Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input...

62
Revisiting the hypoelliptic stochastic FitzHugh-Nagumo model Adeline Leclercq Samson (Grenoble, France) Joint work with F. Comte (MAP5, Paris), S. Ditlevsen (Copenhagen), J. L´ eon (Caracas), C. Prieur (LJK, Grenoble), M. Thieullen (LPMA, Paris) A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 1 / 46

Transcript of Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input...

Page 1: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Revisiting the hypoelliptic stochastic FitzHugh-Nagumomodel

Adeline Leclercq Samson (Grenoble, France)

Joint work with

F. Comte (MAP5, Paris), S. Ditlevsen (Copenhagen),J. Leon (Caracas), C. Prieur (LJK, Grenoble),

M. Thieullen (LPMA, Paris)

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 1 / 46

Page 2: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Hypoelliptic FHN

The hypoelliptic Fitzhugh-Nagumo model

[Lindner et al 1999, Gerstner and Kistler, 2002, Lindner et al 2004, Berglund and Gentz, 2006]

dVt =1

ε(Vt − V 3

t − Ct − s)dt,

dCt = (γVt − Ct + β) dt + σdBt ,

Vt membrane potential of a singleneuron

Ct recovery variable / channelkinetics

ε time scale separation

s stimulus input, β position of thefixed point, γ duration of excitation

Bt Brownian motion, σ diffusioncoefficient 0 5 10 15 20

−1.0

−0.5

0.00.5

1.0

time

V

0 5 10 15 20

−0.5

0.00.5

1.0

time

UA. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 2 / 46

Page 3: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Hypoelliptic FHN

Where do hypoelliptic models come from ?

They appear as limit of

Extra-cellular records modeling

Intra-cellular records modeling

Objectives of the models

Prediction of spike emission

Estimation/identification

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 3 / 46

Page 4: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Hypoelliptic FHN

Extracellular stochastic models

Hawkes intensity [Ditlevsen, Locherbach, 2016]

Population of n neurons

Ni (t) number of spikes emitted by neuron i during [0, t], for i = 1, . . . , n

Ni (t) follows a nonlinear Hawkes process with intensity

λi (t) = f

n∑j=1

∫]0,t]

hij(t − s)dNj(s)

I λi (t) is a stochastic process, depending on the whole history before time tI f is the spiking rate functionI hij is a synaptic weight function describing the influence of neuron j on neuron i

Vi (t) =∫

]0,t]h(t − s)dNi (s) membrane potential

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 4 / 46

Page 5: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Hypoelliptic FHN

Systems of interacting neurons

All neurons behave in the same way: hij = 1nh

I Intensity of neuron i

λi (t) = f

(1

n

n∑j=1

∫]0,t]

h(t − s)dNj(s)

)

I All neurons have an influence on neuron i

Mean field limitI Total number of neurons n→∞

1

n

n∑j=1

dNj(s)→ dE(N(s))

where N is the counting process of a typical neuron

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 5 / 46

Page 6: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Hypoelliptic FHN

Memory of the system [Ditlevsen, Locherbach, 2016]

Hawkes processes are truly infinite memory processes

Developing the memoryI Erlang kernel with short memory

h(t) = c t e−ν t

h′(t) = −νh(t) + c e−ν t =: −νh(t) + h1(t)

with

h′1(t) = −νh1(t)

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 6 / 46

Page 7: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Hypoelliptic FHN

In terms of the intensity process: λ(t) = f (Vt) with (Vt) the membranepotential:

V (t) :=

∫]0,t]

h(t − s)dN(s)

and

U(t) =

∫]0,t]

h1(t − s)dN(s)

Associated Piecewise Deterministic Markov Process (PDMP):

dVt = −νVtdt + dCt

dCt = −νCtdt + cdN(t)

