Research Article Robust Stability, Stabilization, and...

12
Research Article Robust Stability, Stabilization, and Control of a Class of Nonlinear Discrete Time Stochastic Systems Tianliang Zhang, 1 Yu-Hong Wang, 1 Xiushan Jiang, 1 and Weihai Zhang 2 1 College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, Shandong 266510, China 2 College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shandong 266590, China Correspondence should be addressed to Weihai Zhang; w [email protected] Received 14 November 2015; Revised 20 March 2016; Accepted 31 March 2016 Academic Editor: Mingcong Deng Copyright © 2016 Tianliang Zhang et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. is paper studies robust stability, stabilization, and control for a class of nonlinear discrete time stochastic systems. Firstly, the easily testing criteria for stochastic stability and stochastic stabilizability are obtained via linear matrix inequalities (LMIs). en a robust state feedback controller is designed such that the concerned system not only is internally stochastically stabilizable but also satisfies robust performance. Moreover, the previous results of the nonlinearly perturbed discrete stochastic system are generalized to the system with state, control, and external disturbance dependent noise simultaneously. Two numerical examples are given to illustrate the effectiveness of the proposed results. 1. Introduction Stochastic control has been one of the most important research topics in modern control theory. e study of stochastic stability can be traced back to the 1960s; see [1] and the recently well-known monographs [2, 3]. Stability is the first considered problem in system analysis and synthesis, while stabilization is to look for a controller to stabilize an unstable system. control is one of the most important robust control approaches, which aims to design the controller to restrain the external disturbance below a given level. We refer the reader to [4–9] for stability and stabilization of Itˆ o-type stochastic systems and [10–14] for stability and stabilization of discrete time stochastic systems. Stochastic control of Itˆ o-type systems starts from [15], which has been extensively studied in recent years; see [16– 20] and the references therein. Discrete time control with multiplicative noise can be found in [21–25]. Along with the development of computer technology, discrete time difference systems have attracted a great deal of attention, which have been studied extensively; see [26, 27]. e reason is twofold: Firstly, discrete time systems are ideal mathematical models in the study of satellite attitude control [28], mathematical finance [29], single degree of freedom inverted pendulums [21], and gene regulator networks [30]. Secondly, as said in [27], the study for discrete time systems has the advantage over continuous time differential systems from the perspective of computation; moreover, it presents a very good approach to study differential equations and functional differential equations. From the existing works on stability, stabilization, and control of discrete time stochastic systems with multi- plicative noise, we can find that, except for linear stochastic systems where perfect results have been obtained [22–25], few works are on the stability of the general nonlinear discrete time stochastic system [12] ( + 1) = ( () , () , ) , (0) = 0 (1) or the control of affine nonlinear discrete time stochastic system [21] ( + 1) = ( ()) + ( ()) () + ℎ ( ()) ] () + [ 1 ( ()) + 1 ( ()) () + ℎ 1 ( ())] () , () = ( ()) . (2) Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2016, Article ID 5185784, 11 pages http://dx.doi.org/10.1155/2016/5185784

Transcript of Research Article Robust Stability, Stabilization, and...

Page 1: Research Article Robust Stability, Stabilization, and ...downloads.hindawi.com/journals/mpe/2016/5185784.pdf · tried to discuss a general nonlinear control of discrete time stochastic

Research ArticleRobust Stability Stabilization and119867

infinControl of a Class of

Nonlinear Discrete Time Stochastic Systems

Tianliang Zhang1 Yu-Hong Wang1 Xiushan Jiang1 and Weihai Zhang2

1College of Information and Control Engineering China University of Petroleum (East China) Qingdao Shandong 266510 China2College of Electrical Engineering andAutomation ShandongUniversity of Science andTechnology Qingdao Shandong 266590 China

Correspondence should be addressed to Weihai Zhang w hzhang163com

Received 14 November 2015 Revised 20 March 2016 Accepted 31 March 2016

Academic Editor Mingcong Deng

Copyright copy 2016 Tianliang Zhang et al This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

This paper studies robust stability stabilization and119867infincontrol for a class of nonlinear discrete time stochastic systems Firstly the

easily testing criteria for stochastic stability and stochastic stabilizability are obtained via linear matrix inequalities (LMIs) Then arobust119867

infinstate feedback controller is designed such that the concerned system not only is internally stochastically stabilizable but

also satisfies robust 119867infin

performance Moreover the previous results of the nonlinearly perturbed discrete stochastic system aregeneralized to the system with state control and external disturbance dependent noise simultaneously Two numerical examplesare given to illustrate the effectiveness of the proposed results

1 Introduction

Stochastic control has been one of the most importantresearch topics in modern control theory The study ofstochastic stability can be traced back to the 1960s see [1]and the recently well-known monographs [2 3] Stabilityis the first considered problem in system analysis andsynthesis while stabilization is to look for a controller tostabilize an unstable system 119867

infincontrol is one of the most

important robust control approaches which aims to designthe controller to restrain the external disturbance below agiven level We refer the reader to [4ndash9] for stability andstabilization of Ito-type stochastic systems and [10ndash14] forstability and stabilization of discrete time stochastic systemsStochastic 119867

infincontrol of Ito-type systems starts from [15]

which has been extensively studied in recent years see [16ndash20] and the references therein Discrete time119867

infincontrol with

multiplicative noise can be found in [21ndash25]Along with the development of computer technology

discrete time difference systems have attracted a great deal ofattention which have been studied extensively see [26 27]The reason is twofold Firstly discrete time systems are idealmathematical models in the study of satellite attitude control[28] mathematical finance [29] single degree of freedom

inverted pendulums [21] and gene regulator networks [30]Secondly as said in [27] the study for discrete time systemshas the advantage over continuous time differential systemsfrom the perspective of computation moreover it presentsa very good approach to study differential equations andfunctional differential equations

From the existing works on stability stabilization and119867infin

control of discrete time stochastic systems with multi-plicative noise we can find that except for linear stochasticsystemswhere perfect results have been obtained [22ndash25] fewworks are on the stability of the general nonlinear discretetime stochastic system [12]

119909 (119905 + 1) = 119891 (119909 (119905) 119908 (119905) 119905) 119909 (0) = 1199090

(1)

or the119867infincontrol of affine nonlinear discrete time stochastic

system [21]

119909 (119905 + 1)

= 119891 (119909 (119905)) + 119892 (119909 (119905)) 119906 (119905) + ℎ (119909 (119905)) ] (119905)

+ [1198911(119909 (119905)) + 119892

1(119909 (119905)) 119906 (119905) + ℎ

1(119909 (119905))] 119908 (119905)

119911 (119905) = 119871 (119909 (119905))

(2)

Hindawi Publishing CorporationMathematical Problems in EngineeringVolume 2016 Article ID 5185784 11 pageshttpdxdoiorg10115520165185784

2 Mathematical Problems in Engineering

Up to now the results of the deterministic discrete timenonlinear 119867

infincontrol [31] have not been perfectly general-

ized to the above nonlinear stochastic systems For examplealthough some stability results in continuous time Ito systems[3] can be extended to nonlinear discrete stochastic systems[12] the corresponding criteria are not easily applied inpractice this is because the mathematical expectation of thetrajectory is involved in the preconditions In addition [21]tried to discuss a general nonlinear 119867

infincontrol of discrete

time stochastic systems but only the 119867infin

control of a classof norm bounded systems was perfectly solved based onlinear matrix inequality (LMI) approach As said in [32]the general119867

infincontrol of nonlinear discrete time stochastic

multiplicative noise systems remains unsolved We have toadmit such a fact that some research issues of discrete systemsare more difficult to solve than those of continuous timesystems For instance a stochastic maximum principle for Itosystems was obtained in 1990 [33] but a nonlinear discretetime maximum principle has just been presented in [34]

Recently [7 13] investigated the robust quadratic stabilityand feedback stabilization of a class of nonlinear continuetime and discrete time systems respectively where thenonlinear terms are quadratically bounded Such a nonlinearconstraint possesses great practical importance and has beenwidely used in many types of systems such as singularly per-turbed systems with uncertainties [35 36] neutral systemswith nonlinear perturbations [37] impulsive Takagi-Sugenofuzzy systems [38] and some time-delay systems [18] Itshould be pointed out that the small gain theorem can also beused to examine the robustness as done in [39] for the study ofthe simple adaptive control system within the framework ofthe small gain theorem In addition the robustness of a classof nonlinear feedback systems with unknown perturbationswas discussed based on the robust right coprime factorizationand passivity property [40] All these methods are expectedto play important roles in stochastic uncertain119867

infincontrol

This paper deals with a class of nonlinear uncertaindiscrete time stochastic systems for which the system statecontrol input and external disturbance depend on noisesimultaneously which was often called (119909 119906 V)-dependentnoise for short [24] and which mean that not only thesystem state as in [21] but also the control input and externaldisturbance are subject to random noise Hence our con-cerned models have more wide applications The considerednonlinear dynamic term is priorly unknown but belongsto a class of functions with a bounded energy level whichrepresent a kind of very important nonlinear functions andhas been studied by many researchers see for example[41] For such a class of nonlinear discrete time stochasticsystems the stochastic stability stabilization and119867

infincontrol

have been discussed respectively and easily testing criteriahave also been obtained What we have obtained extends theprevious works to more general models

The paper is organized as follows in Section 2 we givea description of the considered nonlinear stochastic sys-tems and define robust stochastic stability and stabilizationSection 3 contains our main results Section 31 presents arobust stability criterion which extends the result of [13] tomore general stochastic systems Section 32 gives a sufficient

condition for robust stabilization criterion Section 33 isabout 119867

infincontrol where an LMI-based sufficient condition

for the existence of a static state feedback 119867infin

controller isestablished All our main results are expressed in terms ofLMIs In Section 4 two examples are constructed to show theeffectiveness of our obtained results

For convenience the notations adopted in this paper areas follows1198721015840 is the transpose of the matrix119872 or vector119872 119872 ge 0

(119872 gt 0) 119872 is a positive semidefinite (positive definite)symmetric matrix 119868 is the identity matrix 119877119899 is the 119899-dimensional Euclidean space 119877119899times119898 is the space of all 119899 times119898 matrices with entries in 119877 119873 is the natural numberset that is 119873 represents 0 1 2 119873

119905denotes the set of

0 1 119905 1198972119908(119873 119877119899

) denotes the set of all nonanticipativesquare summable stochastic processes

119910 = 119910119899 119910119899

isin 1198712

(Ω 119877119899

) 119910119899is F119899minus1

measurable119899isin119873

(3)

The 1198972-norm of 119910 isin 1198972119908(119873 119877119899

) is defined by

100381710038171003817100381711991010038171003817100381710038171198972

119908(119873119877119899)= (

infin

sum

119899=0

1198641003817100381710038171003817119910119899

1003817100381710038171003817

2

)

12

(4)

Similarly 1198972119908(119873119879 119877119899

) and 1199101198972

119908(119873119877119899)can be defined

2 System Descriptions and Definitions

Consider the discrete stochastic iterative system described bythe following equation

119909 (119905 + 1) = 119860119909 (119905) + ℎ1(119905 119909 (119905)) + 119861119906 (119905)

+ (119862119909 (119905) + ℎ2(119905 119909 (119905)) + 119863119906 (119905)) 119908 (119905)

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(5)

where 119909(119905) isin 119877119899 is the 119899-dimensional state vector and 119906(119905) isin119877119898 is the 119898-dimensional control input 119908(119905)

119905ge0is a se-

quence of one-dimensional independent white noise proc-esses defined on the complete filtered probability space (ΩF F

119905119905ge0P) whereF

119905= 120590119908(0) 119908(1) 119908(119905)Assume

that 119864[119908(119905)] = 0 119864[119908(119905)119908(119895)] = 120575119905119895 where 119864 stands for the

expectation operation and 120575119905119895is a Kronecker function defined

by 120575119905119895= 0 for 119905 = 119895 while 120575

119905119895= 1 for 119905 = 119895 Without loss of

generality 1199090is assumed to be determined The following is

assumed to hold throughout this paper

Assumption 1 The nonlinear functions ℎ1(119905 119909(119905)) and

ℎ2(119905 119909(119905)) describe parameter uncertainty of the system and

satisfy the following quadratic inequalities

ℎ1015840

1(119905 119909 (119905)) ℎ

1(119905 119909 (119905)) le 120572

2

11199091015840

(119905)1198671015840

11198671119909 (119905) (6)

ℎ1015840

2(119905 119909 (119905)) ℎ

2(119905 119909 (119905)) le 120572

2

21199091015840

(119905)1198671015840

21198672119909 (119905) (7)

for all 119905 isin 119873 where 120572119894is a constant related to the function ℎ

119894

for 119894 = 1 2119867119894is a constant matrix reflecting structure of ℎ

119894

Mathematical Problems in Engineering 3

We note that inequalities (6) and (7) can be written as amatrix form

[

[

[

119909

ℎ1

ℎ2

]

]

]

1015840

[

[

[

minus1205722

11198671015840

11198671minus 1205722

21198671015840

211986720 0

0 119868 0

0 0 119868

]

]

]

[

[

[

119909

ℎ1

ℎ2

]

]

]

le 0 (8)

System (5) is regarded as the generalized version of thesystem in [13 42] We note that in system (5) the systemstate control input and uncertain terms depend on noisesimultaneously which makes (1) more useful in describingmany practical phenomena

Definition 2 The unforced system (5) with 119906 = 0 is said to berobustly stochastically stable with margins 120572

1gt 0 and 120572

2gt 0

if there exists a constant 120575(1199090 1205721 1205722) such that

119864[

infin

sum

119905=0

1199091015840

(119905) 119909 (119905)] le 120575 (1199090 1205721 1205722) (9)

Definition 2 implies 119864119909(119905)2 rarr 0

Definition 3 System (5) is said to be robustly stochasticallystabilizable if there exists a state feedback control law 119906(119905) =119870119909(119905) such that the closed-loop system

119909 (119905 + 1) = (119860 + 119861119870) 119909 (119905) + ℎ1(119905 119909 (119905))

+ ((119862 + 119863119870) 119909 (119905) + ℎ2(119905 119909 (119905))) 119908 (119905)

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(10)

is robustly stochastically stable for all nonlinear functionsℎ119894(119905 119909(119905)) (119894 = 1 2) satisfying (6) and (7)

When there is the external disturbance ](sdot) in system (5)we consider the following nonlinear perturbed system

119909 (119905 + 1)

= 119860119909 (119905) + 1198600] (119905) + 119861119906 (119905) + ℎ

1(119905 119909 (119905))

+ (119862119909 (119905) + 1198620] (119905) + 119863119906 (119905) + ℎ

2(119905 119909 (119905))) 119908 (119905)

119911 (119905) = [

119871119909 (119905)

119872] (119905)]

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(11)

where ](119905) isin 119877119902 and 119911(119905) isin 119877119901 are respectively thedisturbance signal and the controlled output ](119905) is assumedto belong to 1198972

119908(119873 119877119902

) so ](119905) is independent of 119908(119905)

Definition 4 (119867infin

control) For a given disturbance attenua-tion level 120574 gt 0 119906(119905) = 119870119909(119905) is an119867

infincontrol of system (11)

if

(i) system (11) is internally stochastically stabilizable for119906(119905) = 119870119909(119905) in the absence of ](119905) that is

119909 (119905 + 1) = (119860 + 119861119870) 119909 (119905) + ℎ1(119905 119909 (119905))

+ [(119862 + 119863119870) 119909 (119905) + ℎ2(119905 119909 (119905))] 119908 (119905)

(12)

is robustly stochastically stable

(ii) The119867infinnorm of system (11) is less than 120574 gt 0 that is

119879 = sup]isin1198972119908(119873119877119902)119906(119905)=119870119909(119905)] =0119909

0=0

119911 (119905)1198972

119908(119873119877119901)

] (119905)1198972

119908(119873119877119902)

= sup]isin1198972119908(119873119877119902)119906(119905)=119870119909(119905)] =0119909

0=0

(suminfin

119905=0119864 119911 (119905)

2

)

12

(suminfin

119905=0119864 ] (119905)2)

12

lt 120574

(13)

3 Main Results

In this section we give ourmain results on stochastic stabilitystochastic stabilization and robust 119867

infincontrol via LMI-

based approach Firstly we introduce the following twolemmas which will be used in the proof of our main results

Lemma 5 (Schurrsquos lemma) For a real symmetric matrix 119878 =[

1198781111987812

119878119879

1211987822

] the following three conditions are equivalent

(i) 119878 lt 0

(ii) 11987811lt 0 119878

22minus 119878119879

12119878minus1

1111987812lt 0

(iii) 11987822lt 0 119878

11minus 11987812119878minus1

22119878119879

12lt 0

Lemma 6 For any real matrices 119880 1198731015840 = 119873 gt 0 and119882 withappropriate dimensions we have

1198801015840

119873119882+1198821015840

119873119880 le 1198801015840

119873119880 +1198821015840

119873119882 (14)

Proof Because 1198731015840 = 119873 gt 0 1198801015840119873119882 + 1198821015840

119873119880 =

(1198801015840

11987312

)(11987312

119882) + (1198821015840

11987312

)(11987312

119882) Inequality (14) is animmediate corollary of the well-known inequality

1198831015840

119884 + 1198841015840

119883 le 1198831015840

119883 + 1198841015840

119884 (15)

31 Robust Stability Criteria Consider the following un-forced stochastic discrete time system

119909 (119905 + 1) = 119860119909 (119905) + ℎ1(119905 119909 (119905))

+ (119862119909 (119905) + ℎ2(119905 119909 (119905))) 119908 (119905)

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(16)

where ℎ1(119905 119909(119905))

119905ge0and ℎ

2(119905 119909(119905))

119905ge0satisfy (8) The

following theorem gives a sufficient condition of robuststochastic stability for system (16)

Theorem 7 System (16) with margins 1205721gt 0 and 120572

2gt

0 is said to be robustly stochastically stable if there exists

4 Mathematical Problems in Engineering

a symmetric positive definite matrix 119876 gt 0 and a scalar 120572 gt 0such that

[

[

[

[

[

[

[

[

minus119876 + 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867 1198601015840

119876 1198621015840

119876 0

lowast minus

1

2

119876 0 0

lowast lowast minus

1

2

119876 0

lowast lowast lowast 119876 minus 120572119868

]

]

]

]

]

]

]

]

lt 0

(17)

Proof If (17) holds we set 119881(119909(119905)) = 1199091015840

(119905)119876119909(119905) as aLyapunov function candidate of system (16) where 0 lt 119876 lt120572119868 by (17) Note that 119909(119905) and 119908(119905) are independent so thedifference generator is

119864Δ119881 (119909 (119905)) = 119864 [119881 (119909 (119905 + 1)) minus 119881 (119909 (119905))]

= 119864 1199091015840

(119905) (1198601015840

119876119860 + 1198621015840

119876119862 minus 119876)119909 (119905)

+ 1199091015840

(119905) 1198601015840

119876ℎ1(119905 119909 (119905)) + ℎ

1015840

1(119905 119909 (119905)) 119876119860119909 (119905)

+ ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905)) + 119909

1015840

(119905) 1198621015840

119876ℎ2(119905 119909 (119905))

+ ℎ1015840

2(119905 119909 (119905)) 119876119862119909 (119905) + ℎ

1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905))

(18)

Applying Lemma 6 and inequalities (6)-(7) by 0 lt 119876 lt 120572119868we have

1199091015840

(119905) 1198601015840

119876ℎ1(119905 119909 (119905)) + ℎ

1015840

1(119905 119909 (119905)) 119876119860119909 (119905)

le 1199091015840

(119905) 1198601015840

119876119860119909 (119905) + ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

le 1199091015840

(119905) (1198601015840

119876119860 + 1205722

11205721198671015840

119867)119909 (119905)

1199091015840

(119905) 1198621015840

119876ℎ2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

le 1199091015840

(119905) (1198621015840

119876119862 + 1205722

21205721198671015840

119867)119909 (119905)

ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905))

le 1199091015840

(119905) (1205722

11205721198671015840

119867 + 1205722

21205721198671015840

119867)119909 (119905)

(19)

Substituting (19) into (18) we achieve that

119864Δ119881 (119909 (119905)) le 119864 1199091015840

(119905) (21198601015840

119876119860 + 21198621015840

119876119862 minus 119876

+ 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867)119909 (119905)

(20)

By Schurrsquos complement

Ω fl 21198601015840119876119860 + 21198621015840119876119862 minus 119876 + 2120572211205721198671015840

119867 + 21205722

21205721198671015840

119867

lt 0

(21)

is equivalent to

[

[

[

[

[

[

minus119876 + 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867 1198601015840

119876 1198621015840

119876

lowast minus

1

2

119876 0

lowast lowast minus

1

2

119876

]

]

]

]

]

]

lt 0 (22)

which holds by (17) We denote 120582max(Ω) and 120582min(Ω) to bethe largest and the minimum eigenvalues of the matrix Ωrespectively then (20) yields

119864Δ119881 (119909 (119905)) le 120582max (Ω) 119864 119909 (119905)2

(23)

Taking summation on both sides of the above inequality from119905 = 0 to 119905 = 119879 ge 0 we get

119864 [119881 (119909 (119879))] minus 119881 (1199090) = 119864[

119879

sum

119905=0

Δ119881 (119909 (119905))]

le 120582max (Ω) 119864[119879

sum

119905=0

1199091015840

(119905) 119909 (119905)]

(24)

Therefore

120582min (minusΩ) 119864[119879

sum

119905=0

1199091015840

(119905) 119909 (119905)] le 119881 (1199090) (25)

which leads to

119864[

119879

sum

119905=0

1199091015840

(119905) 119909 (119905)] le 120575 (1199090 1205721 1205722) fl

119881 (1199090)

120582min (minusΩ) (26)

Hence the robust stochastic stability of system (16) isobtained by (26) via letting 119879 rarr infin

Remark 8 FromTheorem7 if LMI (17) has feasible solutionsthen for any bounded parameters

1and

2on the uncertain

perturbation satisfying 1le 1205721and

2le 1205722 system (16) is

robustly stochastically stable with margins 1and

2

32 Robust Stabilization Criteria In this subsection a suffi-cient condition about robust stochastic stabilization via LMIwill be given

Theorem 9 System (5) with margins 1205721and 120572

2is robustly

stochastically stabilizable if there exist real matrices 119884 and119883 gt0 and a real scalar 120573 gt 0 such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

minus119883 12057211198831198671015840

12057221198831198671015840

1198691015840

11198691015840

20

lowast minus

1

2

120573119868 0 0 0 0

lowast lowast minus

1

2

120573119868 0 0 0

lowast lowast lowast minus

1

2

119883 0 0

lowast lowast lowast lowast minus

1

2

119883 0

lowast lowast lowast lowast lowast 120573119868 minus 119883

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (27)

holds where

1198691= 119860119883 + 119861119884

1198692= 119862119883 + 119863119884

(28)

In this case 119906(119905) = 119870119909(119905) = 119884119883minus1

119909(119905) is a robustlystochastically stabilizing control law

Mathematical Problems in Engineering 5

Proof We consider synthesizing a state feedback controller119906(119905) = 119870119909(119905) to stabilize system (5) Substituting 119906(119905) = 119870119909(119905)into system (5) yields the closed-loop system described by

119909 (119905 + 1) = 119860119909 (119905) + ℎ1(119905 119909 (119905))

+ (119862119909 (119905) + ℎ2(119905 119909 (119905))) 119908 (119905)

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(29)

where 119860 = 119860 + 119861119870 and 119862 = 119862 + 119863119870 By Theorem 7 system(29) is robustly stochastically stable if there exists a matrix119876 0 lt 119876 lt 120572119868 such that the following LMI

Ω fl[

[

[

[

[

[

minus119876 + 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867 119860

1015840

119876 119862

1015840

119876

lowast minus

1

2

119876 0

lowast lowast minus

1

2

119876

]

]

]

]

]

]

lt 0

(30)

holds Let 119876minus1 = 119883 and pre- and postmultiply

diag [119883119883119883] (31)

on both sides of inequality (30) and it yields

[

[

[

[

[

[

minus119883 + 21205722

11205721198831198671015840

119867119883 + 21205722

21205721198831198671015840

119867119883 119883119860

1015840

119883119862

1015840

lowast minus

1

2

119883 0

lowast lowast minus

1

2

119883

]

]

]

]

]

]

lt 0

(32)

In order to transform (32) into a suitable LMI form we set120573 = 1120572 then 0 lt 119876 lt 120572119868 is equivalent to

120573119868 minus 119883 lt 0 120573 gt 0 (33)

Combining (33) with (32) and setting the gain matrix 119870 =119884119883minus1 LMI (27) is obtained The proof is completed

33 119867infinControl In this subsectionmain result about robust

119867infin

control will be given via LMI approach

Theorem 10 Consider system (11) with margins 1205721gt 0 and

1205722gt 0 For the given 120574 gt 0 if there exist real matrices 119883 gt 0

and 119884 and scalar 120573 gt 0 satisfying the following LMI

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

minus119883 1198711015840

1205722

11198831198671015840

11205722

21198831198671015840

21198691015840

11198691015840

20 0 0 0 119869

1015840

11198691015840

20

lowast minus119868 0 0 0 0 0 0 0 0 0 0 0

lowast lowast minus

1

3

120573119868 0 0 0 0 0 0 0 0 0 0

lowast lowast lowast minus

1

3

120573119868 0 0 0 0 0 0 0 0 0

lowast lowast lowast lowast minus119883 0 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast minus119883 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast lowast minus1205742

119868 1198601015840

01198621015840

01198721015840

11986001198620

0

lowast lowast lowast lowast lowast lowast lowast minus119883 0 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast minus119883 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119868 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119883 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119883 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast 120573119868 minus 119883

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (34)

where 1198691= 119860119883 + 119861119884 119869

2= 119862119883 + 119863119884 then system (11) is119867

infin

controllable and the robust119867infin

control law is 119906(119905) = 119870119909(119905) =119884119883minus1

119909(119905) for 119905 isin 119873

Proof When ](119905) = 0 byTheorem 9 system (11) is internallystabilizable via 119906(119905) = 119870119909(119905) = 119884119883minus1119909(119905) because LMI (34)implies LMI (27) Next we only need to show 119879 lt 120574

Take 119906(119905) = 119870119909(119905) and choose the Lyapunov function119881(119909(119905)) = 119909

1015840

(119905)119876119909(119905) where

0 lt 119876 lt 120572119868 120572 gt 0 (35)

for some 120572 gt 0 to be determined then for the system

119909 (119905 + 1) = 119860119909 (119905) + 1198600] (119905) + ℎ

1(119905 119909 (119905))

+ (119862119909 (119905) + 1198620] (119905) + ℎ

2(119905 119909 (119905))) 119908 (119905)

119911 (119905) = [

119871119909 (119905)

119872] (119905)]

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(36)

6 Mathematical Problems in Engineering

with 119860 = 119860 + 119861119870 and 119862 = 119862 + 119863119870 we have with 119909(119905) and](119905) independent of 119908(119905) in mind that

119864Δ119881 (119909 (119905)) = 119864 [119881 (119909 (119905 + 1)) minus 119881 (119909 (119905))]

= 119864 [1199091015840

(119905 + 1)119876119909 (119905 + 1) minus 1199091015840

(119905) 119876119909 (119905)]

= 119864 1199091015840

(119905) [119860

1015840

119876119860 + 119862

1015840

119876119862 minus 119876]119909 (119905)

+ 1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + 119909

1015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905))

+ 1199091015840

(119905) [119860

1015840

1198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ℎ1015840

1(119905 119909 (119905)) 119876119860119909 (119905) + ℎ

1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

+ ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ℎ1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

+ ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862

0] (119905)

+ ]1015840 (119905) (119860101584001198761198600+ 1198621015840

01198761198620) ] (119905)

+ ]1015840 (119905) [11986010158400119876119860 + 119862

1015840

0119876119862] 119909 (119905)

+ ]1015840 (119905) 11986010158400119876ℎ1(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

(37)

Set 1199090= 0 and then for any ](119905) isin 1198972

119908(119873 119877119901

)

119911 (119905)2

1198972

119908(119873119879119877119901)minus 1205742

] (119905)21198972

119908(119873119879119877119902)

= 119864

119879

sum

119905=0

[1199091015840

(119905) 1198711015840

119871119909 (119905) + ]1015840 (119905)1198721015840119872] (119905)

minus 1205742]1015840 (119905) ] (119905) + Δ119881 (119905)] minus 1199091015840 (119879)119876119909 (119879)

le 119864

119879

sum

119905=0

1199091015840

(119905) 1198711015840

119871119909 (119905) + ]1015840 (119905)1198721015840119872] (119905)

minus 1205742]1015840 (119905) ] (119905) + ]1015840 (119905) (1198601015840

01198761198600+ 1198621015840

01198761198620) ] (119905)

+ 1199091015840

(119905) [119860

1015840

119876119860 + 119862

1015840

119876119862 minus 119876]119909 (119905)

+ 1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + 119909

1015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905))

+ 1199091015840

(119905) [1198601198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ℎ1015840

1(119905 119909 (119905)) 119876119860119909 (119905) + ℎ

1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

+ ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ℎ1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

+ ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862

0] (119905)

+ ]1015840 (119905) 11986010158400119876ℎ1(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

+ ]1015840 (119905) [11986010158400119876119860 + 119862

1015840

0119876119862] 119909 (119905)

(38)

Using Lemma 6 and setting 1199091015840(119905)1198601015840 = 1198801015840 ℎ1(119905 119909(119905)) = 119882

and119873 = 119876 gt 0 we have

1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + ℎ

1015840

1(119905 119909 (119905)) 119876119860119909 (119905)

le 1199091015840

(119905) 119860

1015840

119876119860119909 (119905) + ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

(39)

Similarly the following inequalities can also be obtained

1199091015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

le 1199091015840

(119905) 119862

1015840

119876119862119909 (119905) + ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905))

ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ]1015840 (119905) 1198601015840

0119876ℎ1(119905 119909 (119905))

le ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905)) + ]1015840 (119905) 1198601015840

01198761198600] (119905)

ℎ1015840

2(119905 119909 (119905)) 119876119862

0] (119905) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

le ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

01198761198620] (119905)

(40)

Substituting (39)-(40) into inequality (38) and considering(35) it yields

119911 (119905)2

1198972

119908(119873119879119877119901)minus 1205742

] (119905)21198972

119908(119873119879119877119902)le 119864

119879

sum

119905=0

1199091015840

(119905) [minus119876

+ 2119860

1015840

119876119860 + 2119862

1015840

119876119862 + 1198711015840

119871 + 31205722

11205721198671015840

11198671

+ 31205722

21205721198671015840

21198672] 119909 (119905) + 119909

1015840

(119905) [119860

1015840

1198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ]1015840 (119905) [1198600119876119860 + 119862

0119876119862] 119909

1015840

(119905) + ] (119905) (2119860101584001198761198600

+ 21198621015840

01198761198620minus 1205742

119868 +1198721015840

119872) ] (119905) = 119864119879

sum

119905=0

[

119909 (119905)

] (119905)]

1015840

sdot Ξ [

119909 (119905)

] (119905)]

(41)

where

Ξ fl [Ξ11Ξ12

lowast Ξ22

] (42)

with

Ξ11= minus119876 + 2119860

1015840

119876119860 + 2119862

1015840

119876119862 + 1198711015840

119871 + 31205722

11205721198671015840

11198671

+ 31205722

21205721198671015840

21198672

Ξ12= 119860

1015840

1198761198600+ 119862

1015840

1198761198620

Ξ22= 21198601015840

01198761198600+ 21198621015840

01198761198620minus 1205742

119868 +1198721015840

119872

(43)

Let 119879 rarr infin in (41) then we have

119911 (119905)2

1198972

119908(119873119877119901)minus 1205742

] (119905)21198972

119908(119873119877119902)

le 119864

infin

sum

119905=0

[

119909 (119905)

] (119905)]

1015840

Ξ[

119909 (119905)

] (119905)]

(44)

Mathematical Problems in Engineering 7

It is easy to see that if Ξ lt 0 then 119879 lt 120574 for system (11)Next we give an LMI sufficient condition for Ξ lt 0 Noticethat

Ξ = [

Ξ11minus 119860

1015840

119876119860 119862

1015840

1198761198620

lowast Ξ22minus 1198601015840

01198761198600

]

