ResearchArticle OnaSumInvolvingtheSum-of-DivisorsFunction

7
Research Article On a Sum Involving the Sum-of-Divisors Function Feng Zhao 1 and Jie Wu 2 1 Department of Mathematics and Statistics, North China University of Water Resources and Electric Power, Jinshui E Road, Zhengzhou 450046, Henan, China 2 CNRS LAMA 8050, Laboratoire D’Analyse et de Math´ ematiques Appliqu´ ees, Universit´ e Paris-Est Cr´ eteil, Cr´ eteil Cedex 94010, France Correspondence should be addressed to Feng Zhao; [email protected] Received 14 February 2021; Accepted 12 March 2021; Published 5 April 2021 Academic Editor: Tianping Zhang Copyright © 2021 Feng Zhao and Jie Wu. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let σ(n) be the sum of all divisors of n and let [t] be the integral part of t. In this paper, we shall prove that nx σ([x/n]) � (π 2 /6)x log x + O(x(log x) (2/3) (log 2 x) (4/3) ) for x ⟶∞, and that the error term of this asymptotic formula is Ω(x). 1. Introduction As usual, denote by φ(n) the Euler function and by [t] the integral part of real t, respectively. Recently, Bordell` es et al. [1] studied the asymptotic behaviour of the quantity S φ (x) n x φ x n , (1) for x ⟶∞. By exponential sum technique, they proved that 2629 4009 · 6 π 2 + o(1) x log x S φ (x) 2629 4009 · 6 π 2 + 1380 4009 + o(1) x log x, (2) and conjectured that S φ (x) 6 π 2 x log x, as x ⟶∞. (3) Very recently, Wu [2] improved (2) and Zhai [3] re- solved conjecture (3) by showing S φ (x)� 6 π 2 x log x + Ox(log x) (2/3) log 2 x ( (1/3) , (4) andalsoprovedthattheerrortermin(4)is Ω(x), where log 2 denotes the iterated logarithm. Some related works can be found in [4, 5]. Since the sum-of-divisors function σ (n) d|n d has similar properties as the Euler function φ(n) in many cases, it seems natural and interesting to consider its analogy of (3). Our result is as follows. Theorem 1 (i) For x ⟶∞, we have S σ (x) n x σ x n π 2 6 x log x + Ox(log x) (2/3) log 2 x ( (4/3) . (5) (ii) Let E(x) betheerrortermin(5).en,for x ⟶∞, we have E(x)� Ω(x), i.e. limsup x⟶∞ |E(x)| x > 0. (6) Let μ(n) be the M¨ obius function and define id(n)� n and 1(n)� 1 for all integers n 1. en, φ id μ and σ id 1. In Zhai’s approach proving (4), the inequality Hindawi Journal of Mathematics Volume 2021, Article ID 5574465, 7 pages https://doi.org/10.1155/2021/5574465

Transcript of ResearchArticle OnaSumInvolvingtheSum-of-DivisorsFunction

Research ArticleOn a Sum Involving the Sum-of-Divisors Function

Feng Zhao 1 and Jie Wu2

1Department of Mathematics and Statistics North China University of Water Resources and Electric Power Jinshui E RoadZhengzhou 450046 Henan China2CNRS LAMA 8050 Laboratoire DrsquoAnalyse et de Mathematiques Appliquees Universite Paris-Est CreteilCreteil Cedex 94010 France

Correspondence should be addressed to Feng Zhao zhaofengncwueducn

Received 14 February 2021 Accepted 12 March 2021 Published 5 April 2021

Academic Editor Tianping Zhang

Copyright copy 2021 Feng Zhao and Jie Wu is is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work isproperly cited

Let σ(n) be the sum of all divisors of n and let [t] be the integral part of t In this paper we shall prove that 1113936nlexσ([xn])

(π26)x log x + O(x(log x)(23)(log2 x)(43)) for x⟶infin and that the error term of this asymptotic formula is Ω(x)

1 Introduction

As usual denote by φ(n) the Euler function and by [t] theintegral part of real t respectively Recently Bordelles et al[1] studied the asymptotic behaviour of the quantity

Sφ(x) ≔ 1113944nle x

φx

n1113876 11138771113874 1113875 (1)

for x⟶infin By exponential sum technique they provedthat

26294009

middot6π2 + o(1)1113888 1113889x log xle Sφ(x)

le26294009

middot6π2

+13804009

+ o(1)1113888 1113889x log x

(2)

and conjectured that

Sφ(x) sim6π2 x log x asx⟶infin (3)

Very recently Wu [2] improved (2) and Zhai [3] re-solved conjecture (3) by showing

Sφ(x) 6π2 x log x + O x(log x)

(23) log2 x( 1113857(13)

1113872 1113873 (4)

and also proved that the error term in (4) isΩ(x) where log2denotes the iterated logarithm Some related works can befound in [4 5] Since the sum-of-divisors functionσ(n) ≔ 1113936d|nd has similar properties as the Euler functionφ(n) in many cases it seems natural and interesting toconsider its analogy of (3)

Our result is as follows

Theorem 1(i) For x⟶infin we have

Sσ(x) ≔ 1113944nle x

σx

n1113876 11138771113874 1113875

π2

6x log x

+ O x(log x)(23) log2 x( 1113857

(43)1113872 1113873

(5)

(ii) Let E(x) be the error term in (5) en for x⟶infinwe have

E(x) Ω(x) ie lim supx⟶infin

|E(x)|

xgt 0 (6)

Let μ(n) be the Mobius function and define id(n) n

and 1(n) 1 for all integers nge 1 en φ idlowast μ andσ idlowast 1 In Zhairsquos approach proving (4) the inequality

HindawiJournal of MathematicsVolume 2021 Article ID 5574465 7 pageshttpsdoiorg10115520215574465

1113944nle x

μ(n)≪x exp minus c

log x

1113969

1113882 1113883 (xge 1) (7)

plays a key role where cgt 0 is a positive constant Clearlysuch a bound is not true for 1 By refining Zhairsquos approachwe shall prove our result

2 Preliminary Lemmas

As in [3] we need some bounds on exponential sums of thetype 1113936NlenltNprimee(Tn) where NltNprime le 2N For large values ofN Zhai used the theory of exponent pair and for smallerones the Vinogradov method Both estimates are containedin the following general theorem of Karatsuba [6 eorem1] which will be a key tool for proving eorem 1

Lemma 1 Let kge 2 and M and P be integers P beingpositive Let f isin Ck+1([M M + P]R) Suppose that thereexist positive absolute constants c0 c1 c2 c3 and c4 such thatc0 lt 1 c1 lt 1 and c2 + c4 lt c1 an integer r such thatc0kle rle k and distinct numbers sj ge 2(j 1 r) notexceeding k such that for Mle tleM + P the following in-equalities are satisfied

(i) |f(k+1)(t)(k + 1)|lePminus c1(k+1)(ii) Pminus c2sj le |f(sj)(t)sj|lePminus c3sj (j 1 r)

en for each positive integer P1 not exceeding P we have

1113944MlemleM+P1minus 1

e(f(m))

1113868111386811138681113868111386811138681113868111386811138681113868

1113868111386811138681113868111386811138681113868111386811138681113868leAP

1minus ck2( ) (8)

where e(t) ≔ e2πit and Agt 0 cgt 0 are absolute constants

e next two lemmas are essentially a special case of [7Lemmas 25 and 26] with a 1 e only difference is thatthe ranges of T and N here are slightly larger than those of[7 Lemmas 25 and 26] (TgeN2 in place of TgeN(32) andNlex(23) in place of Nlex(12) respectively) Although theproof is completely similar for the convenience of readerswe still reproduce a proof here

Lemma 2 Let e100 leNltNprime le 2N and TgeN(32) enthere exists an absolute positive constant c5 such that

1113944

Nle nltNprime

eT

n1113874 1113875≪N exp minus

c5log3

N

log2 T1113888 11138891113896 1113897 (9)

where the implied constant is absolute

Proof We apply Lemma 1 to f(t) ≔ (Tt) withM N P N P1 Nprime minus N For this we choose

c0 1100

c1 99100

c2 87100

c3 34

c4 1100

k 100log(Tn)

log N1113890 1113891

(10)

and take the sj to be all integers s such that

4log(Tn)

log Nle sle 5

log(Tn)

log Nmiddot (11)

Obviously the number r of sj is between c0k and k Nextwe shall verify that f(t) satisfies the conditions (i) and (ii) ofLemma 1 with the parameters chosen above

For Nle tle 2N we have

f(k+1)

(t)

(k + 1)

111386811138681113868111386811138681113868111386811138681113868

111386811138681113868111386811138681113868111386811138681113868 Tt

minus kminus 2 leTNminus kminus 2

Nminus η1 (12)

where

η1 ≔ k + 1 minuslog(Tn)

log Nge k + 1 minus

1100

kge99100

(k + 1) c1(k + 1)

(13)

Similarly for Nle tle 2N we find the inequality|f(sj)(t)sj|leNminus η3 where

η3 ≔ sj minuslog(Tn)

log Nge34sj c3sj (14)

For the lower bound of (ii) we have

fsj( 1113857

(t)

sj

11138681113868111386811138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868111386811138681113868 Tt

minus 1minus sj geT(2N)minus 1minus sj N

minus η2 (15)

where

η2 ≔ sj minuslog(Tn)

log N+log 2log N

sj + 11113872 1113873

le45sj +

log 2100

sj + 11113872 1113873le87100

sj c2sj

(16)

From Lemma 1 there exist two positive constants c andA such that

2 Journal of Mathematics

1113944

Nle nltNprime

eT

n1113874 1113875

1113868111386811138681113868111386811138681113868111386811138681113868

1113868111386811138681113868111386811138681113868111386811138681113868leAN

1minus ck2( ) leAN exp minusc5log

3N

log2(Tn)1113896 1113897

(17)

with c5 ≔ 10minus 4c is completes the proof of Lemma 2

Lemma 3 Define ψ(t) ≔ t minus [t] minus (12) Let c5 be theconstant defined by Lemma 2 and c6 ≔ (89)2c5

clowast ≔ ((35)c6)minus (13) en we have

1113944

Nle nltNprime

1nψ

x

n1113874 1113875≪ eminus c6(log N)3(log x)2(log N)

3

(log x)2 (18)

uniformly for xge 10 exp clowast(log x)(23)1113966 1113967leNlex(23) and

NltNprime le 2N

Proof By invoking a classical result on ψ(t) (see 8 page 39])we can write for any Hge 1

1113944

Nle nltNprime

ψx

n1113874 1113875≪NH

minus 1+ 1113944

1le hleH

hminus 1

1113944

Nle nltNprime

ehx

n1113888 1113889

1113868111386811138681113868111386811138681113868111386811138681113868

1113868111386811138681113868111386811138681113868111386811138681113868

(19)

An application of Lemma 2 with T hxgexgeN(32)

yields

1113944

Nle nltNprime

ψx

n1113874 1113875≪N H

minus 1+ e

minus c5(log N)3log2(Hx)log H1113874 1113875

(20)

Taking H exp (log N)3(log x)21113966 1113967le x(827) we easilydeduce that

1113944

Nle nltNprime

ψx

n1113874 1113875≪N e

minus (log N)3(log x)2+ e

minus c6(log N)3(log x)2(log N)3

(log x)21113888 1113889

(21)

e first term can be absorbed by the second since c5 canbe chosen small enough to ensure that c6 lt 1 and sinceexp clowast(log x)(23)

1113966 1113967leN implies (log N)3(log x)2 ge clowastHence

1113944

Nle nltNprime

ψx

n1113874 1113875≪Ne

minus c6(log N)3(log x)2(log N)3

(log x)2 (22)

and an Abel summation produces the required result

Lemma 4 Let 2le z1 lt z2 le x and Fx(t) ≔ (1t)ψ(xt)Denote by VFx

[z1 z2] the total variation of Fx on [z1 z2]en

VFxz1 z21113858 1113859≪

x

z21

+1z1

(23)

where the implied constant is absolute

Proof If z1 t0 lt t1 lt middot middot middot lt tn z2 is a partition of the in-terval [z1 z2] then

