Research Article Robust Nonfragile Controllers...

12
Research Article Robust Nonfragile Controllers Design for Fractional Order Large-Scale Uncertain Systems with a Commensurate Order 1<<2 Jianyu Lin 1,2 1 Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China 2 Department of Communication, Shanghai University of Electric Power, Shanghai 200090, China Correspondence should be addressed to Jianyu Lin; [email protected] Received 12 July 2014; Accepted 10 September 2014 Academic Editor: Dan Ye Copyright Β© 2015 Jianyu Lin. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e paper concerns the problem of stabilization of large-scale fractional order uncertain systems with a commensurate order 1<<2 under controller gain uncertainties. e uncertainties are of norm-bounded type. Based on the stability criterion of fractional order system, sufficient conditions on the decentralized stabilization of fractional order large-scale uncertain systems in both cases of additive and multiplicative gain perturbations are established by using the complex Lyapunov inequality. Moreover, the decentralized nonfragile controllers are designed. Finally, some numerical examples are given to validate the proposed method. 1. Introduction In the past decades, a great deal of attention has been paid to the stability and stabilization of large-scale systems [1–7]. is is due to the fact that there exist a large number of large-scale interconnected dynamical systems in many practical physical systems, such as process control systems, computer communication networks, transportation systems, and economic systems. Meanwhile, nonfragile controllers have been nominated by resilient and the fragility of the PID controllers has been analyzed in [8]. e controller gain perturbations can commonly be modeled as uncertain gains which are dependent on uncertain parameters in the literature [9, 10]. e robust nonfragile control problem for uncertain integer order large-scale system has been studied [11–13]. In recent years, the nonfragile control problem has been an attractive topic in theory analysis and practical implement, because of perturbations oο¬…en appearing in the controller gain, which may result in either the actuator degra- dations or the requirements for readjustment of controller gains. e problem of reliable dissipative control within nonfragile control framework has been investigated in [14, 15]. e nonfragile control idea is how to design a feedback control that will be insensitive to perturbations in gains of feedback control. e robust resilient stabilization problem is to design a nonfragile state feedback controller such that the uncertain fractional order large-scale interconnected closed- loop system with a commensurate order 1<<2 is robustly stable for all admissible parameter uncertainties. On the other hand, pioneering works in stability analysis and stabilization of fractional order control systems can be found in [16–20]. e robust stability of fractional order interval systems has been investigated in [21, 22]. It is well known that Matignon’s stability theorem [16] is the basis for stability analysis of the fractional order system by checking the location of eigenvalues in the complex plane. Matignon’s theorem is in fact the pioneering works of stability analysis of the fractional order system. Based on Matignon’s theorem, the stability criteria of fractional order systems have been proposed in both cases of 1 < < 2 and 0 < < 1 in [23, 24]. e necessary and sufficient LMI conditions for stability analysis of a commensurate fractional order system have been established in [23, 24], in which complex Lyapunov inequality holds. However, very few studies provide LMI conditions for the stability analysis of the fractional order large-scale interconnected system in the literature. Our study is mainly motivated by the works [23, 24]. e important feature is that the proposed method can be implemented to Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2015, Article ID 206908, 11 pages http://dx.doi.org/10.1155/2015/206908

Transcript of Research Article Robust Nonfragile Controllers...

Page 1: Research Article Robust Nonfragile Controllers …downloads.hindawi.com/journals/mpe/2015/206908.pdfResearch Article Robust Nonfragile Controllers Design for Fractional Order Large-Scale

Research ArticleRobust Nonfragile Controllers Design forFractional Order Large-Scale Uncertain Systems witha Commensurate Order 1 < 𝛼 < 2

Jianyu Lin1,2

1Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China2Department of Communication, Shanghai University of Electric Power, Shanghai 200090, China

Correspondence should be addressed to Jianyu Lin; [email protected]

Received 12 July 2014; Accepted 10 September 2014

Academic Editor: Dan Ye

Copyright Β© 2015 Jianyu Lin. This is an open access article distributed under the Creative Commons Attribution License, whichpermits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The paper concerns the problem of stabilization of large-scale fractional order uncertain systems with a commensurate order1 < 𝛼 < 2 under controller gain uncertainties. The uncertainties are of norm-bounded type. Based on the stability criterion offractional order system, sufficient conditions on the decentralized stabilization of fractional order large-scale uncertain systems inboth cases of additive and multiplicative gain perturbations are established by using the complex Lyapunov inequality. Moreover,the decentralized nonfragile controllers are designed. Finally, some numerical examples are given to validate the proposedmethod.

