserdevicedecreases,andanincreasingLasertemperatureresults. Thisphenomenonmakes

    theLaserlessefficient,thusreducingtheRFsignalGainandincreasingthelinkNoisefigure,as

    wellascausingadditionaldegradationintheLaserlinearity.

    Onemethodtoovercomethisphenomenon,whichyieldshighperformance,istousean

    integralThermoelectricCooler(TEC)withDFBLasers. Thistechnologyassuresahighlevelof

    LaserstabilityandassuresexcellentRFperformance,AtypicalcooledDFBLaserhasahigh

    slopeefficiency,whichmeansthattheLaserishighlysensitiveandrequiresalower

    modulationcurrentinordertoachievetheusualhighmodulationindex.

    LaserSlopeEfficiencyoverTemperature

    InCaseofCooledDFBLaserTransmitter,theslopeEfficiencyofthelaserisnotchangedeven

    thoughtheTransmittermodulewillbeexposedtowidetemperaturevariationsofupto 40Cto

    +85C

  • 7/30/2019 RFoF Link Design Guideline

    6/12

    LastUpdatedJune8,2011

    www.opticalzonu.com email:info@opticalzonu.com2011OpticalZonuCorporation.Allrightsreserved.Contentsaresubjecttochangewithoutnotice.

    Applic

    ationN

    ote

    TotalLinkNoiseFigureAnalysis

    EquivalentLinkInputNoiseDensity(dBmHz),EINistheamountofNoiseattheinputof

    theRFoFlinkthatproducesoutputNoiseDensity(EON)atthereceiverendifthetotallinkitselfwereNoiseless)

    Noisefigure(NF)isameasureofdegradationoftheSignaltoNoiseRatio(SNR),caused

    bycomponentsinaRFsignalChain.Thenoisefigureisthustheratioofactualoutput

    noisetothatwhichwouldremainifthedeviceitselfdidnotintroducenoise.

    EIN=EON GT Where, GT(dB)=GLNA(dB)+20log(TX. RX) 2Lopt

    NF=EIN+174dBmHz Where,KBTisidealdevicethatisterminatedbyapassiveloadat

    temperature290Kelvin(T0).KB=1.38x10^23J/KBoltzmannconstant

    TheEndtoendlinknoiseisduetovarietyofsources,suchastheLaserRelativeIntensityNoise

    (RIN),PhotodiodeShotNoiseandtheThermalNoiseduetothereceiverpostamplifiers

    followingthePD.Asyoucanseeabovetheopticallossesduetothefiberinherentlossesand

    anycouplinglossesisalsodegradestheLinkequivalentinputnoisedensityEIN.

    EIN=EINlaserRIN+EINPDshotNoise+EINreceiverThermalNoise(W/Hz)

    TotalLinkNoiseandAllItsContributorsvs.OpticalLoss

    RFoF Input Noise Density

    -150.00

    -140.00

    -130.00

    -120.00

    -110.00

    -100.00

    -90.00

    0 5 10 15 20 25 30

    Optical Losses dB

    EIN(dBm-HZ)

    EIN Total

    EIN Thermal

    EIN Shot

    EIN RIN

  • 7/30/2019 RFoF Link Design Guideline

    7/12

    LastUpdatedJune8,2011

    www.opticalzonu.com email:info@opticalzonu.com2011OpticalZonuCorporation.Allrightsreserved.Contentsaresubjecttochangewithoutnotice.

    Applic

    ationN

    ote

    HowtoReduceNoiseFigure(NF)?

    OnewhattoreducetheNFofaRFoFLink(EndtoEnd)istoincreaseTransmitterRFto

    ConversionefficiencyotherwisetheTXGain.UsingaLowNoiseamplifierBeforetheLaserishighlyeffectivewayachievingjustthat.ChoosingtheLNAproperlyisextremelyimportantto

    maximizetheeffectivenessofsuchapproach,andparameterssuchasGain,NFandIIP3of

    amplifierplayakeyroleinallthat.

    TheWayitworksisasfollowing:

    NFTotalRFoFLINK=NFLNA+(NFRFoFLink1)/GainLNA

    ForExample:

    LNAGain20dB

    LNANF3dB

    RFoFLinkNFwithoutLNA=40dBNFTotalRFoFLINK=2+(100001)/100=102

    NFTotalRFoFLINK=10xLOG(102)=20dB

    20dBimprovementinNF!

    *ThedrawbackinsuchapproachisalsoreductioninInput3rdOrderInterceptPointofthetotal

    linkwhichmustbeconsideredinoverallLinksystemDesign.

    HowtoCalculateCarriertoNoiseRatio(CNR)?

    NoiseEquivalentBandwidthisdefinedsuchasWhenwhitenoise(flatspectrumoffrequencies)

    ispassedthroughafilterhavingafrequencyresponseH(f),someofthenoisepowerisrejected

    bythefilterandsomeispassedthroughtotheoutput.ThisisalsoknownasSignalChannel

    Bandwidth(BW).

    ThustoCalculateCarriertoNoiseRatioofaRFoF

    linknotonlyoneneedtoknowtheinputsignal

    levelandlinkEINbutalsotheNoiseEquivalent

    Bandwidth.

