Research Article Total Return Swap Valuation with ...

13
Research Article Total Return Swap Valuation with Counterparty Risk and Interest Rate Risk Anjiao Wang 1 and Zhongxing Ye 1,2 1 School of Business Information, Shanghai University of International Business and Economics, Shanghai 201620, China 2 Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China Correspondence should be addressed to Anjiao Wang; [email protected] Received 17 January 2014; Accepted 28 April 2014; Published 28 May 2014 Academic Editor: Imran Naeem Copyright Β© 2014 A. Wang and Z. Ye. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We study the pricing of total return swap (TRS) under the contagion models with counterparty risk and the interest rate risk. We assume that interest rate follows Heath-Jarrow-Morton (HJM) forward interest rate model and obtain the Libor market interest rate. e cases where default is related to the interest rate and independent of interest rate are considered. Using the methods of change of measure and the β€œtotal hazard construction,” the joint default probabilities are obtained. Furthermore, we obtain the closed-form formulas of TRS under different contagion models, respectively. 1. Introduction Total return swap (TRS), as a type of credit derivatives and a financing and leverage tool, is an important off- balance sheet tool, particularly for hedge funds and for banks seeking additional fee income. e corporate bonds and their credit derivatives are typically financial tools in the markets which undertake and avoid the credit risk of the companies. erefore, the key of management of credit risk is the fair pricing of credit derivatives. Especially aο¬…er 2007 financing crisis, the contagion effect of credit risk has attracted huge attention of financial market regulators and financial institutions. To price credit derivatives, default contagion models are developed rapidly in order to make them more realistic aο¬…er the subprime mortgage crisis. e approaches of modeling the pricing of credit derivatives are mainly the value-of-the-firm (or structural) approach and the intensity-based approach (or reduced form approach). e structural model is based on the work of Merton [1], Black and Cox [2], and Geske [3]: the default occurs when the firm assets are insufficient to meet payments on debt or the value of the firm asset falls below a prespecified level. Reduced-form models are developed by Artzner and Delbaen [4], Duffie et al. [5], Jarrow and Turnbull [6], and Madan and Unal [7]. Duffie and Lando [8] show that a reduced-form model can be obtained from a structural model with incomplete accounting information. e simplest type of reduced-form model is where the default time or the credit migration is the first jump of an exogenously given jump process with an intensity. In Jarrow et al. [9], the intensity for credit migration is constant; see also Litterman and Iben [10] for a Markov chain model of credit migration. In the papers by Duffie et al. [5], Duffie and Singleton [11], and Lando [12], the intensity of default is a random process. e common feature of the reduced-form models is that default cannot be predicted and can occur at any time. erefore, reduced-form models have been used to price a wide variety of instruments. In recent years, some papers on estimating the parameters of these models are given by Collin-Dufresne and Solnik [13] and Duffee [14]. Jarrow and Yu [15] set up a reduced-form model in which estimation can be based on bond prices as well as credit default swap prices. A systematic development of mathematical tools for reduced-form models has been given by Elliott et al. [16]. Jamshidian [17] develops change of numeraire methodology for reduced-form models. A TRS is a bilateral financial contract between a total return payer and a total return receiver. One party (the total return payer) pays the total return of a reference security (or reference securities) and receives a form of payment from Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 412890, 12 pages http://dx.doi.org/10.1155/2014/412890

Transcript of Research Article Total Return Swap Valuation with ...

Page 1: Research Article Total Return Swap Valuation with ...

Research ArticleTotal Return Swap Valuation with CounterpartyRisk and Interest Rate Risk

Anjiao Wang1 and Zhongxing Ye1,2

1 School of Business Information, Shanghai University of International Business and Economics, Shanghai 201620, China2Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China

Correspondence should be addressed to Anjiao Wang; [email protected]

Received 17 January 2014; Accepted 28 April 2014; Published 28 May 2014

Academic Editor: Imran Naeem

Copyright Β© 2014 A. Wang and Z. Ye. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the pricing of total return swap (TRS) under the contagion models with counterparty risk and the interest rate risk. Weassume that interest rate followsHeath-Jarrow-Morton (HJM) forward interest ratemodel and obtain the Libormarket interest rate.The cases where default is related to the interest rate and independent of interest rate are considered. Using the methods of changeof measure and the β€œtotal hazard construction,” the joint default probabilities are obtained. Furthermore, we obtain the closed-formformulas of TRS under different contagion models, respectively.

1. Introduction

Total return swap (TRS), as a type of credit derivativesand a financing and leverage tool, is an important off-balance sheet tool, particularly for hedge funds and forbanks seeking additional fee income. The corporate bondsand their credit derivatives are typically financial tools inthe markets which undertake and avoid the credit risk ofthe companies. Therefore, the key of management of creditrisk is the fair pricing of credit derivatives. Especially after2007 financing crisis, the contagion effect of credit riskhas attracted huge attention of financial market regulatorsand financial institutions. To price credit derivatives, defaultcontagion models are developed rapidly in order to makethem more realistic after the subprime mortgage crisis.

The approaches of modeling the pricing of creditderivatives are mainly the value-of-the-firm (or structural)approach and the intensity-based approach (or reduced formapproach). The structural model is based on the work ofMerton [1], Black and Cox [2], and Geske [3]: the defaultoccurs when the firm assets are insufficient to meet paymentson debt or the value of the firm asset falls below a prespecifiedlevel.

Reduced-form models are developed by Artzner andDelbaen [4], Duffie et al. [5], Jarrow and Turnbull [6], and

Madan and Unal [7]. Duffie and Lando [8] show that areduced-formmodel can be obtained from a structuralmodelwith incomplete accounting information.The simplest type ofreduced-form model is where the default time or the creditmigration is the first jump of an exogenously given jumpprocess with an intensity. In Jarrow et al. [9], the intensityfor credit migration is constant; see also Litterman and Iben[10] for a Markov chain model of credit migration. In thepapers by Duffie et al. [5], Duffie and Singleton [11], andLando [12], the intensity of default is a random process. Thecommon feature of the reduced-form models is that defaultcannot be predicted and can occur at any time. Therefore,reduced-form models have been used to price a wide varietyof instruments. In recent years, some papers on estimatingthe parameters of these models are given by Collin-Dufresneand Solnik [13] and Duffee [14]. Jarrow and Yu [15] set upa reduced-form model in which estimation can be based onbond prices as well as credit default swap prices. A systematicdevelopment of mathematical tools for reduced-formmodelshas been given by Elliott et al. [16]. Jamshidian [17] developschange of numeraire methodology for reduced-formmodels.

A TRS is a bilateral financial contract between a totalreturn payer and a total return receiver. One party (the totalreturn payer) pays the total return of a reference security (orreference securities) and receives a form of payment from

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2014, Article ID 412890, 12 pageshttp://dx.doi.org/10.1155/2014/412890

Page 2: Research Article Total Return Swap Valuation with ...

2 Abstract and Applied Analysis

Bond issuer

Referenceasset C

Creditprotectionbuyer A

2A

2B 2C2D

2E

TRS payer

Total return

LIBOR + spread s

Payments

TRS recipient

Creditprotectionseller B

Figure 1: The structure of TRS.

the other party (the receiver of the total rate of return).Often payment is a floating rate payment, a spread toLIBOR.The reference assets can be indices, bonds (emergingmarket, sovereign, bank debt, mortgage-backed securities,or corporate), loans (term or revolver), equities, real estatereceivables, lease receivables, or commodities. Ye and Zhuang[18] consider the pricing of TRS only when reference assetdefaults; they obtain TRS pricing formula when default isindependent of the interest rate. When default is related tothe interest rate, using the hybrid model given in Das andSundaram [19], they model default time and the interest rateand give the Monte Carlo simulation result.

In this paper, we consider the counterparty defaultcontagion risk between total return receiver (firm 𝐡) andthe reference asset (firm 𝐢) and study two-firm contagionmodels. The cash flow of a TRS in this model is provided byFigure 1.

Suppose that firm 𝐴 (a corporate bond investing firm,credit protection buyer) holds a corporate bond (referenceasset) issued by firm 𝐢 (a corporate bond issuer) (refer to 2Ain Figure 1), and firm𝐢 is subject to default. At bondmaturity,if firm 𝐢 does not default, it will pay the bond principle andinterest to firm 𝐴 (refer to 2B). On the other hand, to hedgethe default risk of firm𝐢, firm𝐴 and firm𝐡 (credit protectionseller, subject to default also) enter into a TRS contract. If firm𝐢 has no default, firm 𝐴 will make its total return to firm 𝐡

(refer to 2C), and, in exchange, firm 𝐡 gives the Libor plus aspread 𝑠 to𝐴 (refer to 2D). Firm 𝐡 promises to compensate𝐴for its loss in the event of default of firm 𝐢 (refer to 2E).

The structure of this paper is organized as follows. InSection 2, we give the basic setup and HJM forward interestrate model. In Section 3, we study the two-firm contagionmodels when default is independent of stochastic interest rateand obtain the closed-form formulas of TRS. In Section 4, weconsider the case that default is related to interest rate. Usingthe β€œtotal hazard” approach, joint survival probabilities arederived and analytic formulas are obtained under two-firmcontagion models. Section 5 is the conclusion.

2. Basic Setup and HJM ForwardInterest Rate Model

We consider a filtered probability space (Ξ©,F, {F𝑑}π‘‡βˆ—

𝑑=0, 𝑃)

which is an uncertain economy with a time horizon ofπ‘‡βˆ—, satisfying the usual conditions of right-continuity and

completeness with respect to 𝑃-null sets, where F = Fπ‘‡βˆ—

and 𝑃 is an equivalent martingale measure under which

discounted bond prices are martingales. We assume theexistence and uniqueness of 𝑃 so that bond markets arecomplete and there is no arbitrage, as shown in discrete timecase by Harrison and Kreps [20] and in continuous time caseby Harrison and Pliska [21]. Subsequent specifications of themodel are all under the equivalent martingale measure (orrisk neutral measure) 𝑃.

