Research Plan SL

download Research Plan SL

of 16

Transcript of Research Plan SL

  • 7/29/2019 Research Plan SL

    1/16

    DOCTORAL PROGRAM IN STRUCTURES

    1

    PLAN DE RECHERCHE

    RESEARCH PLAN

    PUNCHING OF FLAT SLABS WITH SHEAR REINFORCEMENT

    Stefan Lips18.03.2009

    Online Version

  • 7/29/2019 Research Plan SL

    2/16

    DOCTORAL PROGRAM IN STRUCTURES

    2

    Summary

    Theobjectiveofthisresearch isto introduceanewtheoreticalmodel forthecalculationofthe

    punching shear resistance of flat slabs with shear reinforcement. In the past, several investigations took

    place

    but

    no

    theory

    so

    far

    could

    describe

    the

    punching

    shear

    behavior

    of

    flat

    slabs

    with

    shear

    reinforcementsatisfactorily.Consequently, thedesigncodes still rely on eitherempirical formulations or

    usecoarsesimplifications.Thus,anewcomprehensivetheoryshouldbeestablishedtoimprovethecurrent

    approachofpunchingshearcalculations.Besidesthetheoreticalmodel,newdesignprovisionsshouldbe

    proposedbasedonasimplifiedmodel.Inaddition,thetheoreticalworkwillbevalidatedbyexperimental

    testsfromtheliteratureandbyanexperimentaltestseriesattheEPFL.Infact,severalslabspecimenswith

    varying parameter such as longitudinal reinforcement ratio, transversal reinforcement ratio, and slab

    thicknesswillbeinvestigated.Theresultsfromthesetestswillcontributesignificantlytotheachievement

    ofthepreviousmentionedobjectives.

    Keywords:flatslab,slabcolumnconnection,punchingshear,shearreinforcement,criticalshearcrack

  • 7/29/2019 Research Plan SL

    3/16

    DOCTORAL PROGRAM IN STRUCTURES

    3

    TableofContents

    1.

    Introduction...............................................................................................................................................

    4

    2. StateofResearch.......................................................................................................................................5

    Performedresearch.......................................................................................................................................5

    Criticalshearcracktheory(CSCT)..................................................................................................................6

    CodeProvisions.............................................................................................................................................7

    3. ResearchPlan............................................................................................................................................8

    Objectives......................................................................................................................................................8

    ExperimentalProgram...................................................................................................................................8

    ExperimentalTestSetup..............................................................................................................................8

    Measurements.............................................................................................................................................10

    4. ResearchSchedule...................................................................................................................................12

    5. Bibliography.............................................................................................................................................13

  • 7/29/2019 Research Plan SL

    4/16

    DOCTORAL PROGRAM IN STRUCTURES

    4

    1. IntroductionDuringthelastcentury,theapplicationofflatslabsinbuildingsandespeciallyinparkinggarages

    has prevailed. Flat slabs are easy to build and have through their narrow height an economical and

    architectural advantage compared to ripped slabs. The limited height of these slabs leads to the main

    designcriteria,whicharetypicallythedeflectionat theservicestateand thepunchingshearatthe limit

    state.Themaindrawbackofthelatterdesigncriteriaisthatpunchingisanextremelybrittlefailuremode.

    In fact, a column can suddenly punch through the slab without nearly any warning sign that could

    eventually leadtoanevacuationofthebuilding incaseofacollapse.Onepromisingapproachtoprevent

    brittlefailure istheuseofpunchingshearreinforcement.Inthe lastdecades,severalstudies investigated

    the influence of shear reinforcement at the slab column connections. The main performed research of

    punchingshearwithtransversereinforcementissummarizedinChapter2.Currently,noneoftheresulting

    theoriesexplains

    the

    behavior

    of

    the

    strength

    of

    punching

    shear

    of

    flat

    slabs

    with

    transverse

    reinforcement

    physicallysatisfactorily.Consequently,theyhavenogeneralacceptancesothatanewapproachhastobe

    developed which not only predicts the resistance accurately but also bases on a consistent theory. This

    would allow the use of one comprehensive model for different shear reinforcement systems and could

    finallyimprovethecurrentdesignspecifications.