+ [

119860

1015840

1198601015840

0

]119876 [119860 + 119861119870 1198600] lt 0

lArrrArr

[

[

[

[

Ξ11minus 119860

1015840

119876119860 119862

1015840

1198761198620

119860

1015840

lowast Ξ22minus 1198601015840

011987611986001198600

lowast lowast minus119876minus1

]

]

]

]

lt 0

lArrrArr

[

[

[

[

[

[

[

Ξ110 119860

1015840

119862

1015840

lowast Ξ2211986001198620

lowast lowast minus119876minus1

0

lowast lowast lowast minus119876minus1

]

]

]

]

]

]

]

lt 0

(45)

where

Ξ11= Ξ11minus 119860

1015840

119876119860 minus 119862

1015840

119876119862

Ξ22= Ξ22minus 1198601015840

01198761198600minus 1198621015840

01198761198620

(46)

Using Lemma 5 Ξ lt 0 is equivalent to

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

minus119876 1198711015840

1205722

11198671015840

11205722

21198671015840

2119860

1015840

119876 119862

1015840

119876 0 0 0 0 119860

1015840

119862

1015840

lowast minus119868 0 0 0 0 0 0 0 0 0 0

lowast lowast minus

1

3120572

119868 0 0 0 0 0 0 0 0 0

lowast lowast lowast minus

1

3120572

119868 0 0 0 0 0 0 0 0

lowast lowast lowast lowast minus119876 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast minus119876 0 0 0 0 0 0

lowast lowast lowast lowast lowast lowast minus1205742

119868 1198600119876 1198620119876 119872

1015840

11986001198620

lowast lowast lowast lowast lowast lowast lowast minus119876 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast minus119876 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119868 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119876minus1

0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119876minus1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (47)

It is obvious that seeking 119867infin

gain matrix 119870 needs to solveLMIs (47) and119876minus120572119868 lt 0 Setting119876minus1 = 119883 and 120573 = 1120572 andpre- and postmultiplying

diag [119883 119868 119868 119868 119883119883 119868 119883119883 119868 119868 119868] (48)on both sides of (47) and considering (35) (34) is obtainedimmediately The proof is completed

4 Numerical Examples

This section presents two numerical examples to demonstratethe validity of our main results described above

Example 1 Consider system (5) with parameters as

119860 = [

08 03

04 09

]

119862 = [

03 02

04 02

]

1198671= 1198672= [

1 0

0 1

]

119861 = 119863 = [

1

1

]

119909 (0) = [

1199091(0)

1199092(0)

] = [

50

minus50

]

(49)

For the unforced system (16) with 1205721= 1205722= 03 its

corresponding state locus diagram is made in Figure 1 FromFigure 1 it is easy to see that the status values are of seriousdivergences through 50 iterationsHence the unforced systemis not stable

To design a feedback controller such that the closed-loopsystem is stochastically stable usingMatlab LMI Toolbox we

8 Mathematical Problems in Engineeringx1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

minus2000

0

2000

4000

6000

8000

10000

Figure 1 State trajectories of the autonomous system with 120572 = 03

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 2 State trajectories of the closed-loop system with 120572 = 03

find that a symmetric positive definitematrix119883 a realmatrix119884 and a scalar 120573 given by

119883 = [

3318 0177

0177 1920

]

119884 = [minus1587 minus0930]

120573 = 1868

(50)

solve LMI (27) So we get the feedback gain 119870 =

[minus0455 minus0443] Submitting

119906 (119905) = [minus0455 minus0443] [

1199091(119905)

1199092(119905)

] (51)

into system (5) the state trajectories of the closed-loop systemare shown as in Figure 2

From Figure 2 one can find that the controlled systemachieves stability using the proposed controller Meanwhile

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

minus6000

minus5000

minus4000

minus3000

minus2000

minus1000

0

1000

2000

3000

Figure 3 State trajectories of the autonomous system with 120572 = 01

in the case 120572 le 03 the controlled system maintainsstabilization

In order to show the robustness we use different valuesof 120572 in Example 1 below We reset 120572 = 01 and 120572 =1 in system (5) with the corresponding trajectories shownin Figures 3 and 4 respectively By comparing Figures 13 and 4 intuitively speaking the more value 120572 takesthe more divergence the autonomous system (5) has Byusing Theorem 9 we can get that under the conditionof 120572 = 01 and 120572 = 1 the corresponding controllersare 119906120572=01(119905) = [minus04750 minus04000] [

1199091(119905)

1199092(119905)] and 119906

120572=1(119905) =

[minus04742 minus04016] [1199091(119905)

1199092(119905)] respectively Substitute 119906

120572=01(119905)

and 119906120572=1(119905) into system (5) in turn and the corresponding

closed-loop system is shown in Figures 5 and 6 respectivelyFrom the simulation results we can see that the larger

the value 120572 takes the slower the system converges Thisobservation is reasonable because the larger uncertainty thesystem has the stronger the robustness of controller requires

Example 2 Consider system (11) with parameters as

1198620= [

02 0

0 01

]

1198600= [

03 0

0 03

]

119871 = [

02 0

0 02

]

119872 = [

02 0

0 02

]

1198671= 1198672= [

08 0

0 08

]

(52)

Mathematical Problems in Engineering 9

times104

minus8

minus6

minus4

minus2

0

2

4

6

8

10

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

Figure 4 State trajectories of the autonomous system with 120572 = 1

minus60

minus40

minus20

0

20

40

60

x1andx2

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 5 State trajectories of the closed-loop system with 120572 = 01

x1andx2

t (sec)50454035302520151050

minus500

minus400

minus300

minus200

minus100

0

100

200

300

400

500

Figure 6 State trajectories of the closed-loop system with 120572 = 1

t (sec)302520151050

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

Figure 7 State trajectories of the closed-loop system with 120572 = 03

119860 119861 119862119863 have the same values as in Example 1 Setting 119867infin

norm bound 120574 = 06 and 1205721= 1205722= 03 a group of the

solutions for LMI (34) are

119883 = [

55257 3206

3206 31482

]

119884 = [minus26412 minus15475]

120573 = 30596

(53)

and the119867infin

controller is

119906 (119905) = 119870119909 (119905) = 119884119883minus1

119909 (119905)

= [minus0452 minus0446] [

1199091(119905)

1199092(119905)

]

(54)

The simulation result about Theorem 10 is described inFigure 7This further verifies the effectiveness ofTheorem 10

In order to give a comparison with 120572 = 03 we set 120572 = 01and 120572 = 1 By using Theorem 10 the 119867

infincontroller for 120572 =

01 is 119906(119905) = [minus04737 minus04076] [ 1199091(119905)1199092(119905)] with the simulation

result given in Figure 8 When 120572 = 1 LMI (34) is infeasiblethat is in this case system (11) is not119867

infincontrollable

5 Conclusion

This paper has discussed robust stability stabilization and119867infin

control of a class of nonlinear discrete time stochasticsystems with system state control input and external distur-bance dependent noise Sufficient conditions for stochasticstability stabilization and robust119867

infincontrol law have been

respectively given in terms of LMIs Two examples have alsobeen supplied to show the effectiveness of our main results

Competing Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

10 Mathematical Problems in Engineering

5 10 15 20 25 300

t (sec)

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

x1andx2

Figure 8 State trajectories of the closed-loop system with 120572 = 01

Acknowledgments

This work is supported by the National Natural ScienceFoundation of China (no 61573227) the Research Fundfor the Taishan Scholar Project of Shandong Province ofChina theNatural Science Foundation of Shandong Provinceof China (no 2013ZRE28089) SDUST Research Fund (no2015TDJH105) State Key Laboratory of Alternate Electri-cal Power System with Renewable Energy Sources (noLAPS16011) and the Postgraduate Innovation Funds of ChinaUniversity of Petroleum (East China) (nos YCX2015048 andYCX2015051)

References

[1] H J Kushner Stochastic Stability and Control Academic PressNew York NY USA 1967

[2] R Z Hasrsquominskii Stochastic Stability of Differential EquationsSijtjoff and Noordhoff Alphen Netherlands 1980

[3] X Mao Stochastic Differential Equations and Applications EllisHorwood Chichester UK 2nd edition 2007

[4] M Ait Rami and X Y Zhou ldquoLinearmatrix inequalities Riccatiequations and indefinite stochastic linear quadratic controlsrdquoIEEE Transactions on Automatic Control vol 45 no 6 pp 1131ndash1143 2000

[5] Z Lin J Liu Y Lin and W Zhang ldquoNonlinear stochasticpassivity feedback equivalence and global stabilizationrdquo Inter-national Journal of Robust and Nonlinear Control vol 22 no 9pp 999ndash1018 2012

[6] F Li and Y Liu ldquoGlobal stability and stabilization of moregeneral stochastic nonlinear systemsrdquo Journal of MathematicalAnalysis and Applications vol 413 no 2 pp 841ndash855 2014

[7] S Sathananthan M J Knap and L H Keel ldquoRobust stabilityand stabilization of a class of nonlinear Ito-type stochasticsystems via linear matrix inequalitiesrdquo Stochastic Analysis andApplications vol 31 no 2 pp 235ndash249 2013

[8] Y Xia E-K Boukas P Shi and J Zhang ldquoStability and stabiliza-tion of continuous-time singular hybrid systemsrdquo Automaticavol 45 no 6 pp 1504ndash1509 2009

[9] W Zhang and B-S Chen ldquoOn stabilizability and exact observ-ability of stochastic systems with their applicationsrdquo Automat-ica vol 40 no 1 pp 87ndash94 2004

[10] T Hou W Zhang and B-S Chen ldquoStudy on general stabilityand stabilizability of linear discrete-time stochastic systemsrdquoAsian Journal of Control vol 13 no 6 pp 977ndash987 2011

[11] C S Kubrusly and O L Costa ldquoMean square stability condi-tions for discrete stochastic bilinear systemsrdquo IEEE Transactionson Automatic Control vol 30 no 11 pp 1082ndash1087 1985

[12] Y Li W Zhang and X Liu ldquoStability of nonlinear stochasticdiscrete-time systemsrdquo Journal of Applied Mathematics vol2013 Article ID 356746 8 pages 2013

[13] S Sathananthan M J Knap A Strong and L H Keel ldquoRobuststability and stabilization of a class of nonlinear discrete timestochastic systems an LMI approachrdquoAppliedMathematics andComputation vol 219 no 4 pp 1988ndash1997 2012

[14] W ZhangW Zheng and B S Chen ldquoDetectability observabil-ity and Lyapunov-type theorems of linear discrete time-varyingstochastic systems with multiplicative noiserdquo httparxivorgabs150904379

[15] D Hinrichsen and A J Pritchard ldquoStochastic 119867infinrdquo SIAM

Journal on Control and Optimization vol 36 no 5 pp 1504ndash1538 1998

[16] B S Chen andWZhang ldquoStochastic1198672119867infincontrol with state-

dependent noiserdquo IEEE Transactions on Automatic Control vol49 no 1 pp 45ndash57 2004

[17] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Linear Stochastic Systems SpringerNewYork NY USA 2006

[18] H Li andY Shi ldquoState-feedback119867infincontrol for stochastic time-

delay nonlinear systems with state and disturbance-dependentnoiserdquo International Journal of Control vol 85 no 10 pp 1515ndash1531 2012

[19] I R Petersen V AUgrinovskii andAV SavkinRobust controldesign using H

infin-methods Springer New York NY USA 2000

[20] W Zhang and B-S Chen ldquoState feedback119867infincontrol for a class

of nonlinear stochastic systemsrdquo SIAM Journal on Control andOptimization vol 44 no 6 pp 1973ndash1991 2006

[21] N Berman and U Shaked ldquo119867infin

control for discrete-timenonlinear stochastic systemsrdquo IEEE Transactions on AutomaticControl vol 51 no 6 pp 1041ndash1046 2006

[22] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Discrete-Time Linear Stochastic SystemsSpringer New York NY USA 2010

[23] A El Bouhtouri D Hinrichsen and A J Pritchard ldquo119867infin-

type control for discrete-time stochastic systemsrdquo InternationalJournal of Robust and Nonlinear Control vol 9 no 13 pp 923ndash948 1999

[24] THouW Zhang andHMa ldquoInfinite horizon1198672119867infinoptimal

control for discrete-time Markov jump systems with (x u v)-dependent noiserdquo Journal of Global Optimization vol 57 no 4pp 1245ndash1262 2013

[25] W Zhang Y Huang and L Xie ldquoInfinite horizon stochastic1198672119867infincontrol for discrete-time systems with state and distur-

bance dependent noiserdquo Automatica vol 44 no 9 pp 2306ndash2316 2008

[26] S Elaydi An Introduction to Difference Equation Springer NewYork NY USA 2005

[27] J P LaSalle The Stability and Control of Discrete ProcessesSpringer New York NY USA 1986

Mathematical Problems in Engineering 11

[28] N Athanasopoulos M Lazar C Bohm and F Allgower ldquoOnstability and stabilization of periodic discrete-time systemswithan application to satellite attitude controlrdquo Automatica vol 50no 12 pp 3190ndash3196 2014

[29] O L V Costa and A de Oliveira ldquoOptimal meanndashvariancecontrol for discrete-time linear systems with Markovian jumpsand multiplicative noisesrdquo Automatica vol 48 no 2 pp 304ndash315 2012

[30] Q Ma S Xu Y Zou and J Lu ldquoRobust stability for discrete-time stochastic genetic regulatory networksrdquo Nonlinear Analy-sis Real World Applications vol 12 no 5 pp 2586ndash2595 2011

[31] W Lin and C I Byrnes ldquo119867infincontrol of discrete-time nonlinear

systemsrdquo IEEE Transactions on Automatic Control vol 41 no 4pp 494ndash510 1996

[32] T Zhang Y H Wang X Jiang and W Zhang ldquoA Nash gameapproach to stochastic 119867

2119867infin

control overview and furtherresearch topicsrdquo in Proceedings of the 34th Chinese ControlConference pp 2848ndash2853 Hangzhou China July 2015

[33] SG Peng ldquoA general stochasticmaximumprinciple for optimalcontrol problemsrdquo SIAM Journal on Control and Optimizationvol 28 no 4 pp 966ndash979 1990

[34] X Lin andWZhang ldquoAmaximumprinciple for optimal controlof discrete-time stochastic systems with multiplicative noiserdquoIEEE Transactions on Automatic Control vol 60 no 4 pp 1121ndash1126 2015

[35] Z Du Q Zhang and L Liu ldquoNew delay-dependent robuststability of discrete singular systems with time-varying delayrdquoAsian Journal of Control vol 13 no 1 pp 136ndash147 2011

[36] K-S Park and J-T Lim ldquoRobust stability of non-standard non-linear singularly perturbed discrete systems with uncertaintiesrdquoInternational Journal of Systems Science vol 45 no 3 pp 616ndash624 2014

[37] S Lakshmanan T Senthilkumar and P BalasubramaniamldquoImproved results on robust stability of neutral systemswith mixed time-varying delays and nonlinear perturbationsrdquoApplied Mathematical Modelling vol 35 no 11 pp 5355ndash53682011

[38] X Zhang CWang D Li X Zhou and D Yang ldquoRobust stabil-ity of impulsive Takagi-Sugeno fuzzy systems with parametricuncertaintiesrdquo Information Sciences vol 181 no 23 pp 5278ndash5290 2011

[39] S Shah Z Iwai I Mizumoto and M Deng ldquoSimple adaptivecontrol of processes with time-delayrdquo Journal of Process Controlvol 7 no 6 pp 439ndash449 1997

[40] M Deng and N Bu ldquoRobust control for nonlinear systemsusing passivity-based robust right coprime factorizationrdquo IEEETransactions on Automatic Control vol 57 no 10 pp 2599ndash2604 2012

[41] Z Y Gao and N U Ahmed ldquoFeedback stabilizability ofnonlinear stochastic systems with state-dependent noiserdquo Inter-national Journal of Control vol 45 no 2 pp 729ndash737 1987

[42] D D Siljak and D M Stipanovic ldquoRobust stabilization ofnonlinear systems the LMI approachrdquo Mathematical Problemsin Engineering vol 6 no 5 pp 461ndash493 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Robust Stability, Stabilization, and ...downloads.hindawi.com/journals/mpe/2016/5185784.pdf · tried to discuss a general nonlinear control of discrete time stochastic

2 Mathematical Problems in Engineering

Up to now the results of the deterministic discrete timenonlinear 119867

infincontrol [31] have not been perfectly general-

ized to the above nonlinear stochastic systems For examplealthough some stability results in continuous time Ito systems[3] can be extended to nonlinear discrete stochastic systems[12] the corresponding criteria are not easily applied inpractice this is because the mathematical expectation of thetrajectory is involved in the preconditions In addition [21]tried to discuss a general nonlinear 119867

infincontrol of discrete

time stochastic systems but only the 119867infin

control of a classof norm bounded systems was perfectly solved based onlinear matrix inequality (LMI) approach As said in [32]the general119867

infincontrol of nonlinear discrete time stochastic

multiplicative noise systems remains unsolved We have toadmit such a fact that some research issues of discrete systemsare more difficult to solve than those of continuous timesystems For instance a stochastic maximum principle for Itosystems was obtained in 1990 [33] but a nonlinear discretetime maximum principle has just been presented in [34]

Recently [7 13] investigated the robust quadratic stabilityand feedback stabilization of a class of nonlinear continuetime and discrete time systems respectively where thenonlinear terms are quadratically bounded Such a nonlinearconstraint possesses great practical importance and has beenwidely used in many types of systems such as singularly per-turbed systems with uncertainties [35 36] neutral systemswith nonlinear perturbations [37] impulsive Takagi-Sugenofuzzy systems [38] and some time-delay systems [18] Itshould be pointed out that the small gain theorem can also beused to examine the robustness as done in [39] for the study ofthe simple adaptive control system within the framework ofthe small gain theorem In addition the robustness of a classof nonlinear feedback systems with unknown perturbationswas discussed based on the robust right coprime factorizationand passivity property [40] All these methods are expectedto play important roles in stochastic uncertain119867

infincontrol

This paper deals with a class of nonlinear uncertaindiscrete time stochastic systems for which the system statecontrol input and external disturbance depend on noisesimultaneously which was often called (119909 119906 V)-dependentnoise for short [24] and which mean that not only thesystem state as in [21] but also the control input and externaldisturbance are subject to random noise Hence our con-cerned models have more wide applications The considerednonlinear dynamic term is priorly unknown but belongsto a class of functions with a bounded energy level whichrepresent a kind of very important nonlinear functions andhas been studied by many researchers see for example[41] For such a class of nonlinear discrete time stochasticsystems the stochastic stability stabilization and119867

infincontrol

have been discussed respectively and easily testing criteriahave also been obtained What we have obtained extends theprevious works to more general models

The paper is organized as follows in Section 2 we givea description of the considered nonlinear stochastic sys-tems and define robust stochastic stability and stabilizationSection 3 contains our main results Section 31 presents arobust stability criterion which extends the result of [13] tomore general stochastic systems Section 32 gives a sufficient

condition for robust stabilization criterion Section 33 isabout 119867

infincontrol where an LMI-based sufficient condition

for the existence of a static state feedback 119867infin

controller isestablished All our main results are expressed in terms ofLMIs In Section 4 two examples are constructed to show theeffectiveness of our obtained results

For convenience the notations adopted in this paper areas follows1198721015840 is the transpose of the matrix119872 or vector119872 119872 ge 0

(119872 gt 0) 119872 is a positive semidefinite (positive definite)symmetric matrix 119868 is the identity matrix 119877119899 is the 119899-dimensional Euclidean space 119877119899times119898 is the space of all 119899 times119898 matrices with entries in 119877 119873 is the natural numberset that is 119873 represents 0 1 2 119873

119905denotes the set of

0 1 119905 1198972119908(119873 119877119899

) denotes the set of all nonanticipativesquare summable stochastic processes

119910 = 119910119899 119910119899

isin 1198712

(Ω 119877119899

) 119910119899is F119899minus1

measurable119899isin119873

(3)

The 1198972-norm of 119910 isin 1198972119908(119873 119877119899

) is defined by

100381710038171003817100381711991010038171003817100381710038171198972

119908(119873119877119899)= (

infin

sum

119899=0

1198641003817100381710038171003817119910119899

1003817100381710038171003817

2

)

12

(4)

Similarly 1198972119908(119873119879 119877119899

) and 1199101198972

119908(119873119877119899)can be defined

2 System Descriptions and Definitions

Consider the discrete stochastic iterative system described bythe following equation

119909 (119905 + 1) = 119860119909 (119905) + ℎ1(119905 119909 (119905)) + 119861119906 (119905)

+ (119862119909 (119905) + ℎ2(119905 119909 (119905)) + 119863119906 (119905)) 119908 (119905)

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(5)

where 119909(119905) isin 119877119899 is the 119899-dimensional state vector and 119906(119905) isin119877119898 is the 119898-dimensional control input 119908(119905)

119905ge0is a se-

quence of one-dimensional independent white noise proc-esses defined on the complete filtered probability space (ΩF F

119905119905ge0P) whereF

119905= 120590119908(0) 119908(1) 119908(119905)Assume

that 119864[119908(119905)] = 0 119864[119908(119905)119908(119895)] = 120575119905119895 where 119864 stands for the

expectation operation and 120575119905119895is a Kronecker function defined

by 120575119905119895= 0 for 119905 = 119895 while 120575

119905119895= 1 for 119905 = 119895 Without loss of

generality 1199090is assumed to be determined The following is

assumed to hold throughout this paper

Assumption 1 The nonlinear functions ℎ1(119905 119909(119905)) and

ℎ2(119905 119909(119905)) describe parameter uncertainty of the system and

satisfy the following quadratic inequalities

ℎ1015840

1(119905 119909 (119905)) ℎ

1(119905 119909 (119905)) le 120572

2

11199091015840

(119905)1198671015840

11198671119909 (119905) (6)

ℎ1015840

2(119905 119909 (119905)) ℎ

2(119905 119909 (119905)) le 120572

2

21199091015840

(119905)1198671015840

21198672119909 (119905) (7)

for all 119905 isin 119873 where 120572119894is a constant related to the function ℎ

119894

for 119894 = 1 2119867119894is a constant matrix reflecting structure of ℎ

119894

Mathematical Problems in Engineering 3

We note that inequalities (6) and (7) can be written as amatrix form

[

[

[

119909

ℎ1

ℎ2

]

]

]

1015840

[

[

[

minus1205722

11198671015840

11198671minus 1205722

21198671015840

211986720 0

0 119868 0

0 0 119868

]

]

]

[

[

[

119909

ℎ1

ℎ2

]

]

]

le 0 (8)

System (5) is regarded as the generalized version of thesystem in [13 42] We note that in system (5) the systemstate control input and uncertain terms depend on noisesimultaneously which makes (1) more useful in describingmany practical phenomena

Definition 2 The unforced system (5) with 119906 = 0 is said to berobustly stochastically stable with margins 120572

1gt 0 and 120572

2gt 0

if there exists a constant 120575(1199090 1205721 1205722) such that

119864[

infin

sum

119905=0

1199091015840

(119905) 119909 (119905)] le 120575 (1199090 1205721 1205722) (9)

Definition 2 implies 119864119909(119905)2 rarr 0

Definition 3 System (5) is said to be robustly stochasticallystabilizable if there exists a state feedback control law 119906(119905) =119870119909(119905) such that the closed-loop system

119909 (119905 + 1) = (119860 + 119861119870) 119909 (119905) + ℎ1(119905 119909 (119905))

+ ((119862 + 119863119870) 119909 (119905) + ℎ2(119905 119909 (119905))) 119908 (119905)

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(10)

is robustly stochastically stable for all nonlinear functionsℎ119894(119905 119909(119905)) (119894 = 1 2) satisfying (6) and (7)

When there is the external disturbance ](sdot) in system (5)we consider the following nonlinear perturbed system

119909 (119905 + 1)

= 119860119909 (119905) + 1198600] (119905) + 119861119906 (119905) + ℎ

1(119905 119909 (119905))

+ (119862119909 (119905) + 1198620] (119905) + 119863119906 (119905) + ℎ

2(119905 119909 (119905))) 119908 (119905)

119911 (119905) = [

119871119909 (119905)

119872] (119905)]

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(11)

where ](119905) isin 119877119902 and 119911(119905) isin 119877119901 are respectively thedisturbance signal and the controlled output ](119905) is assumedto belong to 1198972

119908(119873 119877119902

) so ](119905) is independent of 119908(119905)

Definition 4 (119867infin

control) For a given disturbance attenua-tion level 120574 gt 0 119906(119905) = 119870119909(119905) is an119867

infincontrol of system (11)

if

(i) system (11) is internally stochastically stabilizable for119906(119905) = 119870119909(119905) in the absence of ](119905) that is

119909 (119905 + 1) = (119860 + 119861119870) 119909 (119905) + ℎ1(119905 119909 (119905))

+ [(119862 + 119863119870) 119909 (119905) + ℎ2(119905 119909 (119905))] 119908 (119905)

(12)

is robustly stochastically stable

(ii) The119867infinnorm of system (11) is less than 120574 gt 0 that is

119879 = sup]isin1198972119908(119873119877119902)119906(119905)=119870119909(119905)] =0119909

0=0

119911 (119905)1198972

119908(119873119877119901)

] (119905)1198972

119908(119873119877119902)

= sup]isin1198972119908(119873119877119902)119906(119905)=119870119909(119905)] =0119909

0=0

(suminfin

119905=0119864 119911 (119905)

2

)

12

(suminfin

119905=0119864 ] (119905)2)

12

lt 120574

(13)

3 Main Results

In this section we give ourmain results on stochastic stabilitystochastic stabilization and robust 119867

infincontrol via LMI-

based approach Firstly we introduce the following twolemmas which will be used in the proof of our main results

Lemma 5 (Schurrsquos lemma) For a real symmetric matrix 119878 =[

1198781111987812

119878119879

1211987822

] the following three conditions are equivalent

(i) 119878 lt 0

(ii) 11987811lt 0 119878

22minus 119878119879

12119878minus1

1111987812lt 0

(iii) 11987822lt 0 119878

11minus 11987812119878minus1

22119878119879

12lt 0

Lemma 6 For any real matrices 119880 1198731015840 = 119873 gt 0 and119882 withappropriate dimensions we have

1198801015840

119873119882+1198821015840

119873119880 le 1198801015840

119873119880 +1198821015840

119873119882 (14)

Proof Because 1198731015840 = 119873 gt 0 1198801015840119873119882 + 1198821015840

119873119880 =

(1198801015840

11987312

)(11987312

119882) + (1198821015840

11987312

)(11987312

119882) Inequality (14) is animmediate corollary of the well-known inequality

1198831015840

119884 + 1198841015840

119883 le 1198831015840

119883 + 1198841015840

119884 (15)

31 Robust Stability Criteria Consider the following un-forced stochastic discrete time system

119909 (119905 + 1) = 119860119909 (119905) + ℎ1(119905 119909 (119905))

+ (119862119909 (119905) + ℎ2(119905 119909 (119905))) 119908 (119905)

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(16)

where ℎ1(119905 119909(119905))

119905ge0and ℎ

2(119905 119909(119905))

119905ge0satisfy (8) The

following theorem gives a sufficient condition of robuststochastic stability for system (16)

Theorem 7 System (16) with margins 1205721gt 0 and 120572

2gt

0 is said to be robustly stochastically stable if there exists

4 Mathematical Problems in Engineering

a symmetric positive definite matrix 119876 gt 0 and a scalar 120572 gt 0such that

[

[

[

[

[

[

[

[

minus119876 + 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867 1198601015840

119876 1198621015840

119876 0

lowast minus

1

2

119876 0 0

lowast lowast minus

1

2

119876 0

lowast lowast lowast 119876 minus 120572119868

]

]

]

]

]

]

]

]

lt 0

(17)

Proof If (17) holds we set 119881(119909(119905)) = 1199091015840

(119905)119876119909(119905) as aLyapunov function candidate of system (16) where 0 lt 119876 lt120572119868 by (17) Note that 119909(119905) and 119908(119905) are independent so thedifference generator is

119864Δ119881 (119909 (119905)) = 119864 [119881 (119909 (119905 + 1)) minus 119881 (119909 (119905))]

= 119864 1199091015840

(119905) (1198601015840

119876119860 + 1198621015840

119876119862 minus 119876)119909 (119905)

+ 1199091015840

(119905) 1198601015840

119876ℎ1(119905 119909 (119905)) + ℎ

1015840

1(119905 119909 (119905)) 119876119860119909 (119905)

+ ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905)) + 119909

1015840

(119905) 1198621015840

119876ℎ2(119905 119909 (119905))

+ ℎ1015840

2(119905 119909 (119905)) 119876119862119909 (119905) + ℎ

1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905))

(18)

Applying Lemma 6 and inequalities (6)-(7) by 0 lt 119876 lt 120572119868we have

1199091015840

(119905) 1198601015840

119876ℎ1(119905 119909 (119905)) + ℎ

1015840

1(119905 119909 (119905)) 119876119860119909 (119905)

le 1199091015840

(119905) 1198601015840

119876119860119909 (119905) + ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

le 1199091015840

(119905) (1198601015840

119876119860 + 1205722

11205721198671015840

119867)119909 (119905)

1199091015840

(119905) 1198621015840

119876ℎ2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

le 1199091015840

(119905) (1198621015840

119876119862 + 1205722

21205721198671015840

119867)119909 (119905)

ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905))

le 1199091015840

(119905) (1205722

11205721198671015840

119867 + 1205722

21205721198671015840

119867)119909 (119905)

(19)

Substituting (19) into (18) we achieve that

119864Δ119881 (119909 (119905)) le 119864 1199091015840

(119905) (21198601015840

119876119860 + 21198621015840

119876119862 minus 119876

+ 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867)119909 (119905)

(20)

By Schurrsquos complement

Ω fl 21198601015840119876119860 + 21198621015840119876119862 minus 119876 + 2120572211205721198671015840

119867 + 21205722

21205721198671015840

119867

lt 0

(21)

is equivalent to

[

[

[

[

[

[

minus119876 + 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867 1198601015840

119876 1198621015840

119876

lowast minus

1

2

119876 0

lowast lowast minus

1

2

119876

]

]

]

]

]

]

lt 0 (22)

which holds by (17) We denote 120582max(Ω) and 120582min(Ω) to bethe largest and the minimum eigenvalues of the matrix Ωrespectively then (20) yields

119864Δ119881 (119909 (119905)) le 120582max (Ω) 119864 119909 (119905)2

(23)

Taking summation on both sides of the above inequality from119905 = 0 to 119905 = 119879 ge 0 we get

119864 [119881 (119909 (119879))] minus 119881 (1199090) = 119864[

119879

sum

119905=0

Δ119881 (119909 (119905))]

le 120582max (Ω) 119864[119879

sum

119905=0

1199091015840

(119905) 119909 (119905)]

(24)

Therefore

120582min (minusΩ) 119864[119879

sum

119905=0

1199091015840

(119905) 119909 (119905)] le 119881 (1199090) (25)

which leads to

119864[

119879

sum

119905=0

1199091015840

(119905) 119909 (119905)] le 120575 (1199090 1205721 1205722) fl

119881 (1199090)

120582min (minusΩ) (26)

Hence the robust stochastic stability of system (16) isobtained by (26) via letting 119879 rarr infin

Remark 8 FromTheorem7 if LMI (17) has feasible solutionsthen for any bounded parameters

1and

2on the uncertain

perturbation satisfying 1le 1205721and

2le 1205722 system (16) is

robustly stochastically stable with margins 1and

2

32 Robust Stabilization Criteria In this subsection a suffi-cient condition about robust stochastic stabilization via LMIwill be given

Theorem 9 System (5) with margins 1205721and 120572

2is robustly

stochastically stabilizable if there exist real matrices 119884 and119883 gt0 and a real scalar 120573 gt 0 such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

minus119883 12057211198831198671015840

12057221198831198671015840

1198691015840

11198691015840

20

lowast minus

1

2

120573119868 0 0 0 0

lowast lowast minus

1

2

120573119868 0 0 0

lowast lowast lowast minus

1

2

119883 0 0

lowast lowast lowast lowast minus

1

2

119883 0

lowast lowast lowast lowast lowast 120573119868 minus 119883

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (27)

holds where

1198691= 119860119883 + 119861119884

1198692= 119862119883 + 119863119884

(28)

