Reset Control Systems: Theory and Application · Clegg and FORE Exponential Stability Set-point...

24
Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems Reset Control Systems: Theory and Application Luca Zaccarian LAAS-CNRS, MAC group

Transcript of Reset Control Systems: Theory and Application · Clegg and FORE Exponential Stability Set-point...

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Reset Control Systems: Theory and Application

    Luca Zaccarian

    LAAS-CNRS, MAC group

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Outline

    1 Clegg integrators and First Order Reset Elements (FORE)

    2 Exponential stability of reset control systems

    3 Set-point regulation of linear plants using adaptive FORE

    4 A collection of results using hybrid dynamical systems

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    An analog integrator and its Clegg extension (1956)

    Integrators: core components of dynamical control systems

    ∫ xcẋcv Bc

    Ac

    Example: PI controller

    ẋc = Acxc + Bcv

    ∫ xcvkp

    kiC

    R vCv xc

    • In an analog integrator, the stateinformation is stored in a capacitor

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    An analog integrator and its Clegg extension (1956)

    Integrators: core components of dynamical control systems

    ∫ xcẋcv Bc

    Ac

    Example: PI controller

    ẋc = Acxc + Bcv

    ∫ xcvkp

    kiC

    R

    v

    C

    R vC1

    vC2

    Rd xc-

    -

    • Clegg’s integrator (1956):• feedback diodes: the positive part ofxc is all and only coming from theupper capacitor (and viceversa)• input diodes: when v ≤ 0 the uppercapacitor is reset and the lower oneintegrates (and viceversa) [Rd � 1]• As a consequence ⇒ v and xc neverhave opposite signs

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Hybrid dynamics may flow or jump (or both)

    Hybrid Clegg integrator:

    ẋc (t, j) =1

    RCv(t, j), xc (t, j)v(t, j) ≥ 0,

    xc (t, j + 1) = 0, xc (t, j)v(t, j) ≤ 0,

    • Flow set: set where xc may flow (1st eq’n)• Jump set: set where xc may jump (2nd eq’n)

    DC

    xc

    v

    C

    • Flow and Jump sets: for our example• Flow set defined as C := {(xc , v) : xcv ≥ 0},• Jump set defined as D := {(xc , v) : xcv ≤ 0}.

    • Hybrid time domain: domain of solution xc has two directions:• t: elapsed flow times (number of seconds flown by xc )• j : elapsed jump times (number of jumps performed by xc )

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Hybrid dynamics may flow or jump (or both)

    Hybrid Clegg integrator:

    ẋc = (RC )−1v , xcv ≥ 0,

    x+c = 0, xcv ≤ 0,

    • Flow set C := {(xc , v) : xcv ≥ 0} is closed• Jump set D := {(xc , v) : xcv ≤ 0} is closed• Stability is robust! (Goebel 2006)

    DC

    xc

    v

    CPrevious models (Clegg ’56, Horowitz ’73, Hollot ’04):

    ẋr = (RC )−1u, if u 6= 0,

    x+r = 0, if u = 0,

    • Imprecise: solutions ∃ s.t. xcv < 0, butClegg’s xc and v always have same sign!

    • Unrobust: C is almost all R2(arbitrary small noise disastrous)

    • Unsuitable: Adds extra solutions⇒ Lyapunov results too conservative!

    CC

    xc

    v

    CD

    D

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Stabilization using hybrid jumps to zero

    First Order Reset Element:

    ẋc = acxc + bcv , xcv ≥ 0,x+c = 0, xcv ≤ 0,

    Theorem If P is linear, minimum phaseand relative degree one, then

    FOREy

    d

    Puvxc

    ac , bc or (ac , bc) large enough ⇒ global exponential stabilityTheorem In the planar case, γdy shrinks to zero as parameters grow

    Simulationuses:

    P = 1s

    bc = 1

    0 1 2 3 4 5 6 7 8 9 10−0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Time

    Pla

    nt

    ou

    tpu

    t

    Linear (a

    c=−1)

    ac=−3

    ac=−1

    ac=1

    ac=3

    Interpretation: Resets remove overshoots, instability improves transient

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Piecewise quadratic Lyapunov function construction

    • Given N ≥ 2 (number of sectors)• Patching angles:−θ� = θ0 < θ1 < · · · < θN =

    π

    2+ θ�

    • Patching hyperplanes (Cp = [0 · · · 0 1])Θi =

    [01×(n−2) sin(θi ) cos(θi )

    ]T

    • Sector matrices:S0 := Θ0Θ

    TN + ΘNΘ

    T0

    Si := −(Θi ΘTi−1 + Θi−1ΘTi ), i = 1, . . . ,N,

    S�1 :=

    0(n−2)×(n−2) 0 00 0 sin(θ�)0 sin(θ�) −2 cos(θ�)