1113944

n

k1Fx tk( 1113857 minus Fx tkminus 1( 1113857

11138681113868111386811138681113868111386811138681113868 1113944

n

k1

1tk

ψx

tk

1113888 1113889 minus1

tkminus 1ψ

x

tkminus 11113888 1113889

11138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868

le 1113944n

k1

1tk

minus1

tkminus 11113888 1113889ψ

x

tk

1113888 1113889

11138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868+ 1113944

n

k1

1tkminus 1

ψx

tk

1113888 1113889 minus ψx

tkminus 11113888 1113889

11138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868

(24)

Since |ψ(t)|le 1 for all t we have

1113944n

k1

1tk

minus1

tkminus 11113888 1113889ψ

x

tk

1113888 1113889

11138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868le1z1

minus1z2lt1z1

middot (25)

On the other hand since ψ(u) is of period 1 we have

1113944

n

k1

1tkminus 1

ψx

tk

1113888 1113889 minus ψx

tkminus 11113888 1113889

11138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868

le1z1

x

z1+ 11113888 1113889Vψ[0 1]le 2

x

z21

+1z1

1113888 1113889

(26)

Inserting these two bounds into (24) we obtain therequired result

3 Proof of Theorem 1

31 A Formula on the Mean Value of σ(n)

Lemma 5

(i) For xge 2 and 1le zlex(13) we have

1113944nle x

σ(n) π2

12x2

minus x(z minus [z])

2+[z]

2z+ O

x

z1113874 1113875 minus Δ(x z)

(27)

where

Δ(x z) ≔ 1113944dle (xz)

x

x

d1113874 1113875 (28)

(ii) For x⟶infin we have

1113944nlex

σ(n) π2

12x2

+ O(x log x) (29)

Proof Using σ(n) 1113936dmnm the hyperbole principle ofDirichlet allows us to write

1113944nle x

σ(n) 1113944dmle x

m S1 + S2 minus S3 (30)

where

Journal of Mathematics 3

S1 ≔ 1113944dle(xz)

1113944mle(xd)

m

S2 ≔ 1113944mle z

1113944dle(xm)

m

S3 ≔ 1113944dle(xz)

1113944mlez

m

(31)

Firstly we have

S2 1113944mlez

mx

m1113876 1113877 x[z] + O z

21113872 1113873 (32)

S3 x

z1113876 1113877

[z]([z] + 1)

2 x

[z]([z] + 1)

2z+ O z

21113872 1113873 (33)

Secondly we can write

S1 12

1113944dle(xz)

x

dminus ψ

x

d1113874 1113875 minus

12

1113874 1113875x

dminus ψ

x

d1113874 1113875 +

12

1113874 1113875

12

1113944dle(xz)

x2

d2 minus 2

x

x

d1113874 1113875 + ψ

x

d1113874 1113875

2minus14

1113888 1113889

π2

12x2

minus12

xz minus Δ(x z) + O(xz)

(34)

where Δ(x z) is as in (28) Inserting (32) (33) and (34) into(30) and using z2 le (xz) we get (27)

Taking z 1 in (27) and noticing that

1113944dlex

1d2

π2

6+ O

1x

1113874 1113875

1113944dlex

x

x

d1113874 1113875

1113868111386811138681113868111386811138681113868111386811138681113868

1113868111386811138681113868111386811138681113868111386811138681113868≪ x log x

(35)

we obtain the required boundis completes the proof

32 Estimates of Error Terms

Lemma 6 Let N0 ≔ exp (6c6)(log x)(23)(log2 x)(13)1113966 1113967

where c6 is given as in Lemma 3 Let Δ(x z) be defined by(28) en for xge 10 and 2le zle

N0

1113968 we have

1113944N0ltnle

x

radicΔ

x

n z1113874 1113875

11138681113868111386811138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868111386811138681113868+ 1113944

N0ltnlex

radicΔ

x

nminus 1 z1113874 1113875

11138681113868111386811138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868111386811138681113868

≪ x1

(log x)3 +

log x

z1113888 1113889

(36)

Proof Denote by Δ1(x z) and Δ2(x z) two sums on theleft-hand side of (36) respectively By (28) of Lemma 5 wecan write

Δ1(x z) x 1113944N0ltnle

x

radic1113944

dle(x(nz))

1dn

ψx

dn1113874 1113875

x 1113944

dle x N0z( )( )

1d

1113944N0ltnlemin(

x

radicx(dz))

1nψ

x

dn1113874 1113875

xΔdagger1(x z) + xΔ♯1(x z)

(37)

where

Δdagger1(x z) ≔ 1113944

dle x N0z( )( )

1d

1113944

N0ltnle(xd)(23)

1nψ

x

dn1113874 1113875

Δ♯1(x z) ≔ 1113944

dle x N0z( )( )

1d

1113944

(xd)(23)lt nleminx

radic(xdz)

1nψ

x

dn1113874 1113875

(38)

For 0le kle (log((xd)(23)N0))log 2 let Nk ≔ 2kN0and define

Sk(d) ≔ 1113944Nklt nle 2Nk

1nψ

x

dn1113874 1113875 (39)

Noticing that N0 leNk le (xd)(23) we can apply Lemma3 to derive that

Sk(d)≪ eminus ϑ log Nk( )3(log(xd))2( 1113857

(40)

with ϑ(t) ≔ c6t minus log t It is clear that ϑ(t) is increasing on[c6infin) On the other hand for kge 0 and dge 1 we have

log Nk( 11138573(log(xd))

2 ge log N0( 11138573(log x)

2 6c6( 1113857log2 x

(41)

us

ϑlog Nk( 1113857

3

(log(xd))21113888 1113889ge ϑ

6c6

1113888 1113889log2 x1113888 1113889

6 log2 x minus log6c6

1113888 1113889log2 x1113888 1113889ge 5 log2 x

(42)

which implies that Sk(d)≪ (log x)minus 5 Inserting this intothe expression of Δdagger1(x z) we get

Δdagger1(x z)≪ 1113944

dle x N0z( )( )

1d

1113944

2kN0le(xd)(23)

Sk(d)1113868111386811138681113868

1113868111386811138681113868≪ (log x)minus 3

(43)

Next we bound Δ♯1(x z) Let F(t) be a function ofbounded variation on [n n + 1] for each integer n and letVF[n n + 1] be the total variation of F on [n n + 1] Inte-grating by parts we have

4 Journal of Mathematics

1113946n+1

nt minus n minus

12

1113874 1113875dF(t) 12(F(n + 1) + F(n)) minus 1113946

n+1

nF(t)dt

(44)

From this we can derive that

12(F(n + 1) + F(n)) 1113946

n+1

nF(t)dt + O VF[n n + 1]( 1113857

(45)

for nge 1 Summing over n we find that

1113944N1lt nleN2

F(n) 1113946N2

N1

F(t)dt

+12

F N1( 1113857 + F N2( 1113857( 1113857 + O VF N1 N21113858 1113859( 1113857

(46)

We apply this formula to

F(xd)(t) 1tψ

(xd)

t1113888 1113889

N1 (xd)(23)

1113960 1113961

N2 minx

radic

x

(dz)1113896 11138971113890 1113891

(47)

According to Lemma 4 we haveVF(xd)

[N1 N2]≪ (xd)minus (13) and thus by puttingu (xd)t we obtain with the notationxd1 max(

x

radicd tz) and xd2 (xd)(13)

1113944

(xd)(23)ltnleminx

radic(x(dz))

1nψ

x

dn1113874 1113875 1113946

xd2

xd1

ψ(u)

udu + O

x

d1113874 1113875

minus (13)

1113888 1113889

≪ zminus 1

+x

d1113874 1113875

minus (13)

≪ zminus 1

(48)

where we have used the fact that zleN0

1113968and

dle (x(N0z))rArrz le (xd)(13) and the bound

1113946xd2

xd1

ψ(u)

udu 1113946

xd2

xd1

1113946u

xd1

ψ(t)dt1113888 1113889du

u2 minus

1x

(23)d2

1113946xd2

xd1

ψ(t)dt

≪xminus 1d1 + xd21113872 1113873

minus (23)≪ z

minus 1+(xd)

minus (23)≪ zminus 1

(49)

Using (48) a simple partial integration allows us toderive that

Δ♯1(x z)≪ zminus 1

1113944

dlex N0z( )

dminus 1≪ z

minus 1log x(50)

Combining (43) and (50) it follows that

Δ1(x z)1113868111386811138681113868

1113868111386811138681113868≪ x(log x)minus 3

+ xzminus 1log x (51)

Similarly we can prove the same bound for |Δ2(x z)|is completes the proof

33 End of the Proof of eorem 1 Let c6 be the constantgiven as in Lemma 3 and N0 ≔ exp (6c6)1113864 (log x)(23)

(log2 x)(13) Let z isin [2N0

1113968] be a parameter to be chosen

laterPutting d [xn] we have (xn) minus 1lt dle (xn) and

x(d + 1)lt nle (xd) We have with the conventionσ(0) 0

Sσ(x) 1113944dlex

σ(d) 1113944(x(d+1))ltnle(xd)

1

1113944dnle x

σ(d) minus 1113944dnle xdge2

σ(d minus 1)

1113944dnlex

(σ(d) minus σ(d minus 1))

(52)

By the hyperbole principle of Dirichlet we can write

Sσ(x) S1(x σ) + S2(x σ) minus S3(x σ) (53)

where

S1(x σ) ≔ 1113944dle

x

radicdnle x

(σ(d) minus σ(d minus 1))

S2(x σ) ≔ 1113944nle

x

radicdnlex

(σ(d) minus σ(d minus 1))

S3(x σ) ≔ 1113944dle

x

radicnle

x

radic(σ(d) minus σ(d minus 1))

(54)

With the help of the bound σ(n)≪ n log2 n we canderive that

S3(x σ) [x

radic]σ([

x

radic])≪x log2 x (55)

For evaluating S1(x σ) we write

S1(x σ) 1113944dle

x

radic(σ(d) minus σ(d minus 1))

x

d1113876 1113877

x 1113944dle

x

radic

σ(d) minus σ(d minus 1)

d+ O 1113944

dlex

radic|σ(d) minus σ(d minus 1)|⎛⎝ ⎞⎠

(56)

With the help of Lemma 5 (ii) a simple partial inte-gration gives us

Journal of Mathematics 5

1113944dle

x

radic

σ(d) minus σ(d minus 1)

d 1113944

dlex

radic

σ(d)

d(d + 1)

1113944dle

x

radic

σ(d)

d2 minus 1113944

dlex

radic

σ(d)

d2(d + 1)

1113946

x

radic

1minustminus 2d

π2

12t2

+ O(t log t)1113888 1113889 + O(1)

π2

12log x + O(1)

1113944dle

x

radic|σ(d) minus σ(d minus 1)|

≪ 1113944dle

x

radicσ(d)≪x

(57)

Inserting these estimates into (56) we find that

S1(x σ) π2

12x log x + O(x) (58)

Finally we evaluate S2(x σ) For this we write

S2(x σ) Sdagger2(x σ) + S

♯2(x σ) (59)

where

Sdagger2(x σ) ≔ 1113944

nleN0dnle x

(σ(d) minus σ(d minus 1))

S♯2(x σ) ≔ 1113944

N0ltnlex

radicdnle x

(σ(d) minus σ(d minus 1))(60)

By the bound that σ(n)≪ n log2 n we have

Sdagger2(x σ) 1113944

nleN0

σx

n1113876 11138771113874 1113875≪ 1113944

nleN0

x

n1113874 1113875log2 x

≪ x(log x)(23) log2 x( 1113857

(43)

(61)

On the other hand (27) of Lemma 5 allows us to derivethat

1113944dlex

σ(d) minus 1113944dlexminus 1

σ(d) π2

12x2

minus (x minus 1)2

1113872 1113873 minus Δ(x z)

+ Δ(x minus 1 z) + Ox

z1113874 1113875

π2

6x minus Δ(x z) + Δ(x minus 1 z) + O

x

z1113874 1113875

(62)

where Δ(x z) is given by (28) us

S♯2(x σ) 1113944

N0ltnlex

radic

π2

6middotx

nminus Δ

x

n z1113874 1113875 + Δ

x

nminus 1 z1113874 1113875 + O

x

nz1113874 11138751113888 1113889

π2

12x log x + O x(log x)

(23) log2 x( 1113857(13)

+ xzminus 1log x1113872 1113873 minus Δ1(x z) + Δ2(x z)