In this case 119906(119905) = 119870119909(119905) = 119884119883minus1

119909(119905) is a robustlystochastically stabilizing control law

Mathematical Problems in Engineering 5

Proof We consider synthesizing a state feedback controller119906(119905) = 119870119909(119905) to stabilize system (5) Substituting 119906(119905) = 119870119909(119905)into system (5) yields the closed-loop system described by

119909 (119905 + 1) = 119860119909 (119905) + ℎ1(119905 119909 (119905))

+ (119862119909 (119905) + ℎ2(119905 119909 (119905))) 119908 (119905)

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(29)

where 119860 = 119860 + 119861119870 and 119862 = 119862 + 119863119870 By Theorem 7 system(29) is robustly stochastically stable if there exists a matrix119876 0 lt 119876 lt 120572119868 such that the following LMI

Ω fl[

[

[

[

[

[

minus119876 + 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867 119860

1015840

119876 119862

1015840

119876

lowast minus

1

2

119876 0

lowast lowast minus

1

2

119876

]

]

]

]

]

]

lt 0

(30)

holds Let 119876minus1 = 119883 and pre- and postmultiply

diag [119883119883119883] (31)

on both sides of inequality (30) and it yields

[

[

[

[

[

[

minus119883 + 21205722

11205721198831198671015840

119867119883 + 21205722

21205721198831198671015840

119867119883 119883119860

1015840

119883119862

1015840

lowast minus

1

2

119883 0

lowast lowast minus

1

2

119883

]

]

]

]

]

]

lt 0

(32)

In order to transform (32) into a suitable LMI form we set120573 = 1120572 then 0 lt 119876 lt 120572119868 is equivalent to

120573119868 minus 119883 lt 0 120573 gt 0 (33)

Combining (33) with (32) and setting the gain matrix 119870 =119884119883minus1 LMI (27) is obtained The proof is completed

33 119867infinControl In this subsectionmain result about robust

119867infin

control will be given via LMI approach

Theorem 10 Consider system (11) with margins 1205721gt 0 and

1205722gt 0 For the given 120574 gt 0 if there exist real matrices 119883 gt 0

and 119884 and scalar 120573 gt 0 satisfying the following LMI

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

minus119883 1198711015840

1205722

11198831198671015840

11205722

21198831198671015840

21198691015840

11198691015840

20 0 0 0 119869

1015840

11198691015840

20

lowast minus119868 0 0 0 0 0 0 0 0 0 0 0

lowast lowast minus

1

3

120573119868 0 0 0 0 0 0 0 0 0 0

lowast lowast lowast minus

1

3

120573119868 0 0 0 0 0 0 0 0 0

lowast lowast lowast lowast minus119883 0 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast minus119883 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast lowast minus1205742

119868 1198601015840

01198621015840

01198721015840

11986001198620

0

lowast lowast lowast lowast lowast lowast lowast minus119883 0 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast minus119883 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119868 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119883 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119883 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast 120573119868 minus 119883

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (34)

where 1198691= 119860119883 + 119861119884 119869

2= 119862119883 + 119863119884 then system (11) is119867

infin

controllable and the robust119867infin

control law is 119906(119905) = 119870119909(119905) =119884119883minus1

119909(119905) for 119905 isin 119873

Proof When ](119905) = 0 byTheorem 9 system (11) is internallystabilizable via 119906(119905) = 119870119909(119905) = 119884119883minus1119909(119905) because LMI (34)implies LMI (27) Next we only need to show 119879 lt 120574

Take 119906(119905) = 119870119909(119905) and choose the Lyapunov function119881(119909(119905)) = 119909

1015840

(119905)119876119909(119905) where

0 lt 119876 lt 120572119868 120572 gt 0 (35)

for some 120572 gt 0 to be determined then for the system

119909 (119905 + 1) = 119860119909 (119905) + 1198600] (119905) + ℎ

1(119905 119909 (119905))

+ (119862119909 (119905) + 1198620] (119905) + ℎ

2(119905 119909 (119905))) 119908 (119905)

119911 (119905) = [

119871119909 (119905)

119872] (119905)]

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(36)

6 Mathematical Problems in Engineering

with 119860 = 119860 + 119861119870 and 119862 = 119862 + 119863119870 we have with 119909(119905) and](119905) independent of 119908(119905) in mind that

119864Δ119881 (119909 (119905)) = 119864 [119881 (119909 (119905 + 1)) minus 119881 (119909 (119905))]

= 119864 [1199091015840

(119905 + 1)119876119909 (119905 + 1) minus 1199091015840

(119905) 119876119909 (119905)]

= 119864 1199091015840

(119905) [119860

1015840

119876119860 + 119862

1015840

119876119862 minus 119876]119909 (119905)

+ 1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + 119909

1015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905))

+ 1199091015840

(119905) [119860

1015840

1198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ℎ1015840

1(119905 119909 (119905)) 119876119860119909 (119905) + ℎ

1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

+ ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ℎ1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

+ ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862

0] (119905)

+ ]1015840 (119905) (119860101584001198761198600+ 1198621015840

01198761198620) ] (119905)

+ ]1015840 (119905) [11986010158400119876119860 + 119862

1015840

0119876119862] 119909 (119905)

+ ]1015840 (119905) 11986010158400119876ℎ1(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

(37)

Set 1199090= 0 and then for any ](119905) isin 1198972

119908(119873 119877119901

)

119911 (119905)2

1198972

119908(119873119879119877119901)minus 1205742

] (119905)21198972

119908(119873119879119877119902)

= 119864

119879

sum

119905=0

[1199091015840

(119905) 1198711015840

119871119909 (119905) + ]1015840 (119905)1198721015840119872] (119905)

minus 1205742]1015840 (119905) ] (119905) + Δ119881 (119905)] minus 1199091015840 (119879)119876119909 (119879)

le 119864

119879

sum

119905=0

1199091015840

(119905) 1198711015840

119871119909 (119905) + ]1015840 (119905)1198721015840119872] (119905)

minus 1205742]1015840 (119905) ] (119905) + ]1015840 (119905) (1198601015840

01198761198600+ 1198621015840

01198761198620) ] (119905)

+ 1199091015840

(119905) [119860

1015840

119876119860 + 119862

1015840

119876119862 minus 119876]119909 (119905)

+ 1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + 119909

1015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905))

+ 1199091015840

(119905) [1198601198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ℎ1015840

1(119905 119909 (119905)) 119876119860119909 (119905) + ℎ

1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

+ ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ℎ1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

+ ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862

0] (119905)

+ ]1015840 (119905) 11986010158400119876ℎ1(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

+ ]1015840 (119905) [11986010158400119876119860 + 119862

1015840

0119876119862] 119909 (119905)

(38)

Using Lemma 6 and setting 1199091015840(119905)1198601015840 = 1198801015840 ℎ1(119905 119909(119905)) = 119882

and119873 = 119876 gt 0 we have

1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + ℎ

1015840

1(119905 119909 (119905)) 119876119860119909 (119905)

le 1199091015840

(119905) 119860

1015840

119876119860119909 (119905) + ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

(39)

Similarly the following inequalities can also be obtained

1199091015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

le 1199091015840

(119905) 119862

1015840

119876119862119909 (119905) + ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905))

ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ]1015840 (119905) 1198601015840

0119876ℎ1(119905 119909 (119905))

le ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905)) + ]1015840 (119905) 1198601015840

01198761198600] (119905)

ℎ1015840

2(119905 119909 (119905)) 119876119862

0] (119905) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

le ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

01198761198620] (119905)

(40)

Substituting (39)-(40) into inequality (38) and considering(35) it yields

119911 (119905)2

1198972

119908(119873119879119877119901)minus 1205742

] (119905)21198972

119908(119873119879119877119902)le 119864

119879

sum

119905=0

1199091015840

(119905) [minus119876

+ 2119860

1015840

119876119860 + 2119862

1015840

119876119862 + 1198711015840

119871 + 31205722

11205721198671015840

11198671

+ 31205722

21205721198671015840

21198672] 119909 (119905) + 119909

1015840

(119905) [119860

1015840

1198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ]1015840 (119905) [1198600119876119860 + 119862

0119876119862] 119909

1015840

(119905) + ] (119905) (2119860101584001198761198600

+ 21198621015840

01198761198620minus 1205742

119868 +1198721015840

119872) ] (119905) = 119864119879

sum

119905=0

[

119909 (119905)

] (119905)]

1015840

sdot Ξ [

119909 (119905)

] (119905)]

(41)

where

Ξ fl [Ξ11Ξ12

lowast Ξ22

] (42)

with

Ξ11= minus119876 + 2119860

1015840

119876119860 + 2119862

1015840

119876119862 + 1198711015840

119871 + 31205722

11205721198671015840

11198671

+ 31205722

21205721198671015840

21198672

Ξ12= 119860

1015840

1198761198600+ 119862

1015840

1198761198620

Ξ22= 21198601015840

01198761198600+ 21198621015840

01198761198620minus 1205742

119868 +1198721015840

119872

(43)

Let 119879 rarr infin in (41) then we have

119911 (119905)2

1198972

119908(119873119877119901)minus 1205742

] (119905)21198972

119908(119873119877119902)

le 119864

infin

sum

119905=0

[

119909 (119905)

] (119905)]

1015840

Ξ[

119909 (119905)

] (119905)]

(44)

Mathematical Problems in Engineering 7

It is easy to see that if Ξ lt 0 then 119879 lt 120574 for system (11)Next we give an LMI sufficient condition for Ξ lt 0 Noticethat

Ξ = [

Ξ11minus 119860

1015840

119876119860 119862

1015840

1198761198620

lowast Ξ22minus 1198601015840

01198761198600

]

+ [

119860

1015840

1198601015840

0

]119876 [119860 + 119861119870 1198600] lt 0

lArrrArr

[

[

[

[

Ξ11minus 119860

1015840

119876119860 119862

1015840

1198761198620

119860

1015840

lowast Ξ22minus 1198601015840

011987611986001198600

lowast lowast minus119876minus1

]

]

]

]

lt 0

lArrrArr

[

[

[

[

[

[

[

Ξ110 119860

1015840

119862

1015840

lowast Ξ2211986001198620

lowast lowast minus119876minus1

0

lowast lowast lowast minus119876minus1

]

]

]

]

]

]

]

lt 0

(45)

where

Ξ11= Ξ11minus 119860

1015840

119876119860 minus 119862

1015840

119876119862

Ξ22= Ξ22minus 1198601015840

01198761198600minus 1198621015840

01198761198620

(46)

Using Lemma 5 Ξ lt 0 is equivalent to

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

minus119876 1198711015840

1205722

11198671015840

11205722

21198671015840

2119860

1015840

119876 119862

1015840

119876 0 0 0 0 119860

1015840

119862

1015840

lowast minus119868 0 0 0 0 0 0 0 0 0 0

lowast lowast minus

1

3120572

119868 0 0 0 0 0 0 0 0 0

lowast lowast lowast minus

1

3120572

119868 0 0 0 0 0 0 0 0

lowast lowast lowast lowast minus119876 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast minus119876 0 0 0 0 0 0

lowast lowast lowast lowast lowast lowast minus1205742

119868 1198600119876 1198620119876 119872

1015840

11986001198620

lowast lowast lowast lowast lowast lowast lowast minus119876 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast minus119876 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119868 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119876minus1

0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119876minus1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (47)

It is obvious that seeking 119867infin

gain matrix 119870 needs to solveLMIs (47) and119876minus120572119868 lt 0 Setting119876minus1 = 119883 and 120573 = 1120572 andpre- and postmultiplying

diag [119883 119868 119868 119868 119883119883 119868 119883119883 119868 119868 119868] (48)on both sides of (47) and considering (35) (34) is obtainedimmediately The proof is completed

4 Numerical Examples

This section presents two numerical examples to demonstratethe validity of our main results described above

Example 1 Consider system (5) with parameters as

119860 = [

08 03

04 09

]

119862 = [

03 02

04 02

]

1198671= 1198672= [

1 0

0 1

]

119861 = 119863 = [

1

1

]

119909 (0) = [

1199091(0)

1199092(0)

] = [

50

minus50

]

(49)

For the unforced system (16) with 1205721= 1205722= 03 its

corresponding state locus diagram is made in Figure 1 FromFigure 1 it is easy to see that the status values are of seriousdivergences through 50 iterationsHence the unforced systemis not stable

To design a feedback controller such that the closed-loopsystem is stochastically stable usingMatlab LMI Toolbox we

8 Mathematical Problems in Engineeringx1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

minus2000

0

2000

4000

6000

8000

10000

Figure 1 State trajectories of the autonomous system with 120572 = 03

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 2 State trajectories of the closed-loop system with 120572 = 03

find that a symmetric positive definitematrix119883 a realmatrix119884 and a scalar 120573 given by

119883 = [

3318 0177

0177 1920

]

119884 = [minus1587 minus0930]

120573 = 1868

(50)

solve LMI (27) So we get the feedback gain 119870 =

[minus0455 minus0443] Submitting

119906 (119905) = [minus0455 minus0443] [

1199091(119905)

1199092(119905)

] (51)

into system (5) the state trajectories of the closed-loop systemare shown as in Figure 2

From Figure 2 one can find that the controlled systemachieves stability using the proposed controller Meanwhile

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

minus6000

minus5000

minus4000

minus3000

minus2000

minus1000

0

1000

2000

3000

Figure 3 State trajectories of the autonomous system with 120572 = 01

in the case 120572 le 03 the controlled system maintainsstabilization

In order to show the robustness we use different valuesof 120572 in Example 1 below We reset 120572 = 01 and 120572 =1 in system (5) with the corresponding trajectories shownin Figures 3 and 4 respectively By comparing Figures 13 and 4 intuitively speaking the more value 120572 takesthe more divergence the autonomous system (5) has Byusing Theorem 9 we can get that under the conditionof 120572 = 01 and 120572 = 1 the corresponding controllersare 119906120572=01(119905) = [minus04750 minus04000] [

1199091(119905)

1199092(119905)] and 119906

120572=1(119905) =

[minus04742 minus04016] [1199091(119905)

1199092(119905)] respectively Substitute 119906

120572=01(119905)

and 119906120572=1(119905) into system (5) in turn and the corresponding

closed-loop system is shown in Figures 5 and 6 respectivelyFrom the simulation results we can see that the larger

the value 120572 takes the slower the system converges Thisobservation is reasonable because the larger uncertainty thesystem has the stronger the robustness of controller requires

Example 2 Consider system (11) with parameters as

1198620= [

02 0

0 01

]

1198600= [

03 0

0 03

]

119871 = [

02 0

0 02

]

119872 = [

02 0

0 02

]

1198671= 1198672= [

08 0

0 08

]

(52)

Mathematical Problems in Engineering 9

times104

minus8

minus6

minus4

minus2

0

2

4

6

8

10

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

Figure 4 State trajectories of the autonomous system with 120572 = 1

minus60

minus40

minus20

0

20

40

60

x1andx2

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 5 State trajectories of the closed-loop system with 120572 = 01

x1andx2

t (sec)50454035302520151050

minus500

minus400

minus300

minus200

minus100

0

100

200

300

400

500

Figure 6 State trajectories of the closed-loop system with 120572 = 1

t (sec)302520151050

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

Figure 7 State trajectories of the closed-loop system with 120572 = 03

119860 119861 119862119863 have the same values as in Example 1 Setting 119867infin

norm bound 120574 = 06 and 1205721= 1205722= 03 a group of the

solutions for LMI (34) are

119883 = [

55257 3206

3206 31482

]

119884 = [minus26412 minus15475]

120573 = 30596

(53)

and the119867infin

controller is

119906 (119905) = 119870119909 (119905) = 119884119883minus1

119909 (119905)

= [minus0452 minus0446] [

1199091(119905)

1199092(119905)

]

(54)

The simulation result about Theorem 10 is described inFigure 7This further verifies the effectiveness ofTheorem 10

In order to give a comparison with 120572 = 03 we set 120572 = 01and 120572 = 1 By using Theorem 10 the 119867

infincontroller for 120572 =

01 is 119906(119905) = [minus04737 minus04076] [ 1199091(119905)1199092(119905)] with the simulation

result given in Figure 8 When 120572 = 1 LMI (34) is infeasiblethat is in this case system (11) is not119867

infincontrollable

5 Conclusion

This paper has discussed robust stability stabilization and119867infin

control of a class of nonlinear discrete time stochasticsystems with system state control input and external distur-bance dependent noise Sufficient conditions for stochasticstability stabilization and robust119867

infincontrol law have been

respectively given in terms of LMIs Two examples have alsobeen supplied to show the effectiveness of our main results

Competing Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

10 Mathematical Problems in Engineering

5 10 15 20 25 300

t (sec)

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

x1andx2

Figure 8 State trajectories of the closed-loop system with 120572 = 01

Acknowledgments

This work is supported by the National Natural ScienceFoundation of China (no 61573227) the Research Fundfor the Taishan Scholar Project of Shandong Province ofChina theNatural Science Foundation of Shandong Provinceof China (no 2013ZRE28089) SDUST Research Fund (no2015TDJH105) State Key Laboratory of Alternate Electri-cal Power System with Renewable Energy Sources (noLAPS16011) and the Postgraduate Innovation Funds of ChinaUniversity of Petroleum (East China) (nos YCX2015048 andYCX2015051)

References

[1] H J Kushner Stochastic Stability and Control Academic PressNew York NY USA 1967

[2] R Z Hasrsquominskii Stochastic Stability of Differential EquationsSijtjoff and Noordhoff Alphen Netherlands 1980

[3] X Mao Stochastic Differential Equations and Applications EllisHorwood Chichester UK 2nd edition 2007

[4] M Ait Rami and X Y Zhou ldquoLinearmatrix inequalities Riccatiequations and indefinite stochastic linear quadratic controlsrdquoIEEE Transactions on Automatic Control vol 45 no 6 pp 1131ndash1143 2000

[5] Z Lin J Liu Y Lin and W Zhang ldquoNonlinear stochasticpassivity feedback equivalence and global stabilizationrdquo Inter-national Journal of Robust and Nonlinear Control vol 22 no 9pp 999ndash1018 2012

[6] F Li and Y Liu ldquoGlobal stability and stabilization of moregeneral stochastic nonlinear systemsrdquo Journal of MathematicalAnalysis and Applications vol 413 no 2 pp 841ndash855 2014

[7] S Sathananthan M J Knap and L H Keel ldquoRobust stabilityand stabilization of a class of nonlinear Ito-type stochasticsystems via linear matrix inequalitiesrdquo Stochastic Analysis andApplications vol 31 no 2 pp 235ndash249 2013

[8] Y Xia E-K Boukas P Shi and J Zhang ldquoStability and stabiliza-tion of continuous-time singular hybrid systemsrdquo Automaticavol 45 no 6 pp 1504ndash1509 2009

[9] W Zhang and B-S Chen ldquoOn stabilizability and exact observ-ability of stochastic systems with their applicationsrdquo Automat-ica vol 40 no 1 pp 87ndash94 2004

[10] T Hou W Zhang and B-S Chen ldquoStudy on general stabilityand stabilizability of linear discrete-time stochastic systemsrdquoAsian Journal of Control vol 13 no 6 pp 977ndash987 2011

[11] C S Kubrusly and O L Costa ldquoMean square stability condi-tions for discrete stochastic bilinear systemsrdquo IEEE Transactionson Automatic Control vol 30 no 11 pp 1082ndash1087 1985

[12] Y Li W Zhang and X Liu ldquoStability of nonlinear stochasticdiscrete-time systemsrdquo Journal of Applied Mathematics vol2013 Article ID 356746 8 pages 2013

[13] S Sathananthan M J Knap A Strong and L H Keel ldquoRobuststability and stabilization of a class of nonlinear discrete timestochastic systems an LMI approachrdquoAppliedMathematics andComputation vol 219 no 4 pp 1988ndash1997 2012

[14] W ZhangW Zheng and B S Chen ldquoDetectability observabil-ity and Lyapunov-type theorems of linear discrete time-varyingstochastic systems with multiplicative noiserdquo httparxivorgabs150904379

[15] D Hinrichsen and A J Pritchard ldquoStochastic 119867infinrdquo SIAM

Journal on Control and Optimization vol 36 no 5 pp 1504ndash1538 1998

[16] B S Chen andWZhang ldquoStochastic1198672119867infincontrol with state-

dependent noiserdquo IEEE Transactions on Automatic Control vol49 no 1 pp 45ndash57 2004

[17] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Linear Stochastic Systems SpringerNewYork NY USA 2006

[18] H Li andY Shi ldquoState-feedback119867infincontrol for stochastic time-

delay nonlinear systems with state and disturbance-dependentnoiserdquo International Journal of Control vol 85 no 10 pp 1515ndash1531 2012

[19] I R Petersen V AUgrinovskii andAV SavkinRobust controldesign using H

infin-methods Springer New York NY USA 2000

[20] W Zhang and B-S Chen ldquoState feedback119867infincontrol for a class

of nonlinear stochastic systemsrdquo SIAM Journal on Control andOptimization vol 44 no 6 pp 1973ndash1991 2006

[21] N Berman and U Shaked ldquo119867infin

control for discrete-timenonlinear stochastic systemsrdquo IEEE Transactions on AutomaticControl vol 51 no 6 pp 1041ndash1046 2006

[22] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Discrete-Time Linear Stochastic SystemsSpringer New York NY USA 2010

[23] A El Bouhtouri D Hinrichsen and A J Pritchard ldquo119867infin-

type control for discrete-time stochastic systemsrdquo InternationalJournal of Robust and Nonlinear Control vol 9 no 13 pp 923ndash948 1999

[24] THouW Zhang andHMa ldquoInfinite horizon1198672119867infinoptimal

control for discrete-time Markov jump systems with (x u v)-dependent noiserdquo Journal of Global Optimization vol 57 no 4pp 1245ndash1262 2013

[25] W Zhang Y Huang and L Xie ldquoInfinite horizon stochastic1198672119867infincontrol for discrete-time systems with state and distur-

bance dependent noiserdquo Automatica vol 44 no 9 pp 2306ndash2316 2008

[26] S Elaydi An Introduction to Difference Equation Springer NewYork NY USA 2005

[27] J P LaSalle The Stability and Control of Discrete ProcessesSpringer New York NY USA 1986

Mathematical Problems in Engineering 11

[28] N Athanasopoulos M Lazar C Bohm and F Allgower ldquoOnstability and stabilization of periodic discrete-time systemswithan application to satellite attitude controlrdquo Automatica vol 50no 12 pp 3190ndash3196 2014

[29] O L V Costa and A de Oliveira ldquoOptimal meanndashvariancecontrol for discrete-time linear systems with Markovian jumpsand multiplicative noisesrdquo Automatica vol 48 no 2 pp 304ndash315 2012

[30] Q Ma S Xu Y Zou and J Lu ldquoRobust stability for discrete-time stochastic genetic regulatory networksrdquo Nonlinear Analy-sis Real World Applications vol 12 no 5 pp 2586ndash2595 2011

[31] W Lin and C I Byrnes ldquo119867infincontrol of discrete-time nonlinear

systemsrdquo IEEE Transactions on Automatic Control vol 41 no 4pp 494ndash510 1996

[32] T Zhang Y H Wang X Jiang and W Zhang ldquoA Nash gameapproach to stochastic 119867

2119867infin

control overview and furtherresearch topicsrdquo in Proceedings of the 34th Chinese ControlConference pp 2848ndash2853 Hangzhou China July 2015

[33] SG Peng ldquoA general stochasticmaximumprinciple for optimalcontrol problemsrdquo SIAM Journal on Control and Optimizationvol 28 no 4 pp 966ndash979 1990

[34] X Lin andWZhang ldquoAmaximumprinciple for optimal controlof discrete-time stochastic systems with multiplicative noiserdquoIEEE Transactions on Automatic Control vol 60 no 4 pp 1121ndash1126 2015

[35] Z Du Q Zhang and L Liu ldquoNew delay-dependent robuststability of discrete singular systems with time-varying delayrdquoAsian Journal of Control vol 13 no 1 pp 136ndash147 2011

[36] K-S Park and J-T Lim ldquoRobust stability of non-standard non-linear singularly perturbed discrete systems with uncertaintiesrdquoInternational Journal of Systems Science vol 45 no 3 pp 616ndash624 2014

[37] S Lakshmanan T Senthilkumar and P BalasubramaniamldquoImproved results on robust stability of neutral systemswith mixed time-varying delays and nonlinear perturbationsrdquoApplied Mathematical Modelling vol 35 no 11 pp 5355ndash53682011

[38] X Zhang CWang D Li X Zhou and D Yang ldquoRobust stabil-ity of impulsive Takagi-Sugeno fuzzy systems with parametricuncertaintiesrdquo Information Sciences vol 181 no 23 pp 5278ndash5290 2011

[39] S Shah Z Iwai I Mizumoto and M Deng ldquoSimple adaptivecontrol of processes with time-delayrdquo Journal of Process Controlvol 7 no 6 pp 439ndash449 1997

[40] M Deng and N Bu ldquoRobust control for nonlinear systemsusing passivity-based robust right coprime factorizationrdquo IEEETransactions on Automatic Control vol 57 no 10 pp 2599ndash2604 2012

[41] Z Y Gao and N U Ahmed ldquoFeedback stabilizability ofnonlinear stochastic systems with state-dependent noiserdquo Inter-national Journal of Control vol 45 no 2 pp 729ndash737 1987

[42] D D Siljak and D M Stipanovic ldquoRobust stabilization ofnonlinear systems the LMI approachrdquo Mathematical Problemsin Engineering vol 6 no 5 pp 461ndash493 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Robust Stability, Stabilization, and ...downloads.hindawi.com/journals/mpe/2016/5185784.pdf · tried to discuss a general nonlinear control of discrete time stochastic

Mathematical Problems in Engineering 3

We note that inequalities (6) and (7) can be written as amatrix form

[

[

[

119909

ℎ1

ℎ2

]

]

]

1015840

[

[

[

minus1205722

11198671015840

11198671minus 1205722

21198671015840

211986720 0

0 119868 0

0 0 119868

]

]

]

[

[

[

119909

ℎ1

ℎ2

]

]

]

le 0 (8)

System (5) is regarded as the generalized version of thesystem in [13 42] We note that in system (5) the systemstate control input and uncertain terms depend on noisesimultaneously which makes (1) more useful in describingmany practical phenomena

Definition 2 The unforced system (5) with 119906 = 0 is said to berobustly stochastically stable with margins 120572

1gt 0 and 120572

2gt 0

if there exists a constant 120575(1199090 1205721 1205722) such that

119864[

infin

sum

119905=0

1199091015840

(119905) 119909 (119905)] le 120575 (1199090 1205721 1205722) (9)

Definition 2 implies 119864119909(119905)2 rarr 0

Definition 3 System (5) is said to be robustly stochasticallystabilizable if there exists a state feedback control law 119906(119905) =119870119909(119905) such that the closed-loop system

119909 (119905 + 1) = (119860 + 119861119870) 119909 (119905) + ℎ1(119905 119909 (119905))

+ ((119862 + 119863119870) 119909 (119905) + ℎ2(119905 119909 (119905))) 119908 (119905)

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(10)

is robustly stochastically stable for all nonlinear functionsℎ119894(119905 119909(119905)) (119894 = 1 2) satisfying (6) and (7)

When there is the external disturbance ](sdot) in system (5)we consider the following nonlinear perturbed system

119909 (119905 + 1)

= 119860119909 (119905) + 1198600] (119905) + 119861119906 (119905) + ℎ

1(119905 119909 (119905))

+ (119862119909 (119905) + 1198620] (119905) + 119863119906 (119905) + ℎ

2(119905 119909 (119905))) 119908 (119905)

119911 (119905) = [

119871119909 (119905)

119872] (119905)]

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(11)

where ](119905) isin 119877119902 and 119911(119905) isin 119877119901 are respectively thedisturbance signal and the controlled output ](119905) is assumedto belong to 1198972

119908(119873 119877119902

) so ](119905) is independent of 119908(119905)

Definition 4 (119867infin

control) For a given disturbance attenua-tion level 120574 gt 0 119906(119905) = 119870119909(119905) is an119867

infincontrol of system (11)

if

(i) system (11) is internally stochastically stabilizable for119906(119905) = 119870119909(119905) in the absence of ](119905) that is

119909 (119905 + 1) = (119860 + 119861119870) 119909 (119905) + ℎ1(119905 119909 (119905))

+ [(119862 + 119863119870) 119909 (119905) + ℎ2(119905 119909 (119905))] 119908 (119905)

(12)

is robustly stochastically stable

(ii) The119867infinnorm of system (11) is less than 120574 gt 0 that is

119879 = sup]isin1198972119908(119873119877119902)119906(119905)=119870119909(119905)] =0119909

0=0

119911 (119905)1198972

119908(119873119877119901)

] (119905)1198972

119908(119873119877119902)

= sup]isin1198972119908(119873119877119902)119906(119905)=119870119909(119905)] =0119909

0=0

(suminfin

119905=0119864 119911 (119905)

2

)

12

(suminfin

119905=0119864 ] (119905)2)

12

lt 120574

(13)

3 Main Results

In this section we give ourmain results on stochastic stabilitystochastic stabilization and robust 119867

infincontrol via LMI-

based approach Firstly we introduce the following twolemmas which will be used in the proof of our main results

Lemma 5 (Schurrsquos lemma) For a real symmetric matrix 119878 =[

1198781111987812

119878119879

1211987822

] the following three conditions are equivalent

(i) 119878 lt 0

(ii) 11987811lt 0 119878

22minus 119878119879

12119878minus1

1111987812lt 0

(iii) 11987822lt 0 119878

11minus 11987812119878minus1

22119878119879

12lt 0

Lemma 6 For any real matrices 119880 1198731015840 = 119873 gt 0 and119882 withappropriate dimensions we have

1198801015840

119873119882+1198821015840

119873119880 le 1198801015840

119873119880 +1198821015840

119873119882 (14)

Proof Because 1198731015840 = 119873 gt 0 1198801015840119873119882 + 1198821015840

119873119880 =

(1198801015840

11987312

)(11987312

119882) + (1198821015840

11987312

)(11987312

119882) Inequality (14) is animmediate corollary of the well-known inequality

1198831015840

119884 + 1198841015840

119883 le 1198831015840

119883 + 1198841015840

119884 (15)

31 Robust Stability Criteria Consider the following un-forced stochastic discrete time system

119909 (119905 + 1) = 119860119909 (119905) + ℎ1(119905 119909 (119905))

+ (119862119909 (119905) + ℎ2(119905 119909 (119905))) 119908 (119905)

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(16)

where ℎ1(119905 119909(119905))

119905ge0and ℎ

2(119905 119909(119905))

119905ge0satisfy (8) The

following theorem gives a sufficient condition of robuststochastic stability for system (16)

Theorem 7 System (16) with margins 1205721gt 0 and 120572

2gt

0 is said to be robustly stochastically stable if there exists

4 Mathematical Problems in Engineering

a symmetric positive definite matrix 119876 gt 0 and a scalar 120572 gt 0such that

[

[

[

[

[

[

[

[

minus119876 + 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867 1198601015840

119876 1198621015840

119876 0

lowast minus

1

2

119876 0 0

lowast lowast minus

1

2

119876 0

lowast lowast lowast 119876 minus 120572119868

]

]

]

]

]

]

]

]

lt 0

(17)

Proof If (17) holds we set 119881(119909(119905)) = 1199091015840

(119905)119876119909(119905) as aLyapunov function candidate of system (16) where 0 lt 119876 lt120572119868 by (17) Note that 119909(119905) and 119908(119905) are independent so thedifference generator is

119864Δ119881 (119909 (119905)) = 119864 [119881 (119909 (119905 + 1)) minus 119881 (119909 (119905))]

= 119864 1199091015840

(119905) (1198601015840

119876119860 + 1198621015840

119876119862 minus 119876)119909 (119905)

+ 1199091015840

(119905) 1198601015840

119876ℎ1(119905 119909 (119905)) + ℎ

1015840

1(119905 119909 (119905)) 119876119860119909 (119905)

+ ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905)) + 119909

1015840

(119905) 1198621015840

119876ℎ2(119905 119909 (119905))

+ ℎ1015840

2(119905 119909 (119905)) 119876119862119909 (119905) + ℎ

1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905))

(18)

Applying Lemma 6 and inequalities (6)-(7) by 0 lt 119876 lt 120572119868we have

1199091015840

(119905) 1198601015840

119876ℎ1(119905 119909 (119905)) + ℎ

1015840

1(119905 119909 (119905)) 119876119860119909 (119905)

le 1199091015840

(119905) 1198601015840

119876119860119909 (119905) + ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

le 1199091015840

(119905) (1198601015840

119876119860 + 1205722

11205721198671015840

119867)119909 (119905)