    Figure1.Examplesofdifferentshearreinforcementsystems

  • 7/29/2019 Research Plan SL

    5/16

    DOCTORAL PROGRAM IN STRUCTURES

    5

    2. StateofResearchPerformedresearch

    Atthebeginningof the20thcentury,the first flatslabsweredesigned inEurope [1]andNorth

    America

    [2].

    Until

    the

    1950s,

    they

    were

    typically

    designed

    with

    mushroomheaded

    columns

    to

    prevent

    punching.Attheearly60s inSweden, thedevelopmentof the firstrationalapproach forpunchingshear

    without transverse reinforcement began [3]. Nevertheless, most codes did not implement this approach

    duetothecomplicateddesignexpressions.Nearlyatthesame time, the investigationofpunchingshear

    reinforcementbegan.Oneofthefirststudiesofpunchingofflatslabswithshearreinforcementwasdone

    byAnderssoninSweden[4].InNorthAmerica,Hawkinsinvestigatedtheinfluenceofshearreinforcement

    onthepunchingbehaviorattheUniversityofWashington[5],[6],[7],[8],[9]andGhaliandDilgeratthe

    UniversityofCalgary[10],[11],[12],[13],[14],[15][16],[17].Hawkinsstudiedtheshearstrengthofslabs

    withmomenttransferredtothecolumnduetoeccentric loadings.Fortheexperimental investigation,he

    usedslabswithoutandwithshearreinforcement,forwhichheusedstirrups.GahliandDilgerinvestigated

    differentshearreinforcementtypesandtheirarrangements.In2001,Dechtaintroducedtheshearfriction

    modelforflatslabswithshearreinforcement[18]andBirkleappliedandfurtherimprovedthemodelwith

    respecttotheshearreinforcement[19].Although,theapproach ispromising, itwasnot implementedto

    theCanadiancodeso far.Further researchconcerningpunchingshearreinforcementhavebeendone in

    theUnitedKingdomandlateroninBrazilbyRegan[20],[21],[22],[23],[24][25].Primarily,hevariedthe

    typeof

    the

    shear

    reinforcement

    such

    as

    bent

    up

    bars,

    stirrups,

    and

    studs.

    Likewise,

    Broms

    investigated

    in

    Swedenaspecialcombinationofbentupbarsandastirrupcagetoenhanceaductilebehaviorattheslab

    column connection [26], [27], [28], [29], [30]. In Germany at the University of Aachen, Hegger has done

    research on different shear reinforcement types, mostly in respect to the anchorage of the different

    systems [31], [32], [33], [34], [35]. Additionally, they investigated the use of finite element analysis

    programstomodelthepunchingphenomena.Inconclusion, itcanbesaidthatalthoughalotofresearch

    hasbeendone inthisarea,nophysicalconsistentapproachhasbeenproposedforpunchingofflatslabs

    withshearreinforcementsofar.Therefore,anewapproachhasbeenproposedbyMuttoniandFernandez

    basedonthecriticalshearcracktheory[36].

  • 7/29/2019 Research Plan SL

    6/16

    DOCTORAL PROGRAM IN STRUCTURES

    6

    Criticalshearcracktheory(CSCT)

    Thecriticalshearcracktheorywasdevelopedduringthe1980sandlateronfurtherdevelopedfor

    theapplicationofpunchingofflatslabswithouttransversereinforcement [37],[38], [39], [40][41], [42],

    [43],[44],[45].Finally,theCSCTwasalsoimplementedinthecurrentSwisscodeSIA262:2003[46]forthe

    design of flat slabs without transverse reinforcement. The CSCT baseson the assumption that theshear

    strengthinmemberswithouttransversereinforcementcorrelatestotheproductofthesquarerootofthe

    concretecompressivestrengthandafunctionofthecrackwidthandtheaggregatesize.Thisrelationship

    canbedescribedas

    , , ()

    whereVR istheshearstrength,b0 isacontrolperimeter,d istheeffectivedepthofthemember,fc isthe

    compressive strength of the concrete,w is the width of the critical shear crack, anddg is the maximum

    aggregatesize.

    Thisapproachshowsanexcellentagreementtoexperimentaltestresults.Figure2showsthecomparison

    of results of 99 punching tests on slabs without shear reinforcement and the theoretical approach by

    displayingtheshearresistanceasafunctionoftherotation.