On this probability space there is an R𝑑-valued process𝑋𝑑, which presents 𝑑 dimensional economy-wide state vari-

ables. In this paper, we consider the only one state variablewhich is the interest rate denoted by π‘Ÿ

𝑑. There are also two

point processes, 𝑁𝑖 (𝑖 = 𝐡, 𝐢), initialized at 0, representingthe default processes of the firm 𝐡 and firm 𝐢, respectively,such that the default of the firm 𝑖 occurs when𝑁𝑖 jumps from0 to 1.

According to the information contained in the statevariables and the default processes, the enlarged filtration isdefined by

F𝑑= Fπ‘Ÿ

π‘‘βˆ¨F𝐡

π‘‘βˆ¨F𝐢

𝑑, (1)

where

Fπ‘Ÿ

𝑑= 𝜎 (π‘Ÿ

𝑠, 0 ≀ 𝑠 ≀ 𝑑) ,

F𝑖

𝑑= 𝜎 (𝑁

𝑖

𝑠, 0 ≀ 𝑠 ≀ 𝑑) , 𝑖 = 𝐡, 𝐢,

(2)

are the filtrations generated by π‘Ÿπ‘‘and 𝑁𝑖

𝑑(𝑖 = 𝐡, 𝐢), resp-

ectively.Let

G𝐡

𝑑= F𝐡

π‘‘βˆ¨Fπ‘Ÿ

π‘‡βˆ— ∨F

𝐢

π‘‡βˆ— = F

𝐡

π‘‘βˆ¨Gβˆ’π΅

0,

G𝐢

𝑑= F𝐢

π‘‘βˆ¨Fπ‘Ÿ

π‘‡βˆ— ∨F

𝐡

π‘‡βˆ— = F

𝐢

π‘‘βˆ¨Gβˆ’πΆ

0,

(3)

where

Gβˆ’π΅

0= Fπ‘Ÿ

π‘‡βˆ— ∨F

𝐢

π‘‡βˆ— , G

βˆ’πΆ

0= Fπ‘Ÿ

π‘‡βˆ— ∨F

𝐡

π‘‡βˆ— . (4)

Gβˆ’π‘–0(𝑖 = 𝐡, 𝐢) contains complete information on the state

variables and the default processes of all firms up to time π‘‡βˆ—other than that of the 𝑖th firm.

Let πœπ‘– denote the default time of firm 𝑖; namely, πœπ‘– is thefirst jump time of𝑁𝑖, which can be defined as

πœπ‘–= inf {𝑑 : ∫

𝑑

0

πœ†π‘–

𝑠𝑑𝑠 β‰₯ 𝐸

𝑖} , (5)

where {𝐸𝑖} (𝑖 = 𝐡, 𝐢) is independent of π‘Ÿπ‘‘(𝑑 ∈ [0, 𝑇

βˆ—]).

According to the Doob-Meyer decomposition, we havethat

𝑀𝑖

𝑑= π‘π‘‘βˆ’ ∫

π‘‘βˆ§πœπ‘–

0

πœ†π‘–

𝑠𝑑𝑠 (6)

is a (𝑃,F𝑑)-martingale.

Due to the impact of counterparty risk, the default inten-sities πœ†π΅

𝑑and πœ†πΆ

𝑑of firms 𝐡 and 𝐢 are no longer independent

under the conditionFπ‘Ÿπ‘‘. The conditional survival probability

Page 3: Research Article Total Return Swap Valuation with ...

Abstract and Applied Analysis 3

and the unconditional survival probability of firm 𝑖 are givenby

𝑃 (πœπ‘–> 𝑑 | G

βˆ’π‘–

0) = exp(βˆ’βˆ«

𝑑

0

πœ†π‘—

𝑠𝑑𝑠) , 𝑑 ∈ [0, 𝑇] , (7)

𝑃 (πœπ‘–> 𝑑) = 𝐸 [exp(βˆ’βˆ«

𝑑

0

πœ†π‘–

𝑠𝑑𝑠)] , 𝑑 ∈ [0, 𝑇] , (8)

respectively.As a type of market risk, interest rate risk analysis is

almost always based on simulating movements in one ormore yield curves using the Heath-Jarrow-Morton (HJM)framework to ensure that the yield curvemovements are bothconsistent with current market yield curves and such thatno riskless arbitrage is possible. HJM model was developedin early 1992 by Heath et al. [22]. In this paper, we assumethe default free interest rate is stochastic forward interest rate𝑓(𝑑, 𝑇), which follows the HJM model

𝑑𝑓 (𝑑, 𝑇) = 𝛼 (𝑑, 𝑇) 𝑑𝑑 + 𝜎 (𝑑, 𝑇) π‘‘π‘Šπ‘‘, 0 ≀ 𝑑 ≀ 𝑇, (9)

where𝛼(𝑑, 𝑇) is the drift term and𝜎(𝑑, 𝑇) is the volatility term,and they are both stochastic. For every fixed time 𝑇, they areadapted processes toF

𝑑.

The arbitrage free condition [23] shows that the Brownmovement under each real probability measure can betransformed into the Brownmovement under the risk neutralmeasure. For simplification, in this paper, we assume theBrown movement π‘Š

𝑑is standard under the risk neutral

measure 𝑃, where 𝛼(𝑑, 𝑇) satisfies

𝛼 (𝑑, 𝑇) = 𝜎 (𝑑, 𝑇) πœŽβˆ—(𝑑, 𝑇) = 𝜎 (𝑑, 𝑇) ∫

𝑇

𝑑

𝜎 (𝑑, V) 𝑑V. (10)

The solution of (9) is

𝑓 (𝑑, 𝑇) = 𝑓 (0, 𝑇) + ∫

𝑑

0

𝛼 (𝑒, 𝑇) 𝑑𝑒 + ∫

𝑑

0

𝜎 (𝑒, 𝑇) π‘‘π‘Šπ‘’, (11)

where 𝑓(0, 𝑇) is the initial forward interest rate curve, whichis known.

At time 𝑑 the instantaneous interest rate π‘Ÿπ‘‘= 𝑓(𝑑, 𝑑).

𝐷(𝑑) = exp(βˆ’ βˆ«π‘‘0π‘Ÿπ‘’π‘‘π‘’) is the discounted process. Let 𝐡(𝑑, 𝑇)

be the time-𝑑 value of a zero-coupon bond with face value 1 atmaturity 𝑇; we have

𝐡 (𝑑, 𝑇) = exp(βˆ’βˆ«π‘‡

𝑑

𝑓 (𝑑, V) 𝑑V) , 0 ≀ 𝑑 ≀ 𝑇 ≀ 𝑇. (12)

Under the risk neutral measure 𝑃, 𝐡(𝑑, 𝑇) satisfies the follow-ing differential equation:

𝑑𝐡 (𝑑, 𝑇) = π‘Ÿπ‘‘π΅ (𝑑, 𝑇) 𝑑𝑑 βˆ’ 𝜎

βˆ—(𝑑, 𝑇) 𝐡 (𝑑, 𝑇) π‘‘π‘Š

𝑑. (13)

Denote 𝐿(𝑑, 𝑇) to be the time-𝑑 locked investment yieldcurve from 𝑇 to 𝑇 + 𝛿; then,

𝐿 (𝑑, 𝑇) =𝐡 (𝑑, 𝑇) βˆ’ 𝐡 (𝑑, 𝑇 + 𝛿)

𝛿𝐡 (𝑑, 𝑇 + 𝛿). (14)

For 0 ≀ 𝑑 < 𝑇, 𝐿(𝑑, 𝑇) is called forward Libor interest rate,and, for 𝑑 = 𝑇, 𝐿(𝑑, 𝑇) is called spot Libor interest rate. 𝛿 isthe duration of Libor, normally 0.25 year or half year.

In the next two sections of this paper, we discuss thepricing of TRS with default risk and interest rate risk underdifferent contagion models.

3. TRS Valuation When Default IsIndependent of the Interest Rate

Assume that reference asset 𝐢 is a defaultable coupon bondwith face value 1 and the same maturity 𝑇 with TRS contract.𝑇0, 𝑇1, 𝑇2, . . . , 𝑇

𝑛are bond interest payment dates, where 0 =

𝑇0< 𝑇1< β‹… β‹… β‹… < 𝑇

𝑛= 𝑇, for 0 ≀ 𝑖 ≀ 𝑛 βˆ’ 1, 𝑇

𝑖+1βˆ’ 𝑇𝑖= Δ𝑇,

𝑛Δ𝑇 = 𝑇.Denote 𝐢

𝑖to be the time-𝑇

𝑖cash flow of TRS payer,

where 𝐢1, . . . , 𝐢

π‘›βˆ’1are the interest payments at time 𝑇

𝑖(𝑖 =

1, . . . , 𝑛 βˆ’ 1) and 𝐢𝑛is the sum of interest payment and value-

added of the bond at time𝑇𝑛= 𝑇, which are all determined at

𝑇0= 0. Let𝑀 be notional principal, and 𝛿 is the maturity of

Libor interest rate, the same with bond’s payment cycle Δ𝑇,namely, 𝛿 = Δ𝑇. For simplification, the default recovery rateof reference asset 𝐢 is 0.