    S�2 :=

    0(n−2)×(n−2) 0 00 −2 cos(θ�) sin(θ�)0 sin(θ�) 0

    ���������������������������������������������

    ������������������

    ���������������������������

    ��������������������

    ��������������������

    ��������������������

    ��������������������

    ������������������������������������

    ������������������������������������

    ���������������������������������������������������

    ���������������������������������������������������

    xr axis

    P1

    PN

    P2

    PN−1

    y axis

    P0

    Sǫ1

    Sǫ2

    θ1

    θ2

    θ0

    θN−2θN−1 θN

    S0

    S2

    S0

    SN−1SN

    S1

    Hybrid closed-loop:

    ẋ = AF x + Bdd , x ∈ Cx+ = AJx , x ∈ D

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Piecewise quadratic Lyapunov theorem

    Theorem: If the following LMIs in the green unknowns (whereZ = [In−2 0(n−2)×2]) are feasible:

    (Flow)

    ATF Pi + PiAF + τFiSi PiBd CT

    ? −γI 0? ? −γI

    < 0, i = 1, . . . ,N,

    (Jump) ATJ P1AJ − P0 + τJS0 ≤ 0(Cont ′ty) ΘTi⊥ (Pi − Pi+1) Θi⊥ = 0, i = 0, . . . ,N − 1,(Cont ′ty) ΘTN⊥(PN − P0)ΘN⊥ = 0(Overlap) ATJ P1AJ − P1 + τ�1S�1 ≤ 0(Overlap) ATJ P1AJ − PN + τ�2S�2 ≤ 0

    (Origin)

    Z (ATF P0 + P0AF )ZT ZP0Bd ZC

    T

    ? −γI 0? ? −γI

    < 0,

    then global exponential stability + finite L2 gain γdy from d to y

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Example 1: Clegg (ac = 0) connected to an integrator

    • Block diagram:

    1s

    yd

    xcClegg

    ac = 0

    • Output response (overcomeslinear systems limitations)

    0 2 4 6 8 10−1

    −0.5

    0

    0.5

    1

    Clegg (ac=0)

    Linear (ac=0)

    • Quadratic Lyapunov functionsare unsuitable

    • Gain γdy estimates (N = # of sectors)N 2 4 8 50

    gain γdy 2.834 1.377 0.914 0.87

    • A lower bound:√

    π8 ≈ 0.626

    • Lyapunov func’n level sets for N = 4

    −2 −1 0 1 2

    −3

    −2

    −1

    0

    1

    2

    3

    y

    xr

    −2 −1 0 1 2

    −3

    −2

    −1

    0

    1

    2

    3

    y

    xr

    • P1, . . . ,P4 cover 2nd/4th quadrants• P0 covers 1st/3rd quadrants

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Example 2: FORE (any ac) and linear plant (Hollot et al.)

    • Block diagram (P = s+1s(s+0.2) )

    P yd

    xcFORE

    • ac = 1: level set with N = 50

    −4 −2 0 2 4−30

    −20

    −10

    0

    10

    20

    30

    y

    xr

    −4 −2 0 2 4−25

    −20

    −15

    −10

    −5

    0

    5

    10

    15

    20

    25

    y

    xr

    • Gain γdy estimates

    −5 0 50

    1

    2

    3

    4

    5

    6

    7

    8

    ac

    L2 g

    ain

    s

    Linear CLS

    Reset CLS (Thm 3, ACC 2005)

    Reset CLS (this theorem)

    • Time responses

    0 1 2 3 4 5 6 7 8 9 10−1

    −0.5

    0

    0.5

    1

    Linear (a

    c=−1)

    ac=−3

    ac=−1

    ac=1

    ac=3

    ac=5

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Stabilization using hybrid jumps to zero (recall)

    First Order Reset Element:

    ẋc = acxc + bcv , xcv ≥ 0,x+c = 0, xcv ≤ 0,

    Theorem If P is linear, minimum phaseand relative degree one, then

    FOREy

    d

    Puvxc

    ac , bc or (ac , bc) large enough ⇒ global exponential stabilityTheorem In the planar case, γdy shrinks to zero as parameters grow

    Simulationuses:

    P = 1s

    bc = 1

    0 1 2 3 4 5 6 7 8 9 10−0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Time

    Pla

    nt

    ou

    tpu

    t

    Linear (a

    c=−1)

    ac=−3

    ac=−1

    ac=1

    ac=3

    Interpretation: Resets remove overshoots, instability improves transient

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Set point adaptive regulation using hybrid jumps to zero