    Figure2.Comparisonofthefailurecriteriontothestrengthof99slabswithoutshearreinforcementfailinginpunchingshear

    [44]

    However,sofaronlyflatslabswithoutshearreinforcementhavebeenconsideredbytheCSCT.Although

    FernandezandMuttoniproposedapromisingapproachbasedontheCSCT for flatslabswith transverse

    reinforcement[36],itisstillassociatedwithanuncertaintyofinfluentialparameterssuchastheactivation

    oftheshearreinforcementduetotherotationorthepositioninganddetailingoftheshearreinforcement.

  • 7/29/2019 Research Plan SL

    7/16

    DOCTORAL PROGRAM IN STRUCTURES

    7

    CodeProvisions

    Currently,mostcodessuchas theEuroCode2 (EC2) [47]and theAmericanConcrete Institute

    Building Code (ACI 31805) [48] base on empirical formulation for the calculation of the punching shear

    resistance with shear reinforcement. As Figure 3 shows, these formulations lead, in comparison to

    experimentaltestresult,toscatteredresults.TheSwissCode(SIA262:2003)[46]usesanapproachbased

    onthetheoryofplasticitybutwithcoarsesimplification.Infact,itneglectsthecontributionoftheconcrete

    andconsidersonlytheshearreinforcementfortheoverallshearresistance.Thisfactleadstoconservative

    calculationoftheamountofshearreinforcement.Therefore,allthesecodedesignspecificationsresultdue

    tothescatteringineitherconservativethuscostlydesign(ACI31805andSIA262:2003)orinevenunsafe

    design(EC2).Hence,anewapproachcouldimprovethedesignguidelinessignificantly.

    a) b)

    c)

    Figure3.Comparisonofa)ACI31805,b)EC2,andc)SIA262:2003withavailabletestresults[36]

  • 7/29/2019 Research Plan SL

    8/16

    DOCTORAL PROGRAM IN STRUCTURES

    8

    3.ResearchPlanObjectives

    Themainobjectiveofthisresearchistodevelopanew,comprehensivetheoreticalmodelforthe

    calculation

    of

    the

    punching

    shear

    resistance

    of

    flat

    slabs

    with

    shear

    reinforcement.

    The

    formulated

    theoretical model will be compared to existing experimental data. Additionally, a test series containing

    fifteen specimens will be performed to validate and improve the model. Finally, new design guidelines

    shouldbeproposed.

    ExperimentalProgram

    Specimen Slabthickness

    [mm]

    Supportplate

    [mm]

    Flexuralreinforcement

    ratio[%]

    Shearreinforcement

    ratio[%]

    PL075012250 250 260x260 0.75 0.12

    PL075050250 250 260x260 0.75 0.50

    PL075100250 250 260x260 0.75 1.00

    PL150012250 250 260x260 1.50 0.12

    PL150050250 250 260x260 1.50 0.50

    PL150100250 250 260x260 1.50 1.00

    PL075056320 320 340x340 0.75 0.56

    PL150056320 320 340x340 1.50 0.56

    PL075000320 320 340x340 0.75 0.00

    PL150000320 320 340x340 1.50 0.00

    PL1501003202 320 260x260 1.50 1.00

    PL1500003202 320 260x260 1.50 0.00

    Table1.

    Mechanical

    properties

    of

    the

    first

    series

    Specimen Distanceofthefirststudto

    thesupportplate[mm]

    PL15010025002 42(0.2d)PL15010025006 126(0.6d)PL15010025008 168(0.8d)

    Table2.Geometricalpropertiesfortestsofthesecondseries

    ExperimentalTestSet-up

    Figure4andFigure5showthedetailsoftheexperimentalsetup.Thisexperimentaltestsetup

    hasbeenused forseveralprevious punchingshear tests.Theapplied force isprovidedby four hydraulic

    cylinders. The force is distributed by four steel beams and afterwards transferred to eight tension bars.

    Thesebarsgothroughopeningsintheconcreteslabandapplytheforcesonthetopsurfaceoftheslab.To

    resisttheload,theslabissupportedbyaquadraticsteelplate(260x260mm/340x340mm).Belowthe

    steelplateloadcellsmeasurethesupportforces.Finally,asteelbeamdirectstheloadtoaconcretecubic

    (500x500x500mm),whichcarriestheloadtothefloor.