1199091015840

(119905) 1198621015840

119876ℎ2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

le 1199091015840

(119905) (1198621015840

119876119862 + 1205722

21205721198671015840

119867)119909 (119905)

ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905))

le 1199091015840

(119905) (1205722

11205721198671015840

119867 + 1205722

21205721198671015840

119867)119909 (119905)

(19)

Substituting (19) into (18) we achieve that

119864Δ119881 (119909 (119905)) le 119864 1199091015840

(119905) (21198601015840

119876119860 + 21198621015840

119876119862 minus 119876

+ 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867)119909 (119905)

(20)

By Schurrsquos complement

Ω fl 21198601015840119876119860 + 21198621015840119876119862 minus 119876 + 2120572211205721198671015840

119867 + 21205722

21205721198671015840

119867

lt 0

(21)

is equivalent to

[

[

[

[

[

[

minus119876 + 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867 1198601015840

119876 1198621015840

119876

lowast minus

1

2

119876 0

lowast lowast minus

1

2

119876

]

]

]

]

]

]

lt 0 (22)

which holds by (17) We denote 120582max(Ω) and 120582min(Ω) to bethe largest and the minimum eigenvalues of the matrix Ωrespectively then (20) yields

119864Δ119881 (119909 (119905)) le 120582max (Ω) 119864 119909 (119905)2

(23)

Taking summation on both sides of the above inequality from119905 = 0 to 119905 = 119879 ge 0 we get

119864 [119881 (119909 (119879))] minus 119881 (1199090) = 119864[

119879

sum

119905=0

Δ119881 (119909 (119905))]

le 120582max (Ω) 119864[119879

sum

119905=0

1199091015840

(119905) 119909 (119905)]

(24)

Therefore

120582min (minusΩ) 119864[119879

sum

119905=0

1199091015840

(119905) 119909 (119905)] le 119881 (1199090) (25)

which leads to

119864[

119879

sum

119905=0

1199091015840

(119905) 119909 (119905)] le 120575 (1199090 1205721 1205722) fl

119881 (1199090)

120582min (minusΩ) (26)

Hence the robust stochastic stability of system (16) isobtained by (26) via letting 119879 rarr infin

Remark 8 FromTheorem7 if LMI (17) has feasible solutionsthen for any bounded parameters

1and

2on the uncertain

perturbation satisfying 1le 1205721and

2le 1205722 system (16) is

robustly stochastically stable with margins 1and

2

32 Robust Stabilization Criteria In this subsection a suffi-cient condition about robust stochastic stabilization via LMIwill be given

Theorem 9 System (5) with margins 1205721and 120572

2is robustly

stochastically stabilizable if there exist real matrices 119884 and119883 gt0 and a real scalar 120573 gt 0 such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

minus119883 12057211198831198671015840

12057221198831198671015840

1198691015840

11198691015840

20

lowast minus

1

2

120573119868 0 0 0 0

lowast lowast minus

1

2

120573119868 0 0 0

lowast lowast lowast minus

1

2

119883 0 0

lowast lowast lowast lowast minus

1

2

119883 0

lowast lowast lowast lowast lowast 120573119868 minus 119883

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (27)

holds where

1198691= 119860119883 + 119861119884

1198692= 119862119883 + 119863119884

(28)

In this case 119906(119905) = 119870119909(119905) = 119884119883minus1

119909(119905) is a robustlystochastically stabilizing control law

Mathematical Problems in Engineering 5

Proof We consider synthesizing a state feedback controller119906(119905) = 119870119909(119905) to stabilize system (5) Substituting 119906(119905) = 119870119909(119905)into system (5) yields the closed-loop system described by

119909 (119905 + 1) = 119860119909 (119905) + ℎ1(119905 119909 (119905))

+ (119862119909 (119905) + ℎ2(119905 119909 (119905))) 119908 (119905)

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(29)

where 119860 = 119860 + 119861119870 and 119862 = 119862 + 119863119870 By Theorem 7 system(29) is robustly stochastically stable if there exists a matrix119876 0 lt 119876 lt 120572119868 such that the following LMI

Ω fl[

[

[

[

[

[

minus119876 + 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867 119860

1015840

119876 119862

1015840

119876

lowast minus

1

2

119876 0

lowast lowast minus

1

2

119876

]

]

]

]

]

]

lt 0

(30)

holds Let 119876minus1 = 119883 and pre- and postmultiply

diag [119883119883119883] (31)

on both sides of inequality (30) and it yields

[

[

[

[

[

[

minus119883 + 21205722

11205721198831198671015840

119867119883 + 21205722

21205721198831198671015840

119867119883 119883119860

1015840

119883119862

1015840

lowast minus

1

2

119883 0

lowast lowast minus

1

2

119883

]

]

]

]

]

]

lt 0

(32)

In order to transform (32) into a suitable LMI form we set120573 = 1120572 then 0 lt 119876 lt 120572119868 is equivalent to

120573119868 minus 119883 lt 0 120573 gt 0 (33)

Combining (33) with (32) and setting the gain matrix 119870 =119884119883minus1 LMI (27) is obtained The proof is completed

33 119867infinControl In this subsectionmain result about robust

119867infin

control will be given via LMI approach

Theorem 10 Consider system (11) with margins 1205721gt 0 and

1205722gt 0 For the given 120574 gt 0 if there exist real matrices 119883 gt 0

and 119884 and scalar 120573 gt 0 satisfying the following LMI

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

minus119883 1198711015840

1205722

11198831198671015840

11205722

21198831198671015840

21198691015840

11198691015840

20 0 0 0 119869

1015840

11198691015840

20

lowast minus119868 0 0 0 0 0 0 0 0 0 0 0

lowast lowast minus

1

3

120573119868 0 0 0 0 0 0 0 0 0 0

lowast lowast lowast minus

1

3

120573119868 0 0 0 0 0 0 0 0 0

lowast lowast lowast lowast minus119883 0 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast minus119883 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast lowast minus1205742

119868 1198601015840

01198621015840

01198721015840

11986001198620

0

lowast lowast lowast lowast lowast lowast lowast minus119883 0 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast minus119883 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119868 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119883 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119883 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast 120573119868 minus 119883

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (34)

where 1198691= 119860119883 + 119861119884 119869

2= 119862119883 + 119863119884 then system (11) is119867

infin

controllable and the robust119867infin

control law is 119906(119905) = 119870119909(119905) =119884119883minus1

119909(119905) for 119905 isin 119873

Proof When ](119905) = 0 byTheorem 9 system (11) is internallystabilizable via 119906(119905) = 119870119909(119905) = 119884119883minus1119909(119905) because LMI (34)implies LMI (27) Next we only need to show 119879 lt 120574

Take 119906(119905) = 119870119909(119905) and choose the Lyapunov function119881(119909(119905)) = 119909

1015840

(119905)119876119909(119905) where

0 lt 119876 lt 120572119868 120572 gt 0 (35)

for some 120572 gt 0 to be determined then for the system

119909 (119905 + 1) = 119860119909 (119905) + 1198600] (119905) + ℎ

1(119905 119909 (119905))

+ (119862119909 (119905) + 1198620] (119905) + ℎ

2(119905 119909 (119905))) 119908 (119905)

119911 (119905) = [

119871119909 (119905)

119872] (119905)]

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(36)

6 Mathematical Problems in Engineering

with 119860 = 119860 + 119861119870 and 119862 = 119862 + 119863119870 we have with 119909(119905) and](119905) independent of 119908(119905) in mind that

119864Δ119881 (119909 (119905)) = 119864 [119881 (119909 (119905 + 1)) minus 119881 (119909 (119905))]

= 119864 [1199091015840

(119905 + 1)119876119909 (119905 + 1) minus 1199091015840

(119905) 119876119909 (119905)]

= 119864 1199091015840

(119905) [119860

1015840

119876119860 + 119862

1015840

119876119862 minus 119876]119909 (119905)

+ 1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + 119909

1015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905))

+ 1199091015840

(119905) [119860

1015840

1198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ℎ1015840

1(119905 119909 (119905)) 119876119860119909 (119905) + ℎ

1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

+ ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ℎ1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

+ ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862

0] (119905)

+ ]1015840 (119905) (119860101584001198761198600+ 1198621015840

01198761198620) ] (119905)

+ ]1015840 (119905) [11986010158400119876119860 + 119862

1015840

0119876119862] 119909 (119905)

+ ]1015840 (119905) 11986010158400119876ℎ1(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

(37)

Set 1199090= 0 and then for any ](119905) isin 1198972

119908(119873 119877119901

)

119911 (119905)2

1198972

119908(119873119879119877119901)minus 1205742

] (119905)21198972

119908(119873119879119877119902)

= 119864

119879

sum

119905=0

[1199091015840

(119905) 1198711015840

119871119909 (119905) + ]1015840 (119905)1198721015840119872] (119905)

minus 1205742]1015840 (119905) ] (119905) + Δ119881 (119905)] minus 1199091015840 (119879)119876119909 (119879)

le 119864

119879

sum

119905=0

1199091015840

(119905) 1198711015840

119871119909 (119905) + ]1015840 (119905)1198721015840119872] (119905)

minus 1205742]1015840 (119905) ] (119905) + ]1015840 (119905) (1198601015840

01198761198600+ 1198621015840

01198761198620) ] (119905)

+ 1199091015840

(119905) [119860

1015840

119876119860 + 119862

1015840

119876119862 minus 119876]119909 (119905)

+ 1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + 119909

1015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905))

+ 1199091015840

(119905) [1198601198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ℎ1015840

1(119905 119909 (119905)) 119876119860119909 (119905) + ℎ

1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

+ ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ℎ1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

+ ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862

0] (119905)

+ ]1015840 (119905) 11986010158400119876ℎ1(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

+ ]1015840 (119905) [11986010158400119876119860 + 119862

1015840

0119876119862] 119909 (119905)

(38)

Using Lemma 6 and setting 1199091015840(119905)1198601015840 = 1198801015840 ℎ1(119905 119909(119905)) = 119882

and119873 = 119876 gt 0 we have

1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + ℎ

1015840

1(119905 119909 (119905)) 119876119860119909 (119905)

le 1199091015840

(119905) 119860

1015840

119876119860119909 (119905) + ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

(39)

Similarly the following inequalities can also be obtained

1199091015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

le 1199091015840

(119905) 119862

1015840

119876119862119909 (119905) + ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905))

ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ]1015840 (119905) 1198601015840

0119876ℎ1(119905 119909 (119905))

le ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905)) + ]1015840 (119905) 1198601015840

01198761198600] (119905)

ℎ1015840

2(119905 119909 (119905)) 119876119862

0] (119905) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

le ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

01198761198620] (119905)

(40)

Substituting (39)-(40) into inequality (38) and considering(35) it yields

119911 (119905)2

1198972

119908(119873119879119877119901)minus 1205742

] (119905)21198972

119908(119873119879119877119902)le 119864

119879

sum

119905=0

1199091015840

(119905) [minus119876

+ 2119860

1015840

119876119860 + 2119862

1015840

119876119862 + 1198711015840

119871 + 31205722

11205721198671015840

11198671

+ 31205722

21205721198671015840

21198672] 119909 (119905) + 119909

1015840

(119905) [119860

1015840

1198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ]1015840 (119905) [1198600119876119860 + 119862

0119876119862] 119909

1015840

(119905) + ] (119905) (2119860101584001198761198600

+ 21198621015840

01198761198620minus 1205742

119868 +1198721015840

119872) ] (119905) = 119864119879

sum

119905=0

[

119909 (119905)

] (119905)]

1015840

sdot Ξ [

119909 (119905)

] (119905)]

(41)

where

Ξ fl [Ξ11Ξ12

lowast Ξ22

] (42)

with

Ξ11= minus119876 + 2119860

1015840

119876119860 + 2119862

1015840

119876119862 + 1198711015840

119871 + 31205722

11205721198671015840

11198671

+ 31205722

21205721198671015840

21198672

Ξ12= 119860

1015840

1198761198600+ 119862

1015840

1198761198620

Ξ22= 21198601015840

01198761198600+ 21198621015840

01198761198620minus 1205742

119868 +1198721015840

119872

(43)

Let 119879 rarr infin in (41) then we have

119911 (119905)2

1198972

119908(119873119877119901)minus 1205742

] (119905)21198972

119908(119873119877119902)

le 119864

infin

sum

119905=0

[

119909 (119905)

] (119905)]

1015840

Ξ[

119909 (119905)

] (119905)]

(44)

Mathematical Problems in Engineering 7

It is easy to see that if Ξ lt 0 then 119879 lt 120574 for system (11)Next we give an LMI sufficient condition for Ξ lt 0 Noticethat

Ξ = [

Ξ11minus 119860

1015840

119876119860 119862

1015840

1198761198620

lowast Ξ22minus 1198601015840

01198761198600

]

+ [

119860

1015840

1198601015840

0

]119876 [119860 + 119861119870 1198600] lt 0

lArrrArr

[

[

[

[

Ξ11minus 119860

1015840

119876119860 119862

1015840

1198761198620

119860

1015840

lowast Ξ22minus 1198601015840

011987611986001198600

lowast lowast minus119876minus1

]

]

]

]

lt 0

lArrrArr

[

[

[

[

[

[

[

Ξ110 119860

1015840

119862

1015840

lowast Ξ2211986001198620

lowast lowast minus119876minus1

0

lowast lowast lowast minus119876minus1

]

]

]

]

]

]

]

lt 0

(45)

where

Ξ11= Ξ11minus 119860

1015840

119876119860 minus 119862

1015840

119876119862

Ξ22= Ξ22minus 1198601015840

01198761198600minus 1198621015840

01198761198620

(46)

Using Lemma 5 Ξ lt 0 is equivalent to

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

minus119876 1198711015840

1205722

11198671015840

11205722

21198671015840

2119860

1015840

119876 119862

1015840

119876 0 0 0 0 119860

1015840

119862

1015840

lowast minus119868 0 0 0 0 0 0 0 0 0 0

lowast lowast minus

1

3120572

119868 0 0 0 0 0 0 0 0 0

lowast lowast lowast minus

1

3120572

119868 0 0 0 0 0 0 0 0

lowast lowast lowast lowast minus119876 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast minus119876 0 0 0 0 0 0

lowast lowast lowast lowast lowast lowast minus1205742

119868 1198600119876 1198620119876 119872

1015840

11986001198620

lowast lowast lowast lowast lowast lowast lowast minus119876 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast minus119876 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119868 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119876minus1

0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119876minus1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (47)

It is obvious that seeking 119867infin

gain matrix 119870 needs to solveLMIs (47) and119876minus120572119868 lt 0 Setting119876minus1 = 119883 and 120573 = 1120572 andpre- and postmultiplying

diag [119883 119868 119868 119868 119883119883 119868 119883119883 119868 119868 119868] (48)on both sides of (47) and considering (35) (34) is obtainedimmediately The proof is completed

4 Numerical Examples

This section presents two numerical examples to demonstratethe validity of our main results described above

Example 1 Consider system (5) with parameters as

119860 = [

08 03

04 09

]

119862 = [

03 02

04 02

]

1198671= 1198672= [

1 0

0 1

]

119861 = 119863 = [

1

1

]

119909 (0) = [

1199091(0)

1199092(0)

] = [

50

minus50

]

(49)

For the unforced system (16) with 1205721= 1205722= 03 its

corresponding state locus diagram is made in Figure 1 FromFigure 1 it is easy to see that the status values are of seriousdivergences through 50 iterationsHence the unforced systemis not stable

To design a feedback controller such that the closed-loopsystem is stochastically stable usingMatlab LMI Toolbox we

8 Mathematical Problems in Engineeringx1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

minus2000

0

2000

4000

6000

8000

10000

Figure 1 State trajectories of the autonomous system with 120572 = 03

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 2 State trajectories of the closed-loop system with 120572 = 03

find that a symmetric positive definitematrix119883 a realmatrix119884 and a scalar 120573 given by

119883 = [

3318 0177

0177 1920

]

119884 = [minus1587 minus0930]

120573 = 1868

(50)

solve LMI (27) So we get the feedback gain 119870 =

[minus0455 minus0443] Submitting

119906 (119905) = [minus0455 minus0443] [

1199091(119905)

1199092(119905)

] (51)

into system (5) the state trajectories of the closed-loop systemare shown as in Figure 2

From Figure 2 one can find that the controlled systemachieves stability using the proposed controller Meanwhile

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

minus6000

minus5000

minus4000

minus3000

minus2000

minus1000

0

1000

2000

3000

Figure 3 State trajectories of the autonomous system with 120572 = 01

in the case 120572 le 03 the controlled system maintainsstabilization

In order to show the robustness we use different valuesof 120572 in Example 1 below We reset 120572 = 01 and 120572 =1 in system (5) with the corresponding trajectories shownin Figures 3 and 4 respectively By comparing Figures 13 and 4 intuitively speaking the more value 120572 takesthe more divergence the autonomous system (5) has Byusing Theorem 9 we can get that under the conditionof 120572 = 01 and 120572 = 1 the corresponding controllersare 119906120572=01(119905) = [minus04750 minus04000] [

1199091(119905)

1199092(119905)] and 119906

120572=1(119905) =

[minus04742 minus04016] [1199091(119905)

1199092(119905)] respectively Substitute 119906

120572=01(119905)

and 119906120572=1(119905) into system (5) in turn and the corresponding

closed-loop system is shown in Figures 5 and 6 respectivelyFrom the simulation results we can see that the larger

the value 120572 takes the slower the system converges Thisobservation is reasonable because the larger uncertainty thesystem has the stronger the robustness of controller requires

Example 2 Consider system (11) with parameters as

1198620= [

02 0

0 01

]

1198600= [

03 0

0 03

]

119871 = [

02 0

0 02

]

119872 = [

02 0

0 02

]

1198671= 1198672= [

08 0

0 08

]

(52)

Mathematical Problems in Engineering 9

times104

minus8

minus6

minus4

minus2

0

2

4

6

8

10

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

Figure 4 State trajectories of the autonomous system with 120572 = 1

minus60

minus40

minus20

0

20

40

60

x1andx2

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 5 State trajectories of the closed-loop system with 120572 = 01

x1andx2

t (sec)50454035302520151050

minus500

minus400

minus300

minus200

minus100

0

100

200

300

400

500

Figure 6 State trajectories of the closed-loop system with 120572 = 1

t (sec)302520151050

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

Figure 7 State trajectories of the closed-loop system with 120572 = 03

119860 119861 119862119863 have the same values as in Example 1 Setting 119867infin

norm bound 120574 = 06 and 1205721= 1205722= 03 a group of the

solutions for LMI (34) are

119883 = [

55257 3206

3206 31482

]

119884 = [minus26412 minus15475]

120573 = 30596

(53)

and the119867infin

controller is

119906 (119905) = 119870119909 (119905) = 119884119883minus1

119909 (119905)

= [minus0452 minus0446] [

1199091(119905)

1199092(119905)

]

(54)

The simulation result about Theorem 10 is described inFigure 7This further verifies the effectiveness ofTheorem 10

In order to give a comparison with 120572 = 03 we set 120572 = 01and 120572 = 1 By using Theorem 10 the 119867

infincontroller for 120572 =

01 is 119906(119905) = [minus04737 minus04076] [ 1199091(119905)1199092(119905)] with the simulation

result given in Figure 8 When 120572 = 1 LMI (34) is infeasiblethat is in this case system (11) is not119867

infincontrollable

5 Conclusion

This paper has discussed robust stability stabilization and119867infin

control of a class of nonlinear discrete time stochasticsystems with system state control input and external distur-bance dependent noise Sufficient conditions for stochasticstability stabilization and robust119867

infincontrol law have been

respectively given in terms of LMIs Two examples have alsobeen supplied to show the effectiveness of our main results

Competing Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

10 Mathematical Problems in Engineering

5 10 15 20 25 300

t (sec)

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

x1andx2

Figure 8 State trajectories of the closed-loop system with 120572 = 01

Acknowledgments

This work is supported by the National Natural ScienceFoundation of China (no 61573227) the Research Fundfor the Taishan Scholar Project of Shandong Province ofChina theNatural Science Foundation of Shandong Provinceof China (no 2013ZRE28089) SDUST Research Fund (no2015TDJH105) State Key Laboratory of Alternate Electri-cal Power System with Renewable Energy Sources (noLAPS16011) and the Postgraduate Innovation Funds of ChinaUniversity of Petroleum (East China) (nos YCX2015048 andYCX2015051)

References

[1] H J Kushner Stochastic Stability and Control Academic PressNew York NY USA 1967

[2] R Z Hasrsquominskii Stochastic Stability of Differential EquationsSijtjoff and Noordhoff Alphen Netherlands 1980

[3] X Mao Stochastic Differential Equations and Applications EllisHorwood Chichester UK 2nd edition 2007

[4] M Ait Rami and X Y Zhou ldquoLinearmatrix inequalities Riccatiequations and indefinite stochastic linear quadratic controlsrdquoIEEE Transactions on Automatic Control vol 45 no 6 pp 1131ndash1143 2000

[5] Z Lin J Liu Y Lin and W Zhang ldquoNonlinear stochasticpassivity feedback equivalence and global stabilizationrdquo Inter-national Journal of Robust and Nonlinear Control vol 22 no 9pp 999ndash1018 2012

[6] F Li and Y Liu ldquoGlobal stability and stabilization of moregeneral stochastic nonlinear systemsrdquo Journal of MathematicalAnalysis and Applications vol 413 no 2 pp 841ndash855 2014

[7] S Sathananthan M J Knap and L H Keel ldquoRobust stabilityand stabilization of a class of nonlinear Ito-type stochasticsystems via linear matrix inequalitiesrdquo Stochastic Analysis andApplications vol 31 no 2 pp 235ndash249 2013

[8] Y Xia E-K Boukas P Shi and J Zhang ldquoStability and stabiliza-tion of continuous-time singular hybrid systemsrdquo Automaticavol 45 no 6 pp 1504ndash1509 2009

[9] W Zhang and B-S Chen ldquoOn stabilizability and exact observ-ability of stochastic systems with their applicationsrdquo Automat-ica vol 40 no 1 pp 87ndash94 2004

[10] T Hou W Zhang and B-S Chen ldquoStudy on general stabilityand stabilizability of linear discrete-time stochastic systemsrdquoAsian Journal of Control vol 13 no 6 pp 977ndash987 2011

[11] C S Kubrusly and O L Costa ldquoMean square stability condi-tions for discrete stochastic bilinear systemsrdquo IEEE Transactionson Automatic Control vol 30 no 11 pp 1082ndash1087 1985

[12] Y Li W Zhang and X Liu ldquoStability of nonlinear stochasticdiscrete-time systemsrdquo Journal of Applied Mathematics vol2013 Article ID 356746 8 pages 2013

[13] S Sathananthan M J Knap A Strong and L H Keel ldquoRobuststability and stabilization of a class of nonlinear discrete timestochastic systems an LMI approachrdquoAppliedMathematics andComputation vol 219 no 4 pp 1988ndash1997 2012

[14] W ZhangW Zheng and B S Chen ldquoDetectability observabil-ity and Lyapunov-type theorems of linear discrete time-varyingstochastic systems with multiplicative noiserdquo httparxivorgabs150904379

[15] D Hinrichsen and A J Pritchard ldquoStochastic 119867infinrdquo SIAM

Journal on Control and Optimization vol 36 no 5 pp 1504ndash1538 1998

[16] B S Chen andWZhang ldquoStochastic1198672119867infincontrol with state-

dependent noiserdquo IEEE Transactions on Automatic Control vol49 no 1 pp 45ndash57 2004

[17] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Linear Stochastic Systems SpringerNewYork NY USA 2006

[18] H Li andY Shi ldquoState-feedback119867infincontrol for stochastic time-

delay nonlinear systems with state and disturbance-dependentnoiserdquo International Journal of Control vol 85 no 10 pp 1515ndash1531 2012

[19] I R Petersen V AUgrinovskii andAV SavkinRobust controldesign using H

infin-methods Springer New York NY USA 2000

[20] W Zhang and B-S Chen ldquoState feedback119867infincontrol for a class

of nonlinear stochastic systemsrdquo SIAM Journal on Control andOptimization vol 44 no 6 pp 1973ndash1991 2006

[21] N Berman and U Shaked ldquo119867infin

control for discrete-timenonlinear stochastic systemsrdquo IEEE Transactions on AutomaticControl vol 51 no 6 pp 1041ndash1046 2006

[22] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Discrete-Time Linear Stochastic SystemsSpringer New York NY USA 2010

[23] A El Bouhtouri D Hinrichsen and A J Pritchard ldquo119867infin-

type control for discrete-time stochastic systemsrdquo InternationalJournal of Robust and Nonlinear Control vol 9 no 13 pp 923ndash948 1999

[24] THouW Zhang andHMa ldquoInfinite horizon1198672119867infinoptimal

control for discrete-time Markov jump systems with (x u v)-dependent noiserdquo Journal of Global Optimization vol 57 no 4pp 1245ndash1262 2013

[25] W Zhang Y Huang and L Xie ldquoInfinite horizon stochastic1198672119867infincontrol for discrete-time systems with state and distur-

bance dependent noiserdquo Automatica vol 44 no 9 pp 2306ndash2316 2008

[26] S Elaydi An Introduction to Difference Equation Springer NewYork NY USA 2005

[27] J P LaSalle The Stability and Control of Discrete ProcessesSpringer New York NY USA 1986

Mathematical Problems in Engineering 11

[28] N Athanasopoulos M Lazar C Bohm and F Allgower ldquoOnstability and stabilization of periodic discrete-time systemswithan application to satellite attitude controlrdquo Automatica vol 50no 12 pp 3190ndash3196 2014

[29] O L V Costa and A de Oliveira ldquoOptimal meanndashvariancecontrol for discrete-time linear systems with Markovian jumpsand multiplicative noisesrdquo Automatica vol 48 no 2 pp 304ndash315 2012

[30] Q Ma S Xu Y Zou and J Lu ldquoRobust stability for discrete-time stochastic genetic regulatory networksrdquo Nonlinear Analy-sis Real World Applications vol 12 no 5 pp 2586ndash2595 2011

[31] W Lin and C I Byrnes ldquo119867infincontrol of discrete-time nonlinear

systemsrdquo IEEE Transactions on Automatic Control vol 41 no 4pp 494ndash510 1996

[32] T Zhang Y H Wang X Jiang and W Zhang ldquoA Nash gameapproach to stochastic 119867

2119867infin

control overview and furtherresearch topicsrdquo in Proceedings of the 34th Chinese ControlConference pp 2848ndash2853 Hangzhou China July 2015

[33] SG Peng ldquoA general stochasticmaximumprinciple for optimalcontrol problemsrdquo SIAM Journal on Control and Optimizationvol 28 no 4 pp 966ndash979 1990

[34] X Lin andWZhang ldquoAmaximumprinciple for optimal controlof discrete-time stochastic systems with multiplicative noiserdquoIEEE Transactions on Automatic Control vol 60 no 4 pp 1121ndash1126 2015

[35] Z Du Q Zhang and L Liu ldquoNew delay-dependent robuststability of discrete singular systems with time-varying delayrdquoAsian Journal of Control vol 13 no 1 pp 136ndash147 2011

[36] K-S Park and J-T Lim ldquoRobust stability of non-standard non-linear singularly perturbed discrete systems with uncertaintiesrdquoInternational Journal of Systems Science vol 45 no 3 pp 616ndash624 2014

[37] S Lakshmanan T Senthilkumar and P BalasubramaniamldquoImproved results on robust stability of neutral systemswith mixed time-varying delays and nonlinear perturbationsrdquoApplied Mathematical Modelling vol 35 no 11 pp 5355ndash53682011

[38] X Zhang CWang D Li X Zhou and D Yang ldquoRobust stabil-ity of impulsive Takagi-Sugeno fuzzy systems with parametricuncertaintiesrdquo Information Sciences vol 181 no 23 pp 5278ndash5290 2011

[39] S Shah Z Iwai I Mizumoto and M Deng ldquoSimple adaptivecontrol of processes with time-delayrdquo Journal of Process Controlvol 7 no 6 pp 439ndash449 1997

[40] M Deng and N Bu ldquoRobust control for nonlinear systemsusing passivity-based robust right coprime factorizationrdquo IEEETransactions on Automatic Control vol 57 no 10 pp 2599ndash2604 2012

[41] Z Y Gao and N U Ahmed ldquoFeedback stabilizability ofnonlinear stochastic systems with state-dependent noiserdquo Inter-national Journal of Control vol 45 no 2 pp 729ndash737 1987

[42] D D Siljak and D M Stipanovic ldquoRobust stabilization ofnonlinear systems the LMI approachrdquo Mathematical Problemsin Engineering vol 6 no 5 pp 461ndash493 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Robust Stability, Stabilization, and ...downloads.hindawi.com/journals/mpe/2016/5185784.pdf · tried to discuss a general nonlinear control of discrete time stochastic

4 Mathematical Problems in Engineering

a symmetric positive definite matrix 119876 gt 0 and a scalar 120572 gt 0such that

[

[

[

[

[

[

[

[

minus119876 + 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867 1198601015840

119876 1198621015840

119876 0

lowast minus

1

2

119876 0 0

lowast lowast minus

1

2

119876 0

lowast lowast lowast 119876 minus 120572119868

]

]

]

]

]

]

]

]

lt 0

(17)

Proof If (17) holds we set 119881(119909(119905)) = 1199091015840

(119905)119876119909(119905) as aLyapunov function candidate of system (16) where 0 lt 119876 lt120572119868 by (17) Note that 119909(119905) and 119908(119905) are independent so thedifference generator is

119864Δ119881 (119909 (119905)) = 119864 [119881 (119909 (119905 + 1)) minus 119881 (119909 (119905))]

= 119864 1199091015840

(119905) (1198601015840

119876119860 + 1198621015840

119876119862 minus 119876)119909 (119905)

+ 1199091015840

(119905) 1198601015840

119876ℎ1(119905 119909 (119905)) + ℎ

1015840

1(119905 119909 (119905)) 119876119860119909 (119905)

+ ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905)) + 119909

1015840

(119905) 1198621015840

119876ℎ2(119905 119909 (119905))

+ ℎ1015840

2(119905 119909 (119905)) 119876119862119909 (119905) + ℎ

1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905))

(18)

Applying Lemma 6 and inequalities (6)-(7) by 0 lt 119876 lt 120572119868we have

1199091015840

(119905) 1198601015840

119876ℎ1(119905 119909 (119905)) + ℎ

1015840

1(119905 119909 (119905)) 119876119860119909 (119905)

le 1199091015840

(119905) 1198601015840

119876119860119909 (119905) + ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

le 1199091015840

(119905) (1198601015840

119876119860 + 1205722

11205721198671015840

119867)119909 (119905)

1199091015840

(119905) 1198621015840

119876ℎ2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

le 1199091015840

(119905) (1198621015840

119876119862 + 1205722

21205721198671015840

119867)119909 (119905)

ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905))

le 1199091015840

(119905) (1205722

11205721198671015840

119867 + 1205722

21205721198671015840

119867)119909 (119905)

(19)

Substituting (19) into (18) we achieve that

119864Δ119881 (119909 (119905)) le 119864 1199091015840

(119905) (21198601015840

119876119860 + 21198621015840

119876119862 minus 119876

+ 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867)119909 (119905)

(20)

By Schurrsquos complement

Ω fl 21198601015840119876119860 + 21198621015840119876119862 minus 119876 + 2120572211205721198671015840

119867 + 21205722

21205721198671015840

119867

lt 0

(21)

is equivalent to

[

[

[

[

[

[

minus119876 + 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867 1198601015840

119876 1198621015840

119876

lowast minus

1

2

119876 0

lowast lowast minus

1

2

119876

]

]

]

]

]

]

lt 0 (22)

which holds by (17) We denote 120582max(Ω) and 120582min(Ω) to bethe largest and the minimum eigenvalues of the matrix Ωrespectively then (20) yields

119864Δ119881 (119909 (119905)) le 120582max (Ω) 119864 119909 (119905)2

(23)

Taking summation on both sides of the above inequality from119905 = 0 to 119905 = 119879 ge 0 we get

119864 [119881 (119909 (119879))] minus 119881 (1199090) = 119864[

119879

sum

119905=0

Δ119881 (119909 (119905))]

le 120582max (Ω) 119864[119879

sum

119905=0

1199091015840

(119905) 119909 (119905)]