1. Introduction

In the past decades, a great deal of attention has been paidto the stability and stabilization of large-scale systems [1–7].This is due to the fact that there exist a large numberof large-scale interconnected dynamical systems in manypractical physical systems, such as process control systems,computer communication networks, transportation systems,and economic systems. Meanwhile, nonfragile controllershave been nominated by resilient and the fragility of thePID controllers has been analyzed in [8]. The controllergain perturbations can commonly be modeled as uncertaingains which are dependent on uncertain parameters in theliterature [9, 10]. The robust nonfragile control problem foruncertain integer order large-scale system has been studied[11–13]. In recent years, the nonfragile control problem hasbeen an attractive topic in theory analysis and practicalimplement, because of perturbations often appearing in thecontroller gain, whichmay result in either the actuator degra-dations or the requirements for readjustment of controllergains. The problem of reliable dissipative control withinnonfragile control framework has been investigated in [14,15]. The nonfragile control idea is how to design a feedbackcontrol that will be insensitive to perturbations in gains of

feedback control.The robust resilient stabilization problem isto design a nonfragile state feedback controller such that theuncertain fractional order large-scale interconnected closed-loop systemwith a commensurate order 1 < 𝛼 < 2 is robustlystable for all admissible parameter uncertainties.

On the other hand, pioneering works in stability analysisand stabilization of fractional order control systems can befound in [16–20]. The robust stability of fractional orderinterval systems has been investigated in [21, 22]. It is wellknown that Matignon’s stability theorem [16] is the basis forstability analysis of the fractional order system by checkingthe location of eigenvalues in the complex plane. Matignon’stheorem is in fact the pioneering works of stability analysisof the fractional order system. Based onMatignon’s theorem,the stability criteria of fractional order systems have beenproposed in both cases of 1 < 𝛼 < 2 and 0 < 𝛼 < 1

in [23, 24]. The necessary and sufficient LMI conditions forstability analysis of a commensurate fractional order systemhave been established in [23, 24], in which complex Lyapunovinequality holds. However, very few studies provide LMIconditions for the stability analysis of the fractional orderlarge-scale interconnected system in the literature. Our studyis mainly motivated by the works [23, 24]. The importantfeature is that the proposed method can be implemented to

Hindawi Publishing CorporationMathematical Problems in EngineeringVolume 2015, Article ID 206908, 11 pageshttp://dx.doi.org/10.1155/2015/206908

Page 2: Research Article Robust Nonfragile Controllers …downloads.hindawi.com/journals/mpe/2015/206908.pdfResearch Article Robust Nonfragile Controllers Design for Fractional Order Large-Scale

2 Mathematical Problems in Engineering

the fractional order large-scale interconnected system. Theobjective of the paper is to design a nonfragile controllerwhich is robust to system uncertainties and resilient tocontroller gain variations for the fractional order large-scaleinterconnected systems with a commensurate order 1 < 𝛼 <

2. Here, it should be also pointed out that [25] only focuseson the case of a fractional order 0 < 𝛼 < 1. This paper isorganized as follows. Some preliminaries and the problemstatement are given in Section 2. The main results of thesufficient condition of stabilization of the fractional ordersystem under additive gain perturbations are presented inSection 3. Furthermore, the decentralized stabilization statefeedback controller are designed. Meanwhile, the LMI resultsof the sufficient condition of stabilization of the fractionalorder system under multiplicative gain perturbations arepresented in Section 4. The examples are given in Section 5to illustrate the effectiveness of our LMI-based results forchecking the stabilization of the fractional order large-scaleinterconnected system. Finally, a brief conclusion is drawn inSection 6.

Notations. Throughout the paper, we denote by π‘Ÿ the conju-gate of the complex number π‘Ÿ. 𝑗 denotes the imaginary unit.𝐼 denotes the identity matrix with appropriate dimensions.block diag denotes the block diagonal matrix. 𝑅𝑛 denotesthe 𝑛-dimensional Euclidean space and π‘…π‘›Γ—π‘š is the set of all𝑛 Γ— π‘š real matrices. 𝑀𝑇 denotes the transpose of 𝑀 andπ‘€βˆ— denotes the Hermitian transpose of𝑀. Re() and Im() are

corresponding to the real and imaginary parts of the matrix,respectively.