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 7 / 46

Page 8: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Hypoelliptic FHN

Diffusion approximation

Diffusion approximation of the jump process N(t) = 1n

∑ni=1 Ni (t) gives

dVt = (−νVt + Ct) dt

dCt = (−νCt + c f (Vt)) dt +c√n

√f (Vt)dBt

Diffusion of dimension 2 driven by only one Brownian motion

Hypoellitic diffusion

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 8 / 46

Page 9: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Hypoelliptic FHN

Another hypoelliptic model for intracellular neuronal data

Deterministic Morris-Lecar neuronal model

Calcium, potassium, leakage ionic currents

gCa, gK , gL maximal conductances

VCa,VK ,VL reversal potential

I input current

Ct proportion of opened potassium channels

Functions α and β: opening and closingrates

dVt

dt= −gCam∞(Vt)(Vt − VCa)− gKCt(Vt − VK )− gL(Vt − VL) + I

dCt

dt= α(Vt)(1− Ct)− β(Vt)Ct

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 9 / 46

Page 10: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Hypoelliptic FHN

Stochastic Morris-Lecar model

N potassium gates

CN(t) proportion of open gates among N gates at time t

stochastic opening and closing at random times

Between jumps of CN , the trajectory of the continuous component Vt follows

dVt

dt= −gCam∞(Vt)(Vt − VCa)− gK CN(t) (Vt − VK )− gL(Vt − VL) + I

⇒ Piecewise Deterministic Markov Process

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 10 / 46

Page 11: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Hypoelliptic FHN

Diffusion approximation [Wainrib, Thieullen, Pakdaman, EJP 2012]

I (Vt ,CN(t)) is approximated by

dVt = (−gCam∞(Vt)(Vt − VCa)− gKCt(Vt − VK )− gL(Vt − VL) + I ) dt

dCt = (α(Vt)(1− Ct)− β(Vt)Ct) dt + σ(Vt ,Ct)dBt

Diffusion of dimension 2 driven by only one Brownian motion

Hypoellitic diffusion

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 11 / 46

Page 12: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Hypoelliptic FHN

Hypoelliptic Morris-Lecar model

0 100 200 300 400 500

−40−20

020

time

V

0 100 200 300 400 500

0.10.2

0.30.4

0.5

time

U

Morris-Lecar is highly non-linear ⇒ Difficult to study

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 12 / 46

Page 13: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Hypoelliptic FHN

Fitzhugh-Nagumo model: a simplest model !

dVt =1

ε(Vt − V 3

t − Ct − s)dt,

dCt = (γVt − Ct + β) dt + σdBt ,

0 10 20 30 40

−1.0−0.5

0.00.5

1.0

time

V

0 10 20 30 40

−0.50.0

0.5

time

C

−1.0 −0.5 0.0 0.5 1.0

−0.50.0

0.5

V

C

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 13 / 46

Page 14: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Hypoelliptic FHN

Objectives of the talk[Leon and Samson, work in progress]

1. Probabilist properties of the systemI hypoellipticityI stationary distributionI β-mixing

2. Neuronal propertiesI spiking rateI distribution of the length of

inter-spike interval (ISI)

3. EstimationI stationary distributionI spiking rateI parameters

0 100 200 300 400

−1.

0−

0.5

0.0

0.5

1.0

time (ms)

V

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 14 / 46

Page 15: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

1. Probabilist properties

1. Probabilist propertiesHypoellipticity of the system

Condition: drift of the first coordinate depends on C

Noise of the second coordinate propagates to the first one

0 10 20 30 40

−1.

0−

0.8

−0.

6−

0.4

−0.

20.

0

time

V

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

−0.

3−

0.2

−0.

10.

00.

1

V

C

0 10 20 30 40

−1.

0−

0.8

−0.

6−

0.4

−0.

20.

0

time

V

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

−0.

4−

0.3

−0.

2−

0.1

0.0

0.1

V

C

0 10 20 30 40

−1.

0−

0.5

0.0

0.5

1.0

time

V

−1.0 −0.5 0.0 0.5 1.0

−0.

50.

00.

5

V

C

0 10 20 30 40

−1.

0−

0.5

0.0

0.5

1.0

time

V

−1.0 −0.5 0.0 0.5 1.0

−0.

50.

00.

5

V

C

No noise Noise on V Noise on C Noise on V ,C

⇒ Hypoellipticity has consequences on the generation of spikes

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 15 / 46

Page 16: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

1. Probabilist properties

Other probabilist propertiesA difficult task

Main results assume a non null noise

A class of well studied hypoelliptic systems is

dVt = Utdt,

dUt = −(c(Vt) Ut + ∂vP(Vt))dt + σdBt ,

with P(v) a potential, c(v) a damping force.

I Stochastic Damping Hamiltonian system [Wu 2001]

I Langevin Equation [Wu 2001]

I Hypocoercif model [Villani, 2009]

Good news !