(24)

Therefore

120582min (minusΩ) 119864[119879

sum

119905=0

1199091015840

(119905) 119909 (119905)] le 119881 (1199090) (25)

which leads to

119864[

119879

sum

119905=0

1199091015840

(119905) 119909 (119905)] le 120575 (1199090 1205721 1205722) fl

119881 (1199090)

120582min (minusΩ) (26)

Hence the robust stochastic stability of system (16) isobtained by (26) via letting 119879 rarr infin

Remark 8 FromTheorem7 if LMI (17) has feasible solutionsthen for any bounded parameters

1and

2on the uncertain

perturbation satisfying 1le 1205721and

2le 1205722 system (16) is

robustly stochastically stable with margins 1and

2

32 Robust Stabilization Criteria In this subsection a suffi-cient condition about robust stochastic stabilization via LMIwill be given

Theorem 9 System (5) with margins 1205721and 120572

2is robustly

stochastically stabilizable if there exist real matrices 119884 and119883 gt0 and a real scalar 120573 gt 0 such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

minus119883 12057211198831198671015840

12057221198831198671015840

1198691015840

11198691015840

20

lowast minus

1

2

120573119868 0 0 0 0

lowast lowast minus

1

2

120573119868 0 0 0

lowast lowast lowast minus

1

2

119883 0 0

lowast lowast lowast lowast minus

1

2

119883 0

lowast lowast lowast lowast lowast 120573119868 minus 119883

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (27)

holds where

1198691= 119860119883 + 119861119884

1198692= 119862119883 + 119863119884

(28)

In this case 119906(119905) = 119870119909(119905) = 119884119883minus1

119909(119905) is a robustlystochastically stabilizing control law

Mathematical Problems in Engineering 5

Proof We consider synthesizing a state feedback controller119906(119905) = 119870119909(119905) to stabilize system (5) Substituting 119906(119905) = 119870119909(119905)into system (5) yields the closed-loop system described by

119909 (119905 + 1) = 119860119909 (119905) + ℎ1(119905 119909 (119905))

+ (119862119909 (119905) + ℎ2(119905 119909 (119905))) 119908 (119905)

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(29)

where 119860 = 119860 + 119861119870 and 119862 = 119862 + 119863119870 By Theorem 7 system(29) is robustly stochastically stable if there exists a matrix119876 0 lt 119876 lt 120572119868 such that the following LMI

Ω fl[

[

[

[

[

[

minus119876 + 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867 119860

1015840

119876 119862

1015840

119876

lowast minus

1

2

119876 0

lowast lowast minus

1

2

119876

]

]

]

]

]

]

lt 0

(30)

holds Let 119876minus1 = 119883 and pre- and postmultiply

diag [119883119883119883] (31)

on both sides of inequality (30) and it yields

[

[

[

[

[

[

minus119883 + 21205722

11205721198831198671015840

119867119883 + 21205722

21205721198831198671015840

119867119883 119883119860

1015840

119883119862

1015840

lowast minus

1

2

119883 0

lowast lowast minus

1

2

119883

]

]

]

]

]

]

lt 0

(32)

In order to transform (32) into a suitable LMI form we set120573 = 1120572 then 0 lt 119876 lt 120572119868 is equivalent to

120573119868 minus 119883 lt 0 120573 gt 0 (33)

Combining (33) with (32) and setting the gain matrix 119870 =119884119883minus1 LMI (27) is obtained The proof is completed

33 119867infinControl In this subsectionmain result about robust

119867infin

control will be given via LMI approach

Theorem 10 Consider system (11) with margins 1205721gt 0 and

1205722gt 0 For the given 120574 gt 0 if there exist real matrices 119883 gt 0

and 119884 and scalar 120573 gt 0 satisfying the following LMI

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

minus119883 1198711015840

1205722

11198831198671015840

11205722

21198831198671015840

21198691015840

11198691015840

20 0 0 0 119869

1015840

11198691015840

20

lowast minus119868 0 0 0 0 0 0 0 0 0 0 0

lowast lowast minus

1

3

120573119868 0 0 0 0 0 0 0 0 0 0

lowast lowast lowast minus

1

3

120573119868 0 0 0 0 0 0 0 0 0

lowast lowast lowast lowast minus119883 0 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast minus119883 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast lowast minus1205742

119868 1198601015840

01198621015840

01198721015840

11986001198620

0

lowast lowast lowast lowast lowast lowast lowast minus119883 0 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast minus119883 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119868 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119883 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119883 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast 120573119868 minus 119883

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (34)

where 1198691= 119860119883 + 119861119884 119869

2= 119862119883 + 119863119884 then system (11) is119867

infin

controllable and the robust119867infin

control law is 119906(119905) = 119870119909(119905) =119884119883minus1

119909(119905) for 119905 isin 119873

Proof When ](119905) = 0 byTheorem 9 system (11) is internallystabilizable via 119906(119905) = 119870119909(119905) = 119884119883minus1119909(119905) because LMI (34)implies LMI (27) Next we only need to show 119879 lt 120574

Take 119906(119905) = 119870119909(119905) and choose the Lyapunov function119881(119909(119905)) = 119909

1015840

(119905)119876119909(119905) where

0 lt 119876 lt 120572119868 120572 gt 0 (35)

for some 120572 gt 0 to be determined then for the system

119909 (119905 + 1) = 119860119909 (119905) + 1198600] (119905) + ℎ

1(119905 119909 (119905))

+ (119862119909 (119905) + 1198620] (119905) + ℎ

2(119905 119909 (119905))) 119908 (119905)

119911 (119905) = [

119871119909 (119905)

119872] (119905)]

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(36)

6 Mathematical Problems in Engineering

with 119860 = 119860 + 119861119870 and 119862 = 119862 + 119863119870 we have with 119909(119905) and](119905) independent of 119908(119905) in mind that

119864Δ119881 (119909 (119905)) = 119864 [119881 (119909 (119905 + 1)) minus 119881 (119909 (119905))]

= 119864 [1199091015840

(119905 + 1)119876119909 (119905 + 1) minus 1199091015840

(119905) 119876119909 (119905)]

= 119864 1199091015840

(119905) [119860

1015840

119876119860 + 119862

1015840

119876119862 minus 119876]119909 (119905)

+ 1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + 119909

1015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905))

+ 1199091015840

(119905) [119860

1015840

1198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ℎ1015840

1(119905 119909 (119905)) 119876119860119909 (119905) + ℎ

1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

+ ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ℎ1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

+ ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862

0] (119905)

+ ]1015840 (119905) (119860101584001198761198600+ 1198621015840

01198761198620) ] (119905)

+ ]1015840 (119905) [11986010158400119876119860 + 119862

1015840

0119876119862] 119909 (119905)

+ ]1015840 (119905) 11986010158400119876ℎ1(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

(37)

Set 1199090= 0 and then for any ](119905) isin 1198972

119908(119873 119877119901

)

119911 (119905)2

1198972

119908(119873119879119877119901)minus 1205742

] (119905)21198972

119908(119873119879119877119902)

= 119864

119879

sum

119905=0

[1199091015840

(119905) 1198711015840

119871119909 (119905) + ]1015840 (119905)1198721015840119872] (119905)

minus 1205742]1015840 (119905) ] (119905) + Δ119881 (119905)] minus 1199091015840 (119879)119876119909 (119879)

le 119864

119879

sum

119905=0

1199091015840

(119905) 1198711015840

119871119909 (119905) + ]1015840 (119905)1198721015840119872] (119905)

minus 1205742]1015840 (119905) ] (119905) + ]1015840 (119905) (1198601015840

01198761198600+ 1198621015840

01198761198620) ] (119905)

+ 1199091015840

(119905) [119860

1015840

119876119860 + 119862

1015840

119876119862 minus 119876]119909 (119905)

+ 1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + 119909

1015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905))

+ 1199091015840

(119905) [1198601198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ℎ1015840

1(119905 119909 (119905)) 119876119860119909 (119905) + ℎ

1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

+ ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ℎ1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

+ ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862

0] (119905)

+ ]1015840 (119905) 11986010158400119876ℎ1(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

+ ]1015840 (119905) [11986010158400119876119860 + 119862

1015840

0119876119862] 119909 (119905)

(38)

Using Lemma 6 and setting 1199091015840(119905)1198601015840 = 1198801015840 ℎ1(119905 119909(119905)) = 119882

and119873 = 119876 gt 0 we have

1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + ℎ

1015840

1(119905 119909 (119905)) 119876119860119909 (119905)

le 1199091015840

(119905) 119860

1015840

119876119860119909 (119905) + ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

(39)

Similarly the following inequalities can also be obtained

1199091015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

le 1199091015840

(119905) 119862

1015840

119876119862119909 (119905) + ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905))

ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ]1015840 (119905) 1198601015840

0119876ℎ1(119905 119909 (119905))

le ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905)) + ]1015840 (119905) 1198601015840

01198761198600] (119905)

ℎ1015840

2(119905 119909 (119905)) 119876119862

0] (119905) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

le ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

01198761198620] (119905)

(40)

Substituting (39)-(40) into inequality (38) and considering(35) it yields

119911 (119905)2

1198972

119908(119873119879119877119901)minus 1205742

] (119905)21198972

119908(119873119879119877119902)le 119864

119879

sum

119905=0

1199091015840

(119905) [minus119876

+ 2119860

1015840

119876119860 + 2119862

1015840

119876119862 + 1198711015840

119871 + 31205722

11205721198671015840

11198671

+ 31205722

21205721198671015840

21198672] 119909 (119905) + 119909

1015840

(119905) [119860

1015840

1198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ]1015840 (119905) [1198600119876119860 + 119862

0119876119862] 119909

1015840

(119905) + ] (119905) (2119860101584001198761198600

+ 21198621015840

01198761198620minus 1205742

119868 +1198721015840

119872) ] (119905) = 119864119879

sum

119905=0

[

119909 (119905)

] (119905)]

1015840

sdot Ξ [

119909 (119905)

] (119905)]

(41)

where

Ξ fl [Ξ11Ξ12

lowast Ξ22

] (42)

with

Ξ11= minus119876 + 2119860

1015840

119876119860 + 2119862

1015840

119876119862 + 1198711015840

119871 + 31205722

11205721198671015840

11198671

+ 31205722

21205721198671015840

21198672

Ξ12= 119860

1015840

1198761198600+ 119862

1015840

1198761198620

Ξ22= 21198601015840

01198761198600+ 21198621015840

01198761198620minus 1205742

119868 +1198721015840

119872

(43)

Let 119879 rarr infin in (41) then we have

119911 (119905)2

1198972

119908(119873119877119901)minus 1205742

] (119905)21198972

119908(119873119877119902)

le 119864

infin

sum

119905=0

[

119909 (119905)

] (119905)]

1015840

Ξ[

119909 (119905)

] (119905)]

(44)

Mathematical Problems in Engineering 7

It is easy to see that if Ξ lt 0 then 119879 lt 120574 for system (11)Next we give an LMI sufficient condition for Ξ lt 0 Noticethat

Ξ = [

Ξ11minus 119860

1015840

119876119860 119862

1015840

1198761198620

lowast Ξ22minus 1198601015840

01198761198600

]

+ [

119860

1015840

1198601015840

0

]119876 [119860 + 119861119870 1198600] lt 0

lArrrArr

[

[

[

[

Ξ11minus 119860

1015840

119876119860 119862

1015840

1198761198620

119860

1015840

lowast Ξ22minus 1198601015840

011987611986001198600

lowast lowast minus119876minus1

]

]

]

]

lt 0

lArrrArr

[

[

[

[

[

[

[

Ξ110 119860

1015840

119862

1015840

lowast Ξ2211986001198620

lowast lowast minus119876minus1

0

lowast lowast lowast minus119876minus1

]

]

]

]

]

]

]

lt 0

(45)

where

Ξ11= Ξ11minus 119860

1015840

119876119860 minus 119862

1015840

119876119862

Ξ22= Ξ22minus 1198601015840

01198761198600minus 1198621015840

01198761198620

(46)

Using Lemma 5 Ξ lt 0 is equivalent to

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

minus119876 1198711015840

1205722

11198671015840

11205722

21198671015840

2119860

1015840

119876 119862

1015840

119876 0 0 0 0 119860

1015840

119862

1015840

lowast minus119868 0 0 0 0 0 0 0 0 0 0

lowast lowast minus

1

3120572

119868 0 0 0 0 0 0 0 0 0

lowast lowast lowast minus

1

3120572

119868 0 0 0 0 0 0 0 0

lowast lowast lowast lowast minus119876 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast minus119876 0 0 0 0 0 0

lowast lowast lowast lowast lowast lowast minus1205742

119868 1198600119876 1198620119876 119872

1015840

11986001198620

lowast lowast lowast lowast lowast lowast lowast minus119876 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast minus119876 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119868 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119876minus1

0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119876minus1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (47)

It is obvious that seeking 119867infin

gain matrix 119870 needs to solveLMIs (47) and119876minus120572119868 lt 0 Setting119876minus1 = 119883 and 120573 = 1120572 andpre- and postmultiplying

diag [119883 119868 119868 119868 119883119883 119868 119883119883 119868 119868 119868] (48)on both sides of (47) and considering (35) (34) is obtainedimmediately The proof is completed

4 Numerical Examples

This section presents two numerical examples to demonstratethe validity of our main results described above

Example 1 Consider system (5) with parameters as

119860 = [

08 03

04 09

]

119862 = [

03 02

04 02

]

1198671= 1198672= [

1 0

0 1

]

119861 = 119863 = [

1

1

]

119909 (0) = [

1199091(0)

1199092(0)

] = [

50

minus50

]

(49)

For the unforced system (16) with 1205721= 1205722= 03 its

corresponding state locus diagram is made in Figure 1 FromFigure 1 it is easy to see that the status values are of seriousdivergences through 50 iterationsHence the unforced systemis not stable

To design a feedback controller such that the closed-loopsystem is stochastically stable usingMatlab LMI Toolbox we

8 Mathematical Problems in Engineeringx1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

minus2000

0

2000

4000

6000

8000

10000

Figure 1 State trajectories of the autonomous system with 120572 = 03

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 2 State trajectories of the closed-loop system with 120572 = 03

find that a symmetric positive definitematrix119883 a realmatrix119884 and a scalar 120573 given by

119883 = [

3318 0177

0177 1920

]

119884 = [minus1587 minus0930]

120573 = 1868

(50)

solve LMI (27) So we get the feedback gain 119870 =

[minus0455 minus0443] Submitting

119906 (119905) = [minus0455 minus0443] [

1199091(119905)

1199092(119905)

] (51)

into system (5) the state trajectories of the closed-loop systemare shown as in Figure 2

From Figure 2 one can find that the controlled systemachieves stability using the proposed controller Meanwhile

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

minus6000

minus5000

minus4000

minus3000

minus2000

minus1000

0

1000

2000

3000

Figure 3 State trajectories of the autonomous system with 120572 = 01

in the case 120572 le 03 the controlled system maintainsstabilization

In order to show the robustness we use different valuesof 120572 in Example 1 below We reset 120572 = 01 and 120572 =1 in system (5) with the corresponding trajectories shownin Figures 3 and 4 respectively By comparing Figures 13 and 4 intuitively speaking the more value 120572 takesthe more divergence the autonomous system (5) has Byusing Theorem 9 we can get that under the conditionof 120572 = 01 and 120572 = 1 the corresponding controllersare 119906120572=01(119905) = [minus04750 minus04000] [

1199091(119905)

1199092(119905)] and 119906

120572=1(119905) =

[minus04742 minus04016] [1199091(119905)

1199092(119905)] respectively Substitute 119906

120572=01(119905)

and 119906120572=1(119905) into system (5) in turn and the corresponding

closed-loop system is shown in Figures 5 and 6 respectivelyFrom the simulation results we can see that the larger

the value 120572 takes the slower the system converges Thisobservation is reasonable because the larger uncertainty thesystem has the stronger the robustness of controller requires

Example 2 Consider system (11) with parameters as

1198620= [

02 0

0 01

]

1198600= [

03 0

0 03

]

119871 = [

02 0

0 02

]

119872 = [

02 0

0 02

]

1198671= 1198672= [

08 0

0 08

]

(52)

Mathematical Problems in Engineering 9

times104

minus8

minus6

minus4

minus2

0

2

4

6

8

10

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

Figure 4 State trajectories of the autonomous system with 120572 = 1

minus60

minus40

minus20

0

20

40

60

x1andx2

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 5 State trajectories of the closed-loop system with 120572 = 01

x1andx2

t (sec)50454035302520151050

minus500

minus400

minus300

minus200

minus100

0

100

200

300

400

500

Figure 6 State trajectories of the closed-loop system with 120572 = 1

t (sec)302520151050

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

Figure 7 State trajectories of the closed-loop system with 120572 = 03

119860 119861 119862119863 have the same values as in Example 1 Setting 119867infin

norm bound 120574 = 06 and 1205721= 1205722= 03 a group of the

solutions for LMI (34) are

119883 = [

55257 3206

3206 31482

]

119884 = [minus26412 minus15475]

120573 = 30596

(53)

and the119867infin

controller is

119906 (119905) = 119870119909 (119905) = 119884119883minus1

119909 (119905)

= [minus0452 minus0446] [

1199091(119905)

1199092(119905)

]

(54)

The simulation result about Theorem 10 is described inFigure 7This further verifies the effectiveness ofTheorem 10

In order to give a comparison with 120572 = 03 we set 120572 = 01and 120572 = 1 By using Theorem 10 the 119867

infincontroller for 120572 =

01 is 119906(119905) = [minus04737 minus04076] [ 1199091(119905)1199092(119905)] with the simulation

result given in Figure 8 When 120572 = 1 LMI (34) is infeasiblethat is in this case system (11) is not119867

infincontrollable

5 Conclusion

This paper has discussed robust stability stabilization and119867infin

control of a class of nonlinear discrete time stochasticsystems with system state control input and external distur-bance dependent noise Sufficient conditions for stochasticstability stabilization and robust119867

infincontrol law have been

respectively given in terms of LMIs Two examples have alsobeen supplied to show the effectiveness of our main results

Competing Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

10 Mathematical Problems in Engineering

5 10 15 20 25 300

t (sec)

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

x1andx2

Figure 8 State trajectories of the closed-loop system with 120572 = 01

Acknowledgments

This work is supported by the National Natural ScienceFoundation of China (no 61573227) the Research Fundfor the Taishan Scholar Project of Shandong Province ofChina theNatural Science Foundation of Shandong Provinceof China (no 2013ZRE28089) SDUST Research Fund (no2015TDJH105) State Key Laboratory of Alternate Electri-cal Power System with Renewable Energy Sources (noLAPS16011) and the Postgraduate Innovation Funds of ChinaUniversity of Petroleum (East China) (nos YCX2015048 andYCX2015051)

References

[1] H J Kushner Stochastic Stability and Control Academic PressNew York NY USA 1967

[2] R Z Hasrsquominskii Stochastic Stability of Differential EquationsSijtjoff and Noordhoff Alphen Netherlands 1980

[3] X Mao Stochastic Differential Equations and Applications EllisHorwood Chichester UK 2nd edition 2007

[4] M Ait Rami and X Y Zhou ldquoLinearmatrix inequalities Riccatiequations and indefinite stochastic linear quadratic controlsrdquoIEEE Transactions on Automatic Control vol 45 no 6 pp 1131ndash1143 2000

[5] Z Lin J Liu Y Lin and W Zhang ldquoNonlinear stochasticpassivity feedback equivalence and global stabilizationrdquo Inter-national Journal of Robust and Nonlinear Control vol 22 no 9pp 999ndash1018 2012

[6] F Li and Y Liu ldquoGlobal stability and stabilization of moregeneral stochastic nonlinear systemsrdquo Journal of MathematicalAnalysis and Applications vol 413 no 2 pp 841ndash855 2014

[7] S Sathananthan M J Knap and L H Keel ldquoRobust stabilityand stabilization of a class of nonlinear Ito-type stochasticsystems via linear matrix inequalitiesrdquo Stochastic Analysis andApplications vol 31 no 2 pp 235ndash249 2013

[8] Y Xia E-K Boukas P Shi and J Zhang ldquoStability and stabiliza-tion of continuous-time singular hybrid systemsrdquo Automaticavol 45 no 6 pp 1504ndash1509 2009

[9] W Zhang and B-S Chen ldquoOn stabilizability and exact observ-ability of stochastic systems with their applicationsrdquo Automat-ica vol 40 no 1 pp 87ndash94 2004

[10] T Hou W Zhang and B-S Chen ldquoStudy on general stabilityand stabilizability of linear discrete-time stochastic systemsrdquoAsian Journal of Control vol 13 no 6 pp 977ndash987 2011

[11] C S Kubrusly and O L Costa ldquoMean square stability condi-tions for discrete stochastic bilinear systemsrdquo IEEE Transactionson Automatic Control vol 30 no 11 pp 1082ndash1087 1985

[12] Y Li W Zhang and X Liu ldquoStability of nonlinear stochasticdiscrete-time systemsrdquo Journal of Applied Mathematics vol2013 Article ID 356746 8 pages 2013

[13] S Sathananthan M J Knap A Strong and L H Keel ldquoRobuststability and stabilization of a class of nonlinear discrete timestochastic systems an LMI approachrdquoAppliedMathematics andComputation vol 219 no 4 pp 1988ndash1997 2012

[14] W ZhangW Zheng and B S Chen ldquoDetectability observabil-ity and Lyapunov-type theorems of linear discrete time-varyingstochastic systems with multiplicative noiserdquo httparxivorgabs150904379

[15] D Hinrichsen and A J Pritchard ldquoStochastic 119867infinrdquo SIAM

Journal on Control and Optimization vol 36 no 5 pp 1504ndash1538 1998

[16] B S Chen andWZhang ldquoStochastic1198672119867infincontrol with state-

dependent noiserdquo IEEE Transactions on Automatic Control vol49 no 1 pp 45ndash57 2004

[17] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Linear Stochastic Systems SpringerNewYork NY USA 2006

[18] H Li andY Shi ldquoState-feedback119867infincontrol for stochastic time-

delay nonlinear systems with state and disturbance-dependentnoiserdquo International Journal of Control vol 85 no 10 pp 1515ndash1531 2012

[19] I R Petersen V AUgrinovskii andAV SavkinRobust controldesign using H

infin-methods Springer New York NY USA 2000

[20] W Zhang and B-S Chen ldquoState feedback119867infincontrol for a class

of nonlinear stochastic systemsrdquo SIAM Journal on Control andOptimization vol 44 no 6 pp 1973ndash1991 2006

[21] N Berman and U Shaked ldquo119867infin

control for discrete-timenonlinear stochastic systemsrdquo IEEE Transactions on AutomaticControl vol 51 no 6 pp 1041ndash1046 2006

[22] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Discrete-Time Linear Stochastic SystemsSpringer New York NY USA 2010

[23] A El Bouhtouri D Hinrichsen and A J Pritchard ldquo119867infin-

type control for discrete-time stochastic systemsrdquo InternationalJournal of Robust and Nonlinear Control vol 9 no 13 pp 923ndash948 1999

[24] THouW Zhang andHMa ldquoInfinite horizon1198672119867infinoptimal

control for discrete-time Markov jump systems with (x u v)-dependent noiserdquo Journal of Global Optimization vol 57 no 4pp 1245ndash1262 2013

[25] W Zhang Y Huang and L Xie ldquoInfinite horizon stochastic1198672119867infincontrol for discrete-time systems with state and distur-

bance dependent noiserdquo Automatica vol 44 no 9 pp 2306ndash2316 2008

[26] S Elaydi An Introduction to Difference Equation Springer NewYork NY USA 2005

[27] J P LaSalle The Stability and Control of Discrete ProcessesSpringer New York NY USA 1986

Mathematical Problems in Engineering 11

[28] N Athanasopoulos M Lazar C Bohm and F Allgower ldquoOnstability and stabilization of periodic discrete-time systemswithan application to satellite attitude controlrdquo Automatica vol 50no 12 pp 3190ndash3196 2014

[29] O L V Costa and A de Oliveira ldquoOptimal meanndashvariancecontrol for discrete-time linear systems with Markovian jumpsand multiplicative noisesrdquo Automatica vol 48 no 2 pp 304ndash315 2012

[30] Q Ma S Xu Y Zou and J Lu ldquoRobust stability for discrete-time stochastic genetic regulatory networksrdquo Nonlinear Analy-sis Real World Applications vol 12 no 5 pp 2586ndash2595 2011

[31] W Lin and C I Byrnes ldquo119867infincontrol of discrete-time nonlinear

systemsrdquo IEEE Transactions on Automatic Control vol 41 no 4pp 494ndash510 1996

[32] T Zhang Y H Wang X Jiang and W Zhang ldquoA Nash gameapproach to stochastic 119867

2119867infin

control overview and furtherresearch topicsrdquo in Proceedings of the 34th Chinese ControlConference pp 2848ndash2853 Hangzhou China July 2015

[33] SG Peng ldquoA general stochasticmaximumprinciple for optimalcontrol problemsrdquo SIAM Journal on Control and Optimizationvol 28 no 4 pp 966ndash979 1990

[34] X Lin andWZhang ldquoAmaximumprinciple for optimal controlof discrete-time stochastic systems with multiplicative noiserdquoIEEE Transactions on Automatic Control vol 60 no 4 pp 1121ndash1126 2015

[35] Z Du Q Zhang and L Liu ldquoNew delay-dependent robuststability of discrete singular systems with time-varying delayrdquoAsian Journal of Control vol 13 no 1 pp 136ndash147 2011

[36] K-S Park and J-T Lim ldquoRobust stability of non-standard non-linear singularly perturbed discrete systems with uncertaintiesrdquoInternational Journal of Systems Science vol 45 no 3 pp 616ndash624 2014

[37] S Lakshmanan T Senthilkumar and P BalasubramaniamldquoImproved results on robust stability of neutral systemswith mixed time-varying delays and nonlinear perturbationsrdquoApplied Mathematical Modelling vol 35 no 11 pp 5355ndash53682011

[38] X Zhang CWang D Li X Zhou and D Yang ldquoRobust stabil-ity of impulsive Takagi-Sugeno fuzzy systems with parametricuncertaintiesrdquo Information Sciences vol 181 no 23 pp 5278ndash5290 2011

[39] S Shah Z Iwai I Mizumoto and M Deng ldquoSimple adaptivecontrol of processes with time-delayrdquo Journal of Process Controlvol 7 no 6 pp 439ndash449 1997

[40] M Deng and N Bu ldquoRobust control for nonlinear systemsusing passivity-based robust right coprime factorizationrdquo IEEETransactions on Automatic Control vol 57 no 10 pp 2599ndash2604 2012

[41] Z Y Gao and N U Ahmed ldquoFeedback stabilizability ofnonlinear stochastic systems with state-dependent noiserdquo Inter-national Journal of Control vol 45 no 2 pp 729ndash737 1987

[42] D D Siljak and D M Stipanovic ldquoRobust stabilization ofnonlinear systems the LMI approachrdquo Mathematical Problemsin Engineering vol 6 no 5 pp 461ndash493 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Robust Stability, Stabilization, and ...downloads.hindawi.com/journals/mpe/2016/5185784.pdf · tried to discuss a general nonlinear control of discrete time stochastic

Mathematical Problems in Engineering 5

Proof We consider synthesizing a state feedback controller119906(119905) = 119870119909(119905) to stabilize system (5) Substituting 119906(119905) = 119870119909(119905)into system (5) yields the closed-loop system described by

119909 (119905 + 1) = 119860119909 (119905) + ℎ1(119905 119909 (119905))

+ (119862119909 (119905) + ℎ2(119905 119909 (119905))) 119908 (119905)

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(29)

where 119860 = 119860 + 119861119870 and 119862 = 119862 + 119863119870 By Theorem 7 system(29) is robustly stochastically stable if there exists a matrix119876 0 lt 119876 lt 120572119868 such that the following LMI

Ω fl[

[

[

[

[

[

minus119876 + 21205722

11205721198671015840

119867 + 21205722

21205721198671015840

119867 119860

1015840

119876 119862

1015840

119876

lowast minus

1

2

119876 0

lowast lowast minus

1

2

119876

]

]

]

]

]

]

lt 0

(30)

holds Let 119876minus1 = 119883 and pre- and postmultiply

diag [119883119883119883] (31)

on both sides of inequality (30) and it yields

[

[

[

[

[

[

minus119883 + 21205722

11205721198831198671015840

119867119883 + 21205722

21205721198831198671015840

119867119883 119883119860

1015840

119883119862

1015840

lowast minus

1

2

119883 0

lowast lowast minus

1

2

119883

]

]

]

]

]

]

lt 0

(32)

In order to transform (32) into a suitable LMI form we set120573 = 1120572 then 0 lt 119876 lt 120572119868 is equivalent to

120573119868 minus 119883 lt 0 120573 gt 0 (33)

Combining (33) with (32) and setting the gain matrix 119870 =119884119883minus1 LMI (27) is obtained The proof is completed

33 119867infinControl In this subsectionmain result about robust

119867infin

control will be given via LMI approach

Theorem 10 Consider system (11) with margins 1205721gt 0 and

1205722gt 0 For the given 120574 gt 0 if there exist real matrices 119883 gt 0

and 119884 and scalar 120573 gt 0 satisfying the following LMI

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

minus119883 1198711015840

1205722

11198831198671015840

11205722

21198831198671015840

21198691015840

11198691015840

20 0 0 0 119869

1015840

11198691015840

20

lowast minus119868 0 0 0 0 0 0 0 0 0 0 0

lowast lowast minus

1

3

120573119868 0 0 0 0 0 0 0 0 0 0

lowast lowast lowast minus

1

3

120573119868 0 0 0 0 0 0 0 0 0

lowast lowast lowast lowast minus119883 0 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast minus119883 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast lowast minus1205742

119868 1198601015840

01198621015840

01198721015840

11986001198620

0

lowast lowast lowast lowast lowast lowast lowast minus119883 0 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast minus119883 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119868 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119883 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119883 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast 120573119868 minus 119883

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (34)

where 1198691= 119860119883 + 119861119884 119869

2= 119862119883 + 119863119884 then system (11) is119867

infin

controllable and the robust119867infin

control law is 119906(119905) = 119870119909(119905) =119884119883minus1

119909(119905) for 119905 isin 119873

Proof When ](119905) = 0 byTheorem 9 system (11) is internallystabilizable via 119906(119905) = 119870119909(119905) = 119884119883minus1119909(119905) because LMI (34)implies LMI (27) Next we only need to show 119879 lt 120574

Take 119906(119905) = 119870119909(119905) and choose the Lyapunov function119881(119909(119905)) = 119909

1015840

(119905)119876119909(119905) where

0 lt 119876 lt 120572119868 120572 gt 0 (35)

for some 120572 gt 0 to be determined then for the system

119909 (119905 + 1) = 119860119909 (119905) + 1198600] (119905) + ℎ

1(119905 119909 (119905))

+ (119862119909 (119905) + 1198620] (119905) + ℎ

2(119905 119909 (119905))) 119908 (119905)

119911 (119905) = [

119871119909 (119905)

119872] (119905)]

119909 (0) = 1199090isin 119877119899

119905 isin 119873

(36)

6 Mathematical Problems in Engineering

with 119860 = 119860 + 119861119870 and 119862 = 119862 + 119863119870 we have with 119909(119905) and](119905) independent of 119908(119905) in mind that

119864Δ119881 (119909 (119905)) = 119864 [119881 (119909 (119905 + 1)) minus 119881 (119909 (119905))]

= 119864 [1199091015840

(119905 + 1)119876119909 (119905 + 1) minus 1199091015840

(119905) 119876119909 (119905)]

= 119864 1199091015840

(119905) [119860

1015840

119876119860 + 119862

1015840

119876119862 minus 119876]119909 (119905)

+ 1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + 119909

1015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905))

+ 1199091015840

(119905) [119860

1015840

1198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ℎ1015840

1(119905 119909 (119905)) 119876119860119909 (119905) + ℎ

1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

+ ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ℎ1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

+ ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862

0] (119905)

+ ]1015840 (119905) (119860101584001198761198600+ 1198621015840

01198761198620) ] (119905)

+ ]1015840 (119905) [11986010158400119876119860 + 119862

1015840

0119876119862] 119909 (119905)

+ ]1015840 (119905) 11986010158400119876ℎ1(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