2. Preliminaries and Problem Formulation

Let us consider a fractional order large-scale interconnecteduncertain system with a commensurate order 1 < 𝛼 < 2

composed of𝑁 fractional order subsystems:

𝑑𝛼

π‘₯𝑖(𝑑)

𝑑𝑑𝛼

= [𝐴𝑖𝑖+ Δ𝐴𝑖𝑖] π‘₯𝑖(𝑑)

+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

[𝐴𝑖𝑗+ Δ𝐴𝑖𝑗] π‘₯𝑗(𝑑) + 𝐡

𝑖𝑒𝑖(𝑑) ,

(1)

where 𝛼 ∈ 𝑅 is the fractional commensurate order, 𝑖, 𝑗 =

1, 2, . . . 𝑁, and π‘₯𝑖(𝑑) ∈ 𝑅

𝑛𝑖 and 𝑒𝑖(𝑑) ∈ 𝑅

π‘šπ‘– are the stateand input of the 𝑖th fractional order subsystem, respectively.Assume that the nominal systems 𝐴

π‘–π‘–βˆˆ 𝑅𝑛𝑖×𝑛𝑖 , 𝐴

π‘–π‘—βˆˆ 𝑅𝑛𝑖×𝑛𝑖 ,

and π΅π‘–βˆˆ π‘…π‘›π‘–Γ—π‘šπ‘– are constant and of appropriate dimensions

and the pair (𝐴𝑖𝑖,𝐡𝑖) is controllable. The fractional order

subsystems interact with each other through the intercon-nections βˆ‘π‘

𝑗=1,𝑗 =𝑖𝐴𝑖𝑗π‘₯𝑗(𝑑). The main objective of the note is

to find the decentralized local state feedback control law ofthe following form:

𝑒𝑖(𝑑) = (𝐾

𝑖+ Δ𝐾𝑖) π‘₯𝑖(𝑑) , 𝑖 = 1, 2, . . . , 𝑁, (2)

such that the resulting fractional order closed-loop systemis asymptotically stable, where 𝐾

π‘–βˆˆ π‘…π‘šπ‘–Γ—π‘›π‘– is the state

feedback gainmatrix to be designed andΔ𝐾𝑖= 𝐷𝑏𝑖𝐹𝑏𝑖𝐸𝑏𝑖and

Δ𝐾𝑖= 𝐷𝑑𝑖𝐹𝑑𝑖𝐸𝑑𝑖𝐾𝑖represent the additive and multiplicative

gain perturbations, respectively. In this note, the uncertaintyis bounded as follows. The parameter uncertainties consid-ered here are norm-bounded and are of the forms Δ𝐴

𝑖𝑖=

π·π‘Žπ‘–π‘–πΉπ‘Žπ‘–π‘–πΈπ‘Žπ‘–π‘–, πΉπ‘‡π‘Žπ‘–π‘–πΉπ‘Žπ‘–π‘–

≀ 𝐼; Δ𝐴𝑖𝑗= π·π‘Žπ‘–π‘—πΉπ‘Žπ‘–π‘—πΈπ‘Žπ‘–π‘—, πΉπ‘‡π‘Žπ‘–π‘—πΉπ‘Žπ‘–π‘—

≀ 𝐼;Δ𝐾𝑖= 𝐷𝑏𝑖𝐹𝑏𝑖𝐸𝑏𝑖, 𝐹𝑇𝑏𝑖𝐹𝑏𝑖≀ 𝐼; Δ𝐾

𝑖= 𝐷𝑑𝑖𝐹𝑑𝑖𝐸𝑑𝑖𝐾𝑖, 𝐹𝑇𝑑𝑖𝐹𝑑𝑖≀ 𝐼,

where the elements are Lebesgue measurable and π·π‘Žπ‘–π‘–, π·π‘Žπ‘–π‘—,

𝐷𝑏𝑖, 𝐷𝑑𝑖, πΈπ‘Žπ‘–π‘–, πΈπ‘Žπ‘–π‘—, 𝐸𝑏𝑖, and 𝐸

𝑑𝑖are known real matrices

of appropriate dimensions which characterize the structureof the uncertainty. The overall system is described by thecomposite fractional order large-scale state equations

𝑑𝛼

π‘₯ (𝑑)

𝑑𝑑𝛼

= (𝐴 + Δ𝐴) π‘₯ (𝑑) + 𝐡 (𝐾 + Δ𝐾) π‘₯ (𝑑) , (3)

with the composite matrices 𝐴 and𝐾 having the structure

𝐴 =[[

[

𝐴11

β‹… β‹… β‹… 𝐴1𝑁

.

.

. d...

𝐴𝑁1

β‹… β‹… β‹… 𝐴𝑁𝑁

]]

]

,

Δ𝐴 =[[

[

Δ𝐴11

β‹… β‹… β‹… Δ𝐴1𝑁

.

.

. d...

Δ𝐴𝑁1

β‹… β‹… β‹… Δ𝐴𝑁𝑁

]]

]

,

𝐾 = block diag [𝐾1, 𝐾2β‹… β‹… β‹… 𝐾𝑁] ,

Δ𝐾 = block diag [Δ𝐾1, Δ𝐾2β‹… β‹… β‹… Δ𝐾

𝑁] .