At time 0, for TRS payment leg, the discounted expecta-tion of the cash flow 𝐹

𝐡is

𝐸 [𝐹𝐡] = 𝐸[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝐢𝑖1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}] . (15)

At time 0, for TRS recipient leg, the discounted expecta-tion of the cash flow 𝐹

𝐢is

𝐸 [𝐹𝐢] = 𝐸[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝛿𝑀 (𝐿 (𝑇

π‘–βˆ’1, π‘‡π‘–βˆ’1) + 𝑠) 1

{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

+ 𝐸 [𝐷 (𝜏𝐢+ πœƒ) 1

{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢+πœƒ}] ,

(16)

where 𝐸 is the expectation under risk neutral measure 𝑃, πœƒ isthe length of settlement period, and 𝜏𝐢 + πœƒ is settlement date.𝐿(π‘‡π‘–βˆ’1, π‘‡π‘–βˆ’1) is time-𝑇

π‘–βˆ’1locked 𝑇

𝑖-Libor interest rate. 𝑠 is the

TRS spread and𝐷(β‹…) is the discounted factor.We assume the market is complete; namely, there is no

arbitrage.Therefore, according to the arbitrage-free principle,we have

𝐸 [𝐹𝐡] = 𝐸 [𝐹

𝐢] . (17)

Page 4: Research Article Total Return Swap Valuation with ...

4 Abstract and Applied Analysis

The general pricing formula of TRS is derived as

𝑠 = (𝐸[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝐢𝑖1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

βˆ’πΈ[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝛿𝑀𝐿 (𝑇

π‘–βˆ’1, π‘‡π‘–βˆ’1) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}])

Γ—(𝐸[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝛿𝑀1

{𝜏𝐡∧𝜏𝐢>𝑇𝑖}])

βˆ’1

βˆ’

𝐸 [𝐷 (𝜏𝐢+ πœƒ) 1

{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢+πœƒ}]

𝐸 [βˆ‘π‘›

𝑖=1𝐷(𝑇𝑖) 𝛿𝑀1

{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

.

(18)

3.1. TRS Valuation under Two-Firm Looping Default Conta-gion Model. In this subsection we assume that the defaultintensities of credit protection seller 𝐡 and reference asset 𝐢are given, respectively, by

πœ†π΅

𝑑= 𝑏0+ 𝑏11{πœπΆβ‰€π‘‘}, (19)

πœ†πΆ

𝑑= 𝑐0+ 𝑐11{πœπ΅β‰€π‘‘}, (20)

where 𝑏0and 𝑏0are nonnegative, satisfying 𝑏

0+ 𝑏1> 0 and

𝑐0+ 𝑐1> 0.

With the result in Leung and Kwok [24], the joint survivalprobability and the joint density of default time (𝜏𝐡, 𝜏𝐢) aregiven by

𝑃 (𝜏𝐡> 𝑑1, 𝜏𝐢> 𝑑2)

=

{{{{{

{{{{{

{

π‘’βˆ’π‘0𝑑1βˆ’π‘0𝑑2 [𝑐0π‘’βˆ’π‘1(𝑑1βˆ’π‘‘2)βˆ’ 𝑏1π‘’βˆ’π‘0(𝑑1βˆ’π‘‘2)

𝑐0βˆ’ 𝑏1

] , 𝑑2≀ 𝑑1

π‘’βˆ’π‘0𝑑1βˆ’π‘0𝑑2 [𝑐0π‘’βˆ’π‘1(𝑑2βˆ’π‘‘1)βˆ’ 𝑐1π‘’βˆ’π‘0(𝑑2βˆ’π‘‘1)

𝑏0βˆ’ 𝑐1

] , 𝑑2> 𝑑1,

(21)

𝑓 (𝑑1, 𝑑2)

=

{

{

{

𝑓1(𝑑1, 𝑑2) = 𝑐0(𝑏0+ 𝑏1) π‘’βˆ’(𝑏0+𝑏1)𝑑1βˆ’(𝑐0βˆ’π‘1)𝑑2 , 𝑑2≀ 𝑑1

𝑓2(𝑑1, 𝑑2) = 𝑏0(𝑐0+ 𝑐1) π‘’βˆ’(𝑐0+𝑐1)𝑑2βˆ’(𝑏0βˆ’π‘1)𝑑1 , 𝑑2> 𝑑1,

(22)

respectively.When the default process and the interest rate process are

independent, by computing formula (18), we can obtain thefollowing result.

Theorem 1. With the default intensity process (19)-(20) andHJM interest rate model (9), the price 𝑠 of TRS is given by

𝑠 =βˆ‘π‘›

𝑖=1(πΆπ‘–βˆ’ 𝛿𝑀𝐿 (𝑇

π‘–βˆ’1, π‘‡π‘–βˆ’1)) 𝐡 (0, 𝑇

𝑖) π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖

βˆ‘π‘›

𝑖=1π›Ώπ‘€π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖

βˆ’

𝑐0π‘’βˆ’(𝑏0+𝑏1)πœƒβˆ«π‘‡

0𝐡 (0, V + πœƒ) π‘’βˆ’(𝑏0+𝑐0)V𝑑V

βˆ‘π‘›

𝑖=1π›Ώπ‘€π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖

.

(23)

Proof. By the arbitrage free principle, the price formula (18)becomes

𝑠 = (𝐸[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝐢𝑖1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

βˆ’πΈ[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝛿𝑀𝐿 (𝑇

π‘–βˆ’1, π‘‡π‘–βˆ’1) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}])

Γ— (𝐸[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝛿𝑀1

{𝜏𝐡∧𝜏𝐢>𝑇𝑖}])

βˆ’1

βˆ’

𝐸 [𝐷 (𝜏𝐢+ πœƒ) 1

{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢+πœƒ}]

𝐸 [βˆ‘π‘›

𝑖=1𝐷(𝑇𝑖)𝑀1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

.

(24)

To obtain the analytic solution of 𝑠, we need to compute thefollowing three expectation values:

𝐾1:=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐷 (𝑇𝑖) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}] ,

𝐾2:=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐷 (𝑇𝑖) 𝐿 (π‘‡π‘–βˆ’1, π‘‡π‘–βˆ’1) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}] ,

𝐾3:= 𝐸 [𝐷 (𝜏

𝐢+ πœƒ) 1

{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢+πœƒ}] ,

(25)

where

𝐾1=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐷 (𝑇𝑖) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

=

𝑛

βˆ‘

𝑖=1

𝐸[exp(βˆ’βˆ«π‘‡π‘–

0

π‘Ÿπ‘’π‘‘π‘’)]𝐸 [1

{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

=

𝑛

βˆ‘

𝑖=1

exp(βˆ’βˆ«π‘‡π‘–

0

𝑓 (0, 𝑒) 𝑑𝑒)𝐸 [1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

=

𝑛

βˆ‘

𝑖=1

𝐡 (0, 𝑇𝑖) π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖 ,

𝐾2=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐷 (𝑇𝑖) 𝐿 (π‘‡π‘–βˆ’1, π‘‡π‘–βˆ’1) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

=

𝑛

βˆ‘

𝑖=1

𝐡 (0, 𝑇𝑖) 𝐿 (π‘‡π‘–βˆ’1, π‘‡π‘–βˆ’1) π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖 ,

𝐾3= 𝐸 [𝐷 (𝜏

𝐢+ πœƒ) 1

{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢+πœƒ}]

= 𝐸 [𝐸 [𝐷 (𝜏𝐢+ πœƒ) 1

{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢+πœƒ}

| Fπ‘Ÿ

π‘‡βˆ—]]

= 𝐸 [𝐡 (0, 𝜏𝐢+ πœƒ) 1

{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢+πœƒ}]

Page 5: Research Article Total Return Swap Valuation with ...

Abstract and Applied Analysis 5

= ∫

𝑇

0

∫

∞

V+πœƒπ΅ (0, V + πœƒ) 𝑓

2(𝑒, V) 𝑑𝑒 𝑑V

= ∫

𝑇

0

𝐡 (0, V + πœƒ)∫∞

V+πœƒπ‘0(𝑏0+ 𝑏1) π‘’βˆ’(𝑏0+𝑏1)𝑑1βˆ’(𝑐0βˆ’π‘1)𝑑2𝑑𝑒 𝑑V

= 𝑐0π‘’βˆ’(𝑏0+𝑏1)πœƒβˆ«

𝑇

0

𝐡 (0, V + πœƒ) π‘’βˆ’(𝑏0+𝑐0)V𝑑V.

(26)

Substitute𝐾1,𝐾2, and𝐾

3into formula (24), and we obtain

𝑠 =βˆ‘π‘›

𝑖=1(πΆπ‘–βˆ’ 𝛿𝑀𝐿 (𝑇

π‘–βˆ’1, π‘‡π‘–βˆ’1)) 𝐡 (0, 𝑇

𝑖) π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖

βˆ‘π‘›

𝑖=1π›Ώπ‘€π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖

βˆ’

𝑐0π‘’βˆ’(𝑏0+𝑏1)πœƒβˆ«π‘‡

0𝐡 (0, V + πœƒ) π‘’βˆ’(𝑏0+𝑐0)V𝑑V

βˆ‘π‘›

𝑖=1π›Ώπ‘€π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖

.

(27)

We complete the proof.

Remark 2. From (23), we can conclude that when the lengthπœƒ of settlement period is zero, the swap rate 𝑠 is only relatedto the systematic factors 𝑏

0and 𝑐0, irrelative to the default

contagion between two firms.