  • 7/29/2019 Research Plan SL

    9/16

    DOCTORAL PROGRAM IN STRUCTURES

    9

    Figure4.Drawingsoftheexperimentaltestsetup

  • 7/29/2019 Research Plan SL

    10/16

    DOCTORAL PROGRAM IN STRUCTURES

    10

    Figure5.Picturesoftheexperimentaltestsetup

    Measurements

    Themeasurementscorrespondtothemeasurementofformerpunchingsheartests,whichcanbe

    seen in Figure 7. Additionally, the strain of the shear reinforcement will be measured. The following list

    concludesthemeasurementsthatwillbetaken:

    o Deflectionatthetopandbottomsurfaceoftheslab(Figure7b,c)o Rotationsoftheslabinthreedirections(Figure7a)o Strainsattheconcretesurfaceusingomegashapedgauges(Figure7d,e)o Strainsintheshearreinforcementclosetothesupportarearegion(usingstraingauges)o Inplanedilatancyoftheslab(usingmechanicaldevices)o Observetheshapeandthepositionofthecriticalshearcrackbysawcutoftheslabsaftertesting

    (Figure6)

    Thesemeasurementsallowvalidatingandfurtherdevelopingtheestablishedtheoreticalmodel.

    a) b)

    c) d)

    Figure6.Possiblefailuremodes

  • 7/29/2019 Research Plan SL

    11/16

    DOCTORAL PROGRAM IN STRUCTURES

    11

    a) b)

    c) d)

    e) f)

    Figure7.Typeandplacingofthemeasurementdevices

  • 7/29/2019 Research Plan SL

    12/16

    DOCTORAL PROGRAM IN STRUCTURES

    12

    4.ResearchScheduleTheresearchprojectisplannedtobeperformedaccordingthefallowingschedule.

    2008 2009 2010 2011 2012

    Literaturereview

    Developmentofatheoreticalmodel

    Developmentoftestcampaign

    Testing

    Validationandfurtherdevelopment

    ofthetheoreticalmodel

    Establish

    design

    rules

    based

    on

    the

    theoreticalmodel

    Documentation/Writingthesis

    Table3.Researchschedule

  • 7/29/2019 Research Plan SL

    13/16

    DOCTORAL PROGRAM IN STRUCTURES

    13

    5.Bibliography[1]Frst,A.,&Marti,P.(1997).RobertMaillart'sDesignApproachforFlatSlabs.ASCEJournalofStructural

    Engineering,1102

    1110.

    [2]Gasparini,D.A.(2002).ContributionsofC.A.P.TurnertoDevelopmentofReinforcedConcreteFlat

    Slabs19051909.ASCEJournalofStructuralEngineering(Vol.128),12431252.

    [3]Kinnunen,S.,&Nylander,H.(1960).PunchingofConcreteSlabsWithoutShearReinforcement.Stockholm:TransactionsoftheRoyalInstituteofTechnology.

    [4]Andersson,J.(1963).PunchingofConcreteSlabswithShearReinforcement.Stockholm:TransactionsoftheRoyalInstituteofTechnology.

    [5]Hawkins,N.,&Corley,W.(1971).InfluenceofColumnRectangularityontheBehaviorofFlatPlateStructures.Detroit:ACISP306.

    [6]Hawkins

    ,N.

    (1974).

    Shear

    Strength

    of

    Slabs

    with

    Moments

    Transferred

    to

    Columns.

    ACI

    SP

    42

    35.

    [7]Hawkins,N.(1974).ShearStrengthofSlabswithShearReinforcement.Detroit:ACISP4234.

    [8]Hawkins,N.,&Corley,W.(1974).MomentTransfertoColumnsinSlabswithShearheadReinforcement.ACISP4236.

    [9]Hawkins,N.M.,Bao,A.,&Yamazaki,J.(1989).MomentTransferfromConcreteSlabstoColumns.ACI

    StructuralJournal(6),705716.

    [10]Langohr,P.H.,Ghali,A.,&Dilger,W.H.(1976).SpecialShearReinforcementforConcreteFlatPlates.

    ACIJournal(Vol.73),141146.

    [11]Dilger,W.H.,Mahmoud,Z.,&Ghali,A.(1978).FlatPlateswithSpecialShearReinforcementSubjected

    toStatic

    Dynamic

    Moment

    Transfer.

    ACI

    Journal

    (75

    56),

    543

    549.