(63)

where

Δ1(x z) ≔ 1113944N0ltnle

x

radicΔ

x

n z1113874 1113875≪ x(log x)

minus 3+ xz

minus 1log x

Δ2(x z) ≔ 1113944N0ltnle

x

radicΔ

x

nminus 1 z1113874 1113875≪x(log x)

minus 3+ xz

minus 1log x

(64)

thanks to Lemma 6 Inserting these estimates into (59) wefind that

S2(x σ) π2

12x log x + O x(log x)

(23) log2 x( 1113857(43)

+ xzminus 1log x1113872 1113873

(65)

Now (5) follows from (53) (55) (58) and (66) with thechoice of z (log x)(13)

34 Proof ofeorem1 (ii) For any odd prime p (52) allowsus to write

1113944d ∣p

(σ(d) minus σ(d minus 1)) Sσ(p) minus Sσ(p minus 1)

π2

6(log p minus log(p minus 1)) + E(p) minus E(p minus 1)

geE(p) minus E(p minus 1)ge minus 2Elowast(p)

(66)

where Elowast(p) ≔ max |E(p)| |E(p minus 1)|1113864 1113865 On the otherhand we have

1113944d|p

(σ(d) minus σ(d minus 1)) σ(p) minus σ(p minus 1) + 1

lep + 1 minus p minus 1 +12(p minus 1) + 2 + 11113874 1113875 + 1le minus

14p

(67)

us Elowast(p)ge (18)p for all odd primes

Data Availability

No data were used to support this study

6 Journal of Mathematics

Conflicts of Interest

e authors declare that they have no conflicts of interest

Acknowledgments

is study was supported in part by the National NaturalScience Foundation of China (grant nos 1187119311971370 and 12071375) Natural Science Foundation ofChongqing (grant no cstc2019jcyj-msxm1651) NationalNatural Science Foundation of Henan Province (grant no202300410274) and Research Projects for Overseas Re-searchers of Department of Human Resources and SocialSecurity of Henan Province 2020

References

[1] O Bordelles L Dai R Heyman H Pan and I E ShparlinskildquoOn a sum involving the Euler functionrdquo Journal of Numbereory vol 202 pp 278ndash297 2019

[2] J Wu ldquoOn a sum involving the Euler totient functionrdquoIndagationes Mathematicae vol 30 no 4 pp 536ndash541 2019

[3] W Zhai ldquoOn a sum involving the euler functionrdquo Journal ofNumber eory vol 211 pp 199ndash219 2020

[4] J Ma and J Wu ldquoOn a sum involving the Mangoldt functionrdquoPeriodica Mathematica Hungarica vol 80 2020

[5] J Wu ldquoNote on a paper by Bordelles Dai heyman Pan andShparlinskirdquo Periodica Mathematica Hungarica vol 80 no 1pp 95ndash102 2020

[6] A A Karatsuba ldquoEstimates for trigonometric sums byVinogradovrsquos method and some applicationsrdquo Proceedings ofthe Steklov Institute of Mathematics vol 112 pp 251ndash265 1971

[7] Y-F S Petermann and J Wu ldquoOn the sum of exponentialdivisors of an integerrdquo Acta Mathematica Hungarica vol 77no 12 pp 159ndash175 1997

[8] S W Graham and G Kolesnik Van der Corputrsquos Method ofExponential Sums Cambridge University Press CambridgeUK 1991

Journal of Mathematics 7

1113944nle x

μ(n)≪x exp minus c

log x

1113969

1113882 1113883 (xge 1) (7)

plays a key role where cgt 0 is a positive constant Clearlysuch a bound is not true for 1 By refining Zhairsquos approachwe shall prove our result

2 Preliminary Lemmas

As in [3] we need some bounds on exponential sums of thetype 1113936NlenltNprimee(Tn) where NltNprime le 2N For large values ofN Zhai used the theory of exponent pair and for smallerones the Vinogradov method Both estimates are containedin the following general theorem of Karatsuba [6 eorem1] which will be a key tool for proving eorem 1

Lemma 1 Let kge 2 and M and P be integers P beingpositive Let f isin Ck+1([M M + P]R) Suppose that thereexist positive absolute constants c0 c1 c2 c3 and c4 such thatc0 lt 1 c1 lt 1 and c2 + c4 lt c1 an integer r such thatc0kle rle k and distinct numbers sj ge 2(j 1 r) notexceeding k such that for Mle tleM + P the following in-equalities are satisfied

(i) |f(k+1)(t)(k + 1)|lePminus c1(k+1)(ii) Pminus c2sj le |f(sj)(t)sj|lePminus c3sj (j 1 r)

en for each positive integer P1 not exceeding P we have

1113944MlemleM+P1minus 1

e(f(m))

1113868111386811138681113868111386811138681113868111386811138681113868

1113868111386811138681113868111386811138681113868111386811138681113868leAP

1minus ck2( ) (8)

where e(t) ≔ e2πit and Agt 0 cgt 0 are absolute constants

e next two lemmas are essentially a special case of [7Lemmas 25 and 26] with a 1 e only difference is thatthe ranges of T and N here are slightly larger than those of[7 Lemmas 25 and 26] (TgeN2 in place of TgeN(32) andNlex(23) in place of Nlex(12) respectively) Although theproof is completely similar for the convenience of readerswe still reproduce a proof here

Lemma 2 Let e100 leNltNprime le 2N and TgeN(32) enthere exists an absolute positive constant c5 such that

1113944

Nle nltNprime

eT

n1113874 1113875≪N exp minus

c5log3

N

log2 T1113888 11138891113896 1113897 (9)

where the implied constant is absolute

Proof We apply Lemma 1 to f(t) ≔ (Tt) withM N P N P1 Nprime minus N For this we choose

c0 1100

c1 99100

c2 87100

c3 34

c4 1100

k 100log(Tn)

log N1113890 1113891

(10)

and take the sj to be all integers s such that

4log(Tn)

log Nle sle 5

log(Tn)

log Nmiddot (11)

Obviously the number r of sj is between c0k and k Nextwe shall verify that f(t) satisfies the conditions (i) and (ii) ofLemma 1 with the parameters chosen above

For Nle tle 2N we have

f(k+1)

(t)

(k + 1)

111386811138681113868111386811138681113868111386811138681113868

111386811138681113868111386811138681113868111386811138681113868 Tt

minus kminus 2 leTNminus kminus 2

Nminus η1 (12)

where

η1 ≔ k + 1 minuslog(Tn)

log Nge k + 1 minus

1100

kge99100

(k + 1) c1(k + 1)

(13)

Similarly for Nle tle 2N we find the inequality|f(sj)(t)sj|leNminus η3 where

η3 ≔ sj minuslog(Tn)

log Nge34sj c3sj (14)

For the lower bound of (ii) we have

fsj( 1113857

(t)

sj

11138681113868111386811138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868111386811138681113868 Tt

minus 1minus sj geT(2N)minus 1minus sj N

minus η2 (15)

where

η2 ≔ sj minuslog(Tn)

log N+log 2log N

sj + 11113872 1113873

le45sj +

log 2100

sj + 11113872 1113873le87100

sj c2sj

(16)

From Lemma 1 there exist two positive constants c andA such that

2 Journal of Mathematics

1113944

Nle nltNprime

eT

n1113874 1113875

1113868111386811138681113868111386811138681113868111386811138681113868

1113868111386811138681113868111386811138681113868111386811138681113868leAN

1minus ck2( ) leAN exp minusc5log

3N

log2(Tn)1113896 1113897

(17)

with c5 ≔ 10minus 4c is completes the proof of Lemma 2

Lemma 3 Define ψ(t) ≔ t minus [t] minus (12) Let c5 be theconstant defined by Lemma 2 and c6 ≔ (89)2c5

clowast ≔ ((35)c6)minus (13) en we have

1113944

Nle nltNprime

1nψ

x

n1113874 1113875≪ eminus c6(log N)3(log x)2(log N)

3

(log x)2 (18)

uniformly for xge 10 exp clowast(log x)(23)1113966 1113967leNlex(23) and

NltNprime le 2N

Proof By invoking a classical result on ψ(t) (see 8 page 39])we can write for any Hge 1

1113944

Nle nltNprime

ψx

n1113874 1113875≪NH

minus 1+ 1113944

1le hleH

hminus 1

1113944

Nle nltNprime

ehx

n1113888 1113889

1113868111386811138681113868111386811138681113868111386811138681113868

1113868111386811138681113868111386811138681113868111386811138681113868

(19)

An application of Lemma 2 with T hxgexgeN(32)

yields

1113944

Nle nltNprime

ψx

n1113874 1113875≪N H

minus 1+ e

minus c5(log N)3log2(Hx)log H1113874 1113875

(20)

Taking H exp (log N)3(log x)21113966 1113967le x(827) we easilydeduce that

1113944

Nle nltNprime

ψx

n1113874 1113875≪N e

minus (log N)3(log x)2+ e

minus c6(log N)3(log x)2(log N)3

(log x)21113888 1113889

(21)

e first term can be absorbed by the second since c5 canbe chosen small enough to ensure that c6 lt 1 and sinceexp clowast(log x)(23)

1113966 1113967leN implies (log N)3(log x)2 ge clowastHence

1113944

Nle nltNprime

ψx

n1113874 1113875≪Ne

minus c6(log N)3(log x)2(log N)3

(log x)2 (22)

and an Abel summation produces the required result

Lemma 4 Let 2le z1 lt z2 le x and Fx(t) ≔ (1t)ψ(xt)Denote by VFx

[z1 z2] the total variation of Fx on [z1 z2]en

VFxz1 z21113858 1113859≪

x

z21

+1z1

(23)

where the implied constant is absolute

Proof If z1 t0 lt t1 lt middot middot middot lt tn z2 is a partition of the in-terval [z1 z2] then

1113944

n

k1Fx tk( 1113857 minus Fx tkminus 1( 1113857

11138681113868111386811138681113868111386811138681113868 1113944

n

k1

1tk

ψx

tk

1113888 1113889 minus1

tkminus 1ψ

x

tkminus 11113888 1113889

11138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868

le 1113944n

k1

1tk

minus1

tkminus 11113888 1113889ψ

x

tk

1113888 1113889

11138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868+ 1113944

n

k1

1tkminus 1

ψx

tk

1113888 1113889 minus ψx

tkminus 11113888 1113889

11138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868

(24)

Since |ψ(t)|le 1 for all t we have

1113944n

k1

1tk

minus1

tkminus 11113888 1113889ψ

x

tk

1113888 1113889

11138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868le1z1

minus1z2lt1z1

middot (25)

On the other hand since ψ(u) is of period 1 we have

1113944

n

k1

1tkminus 1

ψx

tk

1113888 1113889 minus ψx

tkminus 11113888 1113889

11138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868

le1z1

x

z1+ 11113888 1113889Vψ[0 1]le 2

x

z21

+1z1

1113888 1113889

(26)

Inserting these two bounds into (24) we obtain therequired result

3 Proof of Theorem 1

31 A Formula on the Mean Value of σ(n)

Lemma 5

(i) For xge 2 and 1le zlex(13) we have

1113944nle x

σ(n) π2

12x2

minus x(z minus [z])

2+[z]

2z+ O

x

z1113874 1113875 minus Δ(x z)

(27)

where

Δ(x z) ≔ 1113944dle (xz)

x

x

d1113874 1113875 (28)

(ii) For x⟶infin we have

1113944nlex

σ(n) π2

12x2

+ O(x log x) (29)

Proof Using σ(n) 1113936dmnm the hyperbole principle ofDirichlet allows us to write

1113944nle x

σ(n) 1113944dmle x

m S1 + S2 minus S3 (30)

where

Journal of Mathematics 3

S1 ≔ 1113944dle(xz)

1113944mle(xd)

m

S2 ≔ 1113944mle z

1113944dle(xm)

m

S3 ≔ 1113944dle(xz)

1113944mlez

m

(31)

Firstly we have

S2 1113944mlez

mx

m1113876 1113877 x[z] + O z

21113872 1113873 (32)

S3 x

z1113876 1113877

[z]([z] + 1)

2 x

[z]([z] + 1)

2z+ O z

21113872 1113873 (33)

Secondly we can write

S1 12

1113944dle(xz)

x

dminus ψ

x

d1113874 1113875 minus

12

1113874 1113875x

dminus ψ

x

d1113874 1113875 +

12

1113874 1113875

12

1113944dle(xz)

x2

d2 minus 2

x

x

d1113874 1113875 + ψ

x

d1113874 1113875

2minus14

1113888 1113889

π2

12x2

minus12

xz minus Δ(x z) + O(xz)