3.2. TRS Valuation under Two-Firm Attenuation ContagionModel. In this subsection, we consider the default contagionto have the hyperbolic attenuation effect. Default intensitiesof firms 𝐡 and 𝐢 have the following forms:

πœ†π΅

𝑑= 𝑏0+

𝑏2

𝑏1(𝑑 βˆ’ 𝜏𝐢) + 1

1{πœπΆβ‰€π‘‘}, (28)

πœ†πΆ

𝑑= 𝑐0+

𝑐2

𝑐1(𝑑 βˆ’ 𝜏𝐡) + 1

1{πœπ΅β‰€π‘‘}, (29)

where 𝑏0, 𝑐0, 𝑏1, and 𝑐

1are nonnegative, satisfying 𝑏

0+ 𝑏2> 0

and 𝑐0+ 𝑐2> 0. 𝑏

2and 𝑐2reflect the impact strength of the

counterparty and 𝑏1and 𝑐1show the attenuation speed of one

party default on the other party. For 𝑏1= 𝑐1= 0, the model

becomes the looping default model (19)-(20).Under the above model, the analytic solutions of the joint

survival probability cannot be obtained. For simplification,we assume 𝑏

2= βˆ’π‘1; then, (28) and (29) become, respectively,

πœ†π΅

𝑑= 𝑏0βˆ’

𝑏1

𝑏1(𝑑 βˆ’ 𝜏𝐢) + 1

1{πœπΆβ‰€π‘‘}, (30)

πœ†πΆ

𝑑= 𝑐0βˆ’

𝑐1

𝑐1(𝑑 βˆ’ 𝜏𝐡) + 1

1{πœπ΅β‰€π‘‘}. (31)

According to the result in Bai et al. [25], with theintensities (30)-(31), the joint survival probability and thejoint density function of (𝜏𝐡, 𝜏𝐢) are given by

𝑃 (𝜏𝐡> 𝑑1, 𝜏𝐢> 𝑑2)

=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑏1(𝑑1βˆ’ 𝑑2+1

𝑏1

βˆ’1

𝑐0

) π‘’βˆ’(𝑏0𝑑1+𝑐0𝑑2)

+𝑏1

𝑐0

π‘’βˆ’(𝑏0+𝑐0)𝑑1 , 𝑑

2≀ 𝑑1

𝑐1(𝑑2βˆ’ 𝑑1+1

𝑐1

βˆ’1

𝑏0

) π‘’βˆ’(𝑏0𝑑1+𝑐0𝑑2)

+𝑐1

𝑏0

π‘’βˆ’(𝑏0+𝑐0)𝑑2 , 𝑑

2> 𝑑1,

(32)

𝑓 (𝑑1, 𝑑2)

=

{{{{{{{{

{{{{{{{{

{

𝑓1(𝑑1, 𝑑2) = 𝑐0𝑏0𝑏1[𝑑1βˆ’ 𝑑2+1

𝑏1

βˆ’1

𝑏0

]

Γ—π‘’βˆ’(𝑏0𝑑1+𝑐0𝑑2), t

2≀ 𝑑1

𝑓2(𝑑1, 𝑑2) = 𝑏0𝑐0𝑐1[𝑑2βˆ’ 𝑑1+1

𝑐1

βˆ’1

𝑐0

]

Γ—π‘’βˆ’(𝑏0𝑑1+𝑐0𝑑2), 𝑑

2> 𝑑1,

(33)

respectively.Then the expression of 𝑠 is given by the following theorem.

Theorem 3. With the default intensities (30)-(31) and HJMinterest rate model (9), 𝑠 is given by

𝑠 =βˆ‘π‘›

𝑖=1𝐢𝑖𝐡 (0, 𝑇

𝑖) π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖

βˆ‘π‘›

𝑖=1𝛿𝑀𝐡 (0, 𝑇

𝑖) π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖

βˆ’βˆ‘π‘›

𝑖=1𝐿 (π‘‡π‘–βˆ’1, π‘‡π‘–βˆ’1) 𝛿𝑀𝐡 (0, 𝑇

𝑖) π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖

βˆ‘π‘›

𝑖=1𝛿𝑀𝐡 (0, 𝑇

𝑖) π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖

βˆ’

𝑐0(1 + 𝑏

1πœƒ) π‘’βˆ’π‘0πœƒβˆ«π‘‡

0𝐡 (0, V + πœƒ) π‘’βˆ’(𝑏0+𝑐0)V𝑑V

βˆ‘π‘›

𝑖=1𝛿𝑀𝐡 (0, 𝑇

𝑖) π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖

.

(34)

Proof. To compute (18), we need to only compute the follow-ing three expectation values:

οΏ½ΜƒοΏ½1:=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐷 (𝑇𝑖) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}] ,

οΏ½ΜƒοΏ½2:=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐷 (𝑇𝑖) 𝐿 (π‘‡π‘–βˆ’1, π‘‡π‘–βˆ’1) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}] ,

οΏ½ΜƒοΏ½3:= 𝐸 [𝐷 (𝜏

𝐢+ 𝛿) 1

{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢+𝛿}] ,

(35)

Page 6: Research Article Total Return Swap Valuation with ...

6 Abstract and Applied Analysis

where

οΏ½ΜƒοΏ½1=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐷 (𝑇𝑖) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

=

𝑛

βˆ‘

𝑖=1

𝐡 (0, 𝑇𝑖) π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖 ,

οΏ½ΜƒοΏ½2=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐷 (𝑇𝑖) 𝐿 (π‘‡π‘–βˆ’1, π‘‡π‘–βˆ’1) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

=

𝑛

βˆ‘

𝑖=1

𝐿 (π‘‡π‘–βˆ’1, π‘‡π‘–βˆ’1) 𝐡 (0, 𝑇

𝑖) π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖 ,

οΏ½ΜƒοΏ½3= 𝐸 [𝐷 (𝜏

𝐢+ 𝛿) 1

{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢+𝛿}]

= 𝐸 [𝐸 [𝐷 (𝜏𝐢+ 𝛿) 1

{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢+𝛿}

| Fπ‘Ÿ

π‘‡βˆ—]]

= 𝐸 [𝐡 (0, 𝜏𝐢+ πœƒ) 1

{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢+πœƒ}]

= ∫

𝑇

0

∫

∞

V+πœƒπ΅ (0, V + πœƒ) 𝑓 (𝑒, V) 𝑑𝑒 𝑑V

= ∫

𝑇

0

𝐡 (0, V + πœƒ)

Γ— ∫

∞

V+πœƒπ‘0𝑏0𝑏1[𝑑1βˆ’ 𝑑2+1

𝑏1

βˆ’1

𝑏0

] π‘’βˆ’(𝑏0𝑑1+𝑐0𝑑2)𝑑𝑒 𝑑V

= 𝑐0(1 + 𝑏

1πœƒ) π‘’βˆ’π‘0πœƒβˆ«

𝑇

0

𝐡 (0, V + πœƒ) π‘’βˆ’(𝑏0+𝑐0)V𝑑V.

(36)

Substituting (36) into (18), we can have

𝑠 =βˆ‘π‘›

𝑖=1𝐢𝑖𝐡 (0, 𝑇

𝑖) π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖

βˆ‘π‘›

𝑖=1𝛿𝑀𝐡 (0, 𝑇

𝑖) π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖

βˆ’βˆ‘π‘›

𝑖=1𝐿 (π‘‡π‘–βˆ’1, π‘‡π‘–βˆ’1) 𝛿𝑀𝐡 (0, 𝑇

𝑖) π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖

βˆ‘π‘›

𝑖=1𝛿𝑀𝐡 (0, 𝑇

𝑖) π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖

βˆ’

𝑐0(1 + 𝑏

1πœƒ) π‘’βˆ’π‘0πœƒβˆ«π‘‡

0𝐡 (0, V + πœƒ) π‘’βˆ’(𝑏0+𝑐0)V𝑑V

βˆ‘π‘›

i=1 𝛿𝑀𝐡 (0, 𝑇𝑖) π‘’βˆ’(𝑏0+𝑐0)𝑇𝑖

,

(37)

which is formula (34). The proof is complete.

Remark 4. Combining formula (34) with formula (23), wecan conclude that firm 𝐢’s default contagion on firm 𝐡 haseffect in the pricing of TRS (there is 𝑏

1in formula (34)).

However, firm 𝐡’s default contagion on firm 𝐢 has no effectin the pricing of TRS (there is no 𝑐

1in (34)).Therefore, in the

complex contagion model, we can assume that the referenceasset is the primary firm, and the protection seller is thesecondary firm.

4. TRS Valuation When Default Is Related tothe Interest Rate

Empirical studies show that in the vast majority of casesdefault is related to the interest rate or, in other words, creditrisk is related to interest rate risk. In this section, we assumethat their correlation is described by default intensities. Forsimplification, we assume that the length πœƒ of the referenceasset’s settlement period is zero.

4.1. TRS Valuation under Two-Firm Looping Default Conta-gion Model. We consider that default intensities of firms 𝐡and 𝐢 have the following form:

πœ†π΅

𝑑= 𝑏0+ π‘π‘Ÿπ‘‘+ 𝑏11{πœπΆβ‰€π‘‘},

πœ†πΆ

𝑑= 𝑐0+ π‘π‘Ÿπ‘‘+ 𝑐11{πœπ΅β‰€π‘‘},

(38)

where 𝑏0, 𝑏0, 𝑏, and 𝑐 are nonnegative, satisfying 𝑏

0+ 𝑏1> 0

and 𝑐0+𝑐1> 0. π‘Ÿπ‘‘= 𝑓(𝑑, 𝑑)and𝑓(𝑑, 𝑇) satisfies HJMmodel (9).