    Sinput=RFinputSignalLeveldBmPNoise=TotalNoiseattheinputdBm

    PNoise=EIN+10Log(BW)

    CNR=SinputPNoise (dB)

  • 7/30/2019 RFoF Link Design Guideline

    8/12

    LastUpdatedJune8,2011

    www.opticalzonu.com email:info@opticalzonu.com2011OpticalZonuCorporation.Allrightsreserved.Contentsaresubjecttochangewithoutnotice.

    Applic

    ationN

    ote

    3rdOrderInputInterceptPoint?

    AInputthirdorderinterceptpoint(IIP3)isameasureofnonlinearityoftheRFoFlink.The

    interceptpointisapurelymathematicalconcept,anddoesnotcorrespondtoapracticallyoccurringphysicalpowerlevel.Inmanycases,itliesbeyondthedamagethresholdofthe

    device.Butinmultichannelsystemknowingthisparameteriscriticalparametertocalculate

    theoverallIntermodulationdistortionproducedbytheRFoFlink.

    CarriertoIMDratio=2x(IIP3Signallevel) dBc,(IntermodulationDistortionlevelsbelow

    Carrier)

    AnotherparameterishasbeenusedtomeasurenonlinearityoftheRFoFlinkisOIP3,which

    istheOutputthirdorderinterceptpointwhichismeasuredattheoutputofaopticalreceiver.

    IIP3=OIP3LinkGain

    OIP3=SignalLevel(dBm)+[(SignalLevel(dBm)3rdorderdistortion(dBm)/2]

    ToCalculatetheOIP3ofaRFoFlink,istoinputTwoTonesintotheRFoFTransmitterand

    measurethe3rdorderdistortionproductsasisshownbelow.

    3rdOrderInputInterceptPointMeasurement

  • 7/30/2019 RFoF Link Design Guideline

    9/12

    LastUpdatedJune8,2011

    www.opticalzonu.com email:info@opticalzonu.com2011OpticalZonuCorporation.Allrightsreserved.Contentsaresubjecttochangewithoutnotice.

    Applic

    ationN

    ote

    3rdOrderInputInterceptPointPlots

  • 7/30/2019 RFoF Link Design Guideline

    10/12

    LastUpdatedJune8,2011

    www.opticalzonu.com email:info@opticalzonu.com2011OpticalZonuCorporation.Allrightsreserved.Contentsaresubjecttochangewithoutnotice.

    Applic

    ationN

    ote

    CascadedIIP3Calculations

    IncasetherearePreamplifiers(LNA),orotherdevicesbeforeand/orafterRFoFlinktheoverall

    CascadedLinkIP3canbecalculatedasfollowing:

    1/(OIP3EndEnd)=1/(OIP3LNA*GRFoF*GPA)+1/(OIP3RFoF*GPA)+1/(OIP3PA)

    1/(OIP3EndEnd)=1/(1000*1*10)+1/(1000*10)+1/10000=1E4+1E4+1E4

    1/(OIP3EndEnd)=3.33E3OR+35.22dBm

    IIP3EndEnd=35.2230=+5.22dBm

    SpuriousFreeDynamicRange(SFDR)

    SpuriousFreeDynamicRange(SFDR),isdefinedasthepowerlevelrangeofapairoftwoinput

    signalsinwhichthetwosignalsareabovethenoisefloorandthe3rdorderIntermodulation

    distortionproductsarebelowthenoisefloor.

    SFDR=2/3x(IIP3EIN10LOG(BW))

    ThelargerSFDRbecomesthehigherdynamicrange,theRFoFlinkposses.TheSFDRcan

    beincreasedseveralways,amongthembyreducingthebandwidthorreducingtheTotalinput

    NoisedensityorincreaseIIP3ofthelink.

  • 7/30/2019 RFoF Link Design Guideline

    11/12

    LastUpdatedJune8,2011

    www.opticalzonu.com email:info@opticalzonu.com2011OpticalZonuCorporation.Allrightsreserved.Contentsaresubjecttochangewithoutnotice.

    Applic

    ationN

    ote

    Conclusion

    Thispresentationisanoverviewoftheoverallprocessofdesigning,andspecifyingafiberoptic

    systemforanalogRFtransport anEngineeringGuide.RFoverFiberdesignersneedtoknowhowtofactorinthekeyparametersofaRFoFlink(suchaslinkGain,NFandIP3,)fortheir

    systemanalysisanddesign.Equallyimportantarethequestionsyoumustanswerpriortonew

    developmentproject,suchas:

    1. Whatarethesystemperformanceparametersthattheapplicationyouconsider

    requires?ThosearetheENDtoENDRFperformanceofthelink.

    2. Shouldyouusefiberopticsinyourcommunicationsproducts?

    3. Whatareitsadvantages?

    4. HowdoyouspecifyaRFoFlinktoallowuserstochoosetheproperproductfortheir

    application?

    Wehaveansweredallquestionsexceptitem4,sotocompletethispresentationswehave

    accumulatedlistofquestionsbelowfortheusertocompleteenablingthemtooptimizethe

    overalllinkperformance.

  • 7/30/2019 RFoF Link Design Guideline

    12/12

    LastUpdatedJune8,2011

    f

    Applic

    ationN

    ote