Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: [email protected] November...

45
1 TRANSVERSE VIBRATION OF A BEAM VIA THE FINITE ELEMENT METHOD Revision E By Tom Irvine Email: [email protected] November 18, 2008 _______________________________________________________________________ Introduction Many structures are too complex for analysis via classical method. Closed-form solutions are thus unavailable for these structures. For example, a structure may be composed of several different materials. Some of the materials may be anisotropic. Furthermore, the structure may be an assembly of plates, beams, and other components. Consider three examples: 1. A circuit board has numerous chips, crystal oscillators, diodes, connectors, capacitors, jump wires, and other piece parts. 2. A large aircraft consisting of a fuselage, wing sections, tail section, engines, etc. 3. A building has plies, foundation, beams, floor sections, and load-bearing walls. The finite element method is a numerical method that can be used to analyze complex structures, such as the three examples. The purpose of this tutorial is to derive for a method for analyzing beam vibration using the finite element method. The method is based on Reference 1. Theory Consider a beam, such as the cantilever beam in Figure 1. Figure 1. where E is the modulus of elasticity. I is the area moment of inertia. EI, ρ L

Transcript of Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: [email protected] November...

Page 1: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

1

TRANSVERSE VIBRATION OF A BEAM VIA THE FINITE ELEMENT METHOD Revision E By Tom Irvine Email: [email protected] November 18, 2008 _______________________________________________________________________ Introduction Many structures are too complex for analysis via classical method. Closed-form solutions are thus unavailable for these structures. For example, a structure may be composed of several different materials. Some of the materials may be anisotropic. Furthermore, the structure may be an assembly of plates, beams, and other components. Consider three examples:

1. A circuit board has numerous chips, crystal oscillators, diodes, connectors, capacitors, jump wires, and other piece parts.

2. A large aircraft consisting of a fuselage, wing sections, tail section, engines, etc. 3. A building has plies, foundation, beams, floor sections, and load-bearing walls.

The finite element method is a numerical method that can be used to analyze complex structures, such as the three examples. The purpose of this tutorial is to derive for a method for analyzing beam vibration using the finite element method. The method is based on Reference 1.

Theory Consider a beam, such as the cantilever beam in Figure 1.

Figure 1.

where

E is the modulus of elasticity. I is the area moment of inertia.

EI, ρ

L

Page 2: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

2

L is the length. ρ is mass per length.

The product EI is the bending stiffness. The vibration modes of the cantilever beam can be found by classical methods. Specifically, the fundamental frequency is

ωρ1

187510 2=⎡⎣⎢

⎤⎦⎥

.L

EI (1)

This problem presents a good opportunity to compare the accuracy of the finite element method to the classical solution. Let y(x,t) represent the displacement of the beam as a function of space and time. The free, transverse vibration of the beam is governed by the equation:

( ) ( ) 2

2

2

2

2

2

t

)t,x(yx)t,x(yx

dxEIx ∂

∂ρ−=

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

∂∂

∂ (2)

Equation (2) neglects rotary inertia and shear deformation. Note that it is also independent of the boundary conditions, which are applied as constraint equations. Assume that the solution of equation (1) is separable in time and space.

)t(f)x(Y)t,x(y = (3)

( ) ( ) 2

2

2

2

2

2

t

)t(f)x(Yx)t(f)x(Yx

xEIx ∂

∂ρ−=

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

∂ (4a)

( ) ( ) 2

2

2

2

2

2

t

)t(fx)x(Y)x(Yx

xEIx

)t(f∂

∂ρ−=

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

∂ (4b)

The partial derivatives change to ordinary derivatives.

( ) 2

2

2

2

2

2

td

)t(fdx)x(Y)x(Ydx

dEIdx

d)t(f ρ−=⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

(5)

Page 3: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

3

( ) 2

2

2

2

2

2

td

)t(fd)t(f

1)x(Ydx

dEIdx

dx)x(Y

1−=

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

ρ (6)

The left-hand side of equation (6) depends on x only. The right hand side depends on t only. Both x and t are independent variables. Thus equation (6) only has a solution if both sides are constant. Let 2ω be the constant.

( )2

2

2

2

2

2

2

td

)t(fd)t(f

1)x(Ydx

dEIdx

dx)x(Y

1ω=−=

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

ρ (7)

Equation (7) yields two independent equations.

0)x(Y)x()x(Ydx

d)x(EIdx

d 22

2

2

2=ωρ−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

(8)

0)t(f)t(ftd

d 22

2=ω+ (9)

Equation (8) is a homogeneous, forth order, ordinary differential equation. The weighted residual method is applied to equation (8). This method is suitable for boundary value problems. An alternative method would be the energy method. The energy method is introduced in Appendix A. There are numerous techniques for applying the weighted residual method. Specifically, the Galerkin approach is used in this tutorial. The differential equation (8) is multiplied by a test function )x(φ . Note that the test function )x(φ must satisfy the homogeneous essential boundary conditions. The essential boundary conditions are the prescribed values of Y and its first derivative. The test function is not required to satisfy the differential equation, however. The product of the test function and the differential equation is integrated over the domain. The integral is set equation to zero.

0dx)x(Y)x()x(Ydx

d)x(EIdx

d)x( 22

2

2

2=

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

ωρ−⎥⎥⎦

⎢⎢⎣

⎡φ∫ (10)

Page 4: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

4

The test function )x(φ can be regarded as a virtual displacement. The differential equation in the brackets represents an internal force. This term is also regarded as the residual. Thus, the integral represents virtual work, which should vanish at the equilibrium condition. Define the domain over the limits from a to b. These limits represent the boundary points of the entire beam.

0dx)x(Y)x()x(Ydx

d)x(EIdx

d)x(b

a2

2

2

2

2=

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

ωρ−⎥⎥⎦

⎢⎢⎣

⎡φ∫ (11)

{ } 0dx)x(Y)x()x(dx)x(Ydx

d)x(EIdx

d)x(b

a2b

a 2

2

2

2=ωρφ−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡φ ∫∫

(12)

Integrate the first integral by parts.