UsingWang andYe’s result [26], under themodel (38), thejoint conditional distribution of (𝜏𝐡, 𝜏𝐢) is given by

𝑃 (𝜏𝐡> 𝑑1, 𝜏𝐢> 𝑑2| Fπ‘Ÿ

π‘‡βˆ—)

= exp (βˆ’π‘0𝑑2βˆ’ 𝑐𝑅0,𝑑2

)

Γ— [ exp (βˆ’π‘1(𝑑2βˆ’ 𝑑1)) βˆ’ exp (βˆ’ (𝑏

0(𝑑2βˆ’ 𝑑1) βˆ’ 𝑏𝑅

𝑑1,𝑑2

))

+ exp (βˆ’π‘0𝑑2βˆ’ 𝑏𝑅0,𝑑2

)

+ 𝑐1∫

𝑑2

𝑑1

exp (βˆ’π‘0(𝑒 βˆ’ 𝑑

1) βˆ’ 𝑐1(𝑑2βˆ’ 𝑒) βˆ’ 𝑏𝑅

𝑑1,𝑒) 𝑑𝑒] ,

for 𝑑1< 𝑑2< 𝑇.

𝑃 (𝜏𝐡> 𝑑1, 𝜏𝐢> 𝑑2| Fπ‘Ÿ

π‘‡βˆ—)

= exp (βˆ’π‘0𝑑1βˆ’ 𝑏𝑅0,𝑑1

)

Γ— [ exp (βˆ’π‘1(𝑑1βˆ’ 𝑑2)) βˆ’ exp (βˆ’ (𝑐

0(𝑑1βˆ’ 𝑑2) βˆ’ 𝑐𝑅

𝑑2,𝑑1

))

+ exp (βˆ’π‘0𝑑1βˆ’ 𝑐𝑅0,𝑑1

)

+ 𝑏1∫

𝑑1

𝑑2

exp (βˆ’π‘0(𝑒 βˆ’ 𝑑

2) βˆ’ 𝑏1(𝑑1βˆ’ 𝑒) βˆ’ 𝑐𝑅

𝑑2,𝑒) 𝑑𝑒] ,

for 𝑑2< 𝑑1< 𝑇.

(39)

Page 7: Research Article Total Return Swap Valuation with ...

Abstract and Applied Analysis 7

The joint conditional density function is

𝑓 (𝑑1, 𝑑2| Fπ‘Ÿ

π‘‡βˆ—)

=

{{{{{{

{{{{{{

{

(𝑐0+ π‘π‘Ÿπ‘‘2

) (𝑏0+ 𝑏1+ π‘π‘Ÿπ‘‘1

)

Γ—π‘’βˆ’(𝑏0+𝑏1)𝑑1βˆ’(𝑐0βˆ’π‘1)𝑑2βˆ’π‘π‘…0,𝑑1

βˆ’π‘π‘…0,𝑑2 , 𝑑2≀ 𝑑1

(𝑏0+ π‘π‘Ÿπ‘‘1

) (𝑐0+ 𝑐1+ π‘π‘Ÿπ‘‘2

)

Γ—π‘’βˆ’(𝑏0βˆ’π‘1)𝑑1βˆ’(𝑐0+𝑐1)𝑑2βˆ’π‘π‘…0,𝑑1

βˆ’π‘π‘…0,𝑑2 , 𝑑2> 𝑑1,

(40)

where 𝑅0,𝑒

= βˆ«π‘’

0π‘ŸV 𝑑V is the cumulative interest rate process

andFπ‘Ÿπ‘‡βˆ— is the filter generated by π‘Ÿ

𝑑up to π‘‡βˆ—.

When default is related to interest rate, computing expec-tations in formula (18) becomes complicated. We give thefollowing lemma first.

Lemma 5. The interest rate process is given by (9), 𝑅𝑑,𝑠

=

βˆ«π‘ 

π‘‘π‘Ÿπ‘’π‘‘π‘’, for 𝑑 < 𝑠. Denote

𝐺1(π‘š1; 𝑑0, 𝑑1) = 𝐸 [exp (βˆ’π‘š

1𝑅𝑑0,𝑑1

)] ,

𝐺2(π‘š1, π‘š2; 𝑑0, 𝑑1, 𝑑2) = 𝐸 [exp (βˆ’π‘š

1𝑅𝑑0,𝑑1

βˆ’ π‘š2𝑅𝑑1,𝑑2

)] ;

(41)

then,

𝐺1(π‘š1; 𝑑0, 𝑑1)=exp(βˆ’π‘š

1∫

𝑑1

𝑑0

𝑓 (𝑑0, 𝑒) 𝑑𝑒

βˆ’π‘š1∫

𝑑1

𝑑0

∫

𝑒

𝑑0

𝛼 (𝑠, 𝑒) 𝑑𝑠 𝑑𝑒

+π‘š2

1

2∫

𝑑1

𝑑0

(∫

𝑑1

𝑠

𝜎 (𝑠, 𝑒) 𝑑𝑒)

2

𝑑𝑠) ,

(42)

𝐺2(π‘š1, π‘š2; 𝑑0, 𝑑1, 𝑑2)

= exp(βˆ’π‘š1∫

𝑑1

𝑑0

𝑓 (𝑑0, 𝑒) 𝑑𝑒

βˆ’ π‘š1∫

𝑑1

𝑑0

∫

𝑒

𝑑0

𝛼 (𝑠, 𝑒) 𝑑𝑠 𝑑𝑒)

β‹… exp(βˆ’π‘š2∫

𝑑2

𝑑1

𝑓 (𝑑1, 𝑒) 𝑑𝑒

βˆ’ π‘š2∫

𝑑2

𝑑1

∫

𝑒

𝑑1

𝛼 (𝑠, 𝑒) 𝑑𝑠 𝑑𝑒)

β‹… exp(π‘š2

1

2∫

𝑑1

𝑑0

(∫

𝑑1

𝑠

𝜎 (𝑠, 𝑒) 𝑑𝑒)

2

𝑑𝑠

+π‘š2

2

2∫

𝑑2

𝑑1

(∫

𝑑2

𝑠

𝜎 (𝑠, 𝑒) 𝑑𝑒)

2

𝑑𝑠) .

(43)

Proof. Consider

𝑅𝑑0,𝑑1

= ∫

𝑑1

𝑑0

𝑓 (𝑑0, 𝑒) 𝑑𝑒 + ∫

𝑑1

𝑑0

∫

𝑒

𝑑0

𝛼 (𝑠, 𝑒) 𝑑𝑠 𝑑𝑒

+ ∫

𝑑1

𝑑0

∫

𝑒

𝑑0

𝜎 (𝑠, 𝑒) π‘‘π‘Šπ‘ π‘‘π‘’

= ∫

𝑑1

𝑑0

𝑓 (𝑑0, 𝑒) 𝑑𝑒 + ∫

𝑑1

𝑑0

∫

𝑒

𝑑0

𝛼 (𝑠, 𝑒) 𝑑𝑠 𝑑𝑒

+ ∫

𝑑1

𝑑0

∫

𝑑1

𝑠

𝜎 (𝑠, 𝑒) 𝑑𝑒 π‘‘π‘Šπ‘ .

(44)

We can deduce𝐸 [βˆ’π‘š

1𝑅𝑑0,𝑑1

] = βˆ’π‘š1𝐸 [𝑅𝑑0,𝑑1

]

= βˆ’π‘š1∫

𝑑1

𝑑0

𝑓 (𝑑0, 𝑒) 𝑑𝑒 βˆ’ ∫

𝑑1

𝑑0

∫

𝑒

𝑑0

𝛼 (𝑠, 𝑒) 𝑑𝑠 𝑑𝑒,

Var [βˆ’π‘š1𝑅𝑑0,𝑑1

] = π‘š2

1∫

𝑑1

𝑑0

(∫

𝑑1

𝑠

𝜎 (𝑠, 𝑒) 𝑑𝑒)

2

𝑑𝑠.

(45)

By using the formula

𝐸 [exp (βˆ’π‘š1𝑅𝑑0,𝑑1

)]

= exp(𝐸 [βˆ’π‘š1𝑅𝑑0,𝑑1

] +1

2Var [βˆ’π‘š

1𝑅𝑑0,𝑑1

]) .

(46)

And substituting (45),(46) into (47), we can obtain (43).Formula (43) can be rewritten as𝐺2(π‘š1, π‘š2; 𝑑0, 𝑑1, 𝑑2)

= 𝐸 [exp (βˆ’π‘š1𝑅𝑑0,𝑑1

βˆ’ π‘š2𝑅𝑑1,𝑑2

)]

= 𝐸 [exp (βˆ’π‘š1𝑅𝑑0,𝑑1

) 𝐸𝑑1

[exp (βˆ’π‘š2𝑅𝑑1,𝑑2

)]]

= 𝐸 [exp (βˆ’π‘š1𝑅𝑑0,𝑑1

) 𝐿1(π‘š2; 𝑑1, 𝑑2)] .

(47)

Similar to the computation of (42), (43) can be obtained, andwe omit it here.

Since the length πœƒ of settlement period for reference asset𝐢 is 0; namely, if firm 𝐡 has no default, 𝐡 pays compensationfor 𝐢’s loss immediately once 𝐢 defaults, thus (18) becomes

𝑠 = (𝐸[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝐢𝑖1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

βˆ’πΈ[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝛿𝑀𝐿 (𝑇

π‘–βˆ’1, π‘‡π‘–βˆ’1) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}])

Γ—(𝐸[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝛿𝑀1

{𝜏𝐡∧𝜏𝐢>𝑇𝑖}])

βˆ’1

βˆ’

𝐸 [𝐷 (𝜏𝐢) 1{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢}]

𝐸 [βˆ‘π‘›

𝑖=1𝐷(𝑇𝑖)𝑀1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

.

(48)

The price 𝑠 of TRS is given by the theorem below.

Page 8: Research Article Total Return Swap Valuation with ...