(4)

Definition 1 (see [26]). For all nonzero real vectors 𝑋 ∈ 𝑅𝑛,

𝐴 ∈ 𝑅𝑛×𝑛 is real matrix; if the inequality 𝑋𝑇𝐴𝑋 < 0 holds,

then 𝐴 is said to be negative definite matrix.

Definition 2. The fractional order large-scale uncertain sys-tem can be stabilized via decentralized state feedback 𝑒

𝑖(𝑑) =

(𝐾𝑖+Δ𝐾𝑖)π‘₯𝑖(𝑑) if there exists gainmatrix𝐾

π‘–βˆˆ π‘…π‘šπ‘–Γ—π‘›π‘– such that

the closed-loop fractional order large-scale uncertain system𝑑𝛼

π‘₯ (𝑑)

𝑑𝑑𝛼

= (𝐴 + Δ𝐴) π‘₯ (𝑑) + 𝐡 (𝐾 + Δ𝐾) π‘₯ (𝑑) (5)

is asymptotically stable.

3. Nonfragile Controller Design ofFractional Order Large-Scale System withAdditive Gain Perturbations

In this section, the resilient controller synthesis problem isformulated for the fractional order large-scale interconnectedsystem under additive gain perturbations. Sufficient condi-tions are firstly derived for the decentralized stabilizationof fractional order large-scale interconnected system withnorm-bounded uncertainties given by (1). Before proceedingfurther, we will state the following well-known lemmas.We will use the lemmas and theorems to establish suffi-cient conditions on decentralized stabilization of fractionalorder large-scale interconnected system with norm-boundeduncertainties under additive gain perturbations.

Lemma 3 (see [27]). For all 𝐢 ∈ π‘…π‘›Γ—π‘˜, 𝐴, 𝐡 ∈ 𝑅

𝑛×𝑛, 𝐴 β‰₯ 𝐡;then 𝐢𝑇𝐴𝐢 β‰₯ 𝐢

𝑇

𝐡𝐢.

Page 3: Research Article Robust Nonfragile Controllers …downloads.hindawi.com/journals/mpe/2015/206908.pdfResearch Article Robust Nonfragile Controllers Design for Fractional Order Large-Scale

Mathematical Problems in Engineering 3

Lemma 4 (see [27]). For any matrices 𝑋 and π‘Œ with appro-priate dimensions and for any 𝛽 > 0, the following inequalityholds:

𝑋𝑇

π‘Œ + π‘Œπ‘‡

𝑋 < 𝛽𝑋𝑇

𝑋 + π›½βˆ’1

π‘Œπ‘‡

π‘Œ. (6)

Lemma5 (see [28]). The fractional order system𝑑𝛼

π‘₯(𝑑)/𝑑𝑑𝛼

=

𝐴π‘₯(𝑑) with a commensurate order 𝛼 is asymptotically stableif | arg(spec(𝐴))| > 𝛼(πœ‹/2), where 𝛼 is the order of fractionalorder system and spec(𝐴) is the spectrum of all eigenvalues of𝐴.

Lemma 6 (see [23]). Let 1 < 𝛼 < 2 and πœƒ = (𝛼 βˆ’ 1)(πœ‹/2),π‘Ÿ = π‘’π‘—πœƒ. The fractional order system 𝑑

𝛼

π‘₯(𝑑)/𝑑𝑑𝛼

= 𝐴π‘₯(𝑑) witha commensurate order 1 < 𝛼 < 2 is asymptotically stable if andonly if there exist positive definite matrices 𝑃 = 𝑃

𝑇

∈ 𝑅𝑛×𝑛,

such that

[

[

(𝐴𝑃 + 𝑃𝐴𝑇

) sin πœƒ (𝐴𝑃 βˆ’ 𝑃𝐴𝑇

) cos πœƒ

(𝑃𝐴𝑇

βˆ’ 𝐴𝑃) cos πœƒ (𝐴𝑃 + 𝑃𝐴𝑇

) sin πœƒ]

]

< 0, (7)

or equivalently, π‘Ÿπ‘ƒπ΄ + π‘Ÿπ΄π‘‡

𝑃 < 0.

Proof. The idea is mainly based on the geometric analysisof a fractional system stability domain. Based on Lemma 5,the stability domain for a fractional order 1 < 𝛼 < 2 isconvex. By using Linear Matrix Inequalities (LMI) approach,it is obtained as the above LMI. Therefore, it is equivalent toπ‘Ÿπ‘ƒπ΄ + π‘Ÿπ΄

𝑇

𝑃 < 0.