{ } 0dx)x(Y)x()x(

dx)x(Ydx

d)x(EIdxd)x(

dxddx)x(Y

dx

d)x(EIdxd)x(

dxd

b

a2

b

a 2

2b

a 2

2

=ωρφ−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎭⎬⎫

⎩⎨⎧ φ−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡φ

∫∫

(13)

{ } 0dx)x(Y)x()x(

dx)x(Ydx

d)x(EIdxd)x(

dxd)x(Y

dx

d)x(EIdxd)x(

b

a2

b

a 2

2b

a2

2

=ωρφ−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎭⎬⎫

⎩⎨⎧ φ−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡φ

(14)

Page 5: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

5

{ } 0dx)x(Y)x()x(

dx)x(Ydx

d)x(EIdxd)x(

dxd)x(Y

dx

d)x(EIdxd)x(

b

a2

b

a 2

2b

a2

2

=ωρφ−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎭⎬⎫

⎩⎨⎧ φ−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡φ

(15)

Integrate by parts again.

{ } 0dx)x(Y)x()x(dx)x(Ydx

d)x(EI)x(dx

d

dx)x(Ydx

d)x(EI)x(dxd

dxd)x(Y

dx

d)x(EIdxd)x(

b

a2b

a 2

2

2

2

b

a 2

2b

a2

2

=ωρφ−⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎥⎥⎦

⎢⎢⎣

⎡φ+

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡⎥⎦⎤

⎢⎣⎡ φ−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡φ

∫∫

(16)

{ } 0dx)x(Y)x()x(dx)x(Ydx

d)x(EI)x(dx

d

)x(Ydx

d)x(EI)x(dxd)x(Y

dx

d)x(EIdxd)x(

b

a2b

a 2

2

2

2

b

a2

2b

a2

2

=ωρφ−⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎥⎥⎦

⎢⎢⎣

⎡φ+

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡⎥⎦⎤

⎢⎣⎡ φ−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡φ

∫∫

(17)

The essential boundary conditions for a cantilever beam are

0)a(Y = (18)

0dxdY

ax=

= (19)

Page 6: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

6

Thus, the test functions must satisfy

0)a( =φ (20)

0dxd

ax=

φ

= (21)

The natural boundary conditions are

0)x(Ydx

d)x(EIdxd

bx2

2=

⎥⎥⎦

⎢⎢⎣

=

(22)

0)x(Ydx

d)x(EIbx

2

2=

⎥⎥⎦

⎢⎢⎣

=

(23)

Equation (23) requires

0)x(dx

d)x(EIbx

2

2=

⎥⎥⎦

⎢⎢⎣

⎡φ

=

(24)

Apply equations (20), (21), and (24) to equation (17). The result is

{ } 0dx)x(Y)x()x(dx)x(Ydx

d)x(EI)x(dx

d b

a2b

a 2

2

2

2=ωρφ−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎥⎥⎦

⎢⎢⎣

⎡φ ∫∫

(25)

Note that equation (25) would also be obtained for other simple boundary condition cases. Now consider that the beam consists of number of segments, or elements. The elements are arranged geometrically in series form. Furthermore, the endpoints of each element are called nodes.

Page 7: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

7

The following equation must be satisfied for each element.

{ } 0dx)x(Y)x()x(dx)x(Ydx

d)x(EI)x(dx

d 22

2

2

2=ωρφ−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎥⎥⎦

⎢⎢⎣

⎡φ ∫∫

(26) Furthermore, consider that the stiffness and mass properties are constant for a given element.

0dx)x(Y)x(dx)x(Ydx

d)x(dx

dEI 22

2

2

2=φωρ−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎥⎥⎦

⎢⎢⎣

⎡φ ∫∫

(27)

Now express the displacement function Y(x) in terms of nodal displacements 1jy − and jy

as well as the rotations 1j−θ and jθ .

hjxh)1j(,hLhLyLyL)x(Y 1j41j3j21j1 <<−θ+θ++= −−− (28)

Note that h is the element length. In addition, each L coefficients is a function of x.

Now introduce a nondimensional natural coordinate ξ .

h/xj−=ξ (29)

Note that h is the segment length.

The displacement function becomes.

10,hLyLhLyL)(Y 1j4j31j21j1 <ξ<θ++θ+=ξ −−− (30) The slope equation is

10,h'Ly'Lh'Ly'L)('Y 1j4j31j21j1 <ξ<θ++θ+=ξ −−− (31)

The displacement function is represented terms of natural coordinates in Figure 2.

Page 8: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

8

Figure 2.

Represent each L coefficient in terms of a cubic polynomial.

34i

23i2i1ii ccccL ξ+ξ+ξ+= , i =1, 2, 3, 4

(32)

{ }{ }{ }{ } 10,hcccc

ycccc

hcccc

ycccc)(Y

j3

442

342414

j3

432

332313

1j3

422

232212

1j3

412

312111

<ξ<θξ+ξ+ξ++

ξ+ξ+ξ++

θξ+ξ+ξ++

ξ+ξ+ξ+=ξ

(33)

x (j-1) h j h

1jy − jyY(x)

ξ

1j−θ

h

Page 9: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

9

{ }{ }{ }{ } 10,hc3c2c

yc3c2c

hc3c2c

yc3c2c)('Y

j2

443424

j2

433323

1j2

422322

1j2

413121

<ξ<θξ+ξ++

ξ+ξ++

θξ+ξ++

ξ+ξ+=ξ

(34)

Solve for the coefficients jic . The constraint equations are

jy)0(Y = (35)

1jy)1(Y −= (36)

jh)0('Y θ−= (37)

1jh)1('Y −θ−= (38)

Evaluate the displacement at .0=ξ

{ } { } { } { } j14j131j121j11 hcychcyc)0(Y θ++θ+= −− (39)