We enter the previous class by setting Ut = 1ε (Vt − V 3

t − Ct − s):

dVt = Utdt,

dUt =1

ε

(Ut(1− ε− 3V 2

t )− Vt(γ − 1)− V 3t − (s + β)

)dt − σ

εdBt ,

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 16 / 46

Page 17: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

1. Probabilist properties

Stationary distribution

Existence of Lyapounov function Ψ(v , u) = eF (v ,u)−infR2 F with explicit F

Existence and uniqueness of the stationary density [Wu, 2001]

What does that mean?I FHN process generates spikes for ever

I Inter-Spikes Intervals (ISI) have a randomlength

I Distribution of ISI does not depend on timewhen s is constant

ISI

Dens

ity

0 200 400 600 800 1000 1200

0.000

0.001

0.002

0.003

0.004

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 17 / 46

Page 18: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

1. Probabilist properties

β-mixing

Process Zt = (Vt ,Ut) is β-mixing [Wu, 2001]

What does that mean ?I Memory of the process decreases exponentially with time

0 10 20 30 40

−0.2

0.00.2

0.40.6

0.81.0

Lag

ACF

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 18 / 46

Page 19: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

2. Neuronal propertiesSpiking regime

[Lindner, Schimansky-Geier, 1999]

(Back to the original system)

Spike = long excursion in the phase space

Fixed point on the left bottom

Excited state: V increases, Cremains constant

V stays at the top, C increases

Refractory phase: V decreases, Cstays high

0 20 40 60 80 100

−0.5

0.0

0.5

1.0

time

X

−1.0 −0.5 0.0 0.5 1.0

−0.5

0.0

0.5

1.0

X

C

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 19 / 46

Page 20: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Spiking rate

Nt number of spikes during time interval [0, t]: random process

Spike rate

ρ := limt→∞

Nt

ta.s.

Mean length of Inter-Spikes Intervals (ISI)

Ti time between spikes i and i + 1

Mean length of ISI

< T >:= limN→∞

1

N

N∑i=1

Ti a.s.

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 20 / 46

Page 21: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Spiking rate = inverse of the mean length of ISI

ρ = limt→∞

Nt

t= lim

N→∞

1

N

N∑i=1

Ti =1

< T >

But ”limit in t = limit in N ” is not easy to prove mathematically

True for a Poisson process (Nt , t ≥ 0)

Difficulty with FHNI How to define (Nt , t ≥ 0) from the stochastic process (Vt ,Ct) ?

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 21 / 46

Page 22: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Back to the definition of spikes

0 20 40 60 80 100

−0.5

0.0

0.5

1.0

time

X

−1.0 −0.5 0.0 0.5 1.0

−0.5

0.0

0.5

1.0

X

C

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 22 / 46

Page 23: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Back to the definition of spikes

0 20 40 60 80 100

−0.5

0.0

0.5

1.0

time

X

−1.0 −0.5 0.0 0.5 1.0

−0.5

0.0

0.5

1.0

X

C

0 20 40 60 80 100

−0.

8−

0.6

−0.

4−

0.2

0.0

0.2

0.4

time

X

−1.0 −0.8 −0.6 −0.4 −0.2 0.0−

0.8

−0.

6−

0.4

−0.

20.

00.

20.

4

X

C

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 22 / 46

Page 24: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Back to the definition of spikes

0 20 40 60 80 100

−0.5

0.0

0.5

1.0

time

X

−1.0 −0.5 0.0 0.5 1.0

−0.5

0.0

0.5

1.0

X

C

0 20 40 60 80 100

−0.

8−

0.6

−0.

4−

0.2

0.0

0.2

0.4

time

X−1.0 −0.8 −0.6 −0.4 −0.2 0.0

−0.

8−

0.6

−0.

4−

0.2

0.0

0.2

0.4

X

C

How decide what is an excursion ?How define precisely (Ti ) ?

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 22 / 46

Page 25: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Alternative definition: up-crossing process

For a level v , Mt(v): number of up-crossings of V during interval [0, t]

10 20 30 40

−1.0−0.5

0.00.5

1.0

time (ms)

V

v = 0.2

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 23 / 46

Page 26: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Alternative definition: up-crossing processFor a level v , Mt(v): number of up-crossings of V during interval [0, t]To ease the definition, work with the transform system (dVt = Utdt):

Mt(v) = {s ≤ t : Vs = v ,Ut > 0}

10 20 30 40

−1.0−0.5

0.00.5

1.0

time (ms)

V

v = 0.2A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 23 / 46

Page 27: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Alternative definition: up-crossing process

For a level v , Mt(v): number of up-crossings of V during interval [0, t]When v is too large, Mt(v) = 0

10 20 30 40

−1.0−0.5

0.00.5

1.0

time (ms)