(34)

where Δ(x z) is as in (28) Inserting (32) (33) and (34) into(30) and using z2 le (xz) we get (27)

Taking z 1 in (27) and noticing that

1113944dlex

1d2

π2

6+ O

1x

1113874 1113875

1113944dlex

x

x

d1113874 1113875

1113868111386811138681113868111386811138681113868111386811138681113868

1113868111386811138681113868111386811138681113868111386811138681113868≪ x log x

(35)

we obtain the required boundis completes the proof

32 Estimates of Error Terms

Lemma 6 Let N0 ≔ exp (6c6)(log x)(23)(log2 x)(13)1113966 1113967

where c6 is given as in Lemma 3 Let Δ(x z) be defined by(28) en for xge 10 and 2le zle

N0

1113968 we have

1113944N0ltnle

x

radicΔ

x

n z1113874 1113875

11138681113868111386811138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868111386811138681113868+ 1113944

N0ltnlex

radicΔ

x

nminus 1 z1113874 1113875

11138681113868111386811138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868111386811138681113868

≪ x1

(log x)3 +

log x

z1113888 1113889

(36)

Proof Denote by Δ1(x z) and Δ2(x z) two sums on theleft-hand side of (36) respectively By (28) of Lemma 5 wecan write

Δ1(x z) x 1113944N0ltnle

x

radic1113944

dle(x(nz))

1dn

ψx

dn1113874 1113875

x 1113944

dle x N0z( )( )

1d

1113944N0ltnlemin(

x

radicx(dz))

1nψ

x

dn1113874 1113875

xΔdagger1(x z) + xΔ♯1(x z)

(37)

where

Δdagger1(x z) ≔ 1113944

dle x N0z( )( )

1d

1113944

N0ltnle(xd)(23)

1nψ

x

dn1113874 1113875

Δ♯1(x z) ≔ 1113944

dle x N0z( )( )

1d

1113944

(xd)(23)lt nleminx

radic(xdz)

1nψ

x

dn1113874 1113875

(38)

For 0le kle (log((xd)(23)N0))log 2 let Nk ≔ 2kN0and define

Sk(d) ≔ 1113944Nklt nle 2Nk

1nψ

x

dn1113874 1113875 (39)

Noticing that N0 leNk le (xd)(23) we can apply Lemma3 to derive that

Sk(d)≪ eminus ϑ log Nk( )3(log(xd))2( 1113857

(40)

with ϑ(t) ≔ c6t minus log t It is clear that ϑ(t) is increasing on[c6infin) On the other hand for kge 0 and dge 1 we have

log Nk( 11138573(log(xd))

2 ge log N0( 11138573(log x)

2 6c6( 1113857log2 x

(41)

us

ϑlog Nk( 1113857

3

(log(xd))21113888 1113889ge ϑ

6c6

1113888 1113889log2 x1113888 1113889

6 log2 x minus log6c6

1113888 1113889log2 x1113888 1113889ge 5 log2 x

(42)

which implies that Sk(d)≪ (log x)minus 5 Inserting this intothe expression of Δdagger1(x z) we get

Δdagger1(x z)≪ 1113944

dle x N0z( )( )

1d

1113944

2kN0le(xd)(23)

Sk(d)1113868111386811138681113868

1113868111386811138681113868≪ (log x)minus 3

(43)

Next we bound Δ♯1(x z) Let F(t) be a function ofbounded variation on [n n + 1] for each integer n and letVF[n n + 1] be the total variation of F on [n n + 1] Inte-grating by parts we have

4 Journal of Mathematics

1113946n+1

nt minus n minus

12

1113874 1113875dF(t) 12(F(n + 1) + F(n)) minus 1113946

n+1

nF(t)dt

(44)

From this we can derive that

12(F(n + 1) + F(n)) 1113946

n+1

nF(t)dt + O VF[n n + 1]( 1113857

(45)

for nge 1 Summing over n we find that

1113944N1lt nleN2

F(n) 1113946N2

N1

F(t)dt

+12

F N1( 1113857 + F N2( 1113857( 1113857 + O VF N1 N21113858 1113859( 1113857

(46)

We apply this formula to

F(xd)(t) 1tψ

(xd)

t1113888 1113889

N1 (xd)(23)

1113960 1113961

N2 minx

radic

x

(dz)1113896 11138971113890 1113891

(47)

According to Lemma 4 we haveVF(xd)

[N1 N2]≪ (xd)minus (13) and thus by puttingu (xd)t we obtain with the notationxd1 max(

x

radicd tz) and xd2 (xd)(13)

1113944

(xd)(23)ltnleminx

radic(x(dz))

1nψ

x

dn1113874 1113875 1113946

xd2

xd1

ψ(u)

udu + O

x

d1113874 1113875

minus (13)

1113888 1113889

≪ zminus 1

+x

d1113874 1113875

minus (13)

≪ zminus 1

(48)

where we have used the fact that zleN0

1113968and

dle (x(N0z))rArrz le (xd)(13) and the bound

1113946xd2

xd1

ψ(u)

udu 1113946

xd2

xd1

1113946u

xd1

ψ(t)dt1113888 1113889du

u2 minus

1x

(23)d2

1113946xd2

xd1

ψ(t)dt

≪xminus 1d1 + xd21113872 1113873

minus (23)≪ z

minus 1+(xd)

minus (23)≪ zminus 1

(49)

Using (48) a simple partial integration allows us toderive that

Δ♯1(x z)≪ zminus 1

1113944

dlex N0z( )

dminus 1≪ z

minus 1log x(50)

Combining (43) and (50) it follows that

Δ1(x z)1113868111386811138681113868

1113868111386811138681113868≪ x(log x)minus 3

+ xzminus 1log x (51)

Similarly we can prove the same bound for |Δ2(x z)|is completes the proof

33 End of the Proof of eorem 1 Let c6 be the constantgiven as in Lemma 3 and N0 ≔ exp (6c6)1113864 (log x)(23)

(log2 x)(13) Let z isin [2N0

1113968] be a parameter to be chosen

laterPutting d [xn] we have (xn) minus 1lt dle (xn) and

x(d + 1)lt nle (xd) We have with the conventionσ(0) 0

Sσ(x) 1113944dlex

σ(d) 1113944(x(d+1))ltnle(xd)

1

1113944dnle x

σ(d) minus 1113944dnle xdge2

σ(d minus 1)

1113944dnlex

(σ(d) minus σ(d minus 1))

(52)

By the hyperbole principle of Dirichlet we can write

Sσ(x) S1(x σ) + S2(x σ) minus S3(x σ) (53)

where

S1(x σ) ≔ 1113944dle

x

radicdnle x

(σ(d) minus σ(d minus 1))

S2(x σ) ≔ 1113944nle

x

radicdnlex

(σ(d) minus σ(d minus 1))

S3(x σ) ≔ 1113944dle

x

radicnle

x

radic(σ(d) minus σ(d minus 1))

(54)

With the help of the bound σ(n)≪ n log2 n we canderive that

S3(x σ) [x

radic]σ([

x

radic])≪x log2 x (55)

For evaluating S1(x σ) we write

S1(x σ) 1113944dle

x

radic(σ(d) minus σ(d minus 1))

x

d1113876 1113877

x 1113944dle

x

radic

σ(d) minus σ(d minus 1)

d+ O 1113944

dlex

radic|σ(d) minus σ(d minus 1)|⎛⎝ ⎞⎠

(56)

With the help of Lemma 5 (ii) a simple partial inte-gration gives us

Journal of Mathematics 5

1113944dle

x

radic

σ(d) minus σ(d minus 1)

d 1113944

dlex

radic

σ(d)

d(d + 1)

1113944dle

x

radic

σ(d)

d2 minus 1113944

dlex

radic

σ(d)

d2(d + 1)

1113946

x

radic

1minustminus 2d

π2

12t2

+ O(t log t)1113888 1113889 + O(1)

π2

12log x + O(1)

1113944dle

x

radic|σ(d) minus σ(d minus 1)|

≪ 1113944dle

x

radicσ(d)≪x

(57)

Inserting these estimates into (56) we find that

S1(x σ) π2

12x log x + O(x) (58)

Finally we evaluate S2(x σ) For this we write

S2(x σ) Sdagger2(x σ) + S

♯2(x σ) (59)

where

Sdagger2(x σ) ≔ 1113944

nleN0dnle x

(σ(d) minus σ(d minus 1))

S♯2(x σ) ≔ 1113944

N0ltnlex

radicdnle x

(σ(d) minus σ(d minus 1))(60)

By the bound that σ(n)≪ n log2 n we have

Sdagger2(x σ) 1113944

nleN0

σx

n1113876 11138771113874 1113875≪ 1113944

nleN0

x

n1113874 1113875log2 x

≪ x(log x)(23) log2 x( 1113857

(43)

(61)

On the other hand (27) of Lemma 5 allows us to derivethat

1113944dlex

σ(d) minus 1113944dlexminus 1

σ(d) π2

12x2

minus (x minus 1)2

1113872 1113873 minus Δ(x z)

+ Δ(x minus 1 z) + Ox

z1113874 1113875

π2

6x minus Δ(x z) + Δ(x minus 1 z) + O

x

z1113874 1113875

(62)

where Δ(x z) is given by (28) us

S♯2(x σ) 1113944

N0ltnlex

radic

π2

6middotx

nminus Δ

x

n z1113874 1113875 + Δ

x

nminus 1 z1113874 1113875 + O

x

nz1113874 11138751113888 1113889

π2

12x log x + O x(log x)

(23) log2 x( 1113857(13)

+ xzminus 1log x1113872 1113873 minus Δ1(x z) + Δ2(x z)

(63)

where

Δ1(x z) ≔ 1113944N0ltnle

x

radicΔ

x

n z1113874 1113875≪ x(log x)

minus 3+ xz

minus 1log x

Δ2(x z) ≔ 1113944N0ltnle

x

radicΔ

x

nminus 1 z1113874 1113875≪x(log x)

minus 3+ xz

minus 1log x

(64)

thanks to Lemma 6 Inserting these estimates into (59) wefind that

S2(x σ) π2

12x log x + O x(log x)

(23) log2 x( 1113857(43)

+ xzminus 1log x1113872 1113873

(65)

Now (5) follows from (53) (55) (58) and (66) with thechoice of z (log x)(13)

34 Proof ofeorem1 (ii) For any odd prime p (52) allowsus to write

1113944d ∣p

(σ(d) minus σ(d minus 1)) Sσ(p) minus Sσ(p minus 1)

π2

6(log p minus log(p minus 1)) + E(p) minus E(p minus 1)

geE(p) minus E(p minus 1)ge minus 2Elowast(p)

(66)

where Elowast(p) ≔ max |E(p)| |E(p minus 1)|1113864 1113865 On the otherhand we have

1113944d|p

(σ(d) minus σ(d minus 1)) σ(p) minus σ(p minus 1) + 1

lep + 1 minus p minus 1 +12(p minus 1) + 2 + 11113874 1113875 + 1le minus

14p

(67)

us Elowast(p)ge (18)p for all odd primes

Data Availability

No data were used to support this study

6 Journal of Mathematics

Conflicts of Interest

e authors declare that they have no conflicts of interest

Acknowledgments

is study was supported in part by the National NaturalScience Foundation of China (grant nos 1187119311971370 and 12071375) Natural Science Foundation ofChongqing (grant no cstc2019jcyj-msxm1651) NationalNatural Science Foundation of Henan Province (grant no202300410274) and Research Projects for Overseas Re-searchers of Department of Human Resources and SocialSecurity of Henan Province 2020

References

[1] O Bordelles L Dai R Heyman H Pan and I E ShparlinskildquoOn a sum involving the Euler functionrdquo Journal of Numbereory vol 202 pp 278ndash297 2019

[2] J Wu ldquoOn a sum involving the Euler totient functionrdquoIndagationes Mathematicae vol 30 no 4 pp 536ndash541 2019

[3] W Zhai ldquoOn a sum involving the euler functionrdquo Journal ofNumber eory vol 211 pp 199ndash219 2020

[4] J Ma and J Wu ldquoOn a sum involving the Mangoldt functionrdquoPeriodica Mathematica Hungarica vol 80 2020

[5] J Wu ldquoNote on a paper by Bordelles Dai heyman Pan andShparlinskirdquo Periodica Mathematica Hungarica vol 80 no 1pp 95ndash102 2020