Boundary condition (35) requires

{ } { } { } { } jj14j131j121j11 yhcychcyc =θ++θ+ −− (39)

0c 11 = (40)

0c 12 = (41)

1c 13 = (42)

0c 14 = (43)

Page 10: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

10

The displacement equations becomes

{ }{ }{ }{ } 10,hccc

yccc1

hccc

yccc)(Y

j3

442

3424

j3

432

3323

1j3

422

2322

1j3

412

3121

<ξ<θξ+ξ+ξ+

ξ+ξ+ξ++

θξ+ξ+ξ+

ξ+ξ+ξ+=ξ

(44)

The slope equations becomes

{ }

{ }{ }{ } 10,hc3c2c

yc3c2c

hc3c2c

yc3c2c)('Y

j2

443424

j2

433323

1j2

422322

1j2

413121

<ξ<θξ+ξ++

ξ+ξ++

θξ+ξ++

ξ+ξ+=ξ

(45)

Evaluate the slope at .0=ξ

{ } { } { } { } j24j231j221j21 hcychcyc)0('Y θ++θ+= −− (46)

Boundary condition (37) requires.

{ } { } { } { } jj24j231j221j21 hhcychcyc θ−=θ++θ+ −− (47)

0c12 = (48)

0c 22 = (49)

0c32 = (50)

1c 24 −= (51)

Page 11: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

11

The displacement equations becomes

{ }

{ }{ }{ } 10,hcc

ycc1

hcc

ycc)(Y

j3

442

34

j3

432

33

1j3

422

23

1j3

412

31

<ξ<θξ+ξ+ξ−+

ξ+ξ++

θξ+ξ+

ξ+ξ+=ξ

(52)

The slope equations becomes

{ } { }{ } { }

10

,hc3c21yc3c2

hc3c2yc3c2)('Y

j2

4434j2

4333

1j2

42321j2

1413

<ξ<

θξ+ξ+−+ξ+ξ+

θξ+ξ+ξ+ξ=ξ −−

(53)

{ } { }{ } { } j4434j4333

1j42321j4113hcc1ycc1

hccycc)1(Y

θ++−++++

θ+++= −−

(54)

Boundary condition (36) requires

{ } { }{ } { } 1jj4434j4333

1j42321j4113yhcc1ycc1

hccycc

−−

=θ++−++++

θ+++

(55)

1cc 4131 =+ (56)

1cc 4131 +−= (57)

0cc 4232 =+ (58)

4232 cc −= (59)

Page 12: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

12

0cc1 4333 =++ (60)

4333 c1c −−= (61)

0cc1 4434 =++− (62)

4434 c1c −= (63)

The displacement equation becomes

[ ]{ }[ ]{ }

[ ]{ }[ ]{ } 10,hcc1

ycc11

hcc

ycc1)(Y

j3

442

44

j3

432

43

1j3

422

42

1j3

412

41

<ξ<θξ+ξ−+ξ−+

ξ+ξ−−++

θξ+ξ−+

ξ+ξ−+=ξ

(64)

The slope equation becomes

[ ]{ }{ }[ ]{ }

[ ]{ } 10,hc3c121

yc3c12

hc3c2

yc3c12)('Y

j2

4444

j2

4343

1j2

4242

1j2

4141

<ξ<θξ+ξ−+−+

ξ+ξ−−+

θξ+ξ−+

ξ+ξ−+=ξ

(65)

Page 13: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

13

The slope equation becomes

[ ]{ }{ }

[ ]{ }[ ]{ } j4444

j4343

1j4242

1j4141

hc3c121

yc3c12

hc3c2

yc3c12)1('Y

θ+−+−+

+−−+

θ+−+

+−+=

(66) Boundary condition (38) requires

[ ]{ }

{ }[ ]{ }

[ ]{ } 1jj4444

j4343

1j4242

1j4141

hhc3c121

yc3c12

hc3c2

yc3c12

θ−=θ+−+−+

+−−+

θ+−+

+−+

(67)

[ ]{ }

{ }[ ]{ }

[ ]{ } 1jj4444

j4343

1j4242

1j4141

hhc3c221

yc3c22

hc3c2

yc3c22

θ−=θ+−+−+

+−−+

θ+−+

+−+

(68)

0c2 41 =+ (69)

2c 41 −= (70)

1c 42 −= (71)

0c2 43 =+− (72)

2c 43 = (73)

Page 14: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

14

0c1 44 =+ (74)

1c44 −= (75)

The displacement equation becomes

( )[ ]{ }

( )[ ]{ }[ ]{ }

( )[ ] ( ){ } 10,h111

y2211

h11

y221)(Y

j32

j32

1j32

1j32

<ξ<θξ−+ξ−−+ξ−+

ξ+ξ−−++

θξ−ξ−−+

ξ−ξ−−+=ξ

(76)

{ } { }{ } { } 10,h2y231

hy23)(Y

j32

j32

1j32

1j32

<ξ<θξ−ξ+ξ−+ξ+ξ−+

θξ−ξ+ξ−ξ+=ξ −−

(77)

Recall

h/xj−=ξ (78) Thus

h/dxd −=ξ (79a)

dxdh =ξ− (79b)

h/1dxd

−=ξ (80)

Note

ξξ

=dd

dxd

dxd (81)

Page 15: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

15

{ } { }{ } { }

10,h/xj,jhxh)1j(

,h2y231

hy23)x(Y

j32

j32

1j32

1j32

<ξ<−=ξ≤≤−

θξ−ξ+ξ−+ξ+ξ−+

θξ−ξ+ξ−ξ+= −−

(82)

{ } [ ] [ ]{[ ] [ ] }

10,h/xj,jhxh)1j(

,h341y661

h32y66h/1)x(Ydxd

j2

j2

1j2

1j2

<ξ<−=ξ≤≤−

θξ−ξ+−+ξ+ξ−+

θξ−ξ+ξ−ξ−= −−

(83)