V

v = 1.1

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 23 / 46

Page 28: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Link with ”spiking process”

When v is large (not too large), Nt = Mt(v)

10 20 30 40

−1.0−0.5

0.00.5

1.0

time (ms)

V

v = 0

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 24 / 46

Page 29: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Link with ”spiking process”

When v is large (not too large), Nt = Mt(v)

10 20 30 40

−1.0−0.5

0.00.5

1.0

time (ms)

V

v = 0.1

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 24 / 46

Page 30: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Link with ”spiking process”

When v is large (not too large), Nt = Mt(v)

10 20 30 40

−1.0−0.5

0.00.5

1.0

time (ms)

V

v = 0.2

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 24 / 46

Page 31: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Link with ”spiking process”

When v is large (not too large), Nt = Mt(v)

10 20 30 40

−1.0−0.5

0.00.5

1.0

time (ms)

V

v = 0.3

Advantage from a mathematical point of viewUp-crossing process is a stochastic process that can be theoretically studied

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 24 / 46

Page 32: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Rice’s formula

Theoretical mean of the number of up-crossings in interval [0, t] :

EMt(v) = t

∫ ∞0

up(v , u)du

with p the stationary density

What does that mean ?I Explicit expression for the mean number of ”spikes” for certain values of vI Formula depends on the stationary distributionI → Can be estimated non-parametrically

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 25 / 46

Page 33: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Up-crossing rate

Existence of the limit of the expected number of up-crossings by unit of time(ergodic theorem)

Mt(v)

t→∫ ∞

0

up(v , u)du a.s.

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 26 / 46

Page 34: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Up-crossing rate

Existence of the limit of the expected number of up-crossings by unit of time(ergodic theorem)

Mt(v)

t→∫ ∞

0

up(v , u)du a.s.

Allows to define the up-crossing rate for level v

λ(v) := limt→∞

Mt(v)

t.

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 26 / 46

Page 35: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Up-crossing rate

Existence of the limit of the expected number of up-crossings by unit of time(ergodic theorem)

Mt(v)

t→∫ ∞

0

up(v , u)du a.s.

Allows to define the up-crossing rate for level v

λ(v) := limt→∞

Mt(v)

t.

I v large, λ(v) = 0I For a set of values v , ”λ(v) = ρ ”

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 26 / 46

Page 36: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Distribution of up-crossings

Recall that ”length of Inter Up-Crossing Interval (IUCI)” is a random process

Conditional probability of no up-crossing occurs in interval [0, t], given that anup-crossing occurred at time zero

Φv (t) = limτ→0

P(1 up-crossing in[−τ, 0] and no up crossing in [0, t])

P(1 up-crossing in [−τ, 0])

= limτ→0

P(M[−τ,0](v) ≥ 1,Cr[0,t](v) ≤ 1)

P(1 up-crossing in [−τ, 0])

Distribution function of length of IUCI

Fv (t) = 1− Φv (t)

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 27 / 46

Page 37: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Main result

Expectation of length between two successive up-crossings (”ISI”) is theinverse of the up-crossing rate∫ ∞

0

t dFv (t) =1

λ(v)

This gives a proof to the previous formula

< T >=1

ρ

Explicit expression for the variance of the length between two successiveup-crossings

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 28 / 46

Page 38: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

3. Estimation

Quantities to be estimated

1. Stationary density p

2. Spiking rate λ(v) and mean length of up-crossings interval

3. Variance of the length between two successive up-crossings

4. Parameters ε, β, γ, σ

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 29 / 46

Page 39: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

3. Estimation

Quantities to be estimated

1. Stationary density p

2. Spiking rate λ(v) and mean length of up-crossings interval

3. Variance of the length between two successive up-crossings

4. Parameters ε, β, γ, σ

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 29 / 46

Page 40: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

3.1. Stationary density

No explicit formula for p

Solution of the Fokker-Planck equation

0 = −p − ∂

∂u(b(v , u)p) +

1

2

∂u2(σ2p)

I b(v , u) = 1ε

(u(1− ε− 3v 2)− v(γ − 1)− v 3 − (s + β)

)I Resolution of the PDE by finite differenceI Require the values of the parameters

Unstable scheme in spiking regime (ε small)

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 30 / 46

Page 41: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Alternative: non-parametric estimation of the stationary density

[Cattiaux, Leon, Prieur, 2014-2015]

Idea

I Forget the form of the systemI Learning/estimating p only from observations of the process (Vt ,Ut)I Two cases: complete or partial observations