8 Abstract and Applied Analysis

Theorem 6. With default intensities (38) and HJMmodel (9),the price 𝑠 of TRS is given by

𝑠 =βˆ‘π‘›

𝑖=1𝐢𝑖exp (βˆ’ (𝑏

0+ 𝑐0) 𝑇𝑖) β‹… 𝐺1((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖)

βˆ‘π‘›

𝑖=1𝛿𝑀 exp (βˆ’ (𝑏

0+ 𝑐0) 𝑇𝑖) β‹… 𝐺1((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖)

βˆ’ (

𝑛

βˆ‘

𝑖=1

M (𝐺2(1 + 𝑏 + 𝑐, 𝑏 + 𝑐; 0, 𝑇

π‘–βˆ’1, 𝑇𝑖, 𝑑2)

βˆ’πΊ1(1 + 𝑏 + 𝑐; 0, 𝑇

𝑖)))

Γ— (

𝑛

βˆ‘

𝑖=1

𝛿𝑀 exp (βˆ’ (𝑏0+𝑐0) 𝑇𝑖) β‹… 𝐺1((1+𝑏+ 𝑐) ; 0, 𝑇

𝑖))

βˆ’1

βˆ’

(𝑐/ (1 + 𝑏 + 𝑐)) (1 βˆ’ π‘’βˆ’(𝑏+𝑐)𝑇

β‹… 𝐺1(1 + 𝑏 + 𝑐; 0, 𝑇))

βˆ‘π‘›

𝑖=1𝛿𝑀 exp (βˆ’ (𝑏

0+ 𝑐0) 𝑇𝑖) β‹… 𝐺1((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖)

βˆ’((𝑐0βˆ’π‘ (𝑏0+𝑐0)

1+𝑏+𝑐)Γ—βˆ«

T

0

π‘’βˆ’(𝑏0+𝑐0)Vβ‹… 𝐺1(1+𝑏 +𝑐; 0, V) 𝑑V)

Γ— (

𝑛

βˆ‘

𝑖=1

𝛿𝑀 exp (βˆ’ (𝑏0+𝑐0) 𝑇𝑖) β‹… 𝐺1((1+𝑏+𝑐) ; 0, 𝑇

𝑖))

βˆ’1

.

(49)

Proof. Consider

𝑠 = (𝐸[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝐢𝑖1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

βˆ’ 𝐸[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝛿𝑀𝐿 (𝑇

π‘–βˆ’1, π‘‡π‘–βˆ’1) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}])

Γ— (𝐸[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝛿𝑀1

{𝜏𝐡∧𝜏𝐢>𝑇𝑖}])

βˆ’1

βˆ’

𝐸 [𝐷 (𝜏𝐢) 1{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢}]

𝐸 [βˆ‘π‘›

𝑖=1𝐷(𝑇𝑖)𝑀1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

.

(50)

To compute (48), we need to only deduce the following threeexpectation values:

οΏ½Μ‚οΏ½1:=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐷 (𝑇𝑖) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}] ,

οΏ½Μ‚οΏ½2:=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐷 (𝑇𝑖) 𝐿 (π‘‡π‘–βˆ’1, π‘‡π‘–βˆ’1) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}] ,

οΏ½Μ‚οΏ½3:= 𝐸 [𝐷 (𝜏

𝐢) 1{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢}] ,

(51)

where

οΏ½Μ‚οΏ½1=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐷 (𝑇𝑖) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐸 [𝐷 (𝑇𝑖) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}| Fπ‘Ÿ

π‘‡βˆ—]]

=

𝑛

βˆ‘

𝑖=1

𝐸 [π‘’βˆ’π‘…0,𝑇𝑖 β‹… 𝐸 [1

{𝜏𝐡∧𝜏𝐢>𝑇𝑖}| Fπ‘Ÿ

π‘‡βˆ—]]

=

𝑛

βˆ‘

𝑖=1

𝐸 [exp (βˆ’ (𝑏0+ 𝑐0) 𝑇𝑖) β‹… exp (βˆ’ (1 + 𝑏 + 𝑐) 𝑅

0,𝑇𝑖

)]

=

𝑛

βˆ‘

𝑖=1

exp (βˆ’ (𝑏0+ 𝑐0) 𝑇𝑖) β‹… 𝐺1((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖) ,

οΏ½Μ‚οΏ½2=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐷 (𝑇𝑖) 𝐿 (π‘‡π‘–βˆ’1, π‘‡π‘–βˆ’1) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐸 [𝐷 (𝑇𝑖) 𝐿 (π‘‡π‘–βˆ’1, π‘‡π‘–βˆ’1) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}| Fπ‘Ÿ

π‘‡βˆ—]] .

(52)

Substituting the expression (14) of Libor interest rate 𝐿(𝑑, 𝑇)into the formula above, we have

οΏ½Μ‚οΏ½2=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐸 [π‘’βˆ’π‘…0,𝑇𝑖

1

𝛿(π‘’π‘…π‘‡π‘–βˆ’1,π‘‡π‘–βˆ’1+𝛿 βˆ’ 1) 1

{𝜏𝐡∧𝜏𝐢>𝑇𝑖}| Fπ‘Ÿ

π‘‡βˆ—]]

=

𝑛

βˆ‘

𝑖=1

𝐸 [1

𝛿(π‘’βˆ’π‘…0,π‘‡π‘–βˆ’1 βˆ’ 𝑒

βˆ’π‘…0,𝑇𝑖 ) 𝐸 [1

{𝜏𝐡∧𝜏𝐢>𝑇𝑖}| Fπ‘Ÿ

π‘‡βˆ—]]

=

𝑛

βˆ‘

𝑖=1

1

𝛿(𝐺2(1 + 𝑏 + 𝑐, 𝑏 + 𝑐; 0, 𝑇

π‘–βˆ’1, 𝑇𝑖)

βˆ’πΊ1(1 + 𝑏 + 𝑐; 0, 𝑇

𝑖)) ,

(53)

οΏ½Μ‚οΏ½3= 𝐸 [𝐷 (𝜏

𝐢) 1{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢}]

= 𝐸 [𝐸 [𝐷 (𝜏𝐢) 1{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢}| Fπ‘Ÿ

π‘‡βˆ—]]

= 𝐸 [∫

𝑇

0

∫

∞

Vπ‘’βˆ’π‘…0,V𝑓 (𝑒, V | Fπ‘Ÿ

π‘‡βˆ—) 𝑑𝑒 𝑑V]

= 𝐸[∫

𝑇

0

(𝑐0+ π‘π‘ŸV) 𝑒

βˆ’(𝑐0βˆ’π‘1)Vβˆ’(1+𝑐)𝑅

0,V

Γ— ∫

∞

V(𝑏0+ 𝑏1+ π‘π‘Ÿπ‘’) π‘’βˆ’(𝑏0+𝑏1)π‘’βˆ’π‘π‘…

0,𝑒𝑑𝑒 𝑑V]

Page 9: Research Article Total Return Swap Valuation with ...

Abstract and Applied Analysis 9

= 𝐸[(𝑐0βˆ’π‘ (𝑏0+ 𝑐0)

1 + 𝑏 + 𝑐)

Γ—βˆ«

𝑇

0

exp (βˆ’ (𝑏0+𝑐0) V) exp (βˆ’ (1+𝑏+𝑐) 𝑅

0,V) 𝑑V

+𝑐

1 + 𝑏 + 𝑐

Γ— ( (1 βˆ’ exp (βˆ’ (𝑏0+ 𝑐0) 𝑇 βˆ’ (1 + 𝑏 + 𝑐) 𝑅

0,𝑇)) ]

=𝑐

1 + 𝑏 + 𝑐(1 βˆ’ exp (βˆ’ (𝑏

0+ 𝑐0) 𝑇)

β‹… 𝐺1(1 + 𝑏 + 𝑐; 0, 𝑇))

+ (𝑐0βˆ’π‘ (𝑏0+ 𝑐0)

1 + 𝑏 + 𝑐)

Γ— ∫

𝑇

0

exp (βˆ’ (𝑏0+ 𝑐0) V) β‹… 𝐺

1(1 + 𝑏 + 𝑐; 0, V) 𝑑V.

(54)

Thus, substituting (52)–(54) into (48), we obtain

𝑠 =βˆ‘π‘›

𝑖=1𝐢𝑖exp (βˆ’ (𝑏

0+ 𝑐0) 𝑇𝑖) β‹… 𝐺1((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖)

βˆ‘π‘›

𝑖=1𝛿𝑀 exp (βˆ’ (𝑏

0+ 𝑐0) 𝑇𝑖) β‹… 𝐺1((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖)

βˆ’ (

𝑛

βˆ‘

𝑖=1

𝑀(𝐺2(1 + 𝑏 + 𝑐, 𝑏 + 𝑐; 0, 𝑇

π‘–βˆ’1, 𝑇𝑖)

βˆ’πΊ1(1 + 𝑏 + 𝑐; 0, 𝑇

𝑖)))

Γ—(

𝑛

βˆ‘

𝑖=1

𝛿𝑀 exp (βˆ’ (𝑏0+𝑐0) 𝑇𝑖) β‹… 𝐺1((1+𝑏+𝑐) ; 0, 𝑇

𝑖))

βˆ’1

βˆ’

(𝑐/ (1 + 𝑏 + 𝑐)) (1 βˆ’ π‘’βˆ’(𝑏+𝑐)𝑇

β‹… 𝐺1(1 + b + 𝑐; 0, 𝑇))

βˆ‘π‘›

𝑖=1𝛿𝑀 exp (βˆ’ (𝑏

0+ 𝑐0) 𝑇𝑖) β‹… 𝐺1((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖)

βˆ’ ((𝑐0βˆ’π‘ (𝑏0+ 𝑐0)

1 + 𝑏 + 𝑐)

Γ— ∫

𝑇

0

π‘’βˆ’(𝑏0+𝑐0)Vβ‹… 𝐺1(1 + 𝑏 + 𝑐; 0, V) 𝑑V)

Γ—(

𝑛

βˆ‘

𝑖=1

𝛿𝑀 exp (βˆ’(𝑏0+𝑐0) 𝑇𝑖) β‹… 𝐺1((1+𝑏+𝑐) ; 0, 𝑇

𝑖))

βˆ’1

.