[6] A A Karatsuba ldquoEstimates for trigonometric sums byVinogradovrsquos method and some applicationsrdquo Proceedings ofthe Steklov Institute of Mathematics vol 112 pp 251ndash265 1971

[7] Y-F S Petermann and J Wu ldquoOn the sum of exponentialdivisors of an integerrdquo Acta Mathematica Hungarica vol 77no 12 pp 159ndash175 1997

[8] S W Graham and G Kolesnik Van der Corputrsquos Method ofExponential Sums Cambridge University Press CambridgeUK 1991

Journal of Mathematics 7

1113944

Nle nltNprime

eT

n1113874 1113875

1113868111386811138681113868111386811138681113868111386811138681113868

1113868111386811138681113868111386811138681113868111386811138681113868leAN

1minus ck2( ) leAN exp minusc5log

3N

log2(Tn)1113896 1113897

(17)

with c5 ≔ 10minus 4c is completes the proof of Lemma 2

Lemma 3 Define ψ(t) ≔ t minus [t] minus (12) Let c5 be theconstant defined by Lemma 2 and c6 ≔ (89)2c5

clowast ≔ ((35)c6)minus (13) en we have

1113944

Nle nltNprime

1nψ

x

n1113874 1113875≪ eminus c6(log N)3(log x)2(log N)

3

(log x)2 (18)

uniformly for xge 10 exp clowast(log x)(23)1113966 1113967leNlex(23) and

NltNprime le 2N

Proof By invoking a classical result on ψ(t) (see 8 page 39])we can write for any Hge 1

1113944

Nle nltNprime

ψx

n1113874 1113875≪NH

minus 1+ 1113944

1le hleH

hminus 1

1113944

Nle nltNprime

ehx

n1113888 1113889

1113868111386811138681113868111386811138681113868111386811138681113868

1113868111386811138681113868111386811138681113868111386811138681113868

(19)

An application of Lemma 2 with T hxgexgeN(32)

yields

1113944

Nle nltNprime

ψx

n1113874 1113875≪N H

minus 1+ e

minus c5(log N)3log2(Hx)log H1113874 1113875

(20)

Taking H exp (log N)3(log x)21113966 1113967le x(827) we easilydeduce that

1113944

Nle nltNprime

ψx

n1113874 1113875≪N e

minus (log N)3(log x)2+ e

minus c6(log N)3(log x)2(log N)3

(log x)21113888 1113889

(21)

e first term can be absorbed by the second since c5 canbe chosen small enough to ensure that c6 lt 1 and sinceexp clowast(log x)(23)

1113966 1113967leN implies (log N)3(log x)2 ge clowastHence

1113944

Nle nltNprime

ψx

n1113874 1113875≪Ne

minus c6(log N)3(log x)2(log N)3

(log x)2 (22)

and an Abel summation produces the required result

Lemma 4 Let 2le z1 lt z2 le x and Fx(t) ≔ (1t)ψ(xt)Denote by VFx

[z1 z2] the total variation of Fx on [z1 z2]en

VFxz1 z21113858 1113859≪

x

z21

+1z1

(23)

where the implied constant is absolute

Proof If z1 t0 lt t1 lt middot middot middot lt tn z2 is a partition of the in-terval [z1 z2] then

1113944

n

k1Fx tk( 1113857 minus Fx tkminus 1( 1113857

11138681113868111386811138681113868111386811138681113868 1113944

n

k1

1tk

ψx

tk

1113888 1113889 minus1

tkminus 1ψ

x

tkminus 11113888 1113889

11138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868

le 1113944n

k1

1tk

minus1

tkminus 11113888 1113889ψ

x

tk

1113888 1113889

11138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868+ 1113944

n

k1

1tkminus 1

ψx

tk

1113888 1113889 minus ψx

tkminus 11113888 1113889

11138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868

(24)

Since |ψ(t)|le 1 for all t we have

1113944n

k1

1tk

minus1

tkminus 11113888 1113889ψ

x

tk

1113888 1113889

11138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868le1z1

minus1z2lt1z1

middot (25)

On the other hand since ψ(u) is of period 1 we have

1113944

n

k1

1tkminus 1

ψx

tk

1113888 1113889 minus ψx

tkminus 11113888 1113889

11138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868

le1z1

x

z1+ 11113888 1113889Vψ[0 1]le 2

x

z21

+1z1

1113888 1113889

(26)

Inserting these two bounds into (24) we obtain therequired result

3 Proof of Theorem 1

31 A Formula on the Mean Value of σ(n)

Lemma 5

(i) For xge 2 and 1le zlex(13) we have

1113944nle x

σ(n) π2

12x2

minus x(z minus [z])

2+[z]

2z+ O

x

z1113874 1113875 minus Δ(x z)

(27)

where

Δ(x z) ≔ 1113944dle (xz)

x

x

d1113874 1113875 (28)

(ii) For x⟶infin we have

1113944nlex

σ(n) π2

12x2

+ O(x log x) (29)

Proof Using σ(n) 1113936dmnm the hyperbole principle ofDirichlet allows us to write

1113944nle x

σ(n) 1113944dmle x

m S1 + S2 minus S3 (30)

where

Journal of Mathematics 3

S1 ≔ 1113944dle(xz)

1113944mle(xd)

m

S2 ≔ 1113944mle z

1113944dle(xm)

m

S3 ≔ 1113944dle(xz)

1113944mlez

m

(31)

Firstly we have

S2 1113944mlez

mx

m1113876 1113877 x[z] + O z

21113872 1113873 (32)

S3 x

z1113876 1113877

[z]([z] + 1)

2 x

[z]([z] + 1)

2z+ O z

21113872 1113873 (33)

Secondly we can write

S1 12

1113944dle(xz)

x

dminus ψ

x

d1113874 1113875 minus

12

1113874 1113875x

dminus ψ

x

d1113874 1113875 +

12

1113874 1113875

12

1113944dle(xz)

x2

d2 minus 2

x

x

d1113874 1113875 + ψ

x

d1113874 1113875

2minus14

1113888 1113889

π2

12x2

minus12

xz minus Δ(x z) + O(xz)

(34)

where Δ(x z) is as in (28) Inserting (32) (33) and (34) into(30) and using z2 le (xz) we get (27)

Taking z 1 in (27) and noticing that

1113944dlex

1d2

π2

6+ O

1x

1113874 1113875

1113944dlex

x

x

d1113874 1113875

1113868111386811138681113868111386811138681113868111386811138681113868

1113868111386811138681113868111386811138681113868111386811138681113868≪ x log x

(35)

we obtain the required boundis completes the proof

32 Estimates of Error Terms

Lemma 6 Let N0 ≔ exp (6c6)(log x)(23)(log2 x)(13)1113966 1113967

where c6 is given as in Lemma 3 Let Δ(x z) be defined by(28) en for xge 10 and 2le zle

N0

1113968 we have

1113944N0ltnle

x

radicΔ

x

n z1113874 1113875

11138681113868111386811138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868111386811138681113868+ 1113944

N0ltnlex

radicΔ

x

nminus 1 z1113874 1113875

11138681113868111386811138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868111386811138681113868

≪ x1

(log x)3 +

log x

z1113888 1113889

(36)

Proof Denote by Δ1(x z) and Δ2(x z) two sums on theleft-hand side of (36) respectively By (28) of Lemma 5 wecan write

Δ1(x z) x 1113944N0ltnle

x

radic1113944

dle(x(nz))

1dn

ψx

dn1113874 1113875

x 1113944

dle x N0z( )( )

1d

1113944N0ltnlemin(

x

radicx(dz))

1nψ

x

dn1113874 1113875

xΔdagger1(x z) + xΔ♯1(x z)

(37)

where

Δdagger1(x z) ≔ 1113944

dle x N0z( )( )

1d

1113944

N0ltnle(xd)(23)

1nψ

x

dn1113874 1113875

Δ♯1(x z) ≔ 1113944

dle x N0z( )( )

1d

1113944

(xd)(23)lt nleminx

radic(xdz)

1nψ

x

dn1113874 1113875

(38)

For 0le kle (log((xd)(23)N0))log 2 let Nk ≔ 2kN0and define

Sk(d) ≔ 1113944Nklt nle 2Nk

1nψ

x

dn1113874 1113875 (39)

Noticing that N0 leNk le (xd)(23) we can apply Lemma3 to derive that

Sk(d)≪ eminus ϑ log Nk( )3(log(xd))2( 1113857

(40)

with ϑ(t) ≔ c6t minus log t It is clear that ϑ(t) is increasing on[c6infin) On the other hand for kge 0 and dge 1 we have

log Nk( 11138573(log(xd))

2 ge log N0( 11138573(log x)

2 6c6( 1113857log2 x

(41)

us

ϑlog Nk( 1113857

3

(log(xd))21113888 1113889ge ϑ

6c6

1113888 1113889log2 x1113888 1113889

6 log2 x minus log6c6

1113888 1113889log2 x1113888 1113889ge 5 log2 x

(42)

which implies that Sk(d)≪ (log x)minus 5 Inserting this intothe expression of Δdagger1(x z) we get

Δdagger1(x z)≪ 1113944

dle x N0z( )( )

1d

1113944

2kN0le(xd)(23)

Sk(d)1113868111386811138681113868

1113868111386811138681113868≪ (log x)minus 3

(43)

Next we bound Δ♯1(x z) Let F(t) be a function ofbounded variation on [n n + 1] for each integer n and letVF[n n + 1] be the total variation of F on [n n + 1] Inte-grating by parts we have

4 Journal of Mathematics

1113946n+1

nt minus n minus

12

1113874 1113875dF(t) 12(F(n + 1) + F(n)) minus 1113946

n+1

nF(t)dt

(44)

From this we can derive that

12(F(n + 1) + F(n)) 1113946

n+1

nF(t)dt + O VF[n n + 1]( 1113857

(45)

for nge 1 Summing over n we find that

1113944N1lt nleN2

F(n) 1113946N2

N1

F(t)dt

+12

F N1( 1113857 + F N2( 1113857( 1113857 + O VF N1 N21113858 1113859( 1113857

(46)

We apply this formula to

F(xd)(t) 1tψ

(xd)

t1113888 1113889

N1 (xd)(23)

1113960 1113961

N2 minx

radic

x

(dz)1113896 11138971113890 1113891

(47)

According to Lemma 4 we haveVF(xd)

[N1 N2]≪ (xd)minus (13) and thus by puttingu (xd)t we obtain with the notationxd1 max(

x

radicd tz) and xd2 (xd)(13)

1113944

(xd)(23)ltnleminx

radic(x(dz))

1nψ

x

dn1113874 1113875 1113946

xd2

xd1

ψ(u)

udu + O

x

d1113874 1113875

minus (13)

1113888 1113889

≪ zminus 1

+x

d1113874 1113875

minus (13)

≪ zminus 1

(48)

where we have used the fact that zleN0

1113968and

dle (x(N0z))rArrz le (xd)(13) and the bound

1113946xd2

xd1

ψ(u)

udu 1113946

xd2

xd1

1113946u

xd1

ψ(t)dt1113888 1113889du

u2 minus

1x

(23)d2

1113946xd2

xd1

ψ(t)dt

≪xminus 1d1 + xd21113872 1113873

minus (23)≪ z

minus 1+(xd)

minus (23)≪ zminus 1

(49)

Using (48) a simple partial integration allows us toderive that

Δ♯1(x z)≪ zminus 1

1113944

dlex N0z( )

dminus 1≪ z

minus 1log x(50)

Combining (43) and (50) it follows that

Δ1(x z)1113868111386811138681113868

1113868111386811138681113868≪ x(log x)minus 3

+ xzminus 1log x (51)

Similarly we can prove the same bound for |Δ2(x z)|is completes the proof

33 End of the Proof of eorem 1 Let c6 be the constantgiven as in Lemma 3 and N0 ≔ exp (6c6)1113864 (log x)(23)

(log2 x)(13) Let z isin [2N0

1113968] be a parameter to be chosen

laterPutting d [xn] we have (xn) minus 1lt dle (xn) and

x(d + 1)lt nle (xd) We have with the conventionσ(0) 0

Sσ(x) 1113944dlex

σ(d) 1113944(x(d+1))ltnle(xd)

1

1113944dnle x

σ(d) minus 1113944dnle xdge2

σ(d minus 1)

1113944dnlex

(σ(d) minus σ(d minus 1))

(52)