{ } [ ] [ ]{[ ] [ ] }

10,h/xj,jhxh)1j(

,h64y126

h62y126h/1)x(Ydx

d

jj

1j1j2

2

2

<ξ<−=ξ≤≤−

θξ−+ξ+−+

θξ−+ξ−= −−

(84)

Now Let

h/xj,jhxh)1j(,aL)x(Y T −=ξ≤≤−= (85)

where

321 23L ξ−ξ= (86)

32

2L ξ−ξ= (87)

323 231L ξ+ξ−= (88)

32

4 2L ξ−ξ+ξ−= (89)

Page 16: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

16

[ ]Tjj1j1j hyhya θθ= −− (90)

The derivative terms are

h/xj,jhxh)1j(,a'Lh1)x(Y

dxd T −=ξ≤≤−⎟⎟

⎞⎜⎜⎝

⎛ −= (91)

h/xj,jhxh)1j(,a"L

h

1)x(Ydx

d T22

2−=ξ≤≤−⎟⎟

⎞⎜⎜⎝

⎛= (92)

Note that primes indicate derivatives with respect to .ξ In summary.

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

ξ−ξ+ξ−

ξ+ξ−ξ−ξ

ξ−ξ

=

32

32

32

32

2231

23

L

(90)

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

ξ−ξ+−

ξ+ξ−ξ−ξ

ξ−ξ

=

2

2

2

2

34166

3266

'L

(91)

⎥⎥⎥⎥

⎢⎢⎢⎢

ξ−ξ+−

ξ−ξ−

=

6412662

126

"L

(92)

Page 17: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

17

Recall

0dx)x(Y)x(dx)x(Ydx

d)x(dx

dEI 22

2

2

2=φωρ−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎥⎥⎦

⎢⎢⎣

⎡φ ∫∫

(93)

The essence of the Galerkin method is that the test function is chosen as

)x(Y)x( =φ (94) Thus

[ ] 0dx)x(Ydx)x(Ydx

d)x(Ydx

dEI 222

2

2

2=ωρ−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎥⎥⎦

⎢⎢⎣

⎡∫∫

(95)

Change the integration variable using equation (79b). Also, apply the integration limits.

[ ] 0d)x(Yhd)x(Ydx

d)x(Ydx

dEIh1

0221

0 2

2

2

2=ξωρ−ξ

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎥⎥⎦

⎢⎢⎣

⎡∫∫

(96)

[ ][ ] 0daLaLh

da"Lh

1a"Lh

1EIh

1

0TT2

1

0T

2T

2

=ξωρ−

ξ⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

(97)

Page 18: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

18

[ ] [ ]{ }

[ ][ ] 0daLaLh

da"La"LEIh

1

1

0TT2

1

0TT

3

=ξωρ−

ξ⎟⎟⎠

⎞⎜⎜⎝

(98)

[ ] [ ]{ }

[ ][ ] 0daLLah

da"L"LaEIh

1

1

0TT2

1

0TT

3

=ξωρ−

ξ⎟⎟⎠

⎞⎜⎜⎝

(99)

{ } { } 0daLLahda"L"LaEIh

1 1

0TT21

0TT

3 =ξωρ−ξ⎟⎟⎠

⎞⎜⎜⎝

⎛∫∫

(100)

{ } { } 0adLLhd"L"Lh

EIa1

0T21

0T

3T =

⎭⎬⎫

⎩⎨⎧

ξωρ−ξ⎟⎟⎠

⎞⎜⎜⎝

⎛∫∫ (101)

{ } { } 0dLLhd"L"Lh

EI 1

0T21

0T

3 =ξωρ−ξ⎟⎟⎠

⎞⎜⎜⎝

⎛∫∫ (102)

For a system of n elements,

n,...,2,1j,0MK j2

j ==ω− (103) where

{ } ξ⎟⎟⎠

⎞⎜⎜⎝

⎛= ∫ d"L"L

h

EIK1

0T

3j (104)

Page 19: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

19

{ }∫ ξρ=1

0T

j dLLhM (105)

[ ]ξ−ξ+−ξ−ξ−

⎥⎥⎥⎥

⎢⎢⎢⎢

ξ−ξ+−

ξ−ξ−

=

6412662126

6412662

126

"L"L T

(106)

( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( )

( )( ) ( )( )( )( ) ⎥

⎥⎥⎥

⎢⎢⎢⎢

ξ−ξ−ξ−ξ+−ξ+−ξ+−

ξ−ξ−ξ+−ξ−ξ−ξ−ξ−ξ−ξ+−ξ−ξ−ξ−ξ−ξ−

=

646464126126126

64621266262626412612612662126126126

"L"L T

(107)

Note that only the upper triangular components are shown due to symmetry.

( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( )

( )( ) ( )( )( )( ) ⎥

⎥⎥⎥

⎢⎢⎢⎢

ξ−ξ−ξ−ξ+−ξ+−ξ+−

ξ−ξ−ξ+−ξ−ξ−ξ−ξ−ξ−ξ+−ξ−ξ−ξ−ξ−ξ−

=

646464126126126

64621266262626412612612662126126126

"L"L T

(108)

Page 20: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

20

( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( )

( )( ) ( )( )( )( ) ⎥

⎥⎥⎥

⎢⎢⎢⎢

ξ−ξ−ξ−ξ+−ξ+−ξ+−

ξ−ξ−ξ+−ξ−ξ−ξ−ξ−ξ−ξ+−ξ−ξ−ξ−ξ−ξ−

=

646464126126126

64621266262626412612612662126126126

"L"L T

(109)

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

ξ+ξ−

ξ−ξ+−ξ+ξ−

ξ+ξ−ξ−ξ+−ξ+ξ−

ξ+ξ−ξ−ξ+−ξ+ξ−ξ+ξ−

=

2

22

222

2222

T

36481672842414414436

36368726012362447284241441443672601214414436

"L"L

(110)