(55)

The proof is complete.

Remark 7. From the expression (49), the price 𝑠 of TRS isrelated to the default free interest rate risk (because there are 𝑏and 𝑐). So the interest rate risk is not negligible in the pricingof credit derivatives.

4.2. TRS Valuation under Two-Firm Attenuation ContagionModel. In this subsection, besides that default is relatedto interest rate, we assume that default contagion has thehyperbolic attenuation effect. Default intensities of firms 𝐡and 𝐢 are described as follows:

πœ†π΅

𝑑= 𝑏0+ π‘π‘Ÿπ‘‘+

𝑏2

𝑏1(𝑑 βˆ’ 𝜏𝐢) + 1

1{πœπΆβ‰€π‘‘},

πœ†πΆ

𝑑= 𝑐0+ π‘π‘Ÿπ‘‘+

𝑐2

𝑐1(𝑑 βˆ’ 𝜏𝐡) + 1

1{πœπ΅β‰€π‘‘},

(56)

where 𝑏0, 𝑐0, 𝑏, 𝑐, 𝑏

1, and 𝑐

1are nonnegative, satisfying 𝑏

0+𝑏2>

0 and 𝑐0+𝑐2> 0. When 𝑏

1= 𝑐1= 0, model is simplified to the

looping default model (38).To obtain the analytic solution of 𝑠, we consider the

following simplified model:

πœ†π΅

𝑑= 𝑏0+ π‘π‘Ÿπ‘‘βˆ’

𝑏1

𝑏1(𝑑 βˆ’ 𝜏𝐢) + 1

1{πœπΆβ‰€π‘‘},

πœ†πΆ

𝑑= 𝑐0+ π‘π‘Ÿπ‘‘βˆ’

𝑐1

𝑐1(𝑑 βˆ’ 𝜏𝐡) + 1

1{πœπ΅β‰€π‘‘}.

(57)

By the result in [27], the joint conditional survival probabilityof (𝜏𝐡, 𝜏𝐢) under the model (57) is given by

𝑃 (𝜏𝐡> 𝑑1, 𝜏𝐢> 𝑑2| Fπ‘Ÿ

π‘‡βˆ—)

= (𝑐1(𝑑2βˆ’ 𝑑1) + 1) 𝑒

βˆ’(𝑐0𝑑2+𝑐𝑅0,𝑑2

)

+ π‘’βˆ’(𝑏0+𝑐0)𝑑2 exp (βˆ’ (𝑏 + 𝑐) 𝑅

0,𝑑2

)

βˆ’ 𝑐1π‘’βˆ’π‘0𝑑2 ∫

𝑑2

𝑑1

π‘’βˆ’π‘0(π‘ βˆ’π‘‘1) exp (βˆ’π‘π‘…

0,𝑑2

βˆ’ 𝑏𝑅𝑑1,𝑠) 𝑑𝑠

βˆ’ π‘’βˆ’π‘0(𝑑2βˆ’π‘‘1)βˆ’π‘0𝑑2 exp (βˆ’π‘π‘…

0,𝑑2

βˆ’ 𝑏𝑅𝑑1,𝑑2

)

for 𝑑1≀ 𝑑2≀ 𝑇,

𝑃 (𝜏𝐡> 𝑑1, 𝜏𝐢> 𝑑2| Fπ‘Ÿ

π‘‡βˆ—)

= (𝑏1(𝑑1βˆ’ 𝑑2) + 1) 𝑒

βˆ’(𝑏0𝑑1+𝑏𝑅0,𝑑1

)

+ π‘’βˆ’(𝑏0+𝑐0)𝑑1 exp (βˆ’ (𝑏 + 𝑐) 𝑅

0,𝑑1

)

βˆ’ 𝑏1π‘’βˆ’π‘0𝑑1 ∫

𝑑1

𝑑2

π‘’βˆ’π‘0(π‘ βˆ’π‘‘2) exp (βˆ’π‘π‘…

0,𝑑1

βˆ’ 𝑐𝑅𝑑2,𝑠) 𝑑𝑠

βˆ’ π‘’βˆ’π‘0(𝑑1βˆ’π‘‘2)𝑏0𝑑1 exp (βˆ’π‘π‘…

0,𝑑1

βˆ’ 𝑐𝑅𝑑2,𝑑1

)

for 𝑑2≀ 𝑑1≀ 𝑇,

(58)

Page 10: Research Article Total Return Swap Valuation with ...

10 Abstract and Applied Analysis

and the joint conditional density function is given by

𝑓 (𝑑1, 𝑑2| Fπ‘Ÿ

π‘‡βˆ—)

=

{{{{{{

{{{{{{

{

(𝑏0+ π‘π‘Ÿπ‘‘1

) [(𝑐0+ π‘π‘Ÿπ‘‘2

) (𝑐1(𝑑2βˆ’ 𝑑1) + 1) βˆ’ 𝑐

1]

Γ—π‘’βˆ’π‘0𝑑1βˆ’π‘0𝑑2βˆ’π‘π‘…0,𝑑1

βˆ’π‘π‘…0,𝑑2 , 𝑑

1≀ 𝑑2

(c0+ π‘π‘Ÿπ‘‘2

) [(𝑏0+ π‘π‘Ÿπ‘‘1

) (𝑏1(𝑑1βˆ’ 𝑑2) + 1) βˆ’ 𝑏

1]

Γ—π‘’βˆ’π‘0𝑑1βˆ’π‘0𝑑2βˆ’π‘π‘…0,𝑑1

βˆ’π‘π‘…0,𝑑2 . 𝑑

2≀ 𝑑1.

(59)

Under the model (57), the price formula of 𝑠 is given by

𝑠 = (𝐸[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝐢𝑖1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

βˆ’ 𝐸[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝛿𝑀𝐿 (𝑇

π‘–βˆ’1, π‘‡π‘–βˆ’1) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}])

Γ— (𝐸[

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝛿𝑀1

{𝜏𝐡∧𝜏𝐢>𝑇𝑖}])

βˆ’1

βˆ’

𝐸 [𝐷 (𝜏𝐢) 1{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢}]

𝐸 [

𝑛

βˆ‘

𝑖=1

𝐷(𝑇𝑖) 𝛿𝑀1

{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

.

(60)

Combining with Lemma 5, we can obtain the price 𝑠 ofTRS, and the result is the following theorem.

Theorem 8. With default intensities (57) and HJM interestrate model (9), the price 𝑠 of TRS is given by

𝑠 =βˆ‘π‘›

𝑖=1𝐢𝑖exp (βˆ’ (𝑏

0+ 𝑐0) 𝑇𝑖) β‹… 𝐺1((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖)

βˆ‘π‘›

𝑖=1𝛿𝑀 exp (βˆ’ (𝑏

0+ 𝑐0) 𝑇𝑖) β‹… 𝐺1((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖)

βˆ’ (

𝑛

βˆ‘

𝑖=1

𝑀(𝐺2(1 + 𝑏 + 𝑐, 𝑏 + 𝑐; 0, 𝑇

π‘–βˆ’1, 𝑇𝑖)

βˆ’ 𝐺1(1 + 𝑏 + 𝑐; 0, 𝑇

𝑖)))

Γ— (

𝑛

βˆ‘

𝑖=1

𝛿𝑀 exp (βˆ’ (𝑏0+𝑐0) 𝑇𝑖) β‹… 𝐺1((1+𝑏 +𝑐) ; 0, 𝑇

𝑖))

βˆ’1

βˆ’

(𝑐/ (1 + 𝑏 + 𝑐)) (1 βˆ’ π‘’βˆ’(𝑏+𝑐)𝑇

β‹… 𝐺1(1 + 𝑏 + 𝑐; 0, 𝑇))

βˆ‘π‘›

𝑖=1𝛿𝑀 exp (βˆ’ (𝑏

0+ 𝑐0) 𝑇𝑖) β‹… 𝐺1((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖)

βˆ’ ((𝑐0βˆ’π‘ (𝑏0+ 𝑐0)

1 + 𝑏 + 𝑐)

Γ— ∫

𝑇

0

π‘’βˆ’(𝑏0+𝑐0)Vβ‹… 𝐺1(1 + 𝑏 + 𝑐; 0, V) 𝑑V)

Γ—(

𝑛

βˆ‘

𝑖=1

𝛿𝑀 exp (βˆ’(𝑏0+𝑐0) 𝑇𝑖) β‹… 𝐺1((1+𝑏+𝑐) ; 0, 𝑇

𝑖))

βˆ’1

.