    [12]Seible,F.,Ghali,A.,&Dilger,W.H.(1980).Preassembledshearreinforcingunitsforflatplates.ACIJournal,Proceedings77(1),2835.

    [13]Mokhtar,A.S.,Ghali,A.,&Dilger,W.H.(1985).StudShearReinforcementforFlatConcretePlates.ACIJournal(8260),676683.

    [14]Ghali,A.,&Hammill,N.(1992).EffectivenessofShearReinforcementinSlabs.ConcreteInternational.

    [15]Megally,S.H.,&Ghali,A.(1994).DesignConsiderationsforSlabColumnConnectionsinSeismicZones.

    ACIStructuralJournal,91(3),303314.

    [16]Ghali,A.,&Megally,S.H.(2000).StudShearReinforcementforPunching:NorthAmericanand

    EuropeanPractices.InternationalWorkshoponPunchingShearCapacityofRCSlabs,(pp.201 209).Stockholm.

    [17]Megally,S.H.,&Ghali,A.(2000).PunchingShearDesignofEarthquakeResistantSlabColumn

    Connections.ACIStructuralJournal(Vol.97),720730.

    [18]Dechka,D.C.(2001).ResponseofShearStudReinforcementContinousSlabColumnFramestoSeismicLoads.Calgary,Canada:PhDThesis.

    [19]Birkle,G.(2004).PunchingofFlatSlabs:TheInfluenceofSlabThicknessandStudLayout.Calgary:Dissertation,UniversityofCalgary.

    [20]Regan,P.,&Khan,M.(1974).BentUpBarsasShearReinforcement.ACISpecialPublicationSP4211.

    [21]Regan,P.(1985).ShearCombs,ReinforcementagainstPunching(Vol.63B).TheStructuralEngineering.

    [22]Regan,P.(1986).SymmetricPunchingofReinforcedConcreteSlabs.MagazineofConcreteResearch.

  • 7/29/2019 Research Plan SL

    14/16

    DOCTORAL PROGRAM IN STRUCTURES

    14

    [23]Oliveira,D.R.,Melo,G.S.,&Regan,P.E.(2000).PunchingStrengthsofFlatPlateswithVerticalor

    InclinedStirrups.ACIStructuralJournal(Vol.97),485491.

    [24]Regan,P.,&Samadian,F.(2001).ShearReinforcementagainstpunchinginreinforcedconcreteflatslabs.London:TheStructuralEngineer.

    [25]

    Oliveira

    ,

    D.,

    Regan

    ,

    P.,

    &

    Melo

    ,

    G.

    (2004).

    Punching

    resistance

    of

    RC

    slabs

    with

    rectangular

    columns.

    MagazineofConcreteResearch.

    [26]Broms,C.E.(1990).PunchingofFlatPlates AQuestionofConcretePropertiesinBiaxialCompression

    andSizeEffect.ACIStructuralJournal(V.87),292304.

    [27]Broms,C.E.(1990).ShearReinforcementforDeflectionDuctilityofFlatPlates.ACIStructuralJournal,87(6),696 705.

    [28]Broms,C.E.(2000).Amethodtoavoidthepunchingfailuremode.InternationalWorkshoponPunchingShearCapacityofRCSlabs,(pp.117124).Stockholm.

    [29]Broms,C.(2006).Concreteflatslabsandfootings:Designmethodforpunchinganddetailingforductility.Stockholm:KTH,CivilandArchitecturalEngineering.

    [30]Broms,C.E.(2007).DuctilityofFlatPlates:ComparisonofShearReinforcementSystems.ACIStructuralJournal,104,703711.

    [31]Hegger,J.,&Beutel,R.(1998).SicherheitgegenDurchstanzenvonschubbewehrtenFlachdecken.Aachen:RWTHReport,AiFForschungsvorhaben10644N(DBV185).

    [32]Hegger,J.,&Beutel,R.(1999).Durchstanzen VersucheundBemessung.DerPrfingenieur,Zeitschrift

    derBundesvereinigungderPrfingenieurefrBautechnik.

    [33]Beutel,R.,&Hegger,J.(2000).PunchingbehaviourofShearReinforcedFlatSlabsatInteriorcolumns

    EffectiveandEconomicShearSystems.(pp.171179).Stockholm:InternationalWorkshoponPunching

    ShearCapacityofRCSlabs.