By the hyperbole principle of Dirichlet we can write

Sσ(x) S1(x σ) + S2(x σ) minus S3(x σ) (53)

where

S1(x σ) ≔ 1113944dle

x

radicdnle x

(σ(d) minus σ(d minus 1))

S2(x σ) ≔ 1113944nle

x

radicdnlex

(σ(d) minus σ(d minus 1))

S3(x σ) ≔ 1113944dle

x

radicnle

x

radic(σ(d) minus σ(d minus 1))

(54)

With the help of the bound σ(n)≪ n log2 n we canderive that

S3(x σ) [x

radic]σ([

x

radic])≪x log2 x (55)

For evaluating S1(x σ) we write

S1(x σ) 1113944dle

x

radic(σ(d) minus σ(d minus 1))

x

d1113876 1113877

x 1113944dle

x

radic

σ(d) minus σ(d minus 1)

d+ O 1113944

dlex

radic|σ(d) minus σ(d minus 1)|⎛⎝ ⎞⎠

(56)

With the help of Lemma 5 (ii) a simple partial inte-gration gives us

Journal of Mathematics 5

1113944dle

x

radic

σ(d) minus σ(d minus 1)

d 1113944

dlex

radic

σ(d)

d(d + 1)

1113944dle

x

radic

σ(d)

d2 minus 1113944

dlex

radic

σ(d)

d2(d + 1)

1113946

x

radic

1minustminus 2d

π2

12t2

+ O(t log t)1113888 1113889 + O(1)

π2

12log x + O(1)

1113944dle

x

radic|σ(d) minus σ(d minus 1)|

≪ 1113944dle

x

radicσ(d)≪x

(57)

Inserting these estimates into (56) we find that

S1(x σ) π2

12x log x + O(x) (58)

Finally we evaluate S2(x σ) For this we write

S2(x σ) Sdagger2(x σ) + S

♯2(x σ) (59)

where

Sdagger2(x σ) ≔ 1113944

nleN0dnle x

(σ(d) minus σ(d minus 1))

S♯2(x σ) ≔ 1113944

N0ltnlex

radicdnle x

(σ(d) minus σ(d minus 1))(60)

By the bound that σ(n)≪ n log2 n we have

Sdagger2(x σ) 1113944

nleN0

σx

n1113876 11138771113874 1113875≪ 1113944

nleN0

x

n1113874 1113875log2 x

≪ x(log x)(23) log2 x( 1113857

(43)

(61)

On the other hand (27) of Lemma 5 allows us to derivethat

1113944dlex

σ(d) minus 1113944dlexminus 1

σ(d) π2

12x2

minus (x minus 1)2

1113872 1113873 minus Δ(x z)

+ Δ(x minus 1 z) + Ox

z1113874 1113875

π2

6x minus Δ(x z) + Δ(x minus 1 z) + O

x

z1113874 1113875

(62)

where Δ(x z) is given by (28) us

S♯2(x σ) 1113944

N0ltnlex

radic

π2

6middotx

nminus Δ

x

n z1113874 1113875 + Δ

x

nminus 1 z1113874 1113875 + O

x

nz1113874 11138751113888 1113889

π2

12x log x + O x(log x)

(23) log2 x( 1113857(13)

+ xzminus 1log x1113872 1113873 minus Δ1(x z) + Δ2(x z)

(63)

where

Δ1(x z) ≔ 1113944N0ltnle

x

radicΔ

x

n z1113874 1113875≪ x(log x)

minus 3+ xz

minus 1log x

Δ2(x z) ≔ 1113944N0ltnle

x

radicΔ

x

nminus 1 z1113874 1113875≪x(log x)

minus 3+ xz

minus 1log x

(64)

thanks to Lemma 6 Inserting these estimates into (59) wefind that

S2(x σ) π2

12x log x + O x(log x)

(23) log2 x( 1113857(43)

+ xzminus 1log x1113872 1113873

(65)

Now (5) follows from (53) (55) (58) and (66) with thechoice of z (log x)(13)

34 Proof ofeorem1 (ii) For any odd prime p (52) allowsus to write

1113944d ∣p

(σ(d) minus σ(d minus 1)) Sσ(p) minus Sσ(p minus 1)

π2

6(log p minus log(p minus 1)) + E(p) minus E(p minus 1)

geE(p) minus E(p minus 1)ge minus 2Elowast(p)

(66)

where Elowast(p) ≔ max |E(p)| |E(p minus 1)|1113864 1113865 On the otherhand we have

1113944d|p

(σ(d) minus σ(d minus 1)) σ(p) minus σ(p minus 1) + 1

lep + 1 minus p minus 1 +12(p minus 1) + 2 + 11113874 1113875 + 1le minus

14p

(67)

us Elowast(p)ge (18)p for all odd primes

Data Availability

No data were used to support this study

6 Journal of Mathematics

Conflicts of Interest

e authors declare that they have no conflicts of interest

Acknowledgments

is study was supported in part by the National NaturalScience Foundation of China (grant nos 1187119311971370 and 12071375) Natural Science Foundation ofChongqing (grant no cstc2019jcyj-msxm1651) NationalNatural Science Foundation of Henan Province (grant no202300410274) and Research Projects for Overseas Re-searchers of Department of Human Resources and SocialSecurity of Henan Province 2020

References

[1] O Bordelles L Dai R Heyman H Pan and I E ShparlinskildquoOn a sum involving the Euler functionrdquo Journal of Numbereory vol 202 pp 278ndash297 2019

[2] J Wu ldquoOn a sum involving the Euler totient functionrdquoIndagationes Mathematicae vol 30 no 4 pp 536ndash541 2019

[3] W Zhai ldquoOn a sum involving the euler functionrdquo Journal ofNumber eory vol 211 pp 199ndash219 2020

[4] J Ma and J Wu ldquoOn a sum involving the Mangoldt functionrdquoPeriodica Mathematica Hungarica vol 80 2020

[5] J Wu ldquoNote on a paper by Bordelles Dai heyman Pan andShparlinskirdquo Periodica Mathematica Hungarica vol 80 no 1pp 95ndash102 2020

[6] A A Karatsuba ldquoEstimates for trigonometric sums byVinogradovrsquos method and some applicationsrdquo Proceedings ofthe Steklov Institute of Mathematics vol 112 pp 251ndash265 1971

[7] Y-F S Petermann and J Wu ldquoOn the sum of exponentialdivisors of an integerrdquo Acta Mathematica Hungarica vol 77no 12 pp 159ndash175 1997

[8] S W Graham and G Kolesnik Van der Corputrsquos Method ofExponential Sums Cambridge University Press CambridgeUK 1991

Journal of Mathematics 7

S1 ≔ 1113944dle(xz)

1113944mle(xd)

m

S2 ≔ 1113944mle z

1113944dle(xm)

m

S3 ≔ 1113944dle(xz)

1113944mlez

m

(31)

Firstly we have

S2 1113944mlez

mx

m1113876 1113877 x[z] + O z

21113872 1113873 (32)

S3 x

z1113876 1113877

[z]([z] + 1)

2 x

[z]([z] + 1)

2z+ O z

21113872 1113873 (33)

Secondly we can write

S1 12

1113944dle(xz)

x

dminus ψ

x

d1113874 1113875 minus

12

1113874 1113875x

dminus ψ

x

d1113874 1113875 +

12

1113874 1113875

12

1113944dle(xz)

x2

d2 minus 2

x

x

d1113874 1113875 + ψ

x

d1113874 1113875

2minus14

1113888 1113889

π2

12x2

minus12

xz minus Δ(x z) + O(xz)

(34)

where Δ(x z) is as in (28) Inserting (32) (33) and (34) into(30) and using z2 le (xz) we get (27)

Taking z 1 in (27) and noticing that

1113944dlex

1d2

π2

6+ O

1x

1113874 1113875

1113944dlex

x

x

d1113874 1113875

1113868111386811138681113868111386811138681113868111386811138681113868

1113868111386811138681113868111386811138681113868111386811138681113868≪ x log x

(35)

we obtain the required boundis completes the proof

32 Estimates of Error Terms

Lemma 6 Let N0 ≔ exp (6c6)(log x)(23)(log2 x)(13)1113966 1113967

where c6 is given as in Lemma 3 Let Δ(x z) be defined by(28) en for xge 10 and 2le zle

N0

1113968 we have

1113944N0ltnle

x

radicΔ

x

n z1113874 1113875

11138681113868111386811138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868111386811138681113868+ 1113944

N0ltnlex

radicΔ

x

nminus 1 z1113874 1113875

11138681113868111386811138681113868111386811138681113868111386811138681113868

11138681113868111386811138681113868111386811138681113868111386811138681113868

≪ x1

(log x)3 +

log x

z1113888 1113889

(36)

Proof Denote by Δ1(x z) and Δ2(x z) two sums on theleft-hand side of (36) respectively By (28) of Lemma 5 wecan write

Δ1(x z) x 1113944N0ltnle

x

radic1113944

dle(x(nz))

1dn

ψx

dn1113874 1113875

x 1113944

dle x N0z( )( )

1d

1113944N0ltnlemin(

x

radicx(dz))

1nψ

x

dn1113874 1113875

xΔdagger1(x z) + xΔ♯1(x z)

(37)

where

Δdagger1(x z) ≔ 1113944

dle x N0z( )( )

1d

1113944

N0ltnle(xd)(23)

1nψ

x

dn1113874 1113875

Δ♯1(x z) ≔ 1113944

dle x N0z( )( )

1d

1113944

(xd)(23)lt nleminx

radic(xdz)

1nψ

x

dn1113874 1113875

(38)

For 0le kle (log((xd)(23)N0))log 2 let Nk ≔ 2kN0and define

Sk(d) ≔ 1113944Nklt nle 2Nk

1nψ

x

dn1113874 1113875 (39)

Noticing that N0 leNk le (xd)(23) we can apply Lemma3 to derive that

Sk(d)≪ eminus ϑ log Nk( )3(log(xd))2( 1113857

(40)

with ϑ(t) ≔ c6t minus log t It is clear that ϑ(t) is increasing on[c6infin) On the other hand for kge 0 and dge 1 we have

log Nk( 11138573(log(xd))

2 ge log N0( 11138573(log x)

2 6c6( 1113857log2 x

(41)

us

ϑlog Nk( 1113857

3

(log(xd))21113888 1113889ge ϑ

6c6

1113888 1113889log2 x1113888 1113889

6 log2 x minus log6c6

1113888 1113889log2 x1113888 1113889ge 5 log2 x

(42)

which implies that Sk(d)≪ (log x)minus 5 Inserting this intothe expression of Δdagger1(x z) we get

Δdagger1(x z)≪ 1113944

dle x N0z( )( )

1d

1113944

2kN0le(xd)(23)

Sk(d)1113868111386811138681113868

1113868111386811138681113868≪ (log x)minus 3

(43)

Next we bound Δ♯1(x z) Let F(t) be a function ofbounded variation on [n n + 1] for each integer n and letVF[n n + 1] be the total variation of F on [n n + 1] Inte-grating by parts we have

4 Journal of Mathematics

1113946n+1

nt minus n minus

12

1113874 1113875dF(t) 12(F(n + 1) + F(n)) minus 1113946

n+1

nF(t)dt

(44)

From this we can derive that

12(F(n + 1) + F(n)) 1113946

n+1

nF(t)dt + O VF[n n + 1]( 1113857

(45)

for nge 1 Summing over n we find that

1113944N1lt nleN2

F(n) 1113946N2

N1

F(t)dt

+12

F N1( 1113857 + F N2( 1113857( 1113857 + O VF N1 N21113858 1113859( 1113857

(46)

We apply this formula to

F(xd)(t) 1tψ

(xd)

t1113888 1113889

N1 (xd)(23)

1113960 1113961

N2 minx

radic

x

(dz)1113896 11138971113890 1113891

(47)

According to Lemma 4 we haveVF(xd)

[N1 N2]≪ (xd)minus (13) and thus by puttingu (xd)t we obtain with the notationxd1 max(

x

radicd tz) and xd2 (xd)(13)

1113944

(xd)(23)ltnleminx

radic(x(dz))

1nψ

x

dn1113874 1113875 1113946

xd2

xd1

ψ(u)

udu + O

x

d1113874 1113875

minus (13)

1113888 1113889

≪ zminus 1

+x

d1113874 1113875

minus (13)