    • Parametric feedforward uff = Ψ(r)Tαẋc = acxc + bcv ,α̇ = 0,

    if xcv ≥ 0,

    x+c = 0,

    α+ = α + λ Ψ(r)|Ψ(r)|2 xc ,if xcv ≤ 0,

    FOREy

    d

    Pr ++uxcv

    αuff

    Theorem: If FORE stabilizes withr = 0, then for constant r , y → r

    Lemma: Tuning of λ usingdiscrete-time rules (Ziegler-Nichols)

    λ = 0

    λ = 0.32

    λ = 0.64

    UnitCircle

    Example: EGR Experiment (next slide)

    0 0.1 0.2 0.3 0.4 0.5 0.6

    20

    40

    60

    80

    Po

    sitio

    n [

    %]

    0 0.1 0.2 0.3 0.4 0.5 0.6−1

    0

    1

    xc

    0 0.1 0.2 0.3 0.4 0.5 0.6

    0

    0.1

    0.2

    0.3

    0.4

    uff

    Time [s]

    Reference

    λ=0.04

    λ=0.32

    λ=0.58

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Fast regulation of EGR valve position in Diesel engines

    • EGR: Recirculates Exhaust Gasin Diesel engines

    • Subject to strong disturbances⇒ need aggressive controllers(recall exp. unstable transients)

    34.6 34.7 34.8 34.9 35 35.1 35.2 35.3 35.4

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    Va

    lve

    Po

    sitio

    n [

    V]

    Experimental

    Simulated

    34.6 34.7 34.8 34.9 35 35.1 35.2 35.3 35.4−0.5

    −0.4

    −0.3

    −0.2

    −0.1

    0

    Du

    ty C

    ycle

    Time [s]

    • Identified valve transfer function:EGRValve

    voltage position

    P(s) =2200

    (s + 164.4)(s + 10.69).

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Laboratory experiments close to time-optimal

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

    20

    30

    40

    50

    60

    70

    Positio

    n y

    [%

    ]

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

    −1

    −0.5

    0

    0.5

    1

    Duty

    Cycle

    u

    Time [s]

    Reference

    Adaptive FORE

    Time Optimal

    PI

    • Time-optimal:unrobust, obtained viatrial and error

    • PI:Tuned using standardMATLAB tools

    • Adaptive FORE:Response afterα→ α∗ =(0.128, 0.087, 0.115)

    • Note the exponentially diverging voltage:aggressive action for disturbance rejection on the real engine

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Experiments on Diesel engine testbench (JKU)

    • Specs: 2 liter, 4 cylinder passengercar turbocharged Diesel engine

    • Compared: to factory EGR valvecontroller coded in ECU(gain scheduled PI with feedforward)

    • Test cycle: Urban part ofNew European Driving Cycle

    • Relevance: Faster EGR positioning⇒ Reduced NOx emissions

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Adaptive FORE provides substantial performance increase

    115 116 117 118 119 120 121 122 123 124 125 126

    0

    50

    100

    Po

    sitio

    n y

    [%

    ]

    ECU

    Position

    Reference

    115 116 117 118 119 120 121 122 123 124 125 126

    0

    50

    100

    Po

    sitio

    n y

    [%

    ]

    FORE

    Position

    Reference

    115 116 117 118 119 120 121 122 123 124 125 1260

    0.5

    1

    Time [s]

    NO

    x (

    no

    rma

    lize

    d)

    FORE

    ECU

    • Mean squared error: ECU = 6.68 (100%), FORE = 1.53 (23 %)• Improvement most important with EGR almost closed (t ≈ 117, 124)

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    From discrete + continuous to hybrid dynamical systems

    [Branicky, Collins, Henzinger, Liberzon, Lygeros, Sastry, Tavernini, ...]

    Continuous dynamical system Discrete dynamical systemdx(t)

    dt= f (x(t)), ∀t ∈ R≥0 x(k + 1) = g(x(k)), ∀k ∈ Z≥0

    (possible discrete variables)︸ ︷︷ ︸⇓Hybrid dynamical system

    dx(t, k)

    dt= f (x(t, k)), x(t, k) ∈ C ⊂ Rn (a.e.)

    x(t, k + 1) = g(x(t, k)), x(t, k) ∈ D ⊂ Rn

    • Continuous time domain t ∈ R≥0 and Discrete time domaink ∈ Z≥0 merged into Hybrid time domain (t, k) ∈ R≥0 × Z≥0• Solution x can “flow” if ∈ C, can “jump” if ∈ D• Fundamental stability results now available (Converse Lyapunovtheorems, ISS, invariance principle, Lp stability) [Teel ’04 → ’12]

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Hybrid resets induce passivity in nonlinear controllers