(37)

Set 1199090= 0 and then for any ](119905) isin 1198972

119908(119873 119877119901

)

119911 (119905)2

1198972

119908(119873119879119877119901)minus 1205742

] (119905)21198972

119908(119873119879119877119902)

= 119864

119879

sum

119905=0

[1199091015840

(119905) 1198711015840

119871119909 (119905) + ]1015840 (119905)1198721015840119872] (119905)

minus 1205742]1015840 (119905) ] (119905) + Δ119881 (119905)] minus 1199091015840 (119879)119876119909 (119879)

le 119864

119879

sum

119905=0

1199091015840

(119905) 1198711015840

119871119909 (119905) + ]1015840 (119905)1198721015840119872] (119905)

minus 1205742]1015840 (119905) ] (119905) + ]1015840 (119905) (1198601015840

01198761198600+ 1198621015840

01198761198620) ] (119905)

+ 1199091015840

(119905) [119860

1015840

119876119860 + 119862

1015840

119876119862 minus 119876]119909 (119905)

+ 1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + 119909

1015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905))

+ 1199091015840

(119905) [1198601198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ℎ1015840

1(119905 119909 (119905)) 119876119860119909 (119905) + ℎ

1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

+ ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ℎ1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

+ ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862

0] (119905)

+ ]1015840 (119905) 11986010158400119876ℎ1(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

+ ]1015840 (119905) [11986010158400119876119860 + 119862

1015840

0119876119862] 119909 (119905)

(38)

Using Lemma 6 and setting 1199091015840(119905)1198601015840 = 1198801015840 ℎ1(119905 119909(119905)) = 119882

and119873 = 119876 gt 0 we have

1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + ℎ

1015840

1(119905 119909 (119905)) 119876119860119909 (119905)

le 1199091015840

(119905) 119860

1015840

119876119860119909 (119905) + ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

(39)

Similarly the following inequalities can also be obtained

1199091015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

le 1199091015840

(119905) 119862

1015840

119876119862119909 (119905) + ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905))

ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ]1015840 (119905) 1198601015840

0119876ℎ1(119905 119909 (119905))

le ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905)) + ]1015840 (119905) 1198601015840

01198761198600] (119905)

ℎ1015840

2(119905 119909 (119905)) 119876119862

0] (119905) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

le ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

01198761198620] (119905)

(40)

Substituting (39)-(40) into inequality (38) and considering(35) it yields

119911 (119905)2

1198972

119908(119873119879119877119901)minus 1205742

] (119905)21198972

119908(119873119879119877119902)le 119864

119879

sum

119905=0

1199091015840

(119905) [minus119876

+ 2119860

1015840

119876119860 + 2119862

1015840

119876119862 + 1198711015840

119871 + 31205722

11205721198671015840

11198671

+ 31205722

21205721198671015840

21198672] 119909 (119905) + 119909

1015840

(119905) [119860

1015840

1198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ]1015840 (119905) [1198600119876119860 + 119862

0119876119862] 119909

1015840

(119905) + ] (119905) (2119860101584001198761198600

+ 21198621015840

01198761198620minus 1205742

119868 +1198721015840

119872) ] (119905) = 119864119879

sum

119905=0

[

119909 (119905)

] (119905)]

1015840

sdot Ξ [

119909 (119905)

] (119905)]

(41)

where

Ξ fl [Ξ11Ξ12

lowast Ξ22

] (42)

with

Ξ11= minus119876 + 2119860

1015840

119876119860 + 2119862

1015840

119876119862 + 1198711015840

119871 + 31205722

11205721198671015840

11198671

+ 31205722

21205721198671015840

21198672

Ξ12= 119860

1015840

1198761198600+ 119862

1015840

1198761198620

Ξ22= 21198601015840

01198761198600+ 21198621015840

01198761198620minus 1205742

119868 +1198721015840

119872

(43)

Let 119879 rarr infin in (41) then we have

119911 (119905)2

1198972

119908(119873119877119901)minus 1205742

] (119905)21198972

119908(119873119877119902)

le 119864

infin

sum

119905=0

[

119909 (119905)

] (119905)]

1015840

Ξ[

119909 (119905)

] (119905)]

(44)

Mathematical Problems in Engineering 7

It is easy to see that if Ξ lt 0 then 119879 lt 120574 for system (11)Next we give an LMI sufficient condition for Ξ lt 0 Noticethat

Ξ = [

Ξ11minus 119860

1015840

119876119860 119862

1015840

1198761198620

lowast Ξ22minus 1198601015840

01198761198600

]

+ [

119860

1015840

1198601015840

0

]119876 [119860 + 119861119870 1198600] lt 0

lArrrArr

[

[

[

[

Ξ11minus 119860

1015840

119876119860 119862

1015840

1198761198620

119860

1015840

lowast Ξ22minus 1198601015840

011987611986001198600

lowast lowast minus119876minus1

]

]

]

]

lt 0

lArrrArr

[

[

[

[

[

[

[

Ξ110 119860

1015840

119862

1015840

lowast Ξ2211986001198620

lowast lowast minus119876minus1

0

lowast lowast lowast minus119876minus1

]

]

]

]

]

]

]

lt 0

(45)

where

Ξ11= Ξ11minus 119860

1015840

119876119860 minus 119862

1015840

119876119862

Ξ22= Ξ22minus 1198601015840

01198761198600minus 1198621015840

01198761198620

(46)

Using Lemma 5 Ξ lt 0 is equivalent to

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

minus119876 1198711015840

1205722

11198671015840

11205722

21198671015840

2119860

1015840

119876 119862

1015840

119876 0 0 0 0 119860

1015840

119862

1015840

lowast minus119868 0 0 0 0 0 0 0 0 0 0

lowast lowast minus

1

3120572

119868 0 0 0 0 0 0 0 0 0

lowast lowast lowast minus

1

3120572

119868 0 0 0 0 0 0 0 0

lowast lowast lowast lowast minus119876 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast minus119876 0 0 0 0 0 0

lowast lowast lowast lowast lowast lowast minus1205742

119868 1198600119876 1198620119876 119872

1015840

11986001198620

lowast lowast lowast lowast lowast lowast lowast minus119876 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast minus119876 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119868 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119876minus1

0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119876minus1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (47)

It is obvious that seeking 119867infin

gain matrix 119870 needs to solveLMIs (47) and119876minus120572119868 lt 0 Setting119876minus1 = 119883 and 120573 = 1120572 andpre- and postmultiplying

diag [119883 119868 119868 119868 119883119883 119868 119883119883 119868 119868 119868] (48)on both sides of (47) and considering (35) (34) is obtainedimmediately The proof is completed

4 Numerical Examples

This section presents two numerical examples to demonstratethe validity of our main results described above

Example 1 Consider system (5) with parameters as

119860 = [

08 03

04 09

]

119862 = [

03 02

04 02

]

1198671= 1198672= [

1 0

0 1

]

119861 = 119863 = [

1

1

]

119909 (0) = [

1199091(0)

1199092(0)

] = [

50

minus50

]

(49)

For the unforced system (16) with 1205721= 1205722= 03 its

corresponding state locus diagram is made in Figure 1 FromFigure 1 it is easy to see that the status values are of seriousdivergences through 50 iterationsHence the unforced systemis not stable

To design a feedback controller such that the closed-loopsystem is stochastically stable usingMatlab LMI Toolbox we

8 Mathematical Problems in Engineeringx1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

minus2000

0

2000

4000

6000

8000

10000

Figure 1 State trajectories of the autonomous system with 120572 = 03

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 2 State trajectories of the closed-loop system with 120572 = 03

find that a symmetric positive definitematrix119883 a realmatrix119884 and a scalar 120573 given by

119883 = [

3318 0177

0177 1920

]

119884 = [minus1587 minus0930]

120573 = 1868

(50)

solve LMI (27) So we get the feedback gain 119870 =

[minus0455 minus0443] Submitting

119906 (119905) = [minus0455 minus0443] [

1199091(119905)

1199092(119905)

] (51)

into system (5) the state trajectories of the closed-loop systemare shown as in Figure 2

From Figure 2 one can find that the controlled systemachieves stability using the proposed controller Meanwhile

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

minus6000

minus5000

minus4000

minus3000

minus2000

minus1000

0

1000

2000

3000

Figure 3 State trajectories of the autonomous system with 120572 = 01

in the case 120572 le 03 the controlled system maintainsstabilization

In order to show the robustness we use different valuesof 120572 in Example 1 below We reset 120572 = 01 and 120572 =1 in system (5) with the corresponding trajectories shownin Figures 3 and 4 respectively By comparing Figures 13 and 4 intuitively speaking the more value 120572 takesthe more divergence the autonomous system (5) has Byusing Theorem 9 we can get that under the conditionof 120572 = 01 and 120572 = 1 the corresponding controllersare 119906120572=01(119905) = [minus04750 minus04000] [

1199091(119905)

1199092(119905)] and 119906

120572=1(119905) =

[minus04742 minus04016] [1199091(119905)

1199092(119905)] respectively Substitute 119906

120572=01(119905)

and 119906120572=1(119905) into system (5) in turn and the corresponding

closed-loop system is shown in Figures 5 and 6 respectivelyFrom the simulation results we can see that the larger

the value 120572 takes the slower the system converges Thisobservation is reasonable because the larger uncertainty thesystem has the stronger the robustness of controller requires

Example 2 Consider system (11) with parameters as

1198620= [

02 0

0 01

]

1198600= [

03 0

0 03

]

119871 = [

02 0

0 02

]

119872 = [

02 0

0 02

]

1198671= 1198672= [

08 0

0 08

]

(52)

Mathematical Problems in Engineering 9

times104

minus8

minus6

minus4

minus2

0

2

4

6

8

10

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

Figure 4 State trajectories of the autonomous system with 120572 = 1

minus60

minus40

minus20

0

20

40

60

x1andx2

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 5 State trajectories of the closed-loop system with 120572 = 01

x1andx2

t (sec)50454035302520151050

minus500

minus400

minus300

minus200

minus100

0

100

200

300

400

500

Figure 6 State trajectories of the closed-loop system with 120572 = 1

t (sec)302520151050

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

Figure 7 State trajectories of the closed-loop system with 120572 = 03

119860 119861 119862119863 have the same values as in Example 1 Setting 119867infin

norm bound 120574 = 06 and 1205721= 1205722= 03 a group of the

solutions for LMI (34) are

119883 = [

55257 3206

3206 31482

]

119884 = [minus26412 minus15475]

120573 = 30596

(53)

and the119867infin

controller is

119906 (119905) = 119870119909 (119905) = 119884119883minus1

119909 (119905)

= [minus0452 minus0446] [

1199091(119905)

1199092(119905)

]

(54)

The simulation result about Theorem 10 is described inFigure 7This further verifies the effectiveness ofTheorem 10

In order to give a comparison with 120572 = 03 we set 120572 = 01and 120572 = 1 By using Theorem 10 the 119867

infincontroller for 120572 =

01 is 119906(119905) = [minus04737 minus04076] [ 1199091(119905)1199092(119905)] with the simulation

result given in Figure 8 When 120572 = 1 LMI (34) is infeasiblethat is in this case system (11) is not119867

infincontrollable

5 Conclusion

This paper has discussed robust stability stabilization and119867infin

control of a class of nonlinear discrete time stochasticsystems with system state control input and external distur-bance dependent noise Sufficient conditions for stochasticstability stabilization and robust119867

infincontrol law have been

respectively given in terms of LMIs Two examples have alsobeen supplied to show the effectiveness of our main results

Competing Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

10 Mathematical Problems in Engineering

5 10 15 20 25 300

t (sec)

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

x1andx2

Figure 8 State trajectories of the closed-loop system with 120572 = 01

Acknowledgments

This work is supported by the National Natural ScienceFoundation of China (no 61573227) the Research Fundfor the Taishan Scholar Project of Shandong Province ofChina theNatural Science Foundation of Shandong Provinceof China (no 2013ZRE28089) SDUST Research Fund (no2015TDJH105) State Key Laboratory of Alternate Electri-cal Power System with Renewable Energy Sources (noLAPS16011) and the Postgraduate Innovation Funds of ChinaUniversity of Petroleum (East China) (nos YCX2015048 andYCX2015051)

References

[1] H J Kushner Stochastic Stability and Control Academic PressNew York NY USA 1967

[2] R Z Hasrsquominskii Stochastic Stability of Differential EquationsSijtjoff and Noordhoff Alphen Netherlands 1980

[3] X Mao Stochastic Differential Equations and Applications EllisHorwood Chichester UK 2nd edition 2007

[4] M Ait Rami and X Y Zhou ldquoLinearmatrix inequalities Riccatiequations and indefinite stochastic linear quadratic controlsrdquoIEEE Transactions on Automatic Control vol 45 no 6 pp 1131ndash1143 2000

[5] Z Lin J Liu Y Lin and W Zhang ldquoNonlinear stochasticpassivity feedback equivalence and global stabilizationrdquo Inter-national Journal of Robust and Nonlinear Control vol 22 no 9pp 999ndash1018 2012

[6] F Li and Y Liu ldquoGlobal stability and stabilization of moregeneral stochastic nonlinear systemsrdquo Journal of MathematicalAnalysis and Applications vol 413 no 2 pp 841ndash855 2014

[7] S Sathananthan M J Knap and L H Keel ldquoRobust stabilityand stabilization of a class of nonlinear Ito-type stochasticsystems via linear matrix inequalitiesrdquo Stochastic Analysis andApplications vol 31 no 2 pp 235ndash249 2013

[8] Y Xia E-K Boukas P Shi and J Zhang ldquoStability and stabiliza-tion of continuous-time singular hybrid systemsrdquo Automaticavol 45 no 6 pp 1504ndash1509 2009

[9] W Zhang and B-S Chen ldquoOn stabilizability and exact observ-ability of stochastic systems with their applicationsrdquo Automat-ica vol 40 no 1 pp 87ndash94 2004

[10] T Hou W Zhang and B-S Chen ldquoStudy on general stabilityand stabilizability of linear discrete-time stochastic systemsrdquoAsian Journal of Control vol 13 no 6 pp 977ndash987 2011

[11] C S Kubrusly and O L Costa ldquoMean square stability condi-tions for discrete stochastic bilinear systemsrdquo IEEE Transactionson Automatic Control vol 30 no 11 pp 1082ndash1087 1985

[12] Y Li W Zhang and X Liu ldquoStability of nonlinear stochasticdiscrete-time systemsrdquo Journal of Applied Mathematics vol2013 Article ID 356746 8 pages 2013

[13] S Sathananthan M J Knap A Strong and L H Keel ldquoRobuststability and stabilization of a class of nonlinear discrete timestochastic systems an LMI approachrdquoAppliedMathematics andComputation vol 219 no 4 pp 1988ndash1997 2012

[14] W ZhangW Zheng and B S Chen ldquoDetectability observabil-ity and Lyapunov-type theorems of linear discrete time-varyingstochastic systems with multiplicative noiserdquo httparxivorgabs150904379

[15] D Hinrichsen and A J Pritchard ldquoStochastic 119867infinrdquo SIAM

Journal on Control and Optimization vol 36 no 5 pp 1504ndash1538 1998

[16] B S Chen andWZhang ldquoStochastic1198672119867infincontrol with state-

dependent noiserdquo IEEE Transactions on Automatic Control vol49 no 1 pp 45ndash57 2004

[17] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Linear Stochastic Systems SpringerNewYork NY USA 2006

[18] H Li andY Shi ldquoState-feedback119867infincontrol for stochastic time-

delay nonlinear systems with state and disturbance-dependentnoiserdquo International Journal of Control vol 85 no 10 pp 1515ndash1531 2012

[19] I R Petersen V AUgrinovskii andAV SavkinRobust controldesign using H

infin-methods Springer New York NY USA 2000

[20] W Zhang and B-S Chen ldquoState feedback119867infincontrol for a class

of nonlinear stochastic systemsrdquo SIAM Journal on Control andOptimization vol 44 no 6 pp 1973ndash1991 2006

[21] N Berman and U Shaked ldquo119867infin

control for discrete-timenonlinear stochastic systemsrdquo IEEE Transactions on AutomaticControl vol 51 no 6 pp 1041ndash1046 2006

[22] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Discrete-Time Linear Stochastic SystemsSpringer New York NY USA 2010

[23] A El Bouhtouri D Hinrichsen and A J Pritchard ldquo119867infin-

type control for discrete-time stochastic systemsrdquo InternationalJournal of Robust and Nonlinear Control vol 9 no 13 pp 923ndash948 1999

[24] THouW Zhang andHMa ldquoInfinite horizon1198672119867infinoptimal

control for discrete-time Markov jump systems with (x u v)-dependent noiserdquo Journal of Global Optimization vol 57 no 4pp 1245ndash1262 2013

[25] W Zhang Y Huang and L Xie ldquoInfinite horizon stochastic1198672119867infincontrol for discrete-time systems with state and distur-

bance dependent noiserdquo Automatica vol 44 no 9 pp 2306ndash2316 2008

[26] S Elaydi An Introduction to Difference Equation Springer NewYork NY USA 2005

[27] J P LaSalle The Stability and Control of Discrete ProcessesSpringer New York NY USA 1986

Mathematical Problems in Engineering 11

[28] N Athanasopoulos M Lazar C Bohm and F Allgower ldquoOnstability and stabilization of periodic discrete-time systemswithan application to satellite attitude controlrdquo Automatica vol 50no 12 pp 3190ndash3196 2014

[29] O L V Costa and A de Oliveira ldquoOptimal meanndashvariancecontrol for discrete-time linear systems with Markovian jumpsand multiplicative noisesrdquo Automatica vol 48 no 2 pp 304ndash315 2012

[30] Q Ma S Xu Y Zou and J Lu ldquoRobust stability for discrete-time stochastic genetic regulatory networksrdquo Nonlinear Analy-sis Real World Applications vol 12 no 5 pp 2586ndash2595 2011

[31] W Lin and C I Byrnes ldquo119867infincontrol of discrete-time nonlinear

systemsrdquo IEEE Transactions on Automatic Control vol 41 no 4pp 494ndash510 1996

[32] T Zhang Y H Wang X Jiang and W Zhang ldquoA Nash gameapproach to stochastic 119867

2119867infin

control overview and furtherresearch topicsrdquo in Proceedings of the 34th Chinese ControlConference pp 2848ndash2853 Hangzhou China July 2015

[33] SG Peng ldquoA general stochasticmaximumprinciple for optimalcontrol problemsrdquo SIAM Journal on Control and Optimizationvol 28 no 4 pp 966ndash979 1990

[34] X Lin andWZhang ldquoAmaximumprinciple for optimal controlof discrete-time stochastic systems with multiplicative noiserdquoIEEE Transactions on Automatic Control vol 60 no 4 pp 1121ndash1126 2015

[35] Z Du Q Zhang and L Liu ldquoNew delay-dependent robuststability of discrete singular systems with time-varying delayrdquoAsian Journal of Control vol 13 no 1 pp 136ndash147 2011

[36] K-S Park and J-T Lim ldquoRobust stability of non-standard non-linear singularly perturbed discrete systems with uncertaintiesrdquoInternational Journal of Systems Science vol 45 no 3 pp 616ndash624 2014

[37] S Lakshmanan T Senthilkumar and P BalasubramaniamldquoImproved results on robust stability of neutral systemswith mixed time-varying delays and nonlinear perturbationsrdquoApplied Mathematical Modelling vol 35 no 11 pp 5355ndash53682011

[38] X Zhang CWang D Li X Zhou and D Yang ldquoRobust stabil-ity of impulsive Takagi-Sugeno fuzzy systems with parametricuncertaintiesrdquo Information Sciences vol 181 no 23 pp 5278ndash5290 2011

[39] S Shah Z Iwai I Mizumoto and M Deng ldquoSimple adaptivecontrol of processes with time-delayrdquo Journal of Process Controlvol 7 no 6 pp 439ndash449 1997

[40] M Deng and N Bu ldquoRobust control for nonlinear systemsusing passivity-based robust right coprime factorizationrdquo IEEETransactions on Automatic Control vol 57 no 10 pp 2599ndash2604 2012

[41] Z Y Gao and N U Ahmed ldquoFeedback stabilizability ofnonlinear stochastic systems with state-dependent noiserdquo Inter-national Journal of Control vol 45 no 2 pp 729ndash737 1987

[42] D D Siljak and D M Stipanovic ldquoRobust stabilization ofnonlinear systems the LMI approachrdquo Mathematical Problemsin Engineering vol 6 no 5 pp 461ndash493 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Robust Stability, Stabilization, and ...downloads.hindawi.com/journals/mpe/2016/5185784.pdf · tried to discuss a general nonlinear control of discrete time stochastic

6 Mathematical Problems in Engineering

with 119860 = 119860 + 119861119870 and 119862 = 119862 + 119863119870 we have with 119909(119905) and](119905) independent of 119908(119905) in mind that

119864Δ119881 (119909 (119905)) = 119864 [119881 (119909 (119905 + 1)) minus 119881 (119909 (119905))]

= 119864 [1199091015840

(119905 + 1)119876119909 (119905 + 1) minus 1199091015840

(119905) 119876119909 (119905)]

= 119864 1199091015840

(119905) [119860

1015840

119876119860 + 119862

1015840

119876119862 minus 119876]119909 (119905)

+ 1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + 119909

1015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905))

+ 1199091015840

(119905) [119860

1015840

1198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ℎ1015840

1(119905 119909 (119905)) 119876119860119909 (119905) + ℎ

1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

+ ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ℎ1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

+ ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862

0] (119905)

+ ]1015840 (119905) (119860101584001198761198600+ 1198621015840

01198761198620) ] (119905)

+ ]1015840 (119905) [11986010158400119876119860 + 119862

1015840

0119876119862] 119909 (119905)

+ ]1015840 (119905) 11986010158400119876ℎ1(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

(37)

Set 1199090= 0 and then for any ](119905) isin 1198972

119908(119873 119877119901

)

119911 (119905)2

1198972

119908(119873119879119877119901)minus 1205742

] (119905)21198972

119908(119873119879119877119902)

= 119864

119879

sum

119905=0

[1199091015840

(119905) 1198711015840

119871119909 (119905) + ]1015840 (119905)1198721015840119872] (119905)

minus 1205742]1015840 (119905) ] (119905) + Δ119881 (119905)] minus 1199091015840 (119879)119876119909 (119879)

le 119864

119879

sum

119905=0

1199091015840

(119905) 1198711015840

119871119909 (119905) + ]1015840 (119905)1198721015840119872] (119905)

minus 1205742]1015840 (119905) ] (119905) + ]1015840 (119905) (1198601015840

01198761198600+ 1198621015840

01198761198620) ] (119905)

+ 1199091015840

(119905) [119860

1015840

119876119860 + 119862

1015840

119876119862 minus 119876]119909 (119905)

+ 1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + 119909

1015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905))

+ 1199091015840

(119905) [1198601198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ℎ1015840

1(119905 119909 (119905)) 119876119860119909 (119905) + ℎ

1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

+ ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ℎ1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

+ ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862

0] (119905)

+ ]1015840 (119905) 11986010158400119876ℎ1(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

+ ]1015840 (119905) [11986010158400119876119860 + 119862

1015840

0119876119862] 119909 (119905)

(38)

Using Lemma 6 and setting 1199091015840(119905)1198601015840 = 1198801015840 ℎ1(119905 119909(119905)) = 119882

and119873 = 119876 gt 0 we have

1199091015840

(119905) 119860

1015840

119876ℎ1(119905 119909 (119905)) + ℎ

1015840

1(119905 119909 (119905)) 119876119860119909 (119905)

le 1199091015840

(119905) 119860

1015840

119876119860119909 (119905) + ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905))

(39)

Similarly the following inequalities can also be obtained

1199091015840

(119905) 119862

1015840

119876ℎ2(119905 119909 (119905)) + ℎ

1015840

2(119905 119909 (119905)) 119876119862119909 (119905)

le 1199091015840

(119905) 119862

1015840

119876119862119909 (119905) + ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905))

ℎ1015840

1(119905 119909 (119905)) 119876119860

0] (119905) + ]1015840 (119905) 1198601015840

0119876ℎ1(119905 119909 (119905))

le ℎ1015840

1(119905 119909 (119905)) 119876ℎ

1(119905 119909 (119905)) + ]1015840 (119905) 1198601015840

01198761198600] (119905)

ℎ1015840

2(119905 119909 (119905)) 119876119862

0] (119905) + ]1015840 (119905) 1198621015840

0119876ℎ2(119905 119909 (119905))

le ℎ1015840

2(119905 119909 (119905)) 119876ℎ

2(119905 119909 (119905)) + ]1015840 (119905) 1198621015840

01198761198620] (119905)

(40)

Substituting (39)-(40) into inequality (38) and considering(35) it yields

119911 (119905)2

1198972

119908(119873119879119877119901)minus 1205742

] (119905)21198972

119908(119873119879119877119902)le 119864

119879

sum

119905=0

1199091015840

(119905) [minus119876

+ 2119860

1015840

119876119860 + 2119862

1015840

119876119862 + 1198711015840

119871 + 31205722

11205721198671015840

11198671

+ 31205722

21205721198671015840

21198672] 119909 (119905) + 119909

1015840

(119905) [119860

1015840

1198761198600+ 119862

1015840

1198761198620] ] (119905)

+ ]1015840 (119905) [1198600119876119860 + 119862

0119876119862] 119909

1015840

(119905) + ] (119905) (2119860101584001198761198600

+ 21198621015840

01198761198620minus 1205742

119868 +1198721015840

119872) ] (119905) = 119864119879

sum

119905=0

[

119909 (119905)

] (119905)]

1015840

sdot Ξ [

119909 (119905)

] (119905)]

(41)

where

Ξ fl [Ξ11Ξ12

lowast Ξ22

] (42)

with

Ξ11= minus119876 + 2119860

1015840

119876119860 + 2119862

1015840

119876119862 + 1198711015840

119871 + 31205722

11205721198671015840

11198671

+ 31205722

21205721198671015840

21198672

Ξ12= 119860

1015840

1198761198600+ 119862

1015840

1198761198620

Ξ22= 21198601015840

01198761198600+ 21198621015840

01198761198620minus 1205742

119868 +1198721015840

119872

(43)

Let 119879 rarr infin in (41) then we have

119911 (119905)2

1198972

119908(119873119877119901)minus 1205742

] (119905)21198972

119908(119873119877119902)

le 119864

infin

sum

119905=0

[

119909 (119905)

] (119905)]

1015840

Ξ[

119909 (119905)

] (119905)]

(44)

Mathematical Problems in Engineering 7

It is easy to see that if Ξ lt 0 then 119879 lt 120574 for system (11)Next we give an LMI sufficient condition for Ξ lt 0 Noticethat

Ξ = [

Ξ11minus 119860

1015840

119876119860 119862

1015840

1198761198620

lowast Ξ22minus 1198601015840

01198761198600

]

+ [

119860

1015840

1198601015840

0

]119876 [119860 + 119861119870 1198600] lt 0

lArrrArr

[

[

[

[

Ξ11minus 119860

1015840

119876119860 119862

1015840

1198761198620

119860

1015840

lowast Ξ22minus 1198601015840

011987611986001198600

lowast lowast minus119876minus1

]

]

]

]

lt 0

lArrrArr

[

[

[

[

[

[

[

Ξ110 119860

1015840

119862

1015840

lowast Ξ2211986001198620

lowast lowast minus119876minus1

0

lowast lowast lowast minus119876minus1

]

]

]

]

]

]

]

lt 0

(45)

where

Ξ11= Ξ11minus 119860

1015840

119876119860 minus 119862

1015840

119876119862

Ξ22= Ξ22minus 1198601015840

01198761198600minus 1198621015840

01198761198620

(46)

Using Lemma 5 Ξ lt 0 is equivalent to

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

minus119876 1198711015840

1205722

11198671015840

11205722

21198671015840

2119860

1015840

119876 119862

1015840

119876 0 0 0 0 119860

1015840

119862

1015840

lowast minus119868 0 0 0 0 0 0 0 0 0 0

lowast lowast minus

1

3120572

119868 0 0 0 0 0 0 0 0 0

lowast lowast lowast minus

1

3120572

119868 0 0 0 0 0 0 0 0

lowast lowast lowast lowast minus119876 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast minus119876 0 0 0 0 0 0

lowast lowast lowast lowast lowast lowast minus1205742

119868 1198600119876 1198620119876 119872

1015840

11986001198620

lowast lowast lowast lowast lowast lowast lowast minus119876 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast minus119876 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119868 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119876minus1

0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119876minus1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (47)

It is obvious that seeking 119867infin

gain matrix 119870 needs to solveLMIs (47) and119876minus120572119868 lt 0 Setting119876minus1 = 119883 and 120573 = 1120572 andpre- and postmultiplying

diag [119883 119868 119868 119868 119883119883 119868 119883119883 119868 119868 119868] (48)on both sides of (47) and considering (35) (34) is obtainedimmediately The proof is completed

4 Numerical Examples

This section presents two numerical examples to demonstratethe validity of our main results described above

Example 1 Consider system (5) with parameters as

119860 = [

08 03

04 09

]

119862 = [

03 02

04 02

]

1198671= 1198672= [

1 0

0 1

]

119861 = 119863 = [

1

1

]

119909 (0) = [

1199091(0)

1199092(0)

] = [

50

minus50

]

(49)

For the unforced system (16) with 1205721= 1205722= 03 its

corresponding state locus diagram is made in Figure 1 FromFigure 1 it is easy to see that the status values are of seriousdivergences through 50 iterationsHence the unforced systemis not stable

To design a feedback controller such that the closed-loopsystem is stochastically stable usingMatlab LMI Toolbox we

8 Mathematical Problems in Engineeringx1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

minus2000

0

2000

4000

6000

8000

10000

Figure 1 State trajectories of the autonomous system with 120572 = 03

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 2 State trajectories of the closed-loop system with 120572 = 03

find that a symmetric positive definitematrix119883 a realmatrix119884 and a scalar 120573 given by

119883 = [

3318 0177

0177 1920

]

119884 = [minus1587 minus0930]

120573 = 1868

(50)

solve LMI (27) So we get the feedback gain 119870 =

[minus0455 minus0443] Submitting

119906 (119905) = [minus0455 minus0443] [

1199091(119905)

1199092(119905)

] (51)

into system (5) the state trajectories of the closed-loop systemare shown as in Figure 2

From Figure 2 one can find that the controlled systemachieves stability using the proposed controller Meanwhile

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

minus6000

minus5000

minus4000

minus3000

minus2000

minus1000

0

1000

2000

3000

Figure 3 State trajectories of the autonomous system with 120572 = 01

in the case 120572 le 03 the controlled system maintainsstabilization

In order to show the robustness we use different valuesof 120572 in Example 1 below We reset 120572 = 01 and 120572 =1 in system (5) with the corresponding trajectories shownin Figures 3 and 4 respectively By comparing Figures 13 and 4 intuitively speaking the more value 120572 takesthe more divergence the autonomous system (5) has Byusing Theorem 9 we can get that under the conditionof 120572 = 01 and 120572 = 1 the corresponding controllersare 119906120572=01(119905) = [minus04750 minus04000] [

1199091(119905)

1199092(119905)] and 119906

120572=1(119905) =

[minus04742 minus04016] [1199091(119905)

1199092(119905)] respectively Substitute 119906

120572=01(119905)

and 119906120572=1(119905) into system (5) in turn and the corresponding

closed-loop system is shown in Figures 5 and 6 respectivelyFrom the simulation results we can see that the larger

the value 120572 takes the slower the system converges Thisobservation is reasonable because the larger uncertainty thesystem has the stronger the robustness of controller requires

Example 2 Consider system (11) with parameters as

1198620= [

02 0

0 01

]

1198600= [

03 0

0 03

]

119871 = [

02 0

0 02

]

119872 = [

02 0

0 02

]

1198671= 1198672= [

08 0

0 08

]

(52)

Mathematical Problems in Engineering 9

times104

minus8

minus6

minus4

minus2

0

2

4

6

8

10

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

Figure 4 State trajectories of the autonomous system with 120572 = 1

minus60

minus40

minus20

0

20

40

60

x1andx2

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 5 State trajectories of the closed-loop system with 120572 = 01

x1andx2

t (sec)50454035302520151050

minus500

minus400

minus300

minus200

minus100

0

100

200

300

400

500

Figure 6 State trajectories of the closed-loop system with 120572 = 1

t (sec)302520151050

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

Figure 7 State trajectories of the closed-loop system with 120572 = 03

119860 119861 119862119863 have the same values as in Example 1 Setting 119867infin

norm bound 120574 = 06 and 1205721= 1205722= 03 a group of the

solutions for LMI (34) are

119883 = [

55257 3206

3206 31482

]