(61)

Proof. From (60), to obtain the analytic solution of 𝑠, we needto only compute three expectation values:

𝐾1:=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐷 (𝑇𝑖) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}] ,

𝐾2:=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐷 (𝑇𝑖) 𝐿 (π‘‡π‘–βˆ’1, π‘‡π‘–βˆ’1) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}] ,

𝐾3:= 𝐸 [𝐷 (𝜏

𝐢) 1{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢}] ,

(62)

where

𝐾1=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐷 (𝑇𝑖) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐸 [𝐷 (𝑇𝑖) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}| Fπ‘Ÿ

π‘‡βˆ—]]

=

𝑛

βˆ‘

𝑖=1

𝐸 [π‘’βˆ’π‘…0,𝑇𝑖 β‹… 𝐸 [1

{𝜏𝐡∧𝜏𝐢>𝑇𝑖}| Fπ‘Ÿ

π‘‡βˆ—]]

=

𝑛

βˆ‘

𝑖=1

exp (βˆ’ (𝑏0+ 𝑐0) 𝑇𝑖) β‹… 𝐺1((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖) ,

𝐾2=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐷 (𝑇𝑖) 𝐿 (π‘‡π‘–βˆ’1, π‘‡π‘–βˆ’1) 1{𝜏𝐡∧𝜏𝐢>𝑇𝑖}]

=

𝑛

βˆ‘

𝑖=1

𝐸 [𝐸 [1

π›Ώπ‘’βˆ’π‘…0,𝑇𝑖 (π‘’π‘…π‘‡π‘–βˆ’1,π‘‡π‘–βˆ’1+𝛿 βˆ’ 1) 1

{𝜏𝐡∧𝜏𝐢>𝑇𝑖}| Fπ‘Ÿ

π‘‡βˆ—]]

=

𝑛

βˆ‘

𝑖=1

1

𝛿(𝐺2(1 + 𝑏 + 𝑐, 𝑏 + 𝑐; 0, 𝑇

π‘–βˆ’1, 𝑇𝑖)

βˆ’ 𝐺1(1 + 𝑏 + 𝑐; 0, 𝑇

𝑖)) ,

𝐾3= 𝐸 [𝐷 (𝜏

𝐢) 1{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢}]

= 𝐸 [𝐸 [𝐷 (𝜏𝐢) 1{πœπΆβ‰€π‘‡}1{𝜏𝐡>𝜏𝐢}| Fπ‘Ÿ

π‘‡βˆ—]]

= 𝐸[(𝑐0βˆ’π‘ (𝑏0+ 𝑐0)

1 + 𝑏 + 𝑐)

Γ— ∫

𝑇

0

exp (βˆ’ (𝑏0+ 𝑐0) V)

Page 11: Research Article Total Return Swap Valuation with ...

Abstract and Applied Analysis 11

Γ— exp (βˆ’ (1+𝑏 +𝑐) 𝑅0,V) 𝑑V

+𝑐

1 + 𝑏 + 𝑐

Γ— (1 βˆ’ exp (βˆ’ (𝑏0+ 𝑐0) 𝑇 βˆ’ (1 + 𝑏 + 𝑐) 𝑅

0,𝑇) ]

= (𝑐0βˆ’π‘ (𝑏0+ 𝑐0)

1 + 𝑏 + 𝑐)

Γ— ∫

𝑇

0

exp (βˆ’ (𝑏0+ 𝑐0) V) β‹… 𝐺

1(1 + 𝑏 + 𝑐; 0, V) 𝑑V

+𝑐

1 + 𝑏 + 𝑐(1 βˆ’ exp (βˆ’ (𝑏

0+ 𝑐0) 𝑇)

β‹… 𝐺1(1 + 𝑏 + 𝑐; 0, 𝑇)) .

(63)

Substituting expressions (63) of 𝐾1, 𝐾2, and 𝐾

3into (60), we

can obtain (61). We complete the proof.

Remark 9. From formulas (49) and (61), we conclude thatif the length πœƒ of the reference asset’s settlement period is0, the price 𝑠 of TRS is only related to interest rate risk andsystematic risk.

5. Conclusion

In this paper, we mainly study the pricing of TRS under theframework of two-firm contagion models and HJM forwardinterest rate model. We obtain the analytic price expressionsof TRS, respectively, based on whether the default is relatedto the interest rate. From these expressions, we claim thatboth default risk and the default-free interest rate risk haveeffects on the valuation of TRS.Moreover, the contagion effectbetween the reference asset and the protection seller is notignorable. Therefore, the models in our paper have certainpractical significance.Wewill further discuss other contagionmodels and interest rate models and compare them with themodels in this paper by using Monte Carlo simulation.

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper.

Acknowledgments

The research was supported by the National Natural ScienceFoundation of China under Grants no. 11326168 and no.11171215 and Yangcai Project (no. YC-XK-13106).

References

[1] R. C. Merton, β€œOn the pricing of corporate debt: the riskstructure of interest rates,” The Journal of Finance, vol. 29, no.2, pp. 449–470, 1974.

[2] F. Black and J. C. Cox, β€œValuing corporate securities: someeffects of bond indenture provisions,” The Journal of Finance,vol. 31, no. 2, pp. 351–367, 2007.

[3] R. Geske, β€œThe valuation of corporate liabilities as compoundoptions,”The Journal of Financial andQuantitative Analysis, vol.12, no. 4, pp. 541–552, 1977.

[4] P. Artzner and F. Delbaen, β€œDefault risk insurance and incom-plete markets,”Mathematical Finance, vol. 5, no. 3, pp. 187–195,1995.

[5] D. Duffie, M. Schroder, and C. Skiadas, β€œRecursive valuationof defaultable securities and the timing of resolution of uncer-tainty,”TheAnnals of Applied Probability, vol. 6, no. 4, pp. 1075–1090, 1996.

[6] R. A. Jarrow and S. M. Turnbull, β€œPricing options on financialsecurities subject to default risk,”The Journal of Finance, vol. 50,no. 1, pp. 53–86, 1995.

[7] D. B. Madan and H. Unal, β€œPricing the risks of default,” Reviewof Derivatives Research, vol. 2, no. 2-3, pp. 121–160, 1998.

[8] D. Duffie and D. Lando, β€œTerm structures of credit spreads withincomplete accounting information,” Econometrica, vol. 69, no.3, pp. 633–664, 2001.

[9] R. A. Jarrow, D. Lando, and S. M. Turnbull, β€œA Markov modelfor the term structure of credit risk spreads,” The Review ofFinancial Studies, vol. 10, no. 2, pp. 481–523, 1997.

[10] R. B. Litterman and T. Iben, β€œCorporate Bond Valuation andTerm Structure of Credit Spreads, Financial Anal,”The Journalof Portfolio Management, vol. 17, no. 3, pp. 52–64, 1991.

[11] D. Duffie and K. J. Singleton, β€œModeling term structures ofdefaultable bonds,” Review of Financial Studies, vol. 12, no. 4,pp. 687–720, 1999.

[12] D. Lando, β€œOn cox processes and credit risky securities,” Reviewof Derivatives Research, vol. 2, no. 2-3, pp. 99–120, 1998.

[13] P. Collin-Dufresne and B. Solnik, β€œOn the term structure ofdefault premia in the swap and LIBOR markets,” The Journalof Finance, vol. 56, no. 3, pp. 1095–1115, 2001.

[14] G. R. Duffee, β€œEstimating the price of default risk,” Review ofFinancial Studies, vol. 12, no. 1, pp. 197–226, 1999.

[15] R. A. Jarrow and F. Yu, β€œCounterparty risk and the pricing ofdefaultable securities,”The Journal of Finance, vol. 56, no. 5, pp.1765–1799, 2001.

[16] R. J. Elliott, M. Jeanblanc, and M. Yor, β€œOn models of defaultrisk,”Mathematical Finance, vol. 10, no. 2, pp. 179–195, 2000.

[17] F. Jamshidian,Valuation of Credit Default Swaps and Swaptions,NIB Capital Bank, The Hague, The Netherlands, 2003.

[18] Z. X. Ye andR.X. Zhuang, β€œPricing of total return swap,”ChineseJournal of Applied Probability and Statistics, vol. 28, no. 1, pp. 79–86, 2012.

[19] S. R. Das and R. K. Sundaram, β€œAn integrated model for hybridsecurities,” Management Science, vol. 53, no. 9, pp. 1439–1451,2007.

[20] J. M. Harrison and D. M. Kreps, β€œMartingales and arbitragein multiperiod securities markets,” Journal of Economic Theory,vol. 20, no. 3, pp. 381–408, 1979.

[21] J.M.Harrison and S. R. Pliska, β€œMartingales and stochastic inte-grals in the theory of continuous trading,” Stochastic Processesand Their Applications, vol. 11, no. 3, pp. 215–260, 1981.

[22] D. Heath, R. Jarrow, andA.Morton, β€œBond pricing and the termstructure of interest rates: a new methodology for contingentclaims valuation,” Econometrica, vol. 60, no. 1, pp. 77–105, 1992.

[23] S. E. Shreve, Stochastic Calculus for Finance: Continuous-TimeModels, Springer, New York, NY, USA, 2004.

Page 12: Research Article Total Return Swap Valuation with ...

12 Abstract and Applied Analysis

[24] S. Y. Leung and Y. K. Kwok, β€œCredit default swap valuation withcounterparty risk,”TheKyoto Economic Review, vol. 74, no. 1, pp.25–45, 2005.

[25] Y.-F. Bai, X.-H. Hu, and Z.-X. Ye, β€œA model for dependentdefault with hyperbolic attenuation effect and valuation ofcredit default swap,” Applied Mathematics and Mechanics, vol.28, no. 12, pp. 1643–1649, 2007.

[26] A.-J. Wang and Z.-X. Ye, β€œThe pricing of credit risky securitiesunder stochastic interest rate model with default correlation,”Applications of Mathematics, vol. 58, no. 6, pp. 703–727, 2013.

[27] R.-L. Hao and Z.-X. Ye, β€œThe intensity model for pricingcredit securities with jump diffusion and counterparty risk,”Mathematical Problems in Engineering, vol. 2011, Article ID412565, 16 pages, 2011.

Page 13: Research Article Total Return Swap Valuation with ...

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of