Lemma 7. A complex Hermitian matrix𝑀 satisfies𝑀 < 0 ifand only if the following real LMI inequality holds:

[Re (𝑀) Im (𝑀)

βˆ’ Im (𝑀) Re (𝑀)] < 0. (8)

Under commensurate order hypothesis, our finding is summa-rized in the following theorem.

Theorem8. Consider the fractional order large-scale intercon-nected system (1)with a commensurate order 1 < 𝛼 < 2. Let π‘Ÿ =𝑒𝑗(π›Όβˆ’1)(πœ‹/2). The fractional order large-scale uncertain systemcan be stabilized via decentralized state feedback 𝑒

𝑖(𝑑) = (𝐾

𝑖+

Δ𝐾𝑖)π‘₯𝑖(𝑑) if there exist positive-definite block diagonal matrices

𝑃𝑖= block diag[𝑃

1, 𝑃2. . . , 𝑃𝑁], matrix π‘Œ

𝑖, and positive real

scalar constants 𝛼𝑖, 𝛾𝑖𝑗, 𝛽𝑖, 𝑖, 𝑗 = 1, 2, . . . , 𝑁, such that the

following matrix inequalities hold:

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

𝑀1𝑖

𝑋𝑇

𝑖𝐸𝑇

π‘Žπ‘–π‘–π‘‹π‘‡

𝑖𝐸𝑇

π‘Ž1𝑖𝑋𝑇

𝑖𝐸𝑇

π‘Ž2𝑖⋅ β‹… β‹… 𝑋

𝑇

𝑖𝐸𝑇

π‘Žπ‘π‘–π‘‹π‘‡

𝑖𝐸𝑇

𝑏𝑖𝑀2𝑖

0 0 0 0 0 0

πΈπ‘Žπ‘–π‘–π‘‹π‘–

βˆ’π›Όπ‘–πΌ 0 0 0 0 0 0 0 0 0 0 0 0

πΈπ‘Ž1𝑖𝑋𝑖

0 βˆ’π›Ύ1𝑖𝐼 0 0 0 0 0 0 0 0 0 0 0

πΈπ‘Ž2𝑖𝑋𝑖

0 0 βˆ’π›Ύ2𝑖𝐼 0 0 0 0 0 0 0 0 0 0

.

.

. 0 0 0 d 0 0 0 0 0 0 0 0 0

πΈπ‘Žπ‘π‘–

𝑋𝑖

0 0 0 0 βˆ’π›Ύπ‘π‘–πΌ 0 0 0 0 0 0 0 0

𝐸𝑏𝑖𝑋𝑖

0 0 0 0 0 βˆ’π›½π‘–πΌ 0 0 0 0 0 0 0

βˆ’π‘€2𝑖

0 0 0 0 0 0 𝑀1𝑖

𝑋𝑇

𝑖𝐸𝑇

π‘Žπ‘–π‘–π‘‹π‘‡

𝑖𝐸𝑇

π‘Ž1𝑖𝑋𝑇

𝑖𝐸𝑇

π‘Ž2𝑖⋅ β‹… β‹… 𝑋

𝑇

𝑖𝐸𝑇

π‘Žπ‘π‘–π‘‹π‘‡

𝑖𝐸𝑇

𝑏𝑖

0 0 0 0 0 0 0 πΈπ‘Žπ‘–π‘–π‘‹π‘–

βˆ’π›Όπ‘–πΌ 0 0 0 0 0

0 0 0 0 0 0 0 πΈπ‘Ž1𝑖𝑋𝑖

0 βˆ’π›Ύ1𝑖𝐼 0 0 0 0

0 0 0 0 0 0 0 πΈπ‘Ž2𝑖𝑋𝑖

0 0 βˆ’π›Ύ2𝑖𝐼 0 0 0

0 0 0 0 0 0 0

.

.

. 0 0 0 d 0 0

0 0 0 0 0 0 0 πΈπ‘Žπ‘π‘–

𝑋𝑖

0 0 0 0 βˆ’π›Ύπ‘π‘–πΌ 0

0 0 0 0 0 0 0 𝐸𝑏𝑖𝑋𝑖

0 0 0 0 0 βˆ’π›½π‘–πΌ

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

< 0, (9)

where𝑀𝑖= π‘Ÿπ‘ƒπ‘–π΄π‘–π‘–+ π‘Ÿπ΄π‘‡

𝑖𝑖𝑃𝑖+ π‘Ÿπ‘ƒπ‘–π΄π‘–π‘—+ π‘Ÿπ΄π‘‡

𝑖𝑗𝑃𝑖+ π›Όπ‘–π·π‘Žπ‘–π‘–π·π‘‡

π‘Žπ‘–π‘–+

βˆ‘π‘

𝑗=1,π‘—π›Ύπ‘–π‘—π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—+ 𝛽𝑖𝐡𝑖𝐷𝑏𝑖𝐷𝑇