119884 = [minus26412 minus15475]

120573 = 30596

(53)

and the119867infin

controller is

119906 (119905) = 119870119909 (119905) = 119884119883minus1

119909 (119905)

= [minus0452 minus0446] [

1199091(119905)

1199092(119905)

]

(54)

The simulation result about Theorem 10 is described inFigure 7This further verifies the effectiveness ofTheorem 10

In order to give a comparison with 120572 = 03 we set 120572 = 01and 120572 = 1 By using Theorem 10 the 119867

infincontroller for 120572 =

01 is 119906(119905) = [minus04737 minus04076] [ 1199091(119905)1199092(119905)] with the simulation

result given in Figure 8 When 120572 = 1 LMI (34) is infeasiblethat is in this case system (11) is not119867

infincontrollable

5 Conclusion

This paper has discussed robust stability stabilization and119867infin

control of a class of nonlinear discrete time stochasticsystems with system state control input and external distur-bance dependent noise Sufficient conditions for stochasticstability stabilization and robust119867

infincontrol law have been

respectively given in terms of LMIs Two examples have alsobeen supplied to show the effectiveness of our main results

Competing Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

10 Mathematical Problems in Engineering

5 10 15 20 25 300

t (sec)

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

x1andx2

Figure 8 State trajectories of the closed-loop system with 120572 = 01

Acknowledgments

This work is supported by the National Natural ScienceFoundation of China (no 61573227) the Research Fundfor the Taishan Scholar Project of Shandong Province ofChina theNatural Science Foundation of Shandong Provinceof China (no 2013ZRE28089) SDUST Research Fund (no2015TDJH105) State Key Laboratory of Alternate Electri-cal Power System with Renewable Energy Sources (noLAPS16011) and the Postgraduate Innovation Funds of ChinaUniversity of Petroleum (East China) (nos YCX2015048 andYCX2015051)

References

[1] H J Kushner Stochastic Stability and Control Academic PressNew York NY USA 1967

[2] R Z Hasrsquominskii Stochastic Stability of Differential EquationsSijtjoff and Noordhoff Alphen Netherlands 1980

[3] X Mao Stochastic Differential Equations and Applications EllisHorwood Chichester UK 2nd edition 2007

[4] M Ait Rami and X Y Zhou ldquoLinearmatrix inequalities Riccatiequations and indefinite stochastic linear quadratic controlsrdquoIEEE Transactions on Automatic Control vol 45 no 6 pp 1131ndash1143 2000

[5] Z Lin J Liu Y Lin and W Zhang ldquoNonlinear stochasticpassivity feedback equivalence and global stabilizationrdquo Inter-national Journal of Robust and Nonlinear Control vol 22 no 9pp 999ndash1018 2012

[6] F Li and Y Liu ldquoGlobal stability and stabilization of moregeneral stochastic nonlinear systemsrdquo Journal of MathematicalAnalysis and Applications vol 413 no 2 pp 841ndash855 2014

[7] S Sathananthan M J Knap and L H Keel ldquoRobust stabilityand stabilization of a class of nonlinear Ito-type stochasticsystems via linear matrix inequalitiesrdquo Stochastic Analysis andApplications vol 31 no 2 pp 235ndash249 2013

[8] Y Xia E-K Boukas P Shi and J Zhang ldquoStability and stabiliza-tion of continuous-time singular hybrid systemsrdquo Automaticavol 45 no 6 pp 1504ndash1509 2009

[9] W Zhang and B-S Chen ldquoOn stabilizability and exact observ-ability of stochastic systems with their applicationsrdquo Automat-ica vol 40 no 1 pp 87ndash94 2004

[10] T Hou W Zhang and B-S Chen ldquoStudy on general stabilityand stabilizability of linear discrete-time stochastic systemsrdquoAsian Journal of Control vol 13 no 6 pp 977ndash987 2011

[11] C S Kubrusly and O L Costa ldquoMean square stability condi-tions for discrete stochastic bilinear systemsrdquo IEEE Transactionson Automatic Control vol 30 no 11 pp 1082ndash1087 1985

[12] Y Li W Zhang and X Liu ldquoStability of nonlinear stochasticdiscrete-time systemsrdquo Journal of Applied Mathematics vol2013 Article ID 356746 8 pages 2013

[13] S Sathananthan M J Knap A Strong and L H Keel ldquoRobuststability and stabilization of a class of nonlinear discrete timestochastic systems an LMI approachrdquoAppliedMathematics andComputation vol 219 no 4 pp 1988ndash1997 2012

[14] W ZhangW Zheng and B S Chen ldquoDetectability observabil-ity and Lyapunov-type theorems of linear discrete time-varyingstochastic systems with multiplicative noiserdquo httparxivorgabs150904379

[15] D Hinrichsen and A J Pritchard ldquoStochastic 119867infinrdquo SIAM

Journal on Control and Optimization vol 36 no 5 pp 1504ndash1538 1998

[16] B S Chen andWZhang ldquoStochastic1198672119867infincontrol with state-

dependent noiserdquo IEEE Transactions on Automatic Control vol49 no 1 pp 45ndash57 2004

[17] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Linear Stochastic Systems SpringerNewYork NY USA 2006

[18] H Li andY Shi ldquoState-feedback119867infincontrol for stochastic time-

delay nonlinear systems with state and disturbance-dependentnoiserdquo International Journal of Control vol 85 no 10 pp 1515ndash1531 2012

[19] I R Petersen V AUgrinovskii andAV SavkinRobust controldesign using H

infin-methods Springer New York NY USA 2000

[20] W Zhang and B-S Chen ldquoState feedback119867infincontrol for a class

of nonlinear stochastic systemsrdquo SIAM Journal on Control andOptimization vol 44 no 6 pp 1973ndash1991 2006

[21] N Berman and U Shaked ldquo119867infin

control for discrete-timenonlinear stochastic systemsrdquo IEEE Transactions on AutomaticControl vol 51 no 6 pp 1041ndash1046 2006

[22] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Discrete-Time Linear Stochastic SystemsSpringer New York NY USA 2010

[23] A El Bouhtouri D Hinrichsen and A J Pritchard ldquo119867infin-

type control for discrete-time stochastic systemsrdquo InternationalJournal of Robust and Nonlinear Control vol 9 no 13 pp 923ndash948 1999

[24] THouW Zhang andHMa ldquoInfinite horizon1198672119867infinoptimal

control for discrete-time Markov jump systems with (x u v)-dependent noiserdquo Journal of Global Optimization vol 57 no 4pp 1245ndash1262 2013

[25] W Zhang Y Huang and L Xie ldquoInfinite horizon stochastic1198672119867infincontrol for discrete-time systems with state and distur-

bance dependent noiserdquo Automatica vol 44 no 9 pp 2306ndash2316 2008

[26] S Elaydi An Introduction to Difference Equation Springer NewYork NY USA 2005

[27] J P LaSalle The Stability and Control of Discrete ProcessesSpringer New York NY USA 1986

Mathematical Problems in Engineering 11

[28] N Athanasopoulos M Lazar C Bohm and F Allgower ldquoOnstability and stabilization of periodic discrete-time systemswithan application to satellite attitude controlrdquo Automatica vol 50no 12 pp 3190ndash3196 2014

[29] O L V Costa and A de Oliveira ldquoOptimal meanndashvariancecontrol for discrete-time linear systems with Markovian jumpsand multiplicative noisesrdquo Automatica vol 48 no 2 pp 304ndash315 2012

[30] Q Ma S Xu Y Zou and J Lu ldquoRobust stability for discrete-time stochastic genetic regulatory networksrdquo Nonlinear Analy-sis Real World Applications vol 12 no 5 pp 2586ndash2595 2011

[31] W Lin and C I Byrnes ldquo119867infincontrol of discrete-time nonlinear

systemsrdquo IEEE Transactions on Automatic Control vol 41 no 4pp 494ndash510 1996

[32] T Zhang Y H Wang X Jiang and W Zhang ldquoA Nash gameapproach to stochastic 119867

2119867infin

control overview and furtherresearch topicsrdquo in Proceedings of the 34th Chinese ControlConference pp 2848ndash2853 Hangzhou China July 2015

[33] SG Peng ldquoA general stochasticmaximumprinciple for optimalcontrol problemsrdquo SIAM Journal on Control and Optimizationvol 28 no 4 pp 966ndash979 1990

[34] X Lin andWZhang ldquoAmaximumprinciple for optimal controlof discrete-time stochastic systems with multiplicative noiserdquoIEEE Transactions on Automatic Control vol 60 no 4 pp 1121ndash1126 2015

[35] Z Du Q Zhang and L Liu ldquoNew delay-dependent robuststability of discrete singular systems with time-varying delayrdquoAsian Journal of Control vol 13 no 1 pp 136ndash147 2011

[36] K-S Park and J-T Lim ldquoRobust stability of non-standard non-linear singularly perturbed discrete systems with uncertaintiesrdquoInternational Journal of Systems Science vol 45 no 3 pp 616ndash624 2014

[37] S Lakshmanan T Senthilkumar and P BalasubramaniamldquoImproved results on robust stability of neutral systemswith mixed time-varying delays and nonlinear perturbationsrdquoApplied Mathematical Modelling vol 35 no 11 pp 5355ndash53682011

[38] X Zhang CWang D Li X Zhou and D Yang ldquoRobust stabil-ity of impulsive Takagi-Sugeno fuzzy systems with parametricuncertaintiesrdquo Information Sciences vol 181 no 23 pp 5278ndash5290 2011

[39] S Shah Z Iwai I Mizumoto and M Deng ldquoSimple adaptivecontrol of processes with time-delayrdquo Journal of Process Controlvol 7 no 6 pp 439ndash449 1997

[40] M Deng and N Bu ldquoRobust control for nonlinear systemsusing passivity-based robust right coprime factorizationrdquo IEEETransactions on Automatic Control vol 57 no 10 pp 2599ndash2604 2012

[41] Z Y Gao and N U Ahmed ldquoFeedback stabilizability ofnonlinear stochastic systems with state-dependent noiserdquo Inter-national Journal of Control vol 45 no 2 pp 729ndash737 1987

[42] D D Siljak and D M Stipanovic ldquoRobust stabilization ofnonlinear systems the LMI approachrdquo Mathematical Problemsin Engineering vol 6 no 5 pp 461ndash493 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Robust Stability, Stabilization, and ...downloads.hindawi.com/journals/mpe/2016/5185784.pdf · tried to discuss a general nonlinear control of discrete time stochastic

Mathematical Problems in Engineering 7

It is easy to see that if Ξ lt 0 then 119879 lt 120574 for system (11)Next we give an LMI sufficient condition for Ξ lt 0 Noticethat

Ξ = [

Ξ11minus 119860

1015840

119876119860 119862

1015840

1198761198620

lowast Ξ22minus 1198601015840

01198761198600

]

+ [

119860

1015840

1198601015840

0

]119876 [119860 + 119861119870 1198600] lt 0

lArrrArr

[

[

[

[

Ξ11minus 119860

1015840

119876119860 119862

1015840

1198761198620

119860

1015840

lowast Ξ22minus 1198601015840

011987611986001198600

lowast lowast minus119876minus1

]

]

]

]

lt 0

lArrrArr

[

[

[

[

[

[

[

Ξ110 119860

1015840

119862

1015840

lowast Ξ2211986001198620

lowast lowast minus119876minus1

0

lowast lowast lowast minus119876minus1

]

]

]

]

]

]

]

lt 0

(45)

where

Ξ11= Ξ11minus 119860

1015840

119876119860 minus 119862

1015840

119876119862

Ξ22= Ξ22minus 1198601015840

01198761198600minus 1198621015840

01198761198620

(46)

Using Lemma 5 Ξ lt 0 is equivalent to

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

minus119876 1198711015840

1205722

11198671015840

11205722

21198671015840

2119860

1015840

119876 119862

1015840

119876 0 0 0 0 119860

1015840

119862

1015840

lowast minus119868 0 0 0 0 0 0 0 0 0 0

lowast lowast minus

1

3120572

119868 0 0 0 0 0 0 0 0 0

lowast lowast lowast minus

1

3120572

119868 0 0 0 0 0 0 0 0

lowast lowast lowast lowast minus119876 0 0 0 0 0 0 0

lowast lowast lowast lowast lowast minus119876 0 0 0 0 0 0

lowast lowast lowast lowast lowast lowast minus1205742

119868 1198600119876 1198620119876 119872

1015840

11986001198620

lowast lowast lowast lowast lowast lowast lowast minus119876 0 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast minus119876 0 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119868 0 0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119876minus1

0

lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast lowast minus119876minus1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (47)

It is obvious that seeking 119867infin

gain matrix 119870 needs to solveLMIs (47) and119876minus120572119868 lt 0 Setting119876minus1 = 119883 and 120573 = 1120572 andpre- and postmultiplying

diag [119883 119868 119868 119868 119883119883 119868 119883119883 119868 119868 119868] (48)on both sides of (47) and considering (35) (34) is obtainedimmediately The proof is completed

4 Numerical Examples

This section presents two numerical examples to demonstratethe validity of our main results described above

Example 1 Consider system (5) with parameters as

119860 = [

08 03

04 09

]

119862 = [

03 02

04 02

]

1198671= 1198672= [

1 0

0 1

]

119861 = 119863 = [

1

1

]

119909 (0) = [

1199091(0)

1199092(0)

] = [

50

minus50

]

(49)

For the unforced system (16) with 1205721= 1205722= 03 its

corresponding state locus diagram is made in Figure 1 FromFigure 1 it is easy to see that the status values are of seriousdivergences through 50 iterationsHence the unforced systemis not stable

To design a feedback controller such that the closed-loopsystem is stochastically stable usingMatlab LMI Toolbox we

8 Mathematical Problems in Engineeringx1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

minus2000

0

2000

4000

6000

8000

10000

Figure 1 State trajectories of the autonomous system with 120572 = 03

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 2 State trajectories of the closed-loop system with 120572 = 03

find that a symmetric positive definitematrix119883 a realmatrix119884 and a scalar 120573 given by

119883 = [

3318 0177

0177 1920

]

119884 = [minus1587 minus0930]

120573 = 1868

(50)

solve LMI (27) So we get the feedback gain 119870 =

[minus0455 minus0443] Submitting

119906 (119905) = [minus0455 minus0443] [

1199091(119905)

1199092(119905)

] (51)

into system (5) the state trajectories of the closed-loop systemare shown as in Figure 2

From Figure 2 one can find that the controlled systemachieves stability using the proposed controller Meanwhile

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

minus6000

minus5000

minus4000

minus3000

minus2000

minus1000

0

1000

2000

3000

Figure 3 State trajectories of the autonomous system with 120572 = 01

in the case 120572 le 03 the controlled system maintainsstabilization

In order to show the robustness we use different valuesof 120572 in Example 1 below We reset 120572 = 01 and 120572 =1 in system (5) with the corresponding trajectories shownin Figures 3 and 4 respectively By comparing Figures 13 and 4 intuitively speaking the more value 120572 takesthe more divergence the autonomous system (5) has Byusing Theorem 9 we can get that under the conditionof 120572 = 01 and 120572 = 1 the corresponding controllersare 119906120572=01(119905) = [minus04750 minus04000] [

1199091(119905)

1199092(119905)] and 119906

120572=1(119905) =

[minus04742 minus04016] [1199091(119905)

1199092(119905)] respectively Substitute 119906

120572=01(119905)

and 119906120572=1(119905) into system (5) in turn and the corresponding

closed-loop system is shown in Figures 5 and 6 respectivelyFrom the simulation results we can see that the larger

the value 120572 takes the slower the system converges Thisobservation is reasonable because the larger uncertainty thesystem has the stronger the robustness of controller requires

Example 2 Consider system (11) with parameters as

1198620= [

02 0

0 01

]

1198600= [

03 0

0 03

]

119871 = [

02 0

0 02

]

119872 = [

02 0

0 02

]

1198671= 1198672= [

08 0

0 08

]

(52)

Mathematical Problems in Engineering 9

times104

minus8

minus6

minus4

minus2

0

2

4

6

8

10

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

Figure 4 State trajectories of the autonomous system with 120572 = 1

minus60

minus40

minus20

0

20

40

60

x1andx2

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 5 State trajectories of the closed-loop system with 120572 = 01

x1andx2

t (sec)50454035302520151050

minus500

minus400

minus300

minus200

minus100

0

100

200

300

400

500

Figure 6 State trajectories of the closed-loop system with 120572 = 1

t (sec)302520151050

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

Figure 7 State trajectories of the closed-loop system with 120572 = 03

119860 119861 119862119863 have the same values as in Example 1 Setting 119867infin

norm bound 120574 = 06 and 1205721= 1205722= 03 a group of the

solutions for LMI (34) are

119883 = [

55257 3206

3206 31482

]

119884 = [minus26412 minus15475]

120573 = 30596

(53)

and the119867infin

controller is

119906 (119905) = 119870119909 (119905) = 119884119883minus1

119909 (119905)

= [minus0452 minus0446] [

1199091(119905)

1199092(119905)

]

(54)

The simulation result about Theorem 10 is described inFigure 7This further verifies the effectiveness ofTheorem 10

In order to give a comparison with 120572 = 03 we set 120572 = 01and 120572 = 1 By using Theorem 10 the 119867

infincontroller for 120572 =

01 is 119906(119905) = [minus04737 minus04076] [ 1199091(119905)1199092(119905)] with the simulation

result given in Figure 8 When 120572 = 1 LMI (34) is infeasiblethat is in this case system (11) is not119867

infincontrollable

5 Conclusion

This paper has discussed robust stability stabilization and119867infin

control of a class of nonlinear discrete time stochasticsystems with system state control input and external distur-bance dependent noise Sufficient conditions for stochasticstability stabilization and robust119867

infincontrol law have been

respectively given in terms of LMIs Two examples have alsobeen supplied to show the effectiveness of our main results

Competing Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

10 Mathematical Problems in Engineering

5 10 15 20 25 300

t (sec)

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

x1andx2

Figure 8 State trajectories of the closed-loop system with 120572 = 01

Acknowledgments

This work is supported by the National Natural ScienceFoundation of China (no 61573227) the Research Fundfor the Taishan Scholar Project of Shandong Province ofChina theNatural Science Foundation of Shandong Provinceof China (no 2013ZRE28089) SDUST Research Fund (no2015TDJH105) State Key Laboratory of Alternate Electri-cal Power System with Renewable Energy Sources (noLAPS16011) and the Postgraduate Innovation Funds of ChinaUniversity of Petroleum (East China) (nos YCX2015048 andYCX2015051)

References

[1] H J Kushner Stochastic Stability and Control Academic PressNew York NY USA 1967

[2] R Z Hasrsquominskii Stochastic Stability of Differential EquationsSijtjoff and Noordhoff Alphen Netherlands 1980

[3] X Mao Stochastic Differential Equations and Applications EllisHorwood Chichester UK 2nd edition 2007

[4] M Ait Rami and X Y Zhou ldquoLinearmatrix inequalities Riccatiequations and indefinite stochastic linear quadratic controlsrdquoIEEE Transactions on Automatic Control vol 45 no 6 pp 1131ndash1143 2000

[5] Z Lin J Liu Y Lin and W Zhang ldquoNonlinear stochasticpassivity feedback equivalence and global stabilizationrdquo Inter-national Journal of Robust and Nonlinear Control vol 22 no 9pp 999ndash1018 2012

[6] F Li and Y Liu ldquoGlobal stability and stabilization of moregeneral stochastic nonlinear systemsrdquo Journal of MathematicalAnalysis and Applications vol 413 no 2 pp 841ndash855 2014

[7] S Sathananthan M J Knap and L H Keel ldquoRobust stabilityand stabilization of a class of nonlinear Ito-type stochasticsystems via linear matrix inequalitiesrdquo Stochastic Analysis andApplications vol 31 no 2 pp 235ndash249 2013

[8] Y Xia E-K Boukas P Shi and J Zhang ldquoStability and stabiliza-tion of continuous-time singular hybrid systemsrdquo Automaticavol 45 no 6 pp 1504ndash1509 2009

[9] W Zhang and B-S Chen ldquoOn stabilizability and exact observ-ability of stochastic systems with their applicationsrdquo Automat-ica vol 40 no 1 pp 87ndash94 2004

[10] T Hou W Zhang and B-S Chen ldquoStudy on general stabilityand stabilizability of linear discrete-time stochastic systemsrdquoAsian Journal of Control vol 13 no 6 pp 977ndash987 2011

[11] C S Kubrusly and O L Costa ldquoMean square stability condi-tions for discrete stochastic bilinear systemsrdquo IEEE Transactionson Automatic Control vol 30 no 11 pp 1082ndash1087 1985

[12] Y Li W Zhang and X Liu ldquoStability of nonlinear stochasticdiscrete-time systemsrdquo Journal of Applied Mathematics vol2013 Article ID 356746 8 pages 2013

[13] S Sathananthan M J Knap A Strong and L H Keel ldquoRobuststability and stabilization of a class of nonlinear discrete timestochastic systems an LMI approachrdquoAppliedMathematics andComputation vol 219 no 4 pp 1988ndash1997 2012

[14] W ZhangW Zheng and B S Chen ldquoDetectability observabil-ity and Lyapunov-type theorems of linear discrete time-varyingstochastic systems with multiplicative noiserdquo httparxivorgabs150904379

[15] D Hinrichsen and A J Pritchard ldquoStochastic 119867infinrdquo SIAM

Journal on Control and Optimization vol 36 no 5 pp 1504ndash1538 1998

[16] B S Chen andWZhang ldquoStochastic1198672119867infincontrol with state-

dependent noiserdquo IEEE Transactions on Automatic Control vol49 no 1 pp 45ndash57 2004

[17] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Linear Stochastic Systems SpringerNewYork NY USA 2006

[18] H Li andY Shi ldquoState-feedback119867infincontrol for stochastic time-

delay nonlinear systems with state and disturbance-dependentnoiserdquo International Journal of Control vol 85 no 10 pp 1515ndash1531 2012

[19] I R Petersen V AUgrinovskii andAV SavkinRobust controldesign using H

infin-methods Springer New York NY USA 2000

[20] W Zhang and B-S Chen ldquoState feedback119867infincontrol for a class

of nonlinear stochastic systemsrdquo SIAM Journal on Control andOptimization vol 44 no 6 pp 1973ndash1991 2006

[21] N Berman and U Shaked ldquo119867infin

control for discrete-timenonlinear stochastic systemsrdquo IEEE Transactions on AutomaticControl vol 51 no 6 pp 1041ndash1046 2006

[22] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Discrete-Time Linear Stochastic SystemsSpringer New York NY USA 2010

[23] A El Bouhtouri D Hinrichsen and A J Pritchard ldquo119867infin-

type control for discrete-time stochastic systemsrdquo InternationalJournal of Robust and Nonlinear Control vol 9 no 13 pp 923ndash948 1999

[24] THouW Zhang andHMa ldquoInfinite horizon1198672119867infinoptimal

control for discrete-time Markov jump systems with (x u v)-dependent noiserdquo Journal of Global Optimization vol 57 no 4pp 1245ndash1262 2013

[25] W Zhang Y Huang and L Xie ldquoInfinite horizon stochastic1198672119867infincontrol for discrete-time systems with state and distur-

bance dependent noiserdquo Automatica vol 44 no 9 pp 2306ndash2316 2008

[26] S Elaydi An Introduction to Difference Equation Springer NewYork NY USA 2005

[27] J P LaSalle The Stability and Control of Discrete ProcessesSpringer New York NY USA 1986

Mathematical Problems in Engineering 11

[28] N Athanasopoulos M Lazar C Bohm and F Allgower ldquoOnstability and stabilization of periodic discrete-time systemswithan application to satellite attitude controlrdquo Automatica vol 50no 12 pp 3190ndash3196 2014

[29] O L V Costa and A de Oliveira ldquoOptimal meanndashvariancecontrol for discrete-time linear systems with Markovian jumpsand multiplicative noisesrdquo Automatica vol 48 no 2 pp 304ndash315 2012

[30] Q Ma S Xu Y Zou and J Lu ldquoRobust stability for discrete-time stochastic genetic regulatory networksrdquo Nonlinear Analy-sis Real World Applications vol 12 no 5 pp 2586ndash2595 2011

[31] W Lin and C I Byrnes ldquo119867infincontrol of discrete-time nonlinear

systemsrdquo IEEE Transactions on Automatic Control vol 41 no 4pp 494ndash510 1996

[32] T Zhang Y H Wang X Jiang and W Zhang ldquoA Nash gameapproach to stochastic 119867

2119867infin

control overview and furtherresearch topicsrdquo in Proceedings of the 34th Chinese ControlConference pp 2848ndash2853 Hangzhou China July 2015

[33] SG Peng ldquoA general stochasticmaximumprinciple for optimalcontrol problemsrdquo SIAM Journal on Control and Optimizationvol 28 no 4 pp 966ndash979 1990

[34] X Lin andWZhang ldquoAmaximumprinciple for optimal controlof discrete-time stochastic systems with multiplicative noiserdquoIEEE Transactions on Automatic Control vol 60 no 4 pp 1121ndash1126 2015

[35] Z Du Q Zhang and L Liu ldquoNew delay-dependent robuststability of discrete singular systems with time-varying delayrdquoAsian Journal of Control vol 13 no 1 pp 136ndash147 2011

[36] K-S Park and J-T Lim ldquoRobust stability of non-standard non-linear singularly perturbed discrete systems with uncertaintiesrdquoInternational Journal of Systems Science vol 45 no 3 pp 616ndash624 2014

[37] S Lakshmanan T Senthilkumar and P BalasubramaniamldquoImproved results on robust stability of neutral systemswith mixed time-varying delays and nonlinear perturbationsrdquoApplied Mathematical Modelling vol 35 no 11 pp 5355ndash53682011

[38] X Zhang CWang D Li X Zhou and D Yang ldquoRobust stabil-ity of impulsive Takagi-Sugeno fuzzy systems with parametricuncertaintiesrdquo Information Sciences vol 181 no 23 pp 5278ndash5290 2011

[39] S Shah Z Iwai I Mizumoto and M Deng ldquoSimple adaptivecontrol of processes with time-delayrdquo Journal of Process Controlvol 7 no 6 pp 439ndash449 1997

[40] M Deng and N Bu ldquoRobust control for nonlinear systemsusing passivity-based robust right coprime factorizationrdquo IEEETransactions on Automatic Control vol 57 no 10 pp 2599ndash2604 2012

[41] Z Y Gao and N U Ahmed ldquoFeedback stabilizability ofnonlinear stochastic systems with state-dependent noiserdquo Inter-national Journal of Control vol 45 no 2 pp 729ndash737 1987

[42] D D Siljak and D M Stipanovic ldquoRobust stabilization ofnonlinear systems the LMI approachrdquo Mathematical Problemsin Engineering vol 6 no 5 pp 461ndash493 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Robust Stability, Stabilization, and ...downloads.hindawi.com/journals/mpe/2016/5185784.pdf · tried to discuss a general nonlinear control of discrete time stochastic

8 Mathematical Problems in Engineeringx1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

minus2000

0

2000

4000

6000

8000

10000

Figure 1 State trajectories of the autonomous system with 120572 = 03

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 2 State trajectories of the closed-loop system with 120572 = 03

find that a symmetric positive definitematrix119883 a realmatrix119884 and a scalar 120573 given by

119883 = [

3318 0177

0177 1920

]

119884 = [minus1587 minus0930]

120573 = 1868

(50)

solve LMI (27) So we get the feedback gain 119870 =

[minus0455 minus0443] Submitting

119906 (119905) = [minus0455 minus0443] [

1199091(119905)

1199092(119905)

] (51)

into system (5) the state trajectories of the closed-loop systemare shown as in Figure 2

From Figure 2 one can find that the controlled systemachieves stability using the proposed controller Meanwhile

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

minus6000

minus5000

minus4000

minus3000

minus2000

minus1000

0

1000

2000

3000

Figure 3 State trajectories of the autonomous system with 120572 = 01

in the case 120572 le 03 the controlled system maintainsstabilization

In order to show the robustness we use different valuesof 120572 in Example 1 below We reset 120572 = 01 and 120572 =1 in system (5) with the corresponding trajectories shownin Figures 3 and 4 respectively By comparing Figures 13 and 4 intuitively speaking the more value 120572 takesthe more divergence the autonomous system (5) has Byusing Theorem 9 we can get that under the conditionof 120572 = 01 and 120572 = 1 the corresponding controllersare 119906120572=01(119905) = [minus04750 minus04000] [

1199091(119905)

1199092(119905)] and 119906

120572=1(119905) =

[minus04742 minus04016] [1199091(119905)

1199092(119905)] respectively Substitute 119906

120572=01(119905)

and 119906120572=1(119905) into system (5) in turn and the corresponding

closed-loop system is shown in Figures 5 and 6 respectivelyFrom the simulation results we can see that the larger

the value 120572 takes the slower the system converges Thisobservation is reasonable because the larger uncertainty thesystem has the stronger the robustness of controller requires

Example 2 Consider system (11) with parameters as

1198620= [

02 0

0 01

]

1198600= [

03 0

0 03

]

119871 = [

02 0

0 02

]

119872 = [

02 0

0 02

]

1198671= 1198672= [

08 0

0 08

]

(52)

Mathematical Problems in Engineering 9

times104

minus8

minus6

minus4

minus2

0

2

4

6

8

10

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

Figure 4 State trajectories of the autonomous system with 120572 = 1

minus60

minus40

minus20

0

20

40

60

x1andx2

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 5 State trajectories of the closed-loop system with 120572 = 01

x1andx2

t (sec)50454035302520151050

minus500

minus400

minus300

minus200

minus100

0

100

200

300

400

500

Figure 6 State trajectories of the closed-loop system with 120572 = 1

t (sec)302520151050

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

Figure 7 State trajectories of the closed-loop system with 120572 = 03

119860 119861 119862119863 have the same values as in Example 1 Setting 119867infin

norm bound 120574 = 06 and 1205721= 1205722= 03 a group of the

solutions for LMI (34) are

119883 = [

55257 3206

3206 31482

]

119884 = [minus26412 minus15475]

120573 = 30596

(53)

and the119867infin

controller is

119906 (119905) = 119870119909 (119905) = 119884119883minus1

119909 (119905)

= [minus0452 minus0446] [

1199091(119905)

1199092(119905)

]

(54)

The simulation result about Theorem 10 is described inFigure 7This further verifies the effectiveness ofTheorem 10

In order to give a comparison with 120572 = 03 we set 120572 = 01and 120572 = 1 By using Theorem 10 the 119867

infincontroller for 120572 =

01 is 119906(119905) = [minus04737 minus04076] [ 1199091(119905)1199092(119905)] with the simulation

result given in Figure 8 When 120572 = 1 LMI (34) is infeasiblethat is in this case system (11) is not119867

infincontrollable

5 Conclusion

This paper has discussed robust stability stabilization and119867infin

control of a class of nonlinear discrete time stochasticsystems with system state control input and external distur-bance dependent noise Sufficient conditions for stochasticstability stabilization and robust119867

infincontrol law have been

respectively given in terms of LMIs Two examples have alsobeen supplied to show the effectiveness of our main results

Competing Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

10 Mathematical Problems in Engineering

5 10 15 20 25 300

t (sec)

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

x1andx2

Figure 8 State trajectories of the closed-loop system with 120572 = 01

Acknowledgments

This work is supported by the National Natural ScienceFoundation of China (no 61573227) the Research Fundfor the Taishan Scholar Project of Shandong Province ofChina theNatural Science Foundation of Shandong Provinceof China (no 2013ZRE28089) SDUST Research Fund (no2015TDJH105) State Key Laboratory of Alternate Electri-cal Power System with Renewable Energy Sources (noLAPS16011) and the Postgraduate Innovation Funds of ChinaUniversity of Petroleum (East China) (nos YCX2015048 andYCX2015051)

References

[1] H J Kushner Stochastic Stability and Control Academic PressNew York NY USA 1967

[2] R Z Hasrsquominskii Stochastic Stability of Differential EquationsSijtjoff and Noordhoff Alphen Netherlands 1980