Complete observations

I both coordinates (Vt ,Ut) at discrete times i∆, i = 1, . . . , nI K a kernel functionI b = (b1, b2) a bandwidth

I Estimator of p for any point z = (z1, z2):

pb(z) =1

n

n∑i=1

K

(Vi − z1

b1,Ui − z2

b2

)

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 31 / 46

Page 42: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Incomplete observations; only (Vt)I Ct not observed but, thanks to dVt = Utdt, can be replaced by

Vi :=Vi+1 − Vi

∆=

∫ (i+1)∆

i∆Usds

∆≈ Ui∆

I Estimator of p

pb(z) =1

n

n∑i=1

K

(Vi − z1

b1,Vi − z2

b2

)

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 32 / 46

Page 43: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

How choosing the bandwidth b

b too small: large variance

−3 −2 −1 0 1 2 3

0.00.1

0.20.3

0.4

b = 0.05

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 33 / 46

Page 44: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

How choosing the bandwidth b

b too small: large variance

−3 −2 −1 0 1 2 3

0.00.1

0.20.3

0.4

b = 0.1

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 33 / 46

Page 45: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

How choosing the bandwidth b

b too large: large bias

−3 −2 −1 0 1 2 3

0.00.1

0.20.3

0.4

b = 0.4

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 33 / 46

Page 46: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Ideal bandwidth

Compromise bias-variance

−3 −2 −1 0 1 2 3

0.00.1

0.20.3

0.4

b = 0.228

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 33 / 46

Page 47: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Data-driven procedure [Comte, Prieur, Samson, 2017]

Selection criteria [Goldenshluger and Lepski, 2011; Lacour et al, 2016]

b = arg minb∈Bn

(A(b) + V (b)) ,

withI A(b) mimicking the bias (= supb′∈Bn

(‖pb,b′ − pb′‖2 − V (b′)

)+

)

I V (b) mimicking the variance (= κ‖K‖2

1‖K‖2

nb1b2

∑n−1i=0 β(iδ))

Final estimatorI pb = Kb ∗ p

E(‖pb − p‖2) ≤ C infb∈Bn

(‖p − pb‖2 + V (b)

)+ C ′

log(n)

Same results in the partial case

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 34 / 46

Page 48: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Non-parametric estimation

Estimation of p when there is no spike (ε = 0.5)

PDE solver in black, Kernel estimator in red

−1.4 −1.3 −1.2 −1.1 −1.0 −0.9

01

23

45

67

x

−0.6 −0.2 0.0 0.2 0.4 0.6

0.00.5

1.01.5

2.02.5

y

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 35 / 46

Page 49: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Estimation of p with few spikes (ε = 0.4)I Unstability of the PDE solver

−1.2 −0.8 −0.4

01

23

4

x

−0.6 −0.2 0.0 0.2 0.4 0.6

0.00.5

1.01.5

2.02.5

y

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 36 / 46

Page 50: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Estimation of p with a lot of spikes (ε = 0.1)I Unstability of the PDE solver

−3 −2 −1 0 1 2 3

0.00.5

1.01.5

x

−4 −2 0 2 4

0.00.1

0.20.3

0.40.5

0.6

y

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 37 / 46

Page 51: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Estimation of p with a lot of spikes (ε = 0.1)

−2 −1 0 1 2

0.00.5

1.01.5

2.0

x

−4 −2 0 2 4

0.00.1

0.20.3

0.40.5

y

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 37 / 46

Page 52: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

3.2 Estimation of the up-crossing rate

Plug-in estimator

λ(v) =

∫ ∞0

up(v , u) du

Gaussian kernel

λ(v) =b2

2pV (v) +

1

2

1

nb1

n∑i=1

k

(v − Viδ

b1

)Viδ

Comparison with spiking rate

ρ = limNt

t

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 38 / 46

Page 53: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Black: ε = 0.1 (a lot of spikes)

Red: ε = 0.4 (few spikes)

Green: ε = 0.5 (no spikes)

−0.5 0.0 0.5 1.0 1.5

0.00

0.05

0.10

0.15

0.20

0.25

u

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 39 / 46

Page 54: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

Black: ε = 0.1 (a lot of spikes)

Red: ε = 0.4 (few spikes)

Green: ε = 0.5 (no spikes)