ξ

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

ξ+ξ−

ξ−ξ+−ξ+ξ−

ξ+ξ−ξ−ξ+−ξ+ξ−

ξ+ξ−ξ−ξ+−ξ+ξ−ξ+ξ−

⎟⎟⎠

⎞⎜⎜⎝

=

∫ d

36481672842414414436

36368726012362447284241441443672601214414436

h

EI

K

1

02

22

222

2222

3

j

(111)

Page 21: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

21

1

032

3232

323232

32323232

3

j

122416244224487236

1218824301212124244224487236243012487236

h

EI

K

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

ξ+ξ−ξ

ξ−ξ+ξ−ξ+ξ−ξ

ξ+ξ−ξξ−ξ+ξ−ξ+ξ−ξ

ξ+ξ−ξξ−ξ+ξ−ξ+ξ−ξξ+ξ−ξ

⎟⎟⎠

⎞⎜⎜⎝

=

(112)

⎥⎥⎥⎥

⎢⎢⎢⎢

+−−+−+−

+−−+−+−+−−+−+−+−

⎟⎟⎠

⎞⎜⎜⎝

=

122416244224487236

1218824301212124244224487236243012487236

h

EI

K

3

j

(113)

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−

⎟⎟⎠

⎞⎜⎜⎝

⎛=

4612

264612612

h

EIK 3j

(114)

Page 22: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

22

[ ]32323232

32

32

32

32

T

223123

2231

23

LL

ξ−ξ+ξ−ξ+ξ−ξ−ξξ−ξ

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

ξ−ξ+ξ−

ξ+ξ−ξ−ξ

ξ−ξ

=

(115)

( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )

( ) ( )( )( ) ⎥

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

ξ−ξ+ξ−

ξ−ξ+ξ−ξ+ξ−ξ+ξ−

ξ−ξ+ξ−ξ−ξξ+ξ−ξ−ξξ−ξ

ξ−ξ+ξ−ξ−ξξ+ξ−ξ−ξξ−ξξ−ξξ−ξ

=

232

3232232

32323232232

323232323232232

T

2

2231231

2231

223231232323

LL

(116)

⎥⎥⎥⎥

⎢⎢⎢⎢

=

44a34a33a24a23a22a14a13a12a11a

LL T

(117)

654 412911a ξ+ξ−ξ= (118)

654 25312a ξ+ξ−ξ= (119)

65432 41292313a ξ−ξ+ξ−ξ−ξ= (120)

Page 23: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

23

6543 278314a ξ+ξ−ξ+ξ−= (121)

654 222a ξ+ξ−ξ= (122)

65432 25323a ξ−ξ+ξ−ξ−ξ= (123)

6543 3324a ξ+ξ−ξ+ξ−= (124)

65432 412946133a ξ+ξ−ξ+ξ+ξ−= (125)

65432 2782234a ξ−ξ+ξ−ξ+ξ+ξ−= (126)

65432 46444a ξ+ξ−ξ+ξ−ξ= (127) Recall

{ }∫ ξρ=1

0T

j dLLhM (128)

{ } ξξ+ξ−ξρ= ∫ d4129h,M1

0654

11j (129)

1

0

76511j 7

4259h,M ⎥⎦

⎤⎢⎣⎡ ξ+ξ−ξρ= (130)

⎥⎦⎤

⎢⎣⎡ +−ρ=

742

59h,M 11j

(131)

⎟⎠⎞

⎜⎝⎛ρ=

3513h,M 11j

(132)

⎟⎠⎞

⎜⎝⎛ρ=

420156h,M 11j

(133)

Page 24: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

24

{ } ξξ+ξ−ξρ= ∫ d253h,M1

0654

12j (134)

1

0

76512j 7

265

53h,M ⎥⎦

⎤⎢⎣⎡ ξ+ξ−ξρ= (135)

⎥⎦⎤

⎢⎣⎡ +−ρ=

73

65

53h,M 12j

(136)

⎟⎠⎞

⎜⎝⎛ρ=

21011h,M 12j

(137)

⎟⎠⎞

⎜⎝⎛ρ=

42022h,M 12j

(138)

{ } ξξ−ξ+ξ−ξ−ξρ= ∫ d412923h,M1

065432

13j (139)

1

0

7654313j 7

4259

21h,M ⎥

⎤⎢⎣

⎡ξ⎟⎠⎞

⎜⎝⎛−ξ+ξ⎟

⎠⎞

⎜⎝⎛−ξ⎟

⎠⎞

⎜⎝⎛−ξρ= (140)

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛−+⎟

⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛−ρ=

742

59

211h,M 13j

(141)

⎟⎠⎞

⎜⎝⎛ρ=

709h,M 13j

(142)

⎟⎠⎞

⎜⎝⎛ρ=

42054h,M 13j

(143)

Page 25: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

25

{ } ξξ+ξ−ξ+ξ−ρ= ∫ d2783h,M1

06543

14j (139)

1

0

765414j 7

267

58

43h,M ⎥

⎤⎢⎣

⎡ξ⎟⎠⎞

⎜⎝⎛+ξ⎟

⎠⎞

⎜⎝⎛−ξ⎟

⎠⎞

⎜⎝⎛+ξ⎟

⎠⎞

⎜⎝⎛−ρ= (140)

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛−ρ=

72

67

58

43h,M 14j

(141)

⎟⎠⎞

⎜⎝⎛ −ρ=

42013h,M 14j

(142)

{ } ξξ+ξ−ξρ= ∫ d2h,M1

0654

22j (143)

1

0

76522j 7

131

51h,M ⎥

⎤⎢⎣

⎡ξ⎟⎠⎞

⎜⎝⎛+ξ⎟

⎠⎞

⎜⎝⎛−ξ⎟

⎠⎞

⎜⎝⎛ρ= (144)

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛ρ=

71

31

51h,M 22j

(145)

⎟⎠⎞

⎜⎝⎛ρ=105

1h,M 22j (146)

⎟⎠⎞

⎜⎝⎛ρ=

4204h,M 22j

(147)