    [34]Beutel,R.,&Hegger,J.(2002).Theeffectofanchorageontheeffectivenessoftheshearreinforcementinthepunchingzone.CementandConcreteComposites.

    [35]Hegger,J.,Beutel,R.,&Kerkeni,N.(2004).EinfluderDeckenschlankheitaufdenDurchstanzwiderstandnachDIN10451,SIA262,NormB4700(01)undEurocodeprEN199211.BetonundStahlbetonbau.

    [36]Fernndez,R.M.,&Muttoni,A.(2008).Applicationsofthecriticalshearcracktheorytopunchingof

    R/Cslabswithtransversereinforcement.ACIStructuralJournal(Sumbittedforpublication).

    [37]Muttoni,A.,&Schwartz,J.(1991).BehaviorofBeamsandPunchinginSlabswithoutShear

    Reinforcement.IABSEColloquium,(pp.703708).Stuttgart.

    [38]Muttoni

    ,A.

    (2003).

    Schubfestigkeit

    und

    Durchstanzen

    von

    Platten

    ohne

    Querkarftbewehrung

    (Vol.

    98).

    Berlin:Beton undStahlbetonbau.

    [39]Guandalini,S.,&Muttoni,A.(2004).Essaisdepoinonnementsymtriquedesdallesenbtonarmsansarmaturel'efforttranchant.Lausanne:Rapportd'essai.

    [40]Guandalini,S.(2005).Poinonnementsymtriquedesdallesenbtonarm.Lausanne:Thsededoctorat.

    [41]Muttoni,A.,&Guandalini,S.(2006).KommentarzumDurchstanzennachSIA262.Lausanne.

    [42]Muttoni,A.,&Fernndez,R.M.(2007).Shearstrengthpredictionsaccordingtothecriticalshearcrack

    theoryandtheSwisscodeSIA262(2003).Workshoponassessmentmethodsfordeterminingtheshear

    strengthof

    existing

    structures,

    (p.

    14).

    Rotterdam.

  • 7/29/2019 Research Plan SL

    15/16

    DOCTORAL PROGRAM IN STRUCTURES

    15

    [43]Muttoni,A.,&Fernndez,R.M.(2008).Shearstrengthofmemberswithouttransversereinforcement

    asfunctionofcriticalshearcrackwidth.ACIStructuralJournal,105(2),163172.

    [44]Muttoni,A.(2008).Punchingshearstrengthofreinforcedconcreteslabswithouttransverse

    reinforcement.ACIStructuralJournal,105(4),440450.

    [45]

    Guandalini,

    S.,

    Burdet,

    O.,

    &

    Muttoni,

    A.

    (2008).

    Punching

    tests

    of

    slabs

    with

    low

    reinforcement

    ratios.

    ACIStructuralJournal(Acceptedforpublication).

    [46]SIA.(2003).Betonbau.Zurich.

    [47]Eurocode,2.(2002).Designofconcretestructures,part1:Generalrulesandrulesforbuildings.

    [48]ACI.(1999).BuildingCodeRequirementsforStructuralConcrete.Detroit:ACI31899,American

    ConcreteInstitute.

    [49]Yamazaki,J.,&Hawkins,N.(1980).FiniteElementPredictionsoftheBehaviorofSlabColumnConnectionsTransferringMoment.Detroit:ACISP63.

    [50]Vaz,R.(2007).ShearStrengthofReinforcedConcreteBridgeDeckSlabs.Lausanne:EPFL,PhDthesis.

    [51]Shehata

    ,I.(1985).

    Theory

    of

    punching

    in

    RC

    slabs

    (Vol.

    Ph.D

    Thesis).

    [52]Nlting,D.(1984).DasDurchstanzenvonPlattenausStahlbeton Tragverhalten,Berechnung,Bemessung .Braunschweig:Thsededoctorat.

    [53]Negele,A.(2006).DurchstanzverhaltenvonFlachdeckenmitneuerSchubbewehrungundDrucklagernausUHPC.Beton undStahlbetonbau.

    [54]Muttoni,A.,Fernndez,R.,&Guandalini,S.(2007).Poinonnementdespontsdalles.Bern:DocumentationSIA,4.FBH/ASTRAStudientagung'NeuesausderBrckenforschung'.

    [55]Hassanzadeh,G.,&Sundquist,H.(2000).StrengtheningOfBridgeSlabsOnColumns.Stockholm:Nordicconcreteresearch.