    • Inspired by [Carrasco, Banos, Van der Schaft, 2009]• Given any (nonlinear) controller K [under mild growth conditions]

    Ku y K̂Hû ŷContinuous-time Hybrid

    ControllerController

    a hybrid modification K̂H is given such that• the state x̂c of K̂H is sometimes reset to zero• whenever K̂H flows, it mimicks K• (continuous-time) output strict passivity of K̂H holds:∫ ∞

    0ŷ(t)T û(t)dt ≥ ε2‖ŷ(·)‖22

    • Promising for HMI, to avoid man-induced instabilities (PIO, etc)

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Example: Reset passivation of a robot controller

    Two-link robotpassivated by aninner loop

    q1

    q2

    m1, I1

    m2, I2

    g

    l2

    l1

    a2

    a1

    z

    x

    H(q)−∂V (q,r)∂q

    u û

    q

    Robot−

    +

    K̂H

    P

    kH

    up

    θv

    r

    stable, no resets (dash-dot); stable with resets (dash); unstable (solid)

    0 0.5 1 1.5 2 2.5

    −10

    0

    10

    20

    Jo

    int

    sp

    ee

    ds d

    q

    0 0.5 1 1.5 2 2.5

    0

    10

    20

    30

    0 0.5 1 1.5 2 2.5

    0

    5

    10

    Jo

    int

    po

    sitio

    ns q

    0 0.5 1 1.5 2 2.5

    0

    2

    4

    6

    0 0.5 1 1.5 2 2.5

    0

    5

    10

    15

    Re

    se

    t co

    ntr

    ol in

    pu

    ts u

    0 0.5 1 1.5 2 2.5

    0

    2

    4

    6

    0 0.5 1 1.5 2 2.570

    80

    90

    100

    110

    To

    rqu

    e in

    pu

    ts u

    p

    0 0.5 1 1.5 2 2.50

    5

    10

    15

    20

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Hybrid systems tools utilized in diverse scenarios

    P

    K

    w z

    yc

    u y

    continuousZOH

    discrete

    sampler

    Sampled-data control design with saturation• uniform sampling time assumed• jumps correspond to sampling actions

    Lazy sensors for reduced transmission rate• reduce sample transmission over networks• used in cyber-physical systems• jumps occur at samples transmissions

    K PP

    u y

    NScheduling

    policy

    Extrainformation

    ξMeasurementdevices

    xp

    xcNonlinear stabilization via hybrid loops• enforces jumps of the controller state in some sets• so as to guarantee decrease of suitable functions• state jumps to the minimum of a Lyapunov function• useful, e.g., for overshoot reduction with SISO plants

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Impacting systems: billiard ball x tracks billiard ball z

    Lyapunov functions Vi(x, z) along hybrid trajectory

    Idea: Follow the “closest” ballamong all the target balls z mir-rored by the walls

    Linear FeedbackHybrid Feedback

    where

    mk(z) = Mkz + ck, k = 1, . . . , 8m0(z) = z (real ball)

    (mirrored balls)

    Use Hybrid Lyapunov function

    V (x, z) = mini∈{0,...,9}

    |x−mi(z)|P︸ ︷︷ ︸Vi(x,z)

    classic.aviMedia File (video/avi)

    hybrid.aviMedia File (video/avi)

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Example: Clegg response to a sine input

    0 24 6

    8 10

    0

    1

    2

    3

    −2.5

    −2

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    2.5

    TimeJumps

    Inte

    gra

    tor

    valu

    e

    • Solution (bold black) as a function ofthe hybrid time domain (red)• Input selected as v(t, j) = sin(t)(dashed line below)• State xc is reset upon entering the2nd and 4th quadrants(in this case ≡ at the zero crossing)

    • Solid: projection of xc onthe ordinary time axis t• Dash: projection of u onthe ordinary time axis t

    0 1 2 3 4 5 6 7 8 9 10

    −2

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    Time

  • Clegg and FORE Exponential Stability Set-point Regulation Hybrid Dynamical Systems

    Feedforward: α converges to suitable parametrization

    0 20 40 60 80 100−0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    Valve Position [%]

    Va

    lve

    In

    pu

    t [V

    ]

    Bare EGR valve

    EGR valve with elastic band

    Measured steady−state I/O pairs • ?: steady-state input/outputpairs (stiction!!)

    • Red Solid: uff = ΨT (r)α∗, withα∗ steady-state for α

    • Black dashed: uff = ΨT (r)ᾱ∗when pulling the valve with anelastic band

    Clegg integrators and First Order Reset Elements (FORE)

    Exponential stability of reset control systems

    Set-point regulation of linear plants using adaptive FORE

    A collection of results using hybrid dynamical systems