{ } ξξ−ξ+ξ−ξ−ξρ= ∫ d253h,M1

065432

23j (148)

Page 26: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

26

1

0

7654323j 7

265

53

41

31h,M ⎥

⎤⎢⎣

⎡ξ⎟⎠⎞

⎜⎝⎛−ξ⎟

⎠⎞

⎜⎝⎛+ξ⎟

⎠⎞

⎜⎝⎛−ξ⎟

⎠⎞

⎜⎝⎛−ξ⎟

⎠⎞

⎜⎝⎛ρ=

(149)

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛ρ=

72

65

53

41

31h,M 23j

(150)

⎟⎠⎞

⎜⎝⎛ρ=

42013h,M 23j

(151)

{ } ξξ+ξ−ξ+ξ−ρ= ∫ d33h,M1

06543

24j (152)

1

0

765424j 7

121

53

41h,M ⎥

⎤⎢⎣

⎡ξ⎟⎠⎞

⎜⎝⎛+ξ⎟

⎠⎞

⎜⎝⎛−ξ⎟

⎠⎞

⎜⎝⎛+ξ⎟

⎠⎞

⎜⎝⎛−ρ= (153)

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛−ρ=

71

21

53

41h,M 24j

(154)

⎟⎠⎞

⎜⎝⎛ −ρ=

4203h,M 24j

(155)

{ } ξξ+ξ−ξ+ξ+ξ−ρ= ∫ d4129461h,M1

065432

33j (156)

1

0

7654333j 7

42592h,M ⎥

⎤⎢⎣

⎡ξ⎟⎠⎞

⎜⎝⎛+ξ−ξ⎟

⎠⎞

⎜⎝⎛+ξ+ξ−ξρ= (157)

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛+−⎟

⎠⎞

⎜⎝⎛++−ρ=

742

59121h,M 33j

(158)

Page 27: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

27

⎟⎠⎞

⎜⎝⎛ρ=

420156h,M 33j

(159)

{ } ξξ−ξ+ξ−ξ+ξ+ξ−ρ= ∫ d27822h,M1

065432

34j (160)

1

0

76543234j 7

267

58

21

32

21h,M ⎥

⎤⎢⎣

⎡ξ⎟⎠⎞

⎜⎝⎛−ξ⎟

⎠⎞

⎜⎝⎛+ξ⎟

⎠⎞

⎜⎝⎛−ξ⎟

⎠⎞

⎜⎝⎛+ξ⎟

⎠⎞

⎜⎝⎛+ξ⎟

⎠⎞

⎜⎝⎛−ρ=

(161)

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛−ρ=

72

67

58

21

32

21h,M 34j

(162)

⎟⎠⎞

⎜⎝⎛ −ρ=

42022h,M 34j

(163)

{ } ξξ+ξ−ξ+ξ−ξρ= ∫ d464h,M1

065432

44j (164)

1

0

7654344j 7

132

56

31h,M ⎥

⎤⎢⎣

⎡ξ⎟⎠⎞

⎜⎝⎛+ξ⎟

⎠⎞

⎜⎝⎛−ξ⎟

⎠⎞

⎜⎝⎛+ξ−ξ⎟

⎠⎞

⎜⎝⎛ρ= (165)

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛+−⎟

⎠⎞

⎜⎝⎛ρ=

71

32

561

31h,M 44j

(166)

⎟⎠⎞

⎜⎝⎛ρ=

4204h,M 44j

(167)

Page 28: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

28

Recall

{ } ξ⎟⎟⎠

⎞⎜⎜⎝

⎛= ∫ d"L"L

h

EIK1

0T

3j (168)

{ }∫ ξρ=1

0T

j dLLhM (169)

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−

⎟⎟⎠

⎞⎜⎜⎝

⎛=

4612

264612612

h

EIK 3j

(170)

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−

⎟⎠⎞

⎜⎝⎛ ρ

=

4221563134

135422156

420hM j

(171) Example 1 Model the cantilever beam in Figure 1 as a single element using the mass and stiffness matrices in equations (170) and (171). The model consists of one element and two nodes as shown in Figure 3.

Figure 3. Note that h=L.

N1 N2

E1

Page 29: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

29

The eigen problem is

⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−−−

ω⎟⎠⎞

⎜⎝⎛ ρ

=

⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−

−−

⎟⎟⎠

⎞⎜⎜⎝

2

2

1

1

2

2

2

1

1

3

hyhy

422313221561354313422

135422156

420L

hyhy

4626612612

2646612612

LEI

(172)

⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−−−

λ=

⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−

−−

2

21

1

2

21

1

hyhy

422313221561354313422

135422156

hyhy

4626612612

2646612612

(173)

where

24

EI420L

ω⎟⎟⎠

⎞⎜⎜⎝

⎛ ρ=λ (174a)

λ⎥⎥⎦

⎢⎢⎣

ρ=ω 4L

EI420 (174b)

The boundary conditions at node 1 are

0y1 = (175)

01 =θ (176)

The first two columns and the first two rows of each matrix in equation (173) can thus be struck out.

Page 30: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

30

The resulting eigen equation is thus

⎥⎦

⎤⎢⎣

⎡θ⎥

⎤⎢⎣

⎡−

−λ=⎥

⎤⎢⎣

⎡θ⎥

⎤⎢⎣

⎡−

22

22

hy

42222156

hy

46612

(177) The eigenvalues are found using the method in Reference 2.

⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡λλ

8846.2029715.0

21 (178a)

⎥⎦

⎤⎢⎣

⎡=

⎥⎥⎦

⎢⎢⎣

λλ

6984.11724.0

2

1 (178b)

The finite element results for the natural frequencies are thus

⎥⎦

⎤⎢⎣

ρ=⎥

⎤⎢⎣

⎡ωω

6984.11724.0

LEI420

42

1 (179)

⎥⎦

⎤⎢⎣

ρ=⎥

⎤⎢⎣

⎡ωω

807.345331.3

L

EI42

1 (180)

The finite element results are compared to the classical results in Table 1.