𝑏𝑖𝐡𝑇

𝑖+ π‘Ÿπ΅π‘–π‘Œπ‘–+ π‘Ÿπ‘Œπ‘‡

𝑖𝐡𝑇

𝑖, 𝑋𝑖=

π‘ƒβˆ’1

𝑖, and 𝑀

1𝑖and 𝑀

2𝑖are the real part and imaginary

part of matrices 𝑀𝑖, respectively. Moreover, the stabilization

decentralized state-feedback gain matrix can be calculated asfollows: 𝐾

𝑖= π‘Œπ‘–π‘ƒπ‘–.

Proof. Under decentralized state-feedback control law (2),the closed-loop fractional order large-scale interconnected

system is obtained as𝑑𝛼

π‘₯𝑖(𝑑)

𝑑𝑑𝛼

= [𝐴𝑖𝑖+ Δ𝐴𝑖𝑖] π‘₯𝑖(𝑑) +

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

[𝐴𝑖𝑗+ Δ𝐴𝑖𝑗] π‘₯𝑗(𝑑)

+ 𝐡𝑖[𝐾𝑖+ Δ𝐾𝑖] π‘₯𝑖(𝑑) ,

(10)

where 𝑖,𝑗 = 1, 2, . . . 𝑁. Based on Lemma 6, the necessaryand sufficient condition on the asymptotical stability of thefractional order system with order 1 < 𝛼 < 2 is that

Page 4: Research Article Robust Nonfragile Controllers …downloads.hindawi.com/journals/mpe/2015/206908.pdfResearch Article Robust Nonfragile Controllers Design for Fractional Order Large-Scale

4 Mathematical Problems in Engineering

π‘Ÿπ‘ƒπ΄ + π‘Ÿπ΄π‘‡

𝑃 < 0. According to Definition 1, the sufficientcondition on the stabilization of fractional order large-scale interconnected system satisfies the following quadraticmatrix inequality:

πœπ‘‡

{π‘Ÿπ‘ƒ [(𝐴 + Δ𝐴) + 𝐡 (𝐾 + Δ𝐾)]

+ π‘Ÿ [(𝐴 + Δ𝐴) + 𝐡 (𝐾 + Δ𝐾)]𝑇

𝑃} 𝜁 < 0,

(11)

𝑁

βˆ‘

𝑖=1

{

{

{

πœβˆ—

𝑖[π‘Ÿπ‘ƒπ‘–π΄π‘–π‘–+ π‘Ÿπ΄π‘‡

𝑖𝑖𝑃𝑖+ π‘Ÿπ‘ƒπ‘–Ξ”π΄π‘–π‘–

+ π‘ŸΞ”π΄π‘‡

𝑖𝑖𝑃𝑖+ π‘Ÿπ‘ƒπ‘–π΅π‘–πΎπ‘–+ π‘ŸπΎπ‘‡

𝑖𝐡𝑇

𝑖𝑃𝑖

+ π‘Ÿπ‘ƒπ‘–π΅π‘–Ξ”πΎπ‘–+ π‘Ÿπ‘ƒπ‘–Ξ”πΎπ‘‡

𝑖𝐡𝑇

𝑖] πœπ‘–

+ 2π‘Ÿπœβˆ—

𝑖

[

[

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

(𝐴𝑖𝑗+ Δ𝐴𝑖𝑗)]

]

πœπ‘—

}

}

}

< 0.

(12)

Consequently, the sufficient condition on the decentralizedstabilization of fractional order large-scale interconnectedsystem is that quadratic matrix inequality (11) holds.

Based on Lemmas 3 and 4, by means of enlarging theinequality, it yields

π‘Ÿπ‘ƒπ‘–Ξ”π΄π‘–π‘–+ π‘ŸΞ”π΄

𝑇

𝑖𝑖𝑃𝑖≀ π›Όπ‘–π‘ƒπ‘–π·π‘Žπ‘–π‘–π·π‘‡

π‘Žπ‘–π‘–π‘ƒπ‘–+ π›Όβˆ’1

𝑖𝐸𝑇

π‘Žπ‘–π‘–πΈπ‘Žπ‘–π‘–. (13)