[3] X Mao Stochastic Differential Equations and Applications EllisHorwood Chichester UK 2nd edition 2007

[4] M Ait Rami and X Y Zhou ldquoLinearmatrix inequalities Riccatiequations and indefinite stochastic linear quadratic controlsrdquoIEEE Transactions on Automatic Control vol 45 no 6 pp 1131ndash1143 2000

[5] Z Lin J Liu Y Lin and W Zhang ldquoNonlinear stochasticpassivity feedback equivalence and global stabilizationrdquo Inter-national Journal of Robust and Nonlinear Control vol 22 no 9pp 999ndash1018 2012

[6] F Li and Y Liu ldquoGlobal stability and stabilization of moregeneral stochastic nonlinear systemsrdquo Journal of MathematicalAnalysis and Applications vol 413 no 2 pp 841ndash855 2014

[7] S Sathananthan M J Knap and L H Keel ldquoRobust stabilityand stabilization of a class of nonlinear Ito-type stochasticsystems via linear matrix inequalitiesrdquo Stochastic Analysis andApplications vol 31 no 2 pp 235ndash249 2013

[8] Y Xia E-K Boukas P Shi and J Zhang ldquoStability and stabiliza-tion of continuous-time singular hybrid systemsrdquo Automaticavol 45 no 6 pp 1504ndash1509 2009

[9] W Zhang and B-S Chen ldquoOn stabilizability and exact observ-ability of stochastic systems with their applicationsrdquo Automat-ica vol 40 no 1 pp 87ndash94 2004

[10] T Hou W Zhang and B-S Chen ldquoStudy on general stabilityand stabilizability of linear discrete-time stochastic systemsrdquoAsian Journal of Control vol 13 no 6 pp 977ndash987 2011

[11] C S Kubrusly and O L Costa ldquoMean square stability condi-tions for discrete stochastic bilinear systemsrdquo IEEE Transactionson Automatic Control vol 30 no 11 pp 1082ndash1087 1985

[12] Y Li W Zhang and X Liu ldquoStability of nonlinear stochasticdiscrete-time systemsrdquo Journal of Applied Mathematics vol2013 Article ID 356746 8 pages 2013

[13] S Sathananthan M J Knap A Strong and L H Keel ldquoRobuststability and stabilization of a class of nonlinear discrete timestochastic systems an LMI approachrdquoAppliedMathematics andComputation vol 219 no 4 pp 1988ndash1997 2012

[14] W ZhangW Zheng and B S Chen ldquoDetectability observabil-ity and Lyapunov-type theorems of linear discrete time-varyingstochastic systems with multiplicative noiserdquo httparxivorgabs150904379

[15] D Hinrichsen and A J Pritchard ldquoStochastic 119867infinrdquo SIAM

Journal on Control and Optimization vol 36 no 5 pp 1504ndash1538 1998

[16] B S Chen andWZhang ldquoStochastic1198672119867infincontrol with state-

dependent noiserdquo IEEE Transactions on Automatic Control vol49 no 1 pp 45ndash57 2004

[17] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Linear Stochastic Systems SpringerNewYork NY USA 2006

[18] H Li andY Shi ldquoState-feedback119867infincontrol for stochastic time-

delay nonlinear systems with state and disturbance-dependentnoiserdquo International Journal of Control vol 85 no 10 pp 1515ndash1531 2012

[19] I R Petersen V AUgrinovskii andAV SavkinRobust controldesign using H

infin-methods Springer New York NY USA 2000

[20] W Zhang and B-S Chen ldquoState feedback119867infincontrol for a class

of nonlinear stochastic systemsrdquo SIAM Journal on Control andOptimization vol 44 no 6 pp 1973ndash1991 2006

[21] N Berman and U Shaked ldquo119867infin

control for discrete-timenonlinear stochastic systemsrdquo IEEE Transactions on AutomaticControl vol 51 no 6 pp 1041ndash1046 2006

[22] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Discrete-Time Linear Stochastic SystemsSpringer New York NY USA 2010

[23] A El Bouhtouri D Hinrichsen and A J Pritchard ldquo119867infin-

type control for discrete-time stochastic systemsrdquo InternationalJournal of Robust and Nonlinear Control vol 9 no 13 pp 923ndash948 1999

[24] THouW Zhang andHMa ldquoInfinite horizon1198672119867infinoptimal

control for discrete-time Markov jump systems with (x u v)-dependent noiserdquo Journal of Global Optimization vol 57 no 4pp 1245ndash1262 2013

[25] W Zhang Y Huang and L Xie ldquoInfinite horizon stochastic1198672119867infincontrol for discrete-time systems with state and distur-

bance dependent noiserdquo Automatica vol 44 no 9 pp 2306ndash2316 2008

[26] S Elaydi An Introduction to Difference Equation Springer NewYork NY USA 2005

[27] J P LaSalle The Stability and Control of Discrete ProcessesSpringer New York NY USA 1986

Mathematical Problems in Engineering 11

[28] N Athanasopoulos M Lazar C Bohm and F Allgower ldquoOnstability and stabilization of periodic discrete-time systemswithan application to satellite attitude controlrdquo Automatica vol 50no 12 pp 3190ndash3196 2014

[29] O L V Costa and A de Oliveira ldquoOptimal meanndashvariancecontrol for discrete-time linear systems with Markovian jumpsand multiplicative noisesrdquo Automatica vol 48 no 2 pp 304ndash315 2012

[30] Q Ma S Xu Y Zou and J Lu ldquoRobust stability for discrete-time stochastic genetic regulatory networksrdquo Nonlinear Analy-sis Real World Applications vol 12 no 5 pp 2586ndash2595 2011

[31] W Lin and C I Byrnes ldquo119867infincontrol of discrete-time nonlinear

systemsrdquo IEEE Transactions on Automatic Control vol 41 no 4pp 494ndash510 1996

[32] T Zhang Y H Wang X Jiang and W Zhang ldquoA Nash gameapproach to stochastic 119867

2119867infin

control overview and furtherresearch topicsrdquo in Proceedings of the 34th Chinese ControlConference pp 2848ndash2853 Hangzhou China July 2015

[33] SG Peng ldquoA general stochasticmaximumprinciple for optimalcontrol problemsrdquo SIAM Journal on Control and Optimizationvol 28 no 4 pp 966ndash979 1990

[34] X Lin andWZhang ldquoAmaximumprinciple for optimal controlof discrete-time stochastic systems with multiplicative noiserdquoIEEE Transactions on Automatic Control vol 60 no 4 pp 1121ndash1126 2015

[35] Z Du Q Zhang and L Liu ldquoNew delay-dependent robuststability of discrete singular systems with time-varying delayrdquoAsian Journal of Control vol 13 no 1 pp 136ndash147 2011

[36] K-S Park and J-T Lim ldquoRobust stability of non-standard non-linear singularly perturbed discrete systems with uncertaintiesrdquoInternational Journal of Systems Science vol 45 no 3 pp 616ndash624 2014

[37] S Lakshmanan T Senthilkumar and P BalasubramaniamldquoImproved results on robust stability of neutral systemswith mixed time-varying delays and nonlinear perturbationsrdquoApplied Mathematical Modelling vol 35 no 11 pp 5355ndash53682011

[38] X Zhang CWang D Li X Zhou and D Yang ldquoRobust stabil-ity of impulsive Takagi-Sugeno fuzzy systems with parametricuncertaintiesrdquo Information Sciences vol 181 no 23 pp 5278ndash5290 2011

[39] S Shah Z Iwai I Mizumoto and M Deng ldquoSimple adaptivecontrol of processes with time-delayrdquo Journal of Process Controlvol 7 no 6 pp 439ndash449 1997

[40] M Deng and N Bu ldquoRobust control for nonlinear systemsusing passivity-based robust right coprime factorizationrdquo IEEETransactions on Automatic Control vol 57 no 10 pp 2599ndash2604 2012

[41] Z Y Gao and N U Ahmed ldquoFeedback stabilizability ofnonlinear stochastic systems with state-dependent noiserdquo Inter-national Journal of Control vol 45 no 2 pp 729ndash737 1987

[42] D D Siljak and D M Stipanovic ldquoRobust stabilization ofnonlinear systems the LMI approachrdquo Mathematical Problemsin Engineering vol 6 no 5 pp 461ndash493 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article Robust Stability, Stabilization, and ...downloads.hindawi.com/journals/mpe/2016/5185784.pdf · tried to discuss a general nonlinear control of discrete time stochastic

Mathematical Problems in Engineering 9

times104

minus8

minus6

minus4

minus2

0

2

4

6

8

10

x1andx2

5 10 15 20 25 30 35 40 45 500

t (sec)

Figure 4 State trajectories of the autonomous system with 120572 = 1

minus60

minus40

minus20

0

20

40

60

x1andx2

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 5 State trajectories of the closed-loop system with 120572 = 01

x1andx2

t (sec)50454035302520151050

minus500

minus400

minus300

minus200

minus100

0

100

200

300

400

500

Figure 6 State trajectories of the closed-loop system with 120572 = 1

t (sec)302520151050

x1andx2

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

Figure 7 State trajectories of the closed-loop system with 120572 = 03

119860 119861 119862119863 have the same values as in Example 1 Setting 119867infin

norm bound 120574 = 06 and 1205721= 1205722= 03 a group of the

solutions for LMI (34) are

119883 = [

55257 3206

3206 31482

]

119884 = [minus26412 minus15475]

120573 = 30596

(53)

and the119867infin

controller is

119906 (119905) = 119870119909 (119905) = 119884119883minus1

119909 (119905)

= [minus0452 minus0446] [

1199091(119905)

1199092(119905)

]

(54)

The simulation result about Theorem 10 is described inFigure 7This further verifies the effectiveness ofTheorem 10

In order to give a comparison with 120572 = 03 we set 120572 = 01and 120572 = 1 By using Theorem 10 the 119867

infincontroller for 120572 =

01 is 119906(119905) = [minus04737 minus04076] [ 1199091(119905)1199092(119905)] with the simulation

result given in Figure 8 When 120572 = 1 LMI (34) is infeasiblethat is in this case system (11) is not119867

infincontrollable

5 Conclusion

This paper has discussed robust stability stabilization and119867infin

control of a class of nonlinear discrete time stochasticsystems with system state control input and external distur-bance dependent noise Sufficient conditions for stochasticstability stabilization and robust119867

infincontrol law have been

respectively given in terms of LMIs Two examples have alsobeen supplied to show the effectiveness of our main results

Competing Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

10 Mathematical Problems in Engineering

5 10 15 20 25 300

t (sec)

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

x1andx2

Figure 8 State trajectories of the closed-loop system with 120572 = 01

Acknowledgments

This work is supported by the National Natural ScienceFoundation of China (no 61573227) the Research Fundfor the Taishan Scholar Project of Shandong Province ofChina theNatural Science Foundation of Shandong Provinceof China (no 2013ZRE28089) SDUST Research Fund (no2015TDJH105) State Key Laboratory of Alternate Electri-cal Power System with Renewable Energy Sources (noLAPS16011) and the Postgraduate Innovation Funds of ChinaUniversity of Petroleum (East China) (nos YCX2015048 andYCX2015051)

References

[1] H J Kushner Stochastic Stability and Control Academic PressNew York NY USA 1967

[2] R Z Hasrsquominskii Stochastic Stability of Differential EquationsSijtjoff and Noordhoff Alphen Netherlands 1980

[3] X Mao Stochastic Differential Equations and Applications EllisHorwood Chichester UK 2nd edition 2007

[4] M Ait Rami and X Y Zhou ldquoLinearmatrix inequalities Riccatiequations and indefinite stochastic linear quadratic controlsrdquoIEEE Transactions on Automatic Control vol 45 no 6 pp 1131ndash1143 2000

[5] Z Lin J Liu Y Lin and W Zhang ldquoNonlinear stochasticpassivity feedback equivalence and global stabilizationrdquo Inter-national Journal of Robust and Nonlinear Control vol 22 no 9pp 999ndash1018 2012

[6] F Li and Y Liu ldquoGlobal stability and stabilization of moregeneral stochastic nonlinear systemsrdquo Journal of MathematicalAnalysis and Applications vol 413 no 2 pp 841ndash855 2014

[7] S Sathananthan M J Knap and L H Keel ldquoRobust stabilityand stabilization of a class of nonlinear Ito-type stochasticsystems via linear matrix inequalitiesrdquo Stochastic Analysis andApplications vol 31 no 2 pp 235ndash249 2013

[8] Y Xia E-K Boukas P Shi and J Zhang ldquoStability and stabiliza-tion of continuous-time singular hybrid systemsrdquo Automaticavol 45 no 6 pp 1504ndash1509 2009

[9] W Zhang and B-S Chen ldquoOn stabilizability and exact observ-ability of stochastic systems with their applicationsrdquo Automat-ica vol 40 no 1 pp 87ndash94 2004

[10] T Hou W Zhang and B-S Chen ldquoStudy on general stabilityand stabilizability of linear discrete-time stochastic systemsrdquoAsian Journal of Control vol 13 no 6 pp 977ndash987 2011

[11] C S Kubrusly and O L Costa ldquoMean square stability condi-tions for discrete stochastic bilinear systemsrdquo IEEE Transactionson Automatic Control vol 30 no 11 pp 1082ndash1087 1985

[12] Y Li W Zhang and X Liu ldquoStability of nonlinear stochasticdiscrete-time systemsrdquo Journal of Applied Mathematics vol2013 Article ID 356746 8 pages 2013

[13] S Sathananthan M J Knap A Strong and L H Keel ldquoRobuststability and stabilization of a class of nonlinear discrete timestochastic systems an LMI approachrdquoAppliedMathematics andComputation vol 219 no 4 pp 1988ndash1997 2012

[14] W ZhangW Zheng and B S Chen ldquoDetectability observabil-ity and Lyapunov-type theorems of linear discrete time-varyingstochastic systems with multiplicative noiserdquo httparxivorgabs150904379

[15] D Hinrichsen and A J Pritchard ldquoStochastic 119867infinrdquo SIAM

Journal on Control and Optimization vol 36 no 5 pp 1504ndash1538 1998

[16] B S Chen andWZhang ldquoStochastic1198672119867infincontrol with state-

dependent noiserdquo IEEE Transactions on Automatic Control vol49 no 1 pp 45ndash57 2004

[17] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Linear Stochastic Systems SpringerNewYork NY USA 2006

[18] H Li andY Shi ldquoState-feedback119867infincontrol for stochastic time-

delay nonlinear systems with state and disturbance-dependentnoiserdquo International Journal of Control vol 85 no 10 pp 1515ndash1531 2012

[19] I R Petersen V AUgrinovskii andAV SavkinRobust controldesign using H

infin-methods Springer New York NY USA 2000

[20] W Zhang and B-S Chen ldquoState feedback119867infincontrol for a class

of nonlinear stochastic systemsrdquo SIAM Journal on Control andOptimization vol 44 no 6 pp 1973ndash1991 2006

[21] N Berman and U Shaked ldquo119867infin

control for discrete-timenonlinear stochastic systemsrdquo IEEE Transactions on AutomaticControl vol 51 no 6 pp 1041ndash1046 2006

[22] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Discrete-Time Linear Stochastic SystemsSpringer New York NY USA 2010

[23] A El Bouhtouri D Hinrichsen and A J Pritchard ldquo119867infin-

type control for discrete-time stochastic systemsrdquo InternationalJournal of Robust and Nonlinear Control vol 9 no 13 pp 923ndash948 1999

[24] THouW Zhang andHMa ldquoInfinite horizon1198672119867infinoptimal

control for discrete-time Markov jump systems with (x u v)-dependent noiserdquo Journal of Global Optimization vol 57 no 4pp 1245ndash1262 2013

[25] W Zhang Y Huang and L Xie ldquoInfinite horizon stochastic1198672119867infincontrol for discrete-time systems with state and distur-

bance dependent noiserdquo Automatica vol 44 no 9 pp 2306ndash2316 2008

[26] S Elaydi An Introduction to Difference Equation Springer NewYork NY USA 2005

[27] J P LaSalle The Stability and Control of Discrete ProcessesSpringer New York NY USA 1986

Mathematical Problems in Engineering 11

[28] N Athanasopoulos M Lazar C Bohm and F Allgower ldquoOnstability and stabilization of periodic discrete-time systemswithan application to satellite attitude controlrdquo Automatica vol 50no 12 pp 3190ndash3196 2014

[29] O L V Costa and A de Oliveira ldquoOptimal meanndashvariancecontrol for discrete-time linear systems with Markovian jumpsand multiplicative noisesrdquo Automatica vol 48 no 2 pp 304ndash315 2012

[30] Q Ma S Xu Y Zou and J Lu ldquoRobust stability for discrete-time stochastic genetic regulatory networksrdquo Nonlinear Analy-sis Real World Applications vol 12 no 5 pp 2586ndash2595 2011

[31] W Lin and C I Byrnes ldquo119867infincontrol of discrete-time nonlinear

systemsrdquo IEEE Transactions on Automatic Control vol 41 no 4pp 494ndash510 1996

[32] T Zhang Y H Wang X Jiang and W Zhang ldquoA Nash gameapproach to stochastic 119867

2119867infin

control overview and furtherresearch topicsrdquo in Proceedings of the 34th Chinese ControlConference pp 2848ndash2853 Hangzhou China July 2015

[33] SG Peng ldquoA general stochasticmaximumprinciple for optimalcontrol problemsrdquo SIAM Journal on Control and Optimizationvol 28 no 4 pp 966ndash979 1990

[34] X Lin andWZhang ldquoAmaximumprinciple for optimal controlof discrete-time stochastic systems with multiplicative noiserdquoIEEE Transactions on Automatic Control vol 60 no 4 pp 1121ndash1126 2015

[35] Z Du Q Zhang and L Liu ldquoNew delay-dependent robuststability of discrete singular systems with time-varying delayrdquoAsian Journal of Control vol 13 no 1 pp 136ndash147 2011

[36] K-S Park and J-T Lim ldquoRobust stability of non-standard non-linear singularly perturbed discrete systems with uncertaintiesrdquoInternational Journal of Systems Science vol 45 no 3 pp 616ndash624 2014

[37] S Lakshmanan T Senthilkumar and P BalasubramaniamldquoImproved results on robust stability of neutral systemswith mixed time-varying delays and nonlinear perturbationsrdquoApplied Mathematical Modelling vol 35 no 11 pp 5355ndash53682011

[38] X Zhang CWang D Li X Zhou and D Yang ldquoRobust stabil-ity of impulsive Takagi-Sugeno fuzzy systems with parametricuncertaintiesrdquo Information Sciences vol 181 no 23 pp 5278ndash5290 2011

[39] S Shah Z Iwai I Mizumoto and M Deng ldquoSimple adaptivecontrol of processes with time-delayrdquo Journal of Process Controlvol 7 no 6 pp 439ndash449 1997

[40] M Deng and N Bu ldquoRobust control for nonlinear systemsusing passivity-based robust right coprime factorizationrdquo IEEETransactions on Automatic Control vol 57 no 10 pp 2599ndash2604 2012

[41] Z Y Gao and N U Ahmed ldquoFeedback stabilizability ofnonlinear stochastic systems with state-dependent noiserdquo Inter-national Journal of Control vol 45 no 2 pp 729ndash737 1987

[42] D D Siljak and D M Stipanovic ldquoRobust stabilization ofnonlinear systems the LMI approachrdquo Mathematical Problemsin Engineering vol 6 no 5 pp 461ndash493 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article Robust Stability, Stabilization, and ...downloads.hindawi.com/journals/mpe/2016/5185784.pdf · tried to discuss a general nonlinear control of discrete time stochastic

10 Mathematical Problems in Engineering

5 10 15 20 25 300

t (sec)

minus50

minus40

minus30

minus20

minus10

0

10

20

30

40

50

x1andx2

Figure 8 State trajectories of the closed-loop system with 120572 = 01

Acknowledgments

This work is supported by the National Natural ScienceFoundation of China (no 61573227) the Research Fundfor the Taishan Scholar Project of Shandong Province ofChina theNatural Science Foundation of Shandong Provinceof China (no 2013ZRE28089) SDUST Research Fund (no2015TDJH105) State Key Laboratory of Alternate Electri-cal Power System with Renewable Energy Sources (noLAPS16011) and the Postgraduate Innovation Funds of ChinaUniversity of Petroleum (East China) (nos YCX2015048 andYCX2015051)

References

[1] H J Kushner Stochastic Stability and Control Academic PressNew York NY USA 1967

[2] R Z Hasrsquominskii Stochastic Stability of Differential EquationsSijtjoff and Noordhoff Alphen Netherlands 1980

[3] X Mao Stochastic Differential Equations and Applications EllisHorwood Chichester UK 2nd edition 2007

[4] M Ait Rami and X Y Zhou ldquoLinearmatrix inequalities Riccatiequations and indefinite stochastic linear quadratic controlsrdquoIEEE Transactions on Automatic Control vol 45 no 6 pp 1131ndash1143 2000

[5] Z Lin J Liu Y Lin and W Zhang ldquoNonlinear stochasticpassivity feedback equivalence and global stabilizationrdquo Inter-national Journal of Robust and Nonlinear Control vol 22 no 9pp 999ndash1018 2012

[6] F Li and Y Liu ldquoGlobal stability and stabilization of moregeneral stochastic nonlinear systemsrdquo Journal of MathematicalAnalysis and Applications vol 413 no 2 pp 841ndash855 2014

[7] S Sathananthan M J Knap and L H Keel ldquoRobust stabilityand stabilization of a class of nonlinear Ito-type stochasticsystems via linear matrix inequalitiesrdquo Stochastic Analysis andApplications vol 31 no 2 pp 235ndash249 2013

[8] Y Xia E-K Boukas P Shi and J Zhang ldquoStability and stabiliza-tion of continuous-time singular hybrid systemsrdquo Automaticavol 45 no 6 pp 1504ndash1509 2009

[9] W Zhang and B-S Chen ldquoOn stabilizability and exact observ-ability of stochastic systems with their applicationsrdquo Automat-ica vol 40 no 1 pp 87ndash94 2004

[10] T Hou W Zhang and B-S Chen ldquoStudy on general stabilityand stabilizability of linear discrete-time stochastic systemsrdquoAsian Journal of Control vol 13 no 6 pp 977ndash987 2011

[11] C S Kubrusly and O L Costa ldquoMean square stability condi-tions for discrete stochastic bilinear systemsrdquo IEEE Transactionson Automatic Control vol 30 no 11 pp 1082ndash1087 1985

[12] Y Li W Zhang and X Liu ldquoStability of nonlinear stochasticdiscrete-time systemsrdquo Journal of Applied Mathematics vol2013 Article ID 356746 8 pages 2013

[13] S Sathananthan M J Knap A Strong and L H Keel ldquoRobuststability and stabilization of a class of nonlinear discrete timestochastic systems an LMI approachrdquoAppliedMathematics andComputation vol 219 no 4 pp 1988ndash1997 2012

[14] W ZhangW Zheng and B S Chen ldquoDetectability observabil-ity and Lyapunov-type theorems of linear discrete time-varyingstochastic systems with multiplicative noiserdquo httparxivorgabs150904379

[15] D Hinrichsen and A J Pritchard ldquoStochastic 119867infinrdquo SIAM

Journal on Control and Optimization vol 36 no 5 pp 1504ndash1538 1998

[16] B S Chen andWZhang ldquoStochastic1198672119867infincontrol with state-

dependent noiserdquo IEEE Transactions on Automatic Control vol49 no 1 pp 45ndash57 2004

[17] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Linear Stochastic Systems SpringerNewYork NY USA 2006

[18] H Li andY Shi ldquoState-feedback119867infincontrol for stochastic time-

delay nonlinear systems with state and disturbance-dependentnoiserdquo International Journal of Control vol 85 no 10 pp 1515ndash1531 2012

[19] I R Petersen V AUgrinovskii andAV SavkinRobust controldesign using H

infin-methods Springer New York NY USA 2000

[20] W Zhang and B-S Chen ldquoState feedback119867infincontrol for a class

of nonlinear stochastic systemsrdquo SIAM Journal on Control andOptimization vol 44 no 6 pp 1973ndash1991 2006

[21] N Berman and U Shaked ldquo119867infin

control for discrete-timenonlinear stochastic systemsrdquo IEEE Transactions on AutomaticControl vol 51 no 6 pp 1041ndash1046 2006

[22] V Dragan T Morozan and A-M Stoica Mathematical Meth-ods in Robust Control of Discrete-Time Linear Stochastic SystemsSpringer New York NY USA 2010

[23] A El Bouhtouri D Hinrichsen and A J Pritchard ldquo119867infin-

type control for discrete-time stochastic systemsrdquo InternationalJournal of Robust and Nonlinear Control vol 9 no 13 pp 923ndash948 1999

[24] THouW Zhang andHMa ldquoInfinite horizon1198672119867infinoptimal

control for discrete-time Markov jump systems with (x u v)-dependent noiserdquo Journal of Global Optimization vol 57 no 4pp 1245ndash1262 2013

[25] W Zhang Y Huang and L Xie ldquoInfinite horizon stochastic1198672119867infincontrol for discrete-time systems with state and distur-

bance dependent noiserdquo Automatica vol 44 no 9 pp 2306ndash2316 2008

[26] S Elaydi An Introduction to Difference Equation Springer NewYork NY USA 2005

[27] J P LaSalle The Stability and Control of Discrete ProcessesSpringer New York NY USA 1986

Mathematical Problems in Engineering 11

[28] N Athanasopoulos M Lazar C Bohm and F Allgower ldquoOnstability and stabilization of periodic discrete-time systemswithan application to satellite attitude controlrdquo Automatica vol 50no 12 pp 3190ndash3196 2014

[29] O L V Costa and A de Oliveira ldquoOptimal meanndashvariancecontrol for discrete-time linear systems with Markovian jumpsand multiplicative noisesrdquo Automatica vol 48 no 2 pp 304ndash315 2012

[30] Q Ma S Xu Y Zou and J Lu ldquoRobust stability for discrete-time stochastic genetic regulatory networksrdquo Nonlinear Analy-sis Real World Applications vol 12 no 5 pp 2586ndash2595 2011

[31] W Lin and C I Byrnes ldquo119867infincontrol of discrete-time nonlinear

systemsrdquo IEEE Transactions on Automatic Control vol 41 no 4pp 494ndash510 1996

[32] T Zhang Y H Wang X Jiang and W Zhang ldquoA Nash gameapproach to stochastic 119867

2119867infin

control overview and furtherresearch topicsrdquo in Proceedings of the 34th Chinese ControlConference pp 2848ndash2853 Hangzhou China July 2015

[33] SG Peng ldquoA general stochasticmaximumprinciple for optimalcontrol problemsrdquo SIAM Journal on Control and Optimizationvol 28 no 4 pp 966ndash979 1990

[34] X Lin andWZhang ldquoAmaximumprinciple for optimal controlof discrete-time stochastic systems with multiplicative noiserdquoIEEE Transactions on Automatic Control vol 60 no 4 pp 1121ndash1126 2015

[35] Z Du Q Zhang and L Liu ldquoNew delay-dependent robuststability of discrete singular systems with time-varying delayrdquoAsian Journal of Control vol 13 no 1 pp 136ndash147 2011

[36] K-S Park and J-T Lim ldquoRobust stability of non-standard non-linear singularly perturbed discrete systems with uncertaintiesrdquoInternational Journal of Systems Science vol 45 no 3 pp 616ndash624 2014

[37] S Lakshmanan T Senthilkumar and P BalasubramaniamldquoImproved results on robust stability of neutral systemswith mixed time-varying delays and nonlinear perturbationsrdquoApplied Mathematical Modelling vol 35 no 11 pp 5355ndash53682011

[38] X Zhang CWang D Li X Zhou and D Yang ldquoRobust stabil-ity of impulsive Takagi-Sugeno fuzzy systems with parametricuncertaintiesrdquo Information Sciences vol 181 no 23 pp 5278ndash5290 2011

[39] S Shah Z Iwai I Mizumoto and M Deng ldquoSimple adaptivecontrol of processes with time-delayrdquo Journal of Process Controlvol 7 no 6 pp 439ndash449 1997

[40] M Deng and N Bu ldquoRobust control for nonlinear systemsusing passivity-based robust right coprime factorizationrdquo IEEETransactions on Automatic Control vol 57 no 10 pp 2599ndash2604 2012

[41] Z Y Gao and N U Ahmed ldquoFeedback stabilizability ofnonlinear stochastic systems with state-dependent noiserdquo Inter-national Journal of Control vol 45 no 2 pp 729ndash737 1987

[42] D D Siljak and D M Stipanovic ldquoRobust stabilization ofnonlinear systems the LMI approachrdquo Mathematical Problemsin Engineering vol 6 no 5 pp 461ndash493 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 11: Research Article Robust Stability, Stabilization, and ...downloads.hindawi.com/journals/mpe/2016/5185784.pdf · tried to discuss a general nonlinear control of discrete time stochastic

Mathematical Problems in Engineering 11

[28] N Athanasopoulos M Lazar C Bohm and F Allgower ldquoOnstability and stabilization of periodic discrete-time systemswithan application to satellite attitude controlrdquo Automatica vol 50no 12 pp 3190ndash3196 2014

[29] O L V Costa and A de Oliveira ldquoOptimal meanndashvariancecontrol for discrete-time linear systems with Markovian jumpsand multiplicative noisesrdquo Automatica vol 48 no 2 pp 304ndash315 2012

[30] Q Ma S Xu Y Zou and J Lu ldquoRobust stability for discrete-time stochastic genetic regulatory networksrdquo Nonlinear Analy-sis Real World Applications vol 12 no 5 pp 2586ndash2595 2011

[31] W Lin and C I Byrnes ldquo119867infincontrol of discrete-time nonlinear

systemsrdquo IEEE Transactions on Automatic Control vol 41 no 4pp 494ndash510 1996

[32] T Zhang Y H Wang X Jiang and W Zhang ldquoA Nash gameapproach to stochastic 119867

2119867infin

control overview and furtherresearch topicsrdquo in Proceedings of the 34th Chinese ControlConference pp 2848ndash2853 Hangzhou China July 2015

[33] SG Peng ldquoA general stochasticmaximumprinciple for optimalcontrol problemsrdquo SIAM Journal on Control and Optimizationvol 28 no 4 pp 966ndash979 1990

[34] X Lin andWZhang ldquoAmaximumprinciple for optimal controlof discrete-time stochastic systems with multiplicative noiserdquoIEEE Transactions on Automatic Control vol 60 no 4 pp 1121ndash1126 2015

[35] Z Du Q Zhang and L Liu ldquoNew delay-dependent robuststability of discrete singular systems with time-varying delayrdquoAsian Journal of Control vol 13 no 1 pp 136ndash147 2011

[36] K-S Park and J-T Lim ldquoRobust stability of non-standard non-linear singularly perturbed discrete systems with uncertaintiesrdquoInternational Journal of Systems Science vol 45 no 3 pp 616ndash624 2014

[37] S Lakshmanan T Senthilkumar and P BalasubramaniamldquoImproved results on robust stability of neutral systemswith mixed time-varying delays and nonlinear perturbationsrdquoApplied Mathematical Modelling vol 35 no 11 pp 5355ndash53682011

[38] X Zhang CWang D Li X Zhou and D Yang ldquoRobust stabil-ity of impulsive Takagi-Sugeno fuzzy systems with parametricuncertaintiesrdquo Information Sciences vol 181 no 23 pp 5278ndash5290 2011

[39] S Shah Z Iwai I Mizumoto and M Deng ldquoSimple adaptivecontrol of processes with time-delayrdquo Journal of Process Controlvol 7 no 6 pp 439ndash449 1997

[40] M Deng and N Bu ldquoRobust control for nonlinear systemsusing passivity-based robust right coprime factorizationrdquo IEEETransactions on Automatic Control vol 57 no 10 pp 2599ndash2604 2012

[41] Z Y Gao and N U Ahmed ldquoFeedback stabilizability ofnonlinear stochastic systems with state-dependent noiserdquo Inter-national Journal of Control vol 45 no 2 pp 729ndash737 1987

[42] D D Siljak and D M Stipanovic ldquoRobust stabilization ofnonlinear systems the LMI approachrdquo Mathematical Problemsin Engineering vol 6 no 5 pp 461ndash493 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 12: Research Article Robust Stability, Stabilization, and ...downloads.hindawi.com/journals/mpe/2016/5185784.pdf · tried to discuss a general nonlinear control of discrete time stochastic

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of