Table 1. Natural Frequency Comparison, 1 Element

Index

Finite Element Model

EIL4ρ

ω

Classical Solution

EIL4ρ

ω

1 3.5331 3.5160 2 34.807 22.034

Page 31: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

31

The classical results are taken from Reference 3. The finite element results thus over-predicted the natural frequencies. Nevertheless, good agreement is obtained for the first frequency. Example 2 Model the cantilever beam in Figure 1 with two elements using the mass and stiffness matrices in equations (170) and (171). Let each element have equal length. The model consists of two elements and three nodes as shown in Figure 4.

Figure 4.

There are several keys to this problem. One is that h=L/2. The other is that node N2 receives mass and stiffness contributions from both elements E1 and E2. Thus, the resulting global matrices have dimension 6 x 6 prior to the application of the boundary conditions. The local stiffness matrix for element 1 is

( )⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−

−−

⎟⎟

⎜⎜

2h2y1h

1y

4626612612

2646612612

32/L

EI

(181) The displacement vector is also shown in equation (181) for reference.

N1 N2 N3

E1 E2

Page 32: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

32

The local stiffness matrix for element 2 is

( )⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−

−−

⎟⎟⎠

⎞⎜⎜⎝

3

3

2

2

3

hyhy

4626612612

2646612612

2/LEI (182)

The local mass matrix for element 1 is

( )

⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−−−

⎟⎠⎞

⎜⎝⎛ ρ

2

2

1

1

hyhy

422313221561354313422

135422156

4202/L (183)

The local mass matrix for element 2 is

( )

⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−−−

⎟⎠⎞

⎜⎝⎛ ρ

3

3

2

2

hyhy

422313221561354313422

135422156

4202/L (184)

The global eigen problem assembled from the local matrices is

( )

( )

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

θ

θ

θ

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

−−−−−−−−

−−

ω⎟⎠⎞

⎜⎝⎛ ρ

=

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

θ

θ

θ

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

−−−−

−−−−

−−

⎟⎟⎠

⎞⎜⎜⎝

3

3

2

2

1

1

2

3

3

2

2

1

1

3

hy

hyhy

422313002215613540031380313

1354031213540031342200135422156

4202/L

hy

hyhy

46260061261200

26802661202461200264600612612

2/LEI

(185)

Page 33: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

33

Again, the boundary conditions at node 1 are

0y1 = (186)

01 =θ (187)

The first two columns and the first two rows of each matrix in equation (185) can thus be struck out.

( )( )

⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−−−

ω⎟⎠⎞

⎜⎝⎛ ρ

=

⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−

−−

⎟⎟⎠

⎞⎜⎜⎝

3

3

2

2

2

3

3

2

2

3

hy

hy

42231322156135431380

13540312

4202/L

hy

hy

4626612612

2680612024

2/LEI

(188)

Let

( )

( ) ⎟⎟⎠

⎞⎜⎜⎝

ω⎟⎠⎞

⎜⎝⎛ ρ

3

2

2/LEI

4202/L

(189)

( )( ) 23

EI4202/L2/L

ω⎟⎟⎠

⎞⎜⎜⎝

⎛ ρ=λ (190)

24

EI6720L

ω⎟⎟⎠

⎞⎜⎜⎝

⎛ ρ=λ (191a)

λ⎥⎥⎦

⎢⎢⎣

ρ=ω 4L

EI6720 (191b)

Page 34: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

34

The eigen problem in equation (188) becomes

⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−−−

λ=

⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−

−−

3

3

2

2

3

3

2

2

hy

hy

42231322156135431380

13540312

hy

hy

4626612612

2680612024

(192)

The eigenvalues are found using the method in Reference 2. Equation (192) yields four eigenvalues.

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎢⎢⎢⎢

λλλλ

0810.784056.0073481.0

0018414.0

4

3

2

1

(193a)

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

λλλλ

6610.291682.027107.0042912.0

4

3

2

1

(193b)

The finite element results for the first two natural frequencies are thus

⎥⎦

⎤⎢⎣

ρ=⎥

⎤⎢⎣

⎡ωω

27107.0042912.0

LEI6720

42

1 (194)

⎥⎦

⎤⎢⎣

ρ=⎥

⎤⎢⎣

⎡ωω

221.225177.3

LEI

42

1 (195)

Page 35: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

35

The finite element results are compared to the classical results in Table 2.

Table 2. Natural Frequency Comparison, 2 Elements

Index

Finite Element Model

EIL4ρ

ω

Classical Solution

EIL4ρ

ω

1 3.5177 3.5160 2 22.221 22.034

Excellent agreement is obtained for the first two roots. The next step would be to solve for the eigenvectors, which represent the mode shapes. A greater number of elements would be required to obtain accurate mode shapes, however. Example 3 Repeat example 1 with 16 elements. Let each element have equal length. The global stiffness and mass matrix are omitted for brevity. The eigenvalue scale factor is

λ⎥⎥

⎢⎢

ρ=ω 4

4

LEI)16(420 (196)

The model yields 32 eigenvalues. The first four are

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎢⎢⎢⎢

λλλλ

0.00053121 0.0001383

005-1.7639e 007-4.4913e

4

3

2

1

(197)

Page 36: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

36

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

λλλλ

0.023048 0.01176

0.0041999 0.00067017

4

3

2

1

(198)

⎥⎥⎥⎥

⎢⎢⎢⎢

ρ=

⎥⎥⎥⎥

⎢⎢⎢⎢

ωωωω

0.023048 0.01176

0.0041999 0.00067017

LEI)16(420

43 4

42

1

(199)

⎥⎥⎥⎥

⎢⎢⎢⎢

ρ=

⎥⎥⎥⎥

⎢⎢⎢⎢

ωωωω

92.120698.61035.22

5160.3

4L

EI

4321

(200)

The finite element results are compared to the classical results in Table 3.