    [56]Guidotti

    ,R.,

    Fernndez

    ,R.,

    &

    Muttoni

    ,A.

    (2007).

    Essais

    de

    poinonnement.

    Rapport

    d'essais,

    Essais

    depoinonnement.

    [57]Broms,C.(2006).Ductilityreinforcementforflatslabsinsismicareas.London:MagazineofConcrete

    Research,ThomasTelford.

    [58]Andr,H.P.(1981).ZumTragverhaltenvonFlachdeckenmitDbelleisten,BewehrunginAuflagerbereich(Thestrengthofthesupportzonesofflatslabsreinforcedwithshearcombs).Beton undStahlbetonbau.

    [59]Andr,H.P.,Dilger,W.,&Ghali,A.(1979).DurchstanzbewehrungfrFlachdecken(Vol.74).Berlin:

    Beton undStahlbetonbau.

    [60]Andr

    ,H.

    P.

    (1979).

    Dbelleisten

    zur

    Verhinderung

    des

    Durchstanzens

    bei

    hochbelasteten

    Flachdecken

    (Shearcombsasreinforcementagainstpunchinginheavilyloadedflatslabs).Bautechnik.

    [61]Alexander,S.,&Hawkins,N.(2005).ADesignPerspectiveonPunchingShear.ACI.

    [62]Corley,W.G.,&Hawkins,N.M.(1968).ShearheadReinforcementforSlabs.ACIJournal(6559),811824.

    [63]Broms,C.E.(2000).EliminationofFlatPlatePunchingFailureMode.ACIStructuralJournal,97(1),94

    101.

    [64]Broms,C.E.(2007).FlatPlatesinSeismicAreas:ComparisonofShearReinforcementSystems.ACIStructuralJournal,104,712721.

    [65]Elgabry,

    A.,

    &

    Ghali,

    A.

    (1990).

    Design

    of

    Stud

    Shear

    Reinforcement

    for

    Slabs.

    ACI

    Structural

    Journal

    (Vol.873),351361.

  • 7/29/2019 Research Plan SL

    16/16

    DOCTORAL PROGRAM IN STRUCTURES

    16

    [66]Elgabry,A.,&Ghali,A.(1987).TestsonConcreteSlabColumnConnectionswithStudShear

    ReinforcementSubjectedtoShearMomentTransfer.ACIStructuralJournal,433 442.

    [67]Gardner,N.J.(1990).RelationofthePunchingShearCapacityofReinforcedConcreteSlabswith

    ConcreteStrength.ACIStructuralJournal(Vol.87),6671.

    [68]

    Gomes,

    R.

    B.,

    &

    Regan,

    P.

    E.

    (1999).

    Punching

    Resistance

    of

    RC

    Flat

    Slabs

    with

    Shear

    Reinforcement.

    ASCEJournalofStructuralEngineering,125(ue6),684692.

    [69]Hammill,N.,&Ghali,A.(1994).PunchingShearResistanceofCornerSlabColumnConnections.ACIStructuralJournal,91(6),697707.

    [70]Megally,S.H.,&Ghali,A.(1993).PunchingShearofSlabsinSeismicZones.AnnualConference CanadianSocietyforCivilEngineeringCSCE/SCGCJune811,(pp.145154).Fredericton.

    [71]Mentrey,P.(1999).PunchinginSlabswithShearReinforcements:aTensileFailure.fibSymposium.Prague.

    [72]Mentrey,P.,Walther,R.,Zimmermann,T.,Willam,K.J.,&Regan,P.E.(1997).SimulationofPunching

    FailureinReinforcedConcreteStructures.ASCEJournalofStructuralEngineering(Vol123),652659.

    [73]Pilakoutas,K.,&Li,X.(2003).AlternativeShearReinforcementforReinforcedConcreteFlatSlabs.ASCEJournalofStructuralEngineering(Vol.129),11641172.

    [74]Rosenthal,I.(1959).ExperimentalInvestigationofFlatPlateFloors.ACIJournal,Proceedings59(5612),153166.

    [75]Van,d.V.,Dilger,W.H.,&Ghali,A.(1982).ConcreteFlatPlateswithWellAnchoredShear

    ReinforcementElements.CanadianJournalofCivilEngineering,9(1),107114.