−0.5 0.0 0.5 1.0 1.5

0.000.05

0.100.15

0.200.25

u

rhoSpike

s

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 39 / 46

Page 55: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

2. Neuronal properties

3.3 Estimation of parameters

dVt =1

ε(Vt − V 3

t − Ct − s)dt,

dCt = (γVt − Ct + β) dt + σdBt ,

Difficult because

Hypoellipticity

No explicit transition density of the SDE

Hidden coordinate C

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 40 / 46

Page 56: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Bibliography

Ideal case of complete observations and noise on both coordinates Xt = (Vt ,Ct):

dXt = bµ(Xt)dt + ΣdBt , Σ =

(σ1 00 σ2

)

Discretization of the system (Euler-Maruyama) of Xi+1 = (Vi+1,Ui+1):

Xi+1 = Xi + ∆bµ(Xi ) +√

∆Σηi , ηi ∼iid N (0, I )

Minimum contrast estimator [Genon-Catolot, Jacod, 1993; Kessler 1996]

Set Γ = Σ′Σ.

θ = arg minθ∈Θ

(n−1∑i=1

(Xi+1 − Xi − ∆bµ(Xi ))′ Γ−1 (Xi+1 − Xi − ∆bµ(Xi )) +

n−1∑i=1

log det Γ

)

µ, Γ asymptotically normal

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 41 / 46

Page 57: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Bibliography

What about hypoelliptic SDE ?Impossible to apply previous estimator because

Γ =

(0 00 σ2

2

)not invertible

Idea: change of variable

Assume ε known, and change the system with Ut = 1ε (Vt − V 3

t − Ct − s)

LitteratureI Martingale estimating functions [Ditlevsen, Sorensen, 2004]

I Gibbs sampler [Pokern et al, 2010]

I Euler contrast [Gloter 2006, Samson, Thieullen, 2012];I Higher order contrast [Ditlevsen, Samson, work in progress]

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 42 / 46

Page 58: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Bibliography

Partial observations

Ut not observed but can be replaced by

Vi :=Vi+1 − Vi

∆=

∫ (i+1)∆

i∆Usds

∆≈ Ui∆

Contrast function with plug-in VI µ = (β, γ, s)

θ = arg minθ∈Θ

n−1∑i=1

(V i+1 − V i − ∆bµ(Vi−1,V i−1)

)2

∆σ2+

n−1∑i=1

log σ2

I µ is unbiased, asymptotically normalI σ is biased (because Vi is not Markovian)

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 43 / 46

Page 59: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Bibliography

Partial observations

Ut not observed but can be replaced by

Vi :=Vi+1 − Vi

∆=

∫ (i+1)∆

i∆Usds

∆≈ Ui∆

Contrast function with plug-in VI µ = (β, γ, s)

θ = arg minθ∈Θ

3

2

n−2∑i=1

(V i+1 − V i − ∆bµ(Vi−1,V i−1)

)2

∆σ22

+

n−2∑i=1

log σ22

I µ is unbiased, asymptotically normalI σ is unbiased, asymptotically normal

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 43 / 46

Page 60: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Bibliography

Parametric estimation assuming ε unknown

[Ditlevsen, Samson, work in progress]

What can not be applied

Change of variable

Euler contrast

Idea

Higher order discrete scheme that propagates the noise to the first coordinate

Contrast for complete observations as in the ”ideal” case of non null

Asymptotic resultsI Consistency of all parametersI ε is not asymptotically normal

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 44 / 46

Page 61: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Bibliography

Some estimation results obtained from 100 simulated data sets

ε fixed ε fixed ε estimated

True New contrast Euler Contrast New contrast

ε 0.100 – – 0.105 (0.010)γ 1.500 1.523 (0.130) 1.499 (0.196) 1.592 (0.160)β 0.800 0.821 (0.110) 0.779 (0.107) 0.866 (0.130)σ 0.300 0.293 (0.008) 0.381 (0.038) 0.306 (0.020)

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 45 / 46

Page 62: Revisiting the hypoelliptic stochastic FitzHugh-Nagumo modelV Ca;V K;V L reversal potential I input current C t proportion of opened potassium channels Functions and : opening and

Conclusion

Conclusion/Perspectives

Hypoelliptic FHN systemI Existence of stationary density and non-parametric estimationI Link between the spiking rate and the mean length of ISI

I Estimation of the ”spiking” rate: still some issues with the completedistribution of ISI

I Parametric estimation: still some issues with εI Particle filter and EM algorithmI Optimal control theoryI Local linearization of the SDE

More complex neuronal systemsI Link between spiking rates and ISII Graphe of interaction in neural network for both intra and extra cellular data

A. Samson Revisiting hypoelliptic FHN model Banff, 2017/02/27 46 / 46