≪ zminus 1

(48)

where we have used the fact that zleN0

1113968and

dle (x(N0z))rArrz le (xd)(13) and the bound

1113946xd2

xd1

ψ(u)

udu 1113946

xd2

xd1

1113946u

xd1

ψ(t)dt1113888 1113889du

u2 minus

1x

(23)d2

1113946xd2

xd1

ψ(t)dt

≪xminus 1d1 + xd21113872 1113873

minus (23)≪ z

minus 1+(xd)

minus (23)≪ zminus 1

(49)

Using (48) a simple partial integration allows us toderive that

Δ♯1(x z)≪ zminus 1

1113944

dlex N0z( )

dminus 1≪ z

minus 1log x(50)

Combining (43) and (50) it follows that

Δ1(x z)1113868111386811138681113868

1113868111386811138681113868≪ x(log x)minus 3

+ xzminus 1log x (51)

Similarly we can prove the same bound for |Δ2(x z)|is completes the proof

33 End of the Proof of eorem 1 Let c6 be the constantgiven as in Lemma 3 and N0 ≔ exp (6c6)1113864 (log x)(23)

(log2 x)(13) Let z isin [2N0

1113968] be a parameter to be chosen

laterPutting d [xn] we have (xn) minus 1lt dle (xn) and

x(d + 1)lt nle (xd) We have with the conventionσ(0) 0

Sσ(x) 1113944dlex

σ(d) 1113944(x(d+1))ltnle(xd)

1

1113944dnle x

σ(d) minus 1113944dnle xdge2

σ(d minus 1)

1113944dnlex

(σ(d) minus σ(d minus 1))

(52)

By the hyperbole principle of Dirichlet we can write

Sσ(x) S1(x σ) + S2(x σ) minus S3(x σ) (53)

where

S1(x σ) ≔ 1113944dle

x

radicdnle x

(σ(d) minus σ(d minus 1))

S2(x σ) ≔ 1113944nle

x

radicdnlex

(σ(d) minus σ(d minus 1))

S3(x σ) ≔ 1113944dle

x

radicnle

x

radic(σ(d) minus σ(d minus 1))

(54)

With the help of the bound σ(n)≪ n log2 n we canderive that

S3(x σ) [x

radic]σ([

x

radic])≪x log2 x (55)

For evaluating S1(x σ) we write

S1(x σ) 1113944dle

x

radic(σ(d) minus σ(d minus 1))

x

d1113876 1113877

x 1113944dle

x

radic

σ(d) minus σ(d minus 1)

d+ O 1113944

dlex

radic|σ(d) minus σ(d minus 1)|⎛⎝ ⎞⎠

(56)

With the help of Lemma 5 (ii) a simple partial inte-gration gives us

Journal of Mathematics 5

1113944dle

x

radic

σ(d) minus σ(d minus 1)

d 1113944

dlex

radic

σ(d)

d(d + 1)

1113944dle

x

radic

σ(d)

d2 minus 1113944

dlex

radic

σ(d)

d2(d + 1)

1113946

x

radic

1minustminus 2d

π2

12t2

+ O(t log t)1113888 1113889 + O(1)

π2

12log x + O(1)

1113944dle

x

radic|σ(d) minus σ(d minus 1)|

≪ 1113944dle

x

radicσ(d)≪x

(57)

Inserting these estimates into (56) we find that

S1(x σ) π2

12x log x + O(x) (58)

Finally we evaluate S2(x σ) For this we write

S2(x σ) Sdagger2(x σ) + S

♯2(x σ) (59)

where

Sdagger2(x σ) ≔ 1113944

nleN0dnle x

(σ(d) minus σ(d minus 1))

S♯2(x σ) ≔ 1113944

N0ltnlex

radicdnle x

(σ(d) minus σ(d minus 1))(60)

By the bound that σ(n)≪ n log2 n we have

Sdagger2(x σ) 1113944

nleN0

σx

n1113876 11138771113874 1113875≪ 1113944

nleN0

x

n1113874 1113875log2 x

≪ x(log x)(23) log2 x( 1113857

(43)

(61)

On the other hand (27) of Lemma 5 allows us to derivethat

1113944dlex

σ(d) minus 1113944dlexminus 1

σ(d) π2

12x2

minus (x minus 1)2

1113872 1113873 minus Δ(x z)

+ Δ(x minus 1 z) + Ox

z1113874 1113875

π2

6x minus Δ(x z) + Δ(x minus 1 z) + O

x

z1113874 1113875

(62)

where Δ(x z) is given by (28) us

S♯2(x σ) 1113944

N0ltnlex

radic

π2

6middotx

nminus Δ

x

n z1113874 1113875 + Δ

x

nminus 1 z1113874 1113875 + O

x

nz1113874 11138751113888 1113889

π2

12x log x + O x(log x)

(23) log2 x( 1113857(13)

+ xzminus 1log x1113872 1113873 minus Δ1(x z) + Δ2(x z)

(63)

where

Δ1(x z) ≔ 1113944N0ltnle

x

radicΔ

x

n z1113874 1113875≪ x(log x)

minus 3+ xz

minus 1log x

Δ2(x z) ≔ 1113944N0ltnle

x

radicΔ

x

nminus 1 z1113874 1113875≪x(log x)

minus 3+ xz

minus 1log x

(64)

thanks to Lemma 6 Inserting these estimates into (59) wefind that

S2(x σ) π2

12x log x + O x(log x)

(23) log2 x( 1113857(43)

+ xzminus 1log x1113872 1113873

(65)

Now (5) follows from (53) (55) (58) and (66) with thechoice of z (log x)(13)

34 Proof ofeorem1 (ii) For any odd prime p (52) allowsus to write

1113944d ∣p

(σ(d) minus σ(d minus 1)) Sσ(p) minus Sσ(p minus 1)

π2

6(log p minus log(p minus 1)) + E(p) minus E(p minus 1)

geE(p) minus E(p minus 1)ge minus 2Elowast(p)

(66)

where Elowast(p) ≔ max |E(p)| |E(p minus 1)|1113864 1113865 On the otherhand we have

1113944d|p

(σ(d) minus σ(d minus 1)) σ(p) minus σ(p minus 1) + 1

lep + 1 minus p minus 1 +12(p minus 1) + 2 + 11113874 1113875 + 1le minus

14p

(67)

us Elowast(p)ge (18)p for all odd primes

Data Availability

No data were used to support this study

6 Journal of Mathematics

Conflicts of Interest

e authors declare that they have no conflicts of interest

Acknowledgments

is study was supported in part by the National NaturalScience Foundation of China (grant nos 1187119311971370 and 12071375) Natural Science Foundation ofChongqing (grant no cstc2019jcyj-msxm1651) NationalNatural Science Foundation of Henan Province (grant no202300410274) and Research Projects for Overseas Re-searchers of Department of Human Resources and SocialSecurity of Henan Province 2020

References

[1] O Bordelles L Dai R Heyman H Pan and I E ShparlinskildquoOn a sum involving the Euler functionrdquo Journal of Numbereory vol 202 pp 278ndash297 2019

[2] J Wu ldquoOn a sum involving the Euler totient functionrdquoIndagationes Mathematicae vol 30 no 4 pp 536ndash541 2019

[3] W Zhai ldquoOn a sum involving the euler functionrdquo Journal ofNumber eory vol 211 pp 199ndash219 2020

[4] J Ma and J Wu ldquoOn a sum involving the Mangoldt functionrdquoPeriodica Mathematica Hungarica vol 80 2020

[5] J Wu ldquoNote on a paper by Bordelles Dai heyman Pan andShparlinskirdquo Periodica Mathematica Hungarica vol 80 no 1pp 95ndash102 2020

[6] A A Karatsuba ldquoEstimates for trigonometric sums byVinogradovrsquos method and some applicationsrdquo Proceedings ofthe Steklov Institute of Mathematics vol 112 pp 251ndash265 1971

[7] Y-F S Petermann and J Wu ldquoOn the sum of exponentialdivisors of an integerrdquo Acta Mathematica Hungarica vol 77no 12 pp 159ndash175 1997

[8] S W Graham and G Kolesnik Van der Corputrsquos Method ofExponential Sums Cambridge University Press CambridgeUK 1991

Journal of Mathematics 7

1113946n+1

nt minus n minus

12

1113874 1113875dF(t) 12(F(n + 1) + F(n)) minus 1113946

n+1

nF(t)dt

(44)

From this we can derive that

12(F(n + 1) + F(n)) 1113946

n+1

nF(t)dt + O VF[n n + 1]( 1113857

(45)

for nge 1 Summing over n we find that

1113944N1lt nleN2

F(n) 1113946N2

N1

F(t)dt

+12

F N1( 1113857 + F N2( 1113857( 1113857 + O VF N1 N21113858 1113859( 1113857

(46)

We apply this formula to

F(xd)(t) 1tψ

(xd)

t1113888 1113889

N1 (xd)(23)

1113960 1113961

N2 minx

radic

x

(dz)1113896 11138971113890 1113891

(47)

According to Lemma 4 we haveVF(xd)

[N1 N2]≪ (xd)minus (13) and thus by puttingu (xd)t we obtain with the notationxd1 max(

x

radicd tz) and xd2 (xd)(13)

1113944

(xd)(23)ltnleminx

radic(x(dz))

1nψ

x

dn1113874 1113875 1113946

xd2

xd1

ψ(u)

udu + O

x

d1113874 1113875

minus (13)

1113888 1113889

≪ zminus 1

+x

d1113874 1113875

minus (13)

≪ zminus 1

(48)

where we have used the fact that zleN0

1113968and

dle (x(N0z))rArrz le (xd)(13) and the bound

1113946xd2

xd1

ψ(u)

udu 1113946

xd2

xd1

1113946u

xd1

ψ(t)dt1113888 1113889du

u2 minus

1x

(23)d2

1113946xd2

xd1

ψ(t)dt

≪xminus 1d1 + xd21113872 1113873

minus (23)≪ z

minus 1+(xd)

minus (23)≪ zminus 1

(49)

Using (48) a simple partial integration allows us toderive that

Δ♯1(x z)≪ zminus 1

1113944

dlex N0z( )

dminus 1≪ z

minus 1log x(50)

Combining (43) and (50) it follows that

Δ1(x z)1113868111386811138681113868

1113868111386811138681113868≪ x(log x)minus 3

+ xzminus 1log x (51)

Similarly we can prove the same bound for |Δ2(x z)|is completes the proof

33 End of the Proof of eorem 1 Let c6 be the constantgiven as in Lemma 3 and N0 ≔ exp (6c6)1113864 (log x)(23)

(log2 x)(13) Let z isin [2N0

1113968] be a parameter to be chosen

laterPutting d [xn] we have (xn) minus 1lt dle (xn) and

x(d + 1)lt nle (xd) We have with the conventionσ(0) 0

Sσ(x) 1113944dlex

σ(d) 1113944(x(d+1))ltnle(xd)

1

1113944dnle x

σ(d) minus 1113944dnle xdge2

σ(d minus 1)

1113944dnlex

(σ(d) minus σ(d minus 1))

(52)

By the hyperbole principle of Dirichlet we can write

Sσ(x) S1(x σ) + S2(x σ) minus S3(x σ) (53)

where

S1(x σ) ≔ 1113944dle

x

radicdnle x

(σ(d) minus σ(d minus 1))

S2(x σ) ≔ 1113944nle

x

radicdnlex

(σ(d) minus σ(d minus 1))

S3(x σ) ≔ 1113944dle

x

radicnle

x

radic(σ(d) minus σ(d minus 1))

(54)

With the help of the bound σ(n)≪ n log2 n we canderive that

S3(x σ) [x

radic]σ([

x

radic])≪x log2 x (55)

For evaluating S1(x σ) we write

S1(x σ) 1113944dle

x

radic(σ(d) minus σ(d minus 1))

x

d1113876 1113877

x 1113944dle

x

radic

σ(d) minus σ(d minus 1)

d+ O 1113944

dlex

radic|σ(d) minus σ(d minus 1)|⎛⎝ ⎞⎠

(56)

With the help of Lemma 5 (ii) a simple partial inte-gration gives us

Journal of Mathematics 5

1113944dle

x

radic

σ(d) minus σ(d minus 1)

d 1113944

dlex

radic

σ(d)

d(d + 1)

1113944dle

x

radic

σ(d)

d2 minus 1113944

dlex

radic

σ(d)

d2(d + 1)

1113946

x

radic

1minustminus 2d

π2

12t2

+ O(t log t)1113888 1113889 + O(1)

π2

12log x + O(1)