Meanwhile, based on Lemmas 3 and 4, by means of enlargingthe inequality we have

π‘Ÿπ‘ƒπ‘–π΅π‘–Ξ”πΎπ‘–+ π‘ŸΞ”πΎ

𝑇

𝑖𝐡𝑇

𝑖𝑃𝑖≀ 𝛽𝑖𝑃𝑖𝐡𝑖𝐷𝑏𝑖𝐷𝑇

𝑏𝑖𝐡𝑇

𝑖𝑃𝑖+ π›½βˆ’1

𝑖𝐸𝑇

𝑏𝑖𝐸𝑏𝑖,

𝑁

βˆ‘

𝑖=1

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

πœβˆ—

𝑖[π‘Ÿπ‘ƒπ‘–Ξ”π΄π‘–π‘—+ π‘ŸΞ”π΄

𝑇

𝑖𝑗𝑃𝑖] πœπ‘—

≀

𝑁

βˆ‘

𝑖=1

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

πœβˆ—

π‘–π›Ύπ‘–π‘—π‘ƒπ‘–π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—π‘ƒπ‘–πœπ‘–

+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

𝑁

βˆ‘

𝑖=1

πœβˆ—

π‘—π›Ύβˆ’1

𝑖𝑗𝐸𝑇

π‘Žπ‘–π‘—πΈπ‘Žπ‘–π‘—πœπ‘—

≀

𝑁

βˆ‘

𝑖=1

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

πœβˆ—

π‘–π›Ύπ‘–π‘—π‘ƒπ‘–π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—π‘ƒπ‘–πœπ‘–

+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

𝑁

βˆ‘

𝑖=1

πœβˆ—

π‘–π›Ύβˆ’1

𝑗𝑖𝐸𝑇

π‘Žπ‘—π‘–πΈπ‘Žπ‘—π‘–πœπ‘–.

(14)

Substituting (11), (12), and (13) into (12) results in thefollowing quadratic matrix inequality:

𝑁

βˆ‘

𝑖=1

{

{

{

πœβˆ—

𝑖

[

[

π‘Ÿπ‘ƒπ‘–π΄π‘–π‘–+ π‘Ÿπ΄π‘‡

𝑖𝑖𝑃𝑖+ π‘Ÿπ‘ƒπ‘–π΄π‘–π‘—+ π‘Ÿπ΄π‘‡

𝑖𝑗𝑃𝑖

+ π‘Ÿπ‘ƒπ‘–π΅π‘–πΎπ‘–+ π‘ŸπΎπ‘‡

𝑖𝐡𝑇

𝑖𝑃𝑖

+ π›Όπ‘–π‘ƒπ‘–π·π‘Žπ‘–π‘–π·π‘‡

π‘Žπ‘–π‘–π‘ƒπ‘–+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

π›Ύπ‘–π‘—π‘ƒπ‘–π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—π‘ƒπ‘–

+ π›Όβˆ’1

𝑖𝐸𝑇

π‘Žπ‘–π‘–πΈπ‘Žπ‘–π‘–+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

π›Ύβˆ’1

𝑖𝑗𝐸𝑇

π‘Žπ‘–π‘—πΈπ‘Žπ‘–π‘—

+ π›½βˆ’1

𝑖𝐸𝑇

𝑏𝑖𝐸𝑏𝑖+ 𝛽𝑖𝑃𝑖𝐡𝑖𝐷𝑏𝑖𝐷𝑇

𝑏𝑖𝐡𝑇

𝑖𝑃𝑖

]

]

πœπ‘–

}

}

}

< 0,

(15)

𝑁

βˆ‘

𝑖=1

{

{

{

π‘Ÿπ‘ƒπ‘–π΄π‘–π‘–+ π‘Ÿπ΄π‘‡

𝑖𝑖𝑃𝑖+ π‘Ÿπ‘ƒπ‘–π΄π‘–π‘—+ π‘Ÿπ΄π‘‡

𝑖𝑗𝑃𝑖

+ π‘Ÿπ‘ƒπ‘–π΅π‘–πΎπ‘–+ π‘ŸπΎπ‘‡

𝑖𝐡𝑇

𝑖𝑃𝑖

+ π›Όπ‘–π‘ƒπ‘–π·π‘Žπ‘–π‘–π·π‘‡

π‘Žπ‘–π‘–π‘ƒπ‘–+ 𝑃𝑖

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

(π›Ύπ‘–π‘—π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—) 𝑃𝑖

+ π›Όβˆ’1

𝑖𝐸𝑇

π‘Žπ‘–π‘–πΈπ‘Žπ‘–π‘–+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

π›Ύβˆ’1

𝑖𝑗𝐸𝑇

π‘Žπ‘–π‘—πΈπ‘Žπ‘–π‘—

+𝛽𝑖𝑃𝑖𝐡𝑖𝐷𝑏𝑖𝐷𝑇

𝑏𝑖𝐡𝑇

𝑖𝑃𝑖+ π›½βˆ’1

𝑖𝐸𝑇

𝑏𝑖𝐸𝑏𝑖

}

}

}

< 0.