Table 3. Natural Frequency Comparison, 16 Elements

Index

Finite Element Model

EIL4ρ

ω

Classical Solution

EIL4ρ

ω

1 3.5160 3.5160 2 22.035 22.034 3 61.698 61.697 4 120.92 120.90

Excellent agreement is obtained for the first four roots. The corresponding mode shapes are shown in Figures 5 through 8. Note that each mode shape is multiplied by an arbitrary amplitude scale factor. The absolute amplitude scale is thus omitted from the plots.

Page 37: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

37

0

0 L

x

Dis

plac

emen

tCANTILEVER BEAM, 16 ELEMENT MODEL, MODE 1

Figure 5.

0

0 L

x

Dis

plac

emen

t

CANTILEVER BEAM, 16 ELEMENT MODEL, MODE 2

Figure 6.

Page 38: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

38

0

0 L

x

Dis

plac

emen

tCANTILEVER BEAM, 16 ELEMENT MODEL, MODE 3

Figure 7.

0

0 L

x

Dis

plac

emen

t

CANTILEVER BEAM, 16 ELEMENT MODEL, MODE 4

Figure 8.

Page 39: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

39

Additional examples are given in Appendix C.

Reference 1. L. Meirovitch, Computational Methods in Structural Dynamics, Sijthoff & Noordhoff,

The Netherlands, 1980. 2. T. Irvine, The Generalized Eigenvalue Problem, 1999. 3. W. Thomson, Theory of Vibration with Applications, Second Edition, Prentice-Hall,

New Jersey, 1981. 4. K. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, New

Jersey, 1982.

Page 40: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

40

APPENDIX A

Energy Method

The total strain energy P of a beam is

∫ ⎟⎟

⎜⎜

⎛=

L0

dx2

2dx

y2dEI21P (A-1)

The total kinetric energy T of a beam is

[ ]∫ ρω=L0

22n dxy

21T (A-2)

Again let

h/xj,jhxh)1j(,aL)x(Y T −=ξ≤≤−= (A-3)

h/xj,jhxh)1j(,a'Lh1)x(Y

dxd T −=ξ≤≤−⎟⎟

⎞⎜⎜⎝

⎛ −= (A-4)

h/xj,jhxh)1j(,a"L

h

1)x(Ydx

d T22

2−=ξ≤≤−⎟⎟

⎞⎜⎜⎝

⎛= (A-5)

h/dxd −=ξ (A-6)

Assume constant mass density and stiffness. The strain energy is converted to a localized stiffness matrix as

{ } ξ⎟⎟⎠

⎞⎜⎜⎝

⎛= ∫ d"L"L

h

EIK1

0T

3j (A-7)

Page 41: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

41

The kinetic energy is converted to a localized mass matrix as

{ }∫ ξρ=10

Tj dLLhM (A-8)

The total strain energy is set equal to the total kinetic energy per the Rayleigh method. The result is a generalized eigenvalue problem. For a system of n elements,

n,...,2,1j,0MK j2

j ==ω− (A-9) where

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−

⎟⎟⎠

⎞⎜⎜⎝

⎛=

4612

264612612

h

EIK 3j

(A-10)

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−

⎟⎠⎞

⎜⎝⎛ ρ

=

4221563134

135422156

420hM j

(A-11)

Page 42: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

42

APPENDIX B Beam Bending - Alternate Matrix Format The displacement matrix for beam bending is

⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

22y11y

(B-1)

The stiffness matrix for beam bending is

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−

⎟⎟⎠

⎞⎜⎜⎝

⎛=

2h4h612

2h2h62h4h612h612

3h

EIjK (B-2)

The mass matrix for beam bending is

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−

⎟⎠⎞

⎜⎝⎛ ρ

=

2h4h22156

2h3132h4h1354h22156

420h

jM (B-3)

Page 43: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

43

APPENDIX C

Free-Free Beam Repeat example 1 from the main text with a single element but with free-free boundary conditions. The eigen problem is

⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−−−

ω⎟⎠⎞

⎜⎝⎛ ρ

=

⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−

−−

⎟⎟⎠

⎞⎜⎜⎝

2

2

1

1

2

2

2

1

1

3

hyhy

422313221561354313422

135422156

420L

hyhy

4626612612

2646612612

LEI

(C-1)

⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−−−

λ=

⎥⎥⎥⎥

⎢⎢⎢⎢

θ

θ

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−

−−

221

1

221

1

hyhy

422313221561354313422

135422156

hyhy

4626612612

2646612612

(C-2)

where

24

EI420L

ω⎟⎟⎠

⎞⎜⎜⎝

⎛ ρ=λ (C-3)

λ⎥⎥⎦

⎢⎢⎣

ρ=ω 4L

EI420 (C-4)

Page 44: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

44

The eigenvalues are found using the method in Reference 2. Equation (C-1) yields four eigenvalues.

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎢⎢⎢⎢

λλλλ

201.7143

00

4321

(C-5)

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

λλλλ

4.47211.3093

00

4321

(C-6)

The finite element results for the first four natural frequencies are thus

⎥⎥⎥⎥

⎢⎢⎢⎢

ρ=

⎥⎥⎥⎥

⎢⎢⎢⎢

ωωωω

4.47211.3093

00

4L

EI420

4321

(C-7)

⎥⎥⎥⎥

⎢⎢⎢⎢

ρ=

⎥⎥⎥⎥

⎢⎢⎢⎢

ωωωω

91.65226.833

00

4L

EI

4321

(C-8)

Page 45: Revision E By Tom Irvine - VibrationdataRevision E By Tom Irvine Email: tomirvine@aol.com November 18, 2008 _____ Introduction Many structures are too complex for analysis via classical

45

The finite element results are compared to the classical results in Table C-1.

Table C-1. Natural Frequency Comparison, 2 Elements

Index

Finite Element Model

EIL4ρ

ω

Classical Solution

EIL4ρ

ω

1 0 0 2 0 0 3 26.833 22.373 4 91.652 61.673