1113944dle

x

radic|σ(d) minus σ(d minus 1)|

≪ 1113944dle

x

radicσ(d)≪x

(57)

Inserting these estimates into (56) we find that

S1(x σ) π2

12x log x + O(x) (58)

Finally we evaluate S2(x σ) For this we write

S2(x σ) Sdagger2(x σ) + S

♯2(x σ) (59)

where

Sdagger2(x σ) ≔ 1113944

nleN0dnle x

(σ(d) minus σ(d minus 1))

S♯2(x σ) ≔ 1113944

N0ltnlex

radicdnle x

(σ(d) minus σ(d minus 1))(60)

By the bound that σ(n)≪ n log2 n we have

Sdagger2(x σ) 1113944

nleN0

σx

n1113876 11138771113874 1113875≪ 1113944

nleN0

x

n1113874 1113875log2 x

≪ x(log x)(23) log2 x( 1113857

(43)

(61)

On the other hand (27) of Lemma 5 allows us to derivethat

1113944dlex

σ(d) minus 1113944dlexminus 1

σ(d) π2

12x2

minus (x minus 1)2

1113872 1113873 minus Δ(x z)

+ Δ(x minus 1 z) + Ox

z1113874 1113875

π2

6x minus Δ(x z) + Δ(x minus 1 z) + O

x

z1113874 1113875

(62)

where Δ(x z) is given by (28) us

S♯2(x σ) 1113944

N0ltnlex

radic

π2

6middotx

nminus Δ

x

n z1113874 1113875 + Δ

x

nminus 1 z1113874 1113875 + O

x

nz1113874 11138751113888 1113889

π2

12x log x + O x(log x)

(23) log2 x( 1113857(13)

+ xzminus 1log x1113872 1113873 minus Δ1(x z) + Δ2(x z)

(63)

where

Δ1(x z) ≔ 1113944N0ltnle

x

radicΔ

x

n z1113874 1113875≪ x(log x)

minus 3+ xz

minus 1log x

Δ2(x z) ≔ 1113944N0ltnle

x

radicΔ

x

nminus 1 z1113874 1113875≪x(log x)

minus 3+ xz

minus 1log x

(64)

thanks to Lemma 6 Inserting these estimates into (59) wefind that

S2(x σ) π2

12x log x + O x(log x)

(23) log2 x( 1113857(43)

+ xzminus 1log x1113872 1113873

(65)

Now (5) follows from (53) (55) (58) and (66) with thechoice of z (log x)(13)

34 Proof ofeorem1 (ii) For any odd prime p (52) allowsus to write

1113944d ∣p

(σ(d) minus σ(d minus 1)) Sσ(p) minus Sσ(p minus 1)

π2

6(log p minus log(p minus 1)) + E(p) minus E(p minus 1)

geE(p) minus E(p minus 1)ge minus 2Elowast(p)

(66)

where Elowast(p) ≔ max |E(p)| |E(p minus 1)|1113864 1113865 On the otherhand we have

1113944d|p

(σ(d) minus σ(d minus 1)) σ(p) minus σ(p minus 1) + 1

lep + 1 minus p minus 1 +12(p minus 1) + 2 + 11113874 1113875 + 1le minus

14p

(67)

us Elowast(p)ge (18)p for all odd primes

Data Availability

No data were used to support this study

6 Journal of Mathematics

Conflicts of Interest

e authors declare that they have no conflicts of interest

Acknowledgments

is study was supported in part by the National NaturalScience Foundation of China (grant nos 1187119311971370 and 12071375) Natural Science Foundation ofChongqing (grant no cstc2019jcyj-msxm1651) NationalNatural Science Foundation of Henan Province (grant no202300410274) and Research Projects for Overseas Re-searchers of Department of Human Resources and SocialSecurity of Henan Province 2020

References

[1] O Bordelles L Dai R Heyman H Pan and I E ShparlinskildquoOn a sum involving the Euler functionrdquo Journal of Numbereory vol 202 pp 278ndash297 2019

[2] J Wu ldquoOn a sum involving the Euler totient functionrdquoIndagationes Mathematicae vol 30 no 4 pp 536ndash541 2019

[3] W Zhai ldquoOn a sum involving the euler functionrdquo Journal ofNumber eory vol 211 pp 199ndash219 2020

[4] J Ma and J Wu ldquoOn a sum involving the Mangoldt functionrdquoPeriodica Mathematica Hungarica vol 80 2020

[5] J Wu ldquoNote on a paper by Bordelles Dai heyman Pan andShparlinskirdquo Periodica Mathematica Hungarica vol 80 no 1pp 95ndash102 2020

[6] A A Karatsuba ldquoEstimates for trigonometric sums byVinogradovrsquos method and some applicationsrdquo Proceedings ofthe Steklov Institute of Mathematics vol 112 pp 251ndash265 1971

[7] Y-F S Petermann and J Wu ldquoOn the sum of exponentialdivisors of an integerrdquo Acta Mathematica Hungarica vol 77no 12 pp 159ndash175 1997

[8] S W Graham and G Kolesnik Van der Corputrsquos Method ofExponential Sums Cambridge University Press CambridgeUK 1991

Journal of Mathematics 7

1113944dle

x

radic

σ(d) minus σ(d minus 1)

d 1113944

dlex

radic

σ(d)

d(d + 1)

1113944dle

x

radic

σ(d)

d2 minus 1113944

dlex

radic

σ(d)

d2(d + 1)

1113946

x

radic

1minustminus 2d

π2

12t2

+ O(t log t)1113888 1113889 + O(1)

π2

12log x + O(1)

1113944dle

x

radic|σ(d) minus σ(d minus 1)|

≪ 1113944dle

x

radicσ(d)≪x

(57)

Inserting these estimates into (56) we find that

S1(x σ) π2

12x log x + O(x) (58)

Finally we evaluate S2(x σ) For this we write

S2(x σ) Sdagger2(x σ) + S

♯2(x σ) (59)

where

Sdagger2(x σ) ≔ 1113944

nleN0dnle x

(σ(d) minus σ(d minus 1))

S♯2(x σ) ≔ 1113944

N0ltnlex

radicdnle x

(σ(d) minus σ(d minus 1))(60)

By the bound that σ(n)≪ n log2 n we have

Sdagger2(x σ) 1113944

nleN0

σx

n1113876 11138771113874 1113875≪ 1113944

nleN0

x

n1113874 1113875log2 x

≪ x(log x)(23) log2 x( 1113857

(43)

(61)

On the other hand (27) of Lemma 5 allows us to derivethat

1113944dlex

σ(d) minus 1113944dlexminus 1

σ(d) π2

12x2

minus (x minus 1)2

1113872 1113873 minus Δ(x z)

+ Δ(x minus 1 z) + Ox

z1113874 1113875

π2

6x minus Δ(x z) + Δ(x minus 1 z) + O

x

z1113874 1113875

(62)

where Δ(x z) is given by (28) us

S♯2(x σ) 1113944

N0ltnlex

radic

π2

6middotx

nminus Δ

x

n z1113874 1113875 + Δ

x

nminus 1 z1113874 1113875 + O

x

nz1113874 11138751113888 1113889

π2

12x log x + O x(log x)

(23) log2 x( 1113857(13)

+ xzminus 1log x1113872 1113873 minus Δ1(x z) + Δ2(x z)

(63)

where

Δ1(x z) ≔ 1113944N0ltnle

x

radicΔ

x

n z1113874 1113875≪ x(log x)

minus 3+ xz

minus 1log x

Δ2(x z) ≔ 1113944N0ltnle

x

radicΔ

x

nminus 1 z1113874 1113875≪x(log x)

minus 3+ xz

minus 1log x

(64)

thanks to Lemma 6 Inserting these estimates into (59) wefind that

S2(x σ) π2

12x log x + O x(log x)

(23) log2 x( 1113857(43)

+ xzminus 1log x1113872 1113873

(65)

Now (5) follows from (53) (55) (58) and (66) with thechoice of z (log x)(13)

34 Proof ofeorem1 (ii) For any odd prime p (52) allowsus to write

1113944d ∣p

(σ(d) minus σ(d minus 1)) Sσ(p) minus Sσ(p minus 1)

π2

6(log p minus log(p minus 1)) + E(p) minus E(p minus 1)

geE(p) minus E(p minus 1)ge minus 2Elowast(p)

(66)

where Elowast(p) ≔ max |E(p)| |E(p minus 1)|1113864 1113865 On the otherhand we have

1113944d|p

(σ(d) minus σ(d minus 1)) σ(p) minus σ(p minus 1) + 1

lep + 1 minus p minus 1 +12(p minus 1) + 2 + 11113874 1113875 + 1le minus

14p

(67)

us Elowast(p)ge (18)p for all odd primes

Data Availability

No data were used to support this study

6 Journal of Mathematics

Conflicts of Interest

e authors declare that they have no conflicts of interest

Acknowledgments

is study was supported in part by the National NaturalScience Foundation of China (grant nos 1187119311971370 and 12071375) Natural Science Foundation ofChongqing (grant no cstc2019jcyj-msxm1651) NationalNatural Science Foundation of Henan Province (grant no202300410274) and Research Projects for Overseas Re-searchers of Department of Human Resources and SocialSecurity of Henan Province 2020

References

[1] O Bordelles L Dai R Heyman H Pan and I E ShparlinskildquoOn a sum involving the Euler functionrdquo Journal of Numbereory vol 202 pp 278ndash297 2019

[2] J Wu ldquoOn a sum involving the Euler totient functionrdquoIndagationes Mathematicae vol 30 no 4 pp 536ndash541 2019

[3] W Zhai ldquoOn a sum involving the euler functionrdquo Journal ofNumber eory vol 211 pp 199ndash219 2020

[4] J Ma and J Wu ldquoOn a sum involving the Mangoldt functionrdquoPeriodica Mathematica Hungarica vol 80 2020

[5] J Wu ldquoNote on a paper by Bordelles Dai heyman Pan andShparlinskirdquo Periodica Mathematica Hungarica vol 80 no 1pp 95ndash102 2020

[6] A A Karatsuba ldquoEstimates for trigonometric sums byVinogradovrsquos method and some applicationsrdquo Proceedings ofthe Steklov Institute of Mathematics vol 112 pp 251ndash265 1971

[7] Y-F S Petermann and J Wu ldquoOn the sum of exponentialdivisors of an integerrdquo Acta Mathematica Hungarica vol 77no 12 pp 159ndash175 1997

[8] S W Graham and G Kolesnik Van der Corputrsquos Method ofExponential Sums Cambridge University Press CambridgeUK 1991

Journal of Mathematics 7

Conflicts of Interest

e authors declare that they have no conflicts of interest

Acknowledgments

is study was supported in part by the National NaturalScience Foundation of China (grant nos 1187119311971370 and 12071375) Natural Science Foundation ofChongqing (grant no cstc2019jcyj-msxm1651) NationalNatural Science Foundation of Henan Province (grant no202300410274) and Research Projects for Overseas Re-searchers of Department of Human Resources and SocialSecurity of Henan Province 2020

References

[1] O Bordelles L Dai R Heyman H Pan and I E ShparlinskildquoOn a sum involving the Euler functionrdquo Journal of Numbereory vol 202 pp 278ndash297 2019

[2] J Wu ldquoOn a sum involving the Euler totient functionrdquoIndagationes Mathematicae vol 30 no 4 pp 536ndash541 2019

[3] W Zhai ldquoOn a sum involving the euler functionrdquo Journal ofNumber eory vol 211 pp 199ndash219 2020

[4] J Ma and J Wu ldquoOn a sum involving the Mangoldt functionrdquoPeriodica Mathematica Hungarica vol 80 2020

[5] J Wu ldquoNote on a paper by Bordelles Dai heyman Pan andShparlinskirdquo Periodica Mathematica Hungarica vol 80 no 1pp 95ndash102 2020

[6] A A Karatsuba ldquoEstimates for trigonometric sums byVinogradovrsquos method and some applicationsrdquo Proceedings ofthe Steklov Institute of Mathematics vol 112 pp 251ndash265 1971

[7] Y-F S Petermann and J Wu ldquoOn the sum of exponentialdivisors of an integerrdquo Acta Mathematica Hungarica vol 77no 12 pp 159ndash175 1997

[8] S W Graham and G Kolesnik Van der Corputrsquos Method ofExponential Sums Cambridge University Press CambridgeUK 1991

Journal of Mathematics 7