(16)

Let 𝑋𝑖= π‘ƒβˆ’1

𝑖and π‘Œ

𝑖= 𝐾𝑖𝑋𝑖. By premultiplying and post-

multiplying π‘ƒβˆ’1𝑖

onto (16), one has

𝑁

βˆ‘

𝑖=1

{

{

{

π‘Ÿπ΄π‘–π‘–π‘ƒβˆ’1

𝑖+ π‘Ÿπ‘ƒβˆ’1

𝑖𝐴𝑇

𝑖𝑖+ π‘Ÿπ΄π‘–π‘—π‘ƒβˆ’1

𝑖+ π‘Ÿπ‘ƒβˆ’1

𝑖𝐴𝑇

𝑖𝑗

+ π‘Ÿπ΅π‘–πΎπ‘–π‘ƒβˆ’1

𝑖+ π‘Ÿπ‘ƒβˆ’1

𝑖𝐾𝑇

𝑖𝐡𝑇

𝑖+ π›Όπ‘–π·π‘Žπ‘–π‘–π·π‘‡

π‘Žπ‘–π‘–

+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

π›Ύπ‘–π‘—π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—+ π›Όβˆ’1

π‘–π‘ƒβˆ’1

𝑖𝐸𝑇

π‘Žπ‘–π‘–πΈπ‘Žπ‘–π‘–π‘ƒβˆ’1

𝑖

+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

π›Ύβˆ’1

π‘–π‘—π‘ƒβˆ’1

𝑖𝐸𝑇

π‘Žπ‘–π‘—πΈπ‘Žπ‘–π‘—π‘ƒβˆ’1

𝑖+ 𝛽𝑖𝐡𝑖𝐷𝑏𝑖𝐷𝑇

𝑏𝑖𝐡𝑇

𝑖

+π›½βˆ’1

π‘–π‘ƒβˆ’1

𝑖𝐸𝑇

π‘π‘–πΈπ‘π‘–π‘ƒβˆ’1

𝑖

}

}

}

=

𝑁

βˆ‘

𝑖=1

{

{

{

π‘Ÿπ΄π‘–π‘–π‘‹π‘–+ π‘Ÿπ‘‹π‘–π΄π‘‡

𝑖𝑖+ π‘Ÿπ΄π‘–π‘—π‘‹π‘–+ π‘Ÿπ‘‹π‘–π΄π‘‡

𝑖𝑗

+ π‘Ÿπ΅π‘–π‘Œπ‘–+ π‘Ÿπ‘Œπ‘‡

𝑖𝐡𝑇

𝑖+ π›Όπ‘–π·π‘Žπ‘–π‘–π·π‘‡

π‘Žπ‘–π‘–

+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

π›Ύπ‘–π‘—π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—+ π›Όβˆ’1

𝑖𝑋𝑖𝐸𝑇

π‘Žπ‘–π‘–πΈπ‘Žπ‘–π‘–π‘‹π‘–

Page 5: Research Article Robust Nonfragile Controllers …downloads.hindawi.com/journals/mpe/2015/206908.pdfResearch Article Robust Nonfragile Controllers Design for Fractional Order Large-Scale

Mathematical Problems in Engineering 5

+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

π›Ύβˆ’1

𝑖𝑗𝑋𝑖𝐸𝑇

π‘Žπ‘–π‘—πΈπ‘Žπ‘–π‘—π‘‹π‘–

+ 𝛽𝑖𝐡𝑖𝐷𝑏𝑖𝐷𝑇

𝑏𝑖𝐡𝑇

𝑖+ π›½βˆ’1

𝑖𝑋𝑇

𝑖𝐸𝑇

𝑏𝑖𝐸𝑏𝑖𝑋𝑖

}

}

}

< 0.

(17)

If the quadratic matrix inequality holds, then the frac-tional order large-scale interconnected system is asymptoti-cally stable.

By applying Schur complement, the above matrixinequality is equivalent to the following complex LMI:

[[[[[[[[[[

[

𝑀𝑖

𝑋𝑇

𝑖𝐸𝑇

π‘Žπ‘–π‘–π‘‹π‘‡

𝑖𝐸𝑇

π‘Ž1𝑖𝑋𝑇

𝑖𝐸𝑇

π‘Ž2𝑖⋅ β‹… β‹… 𝑋

𝑇

𝑖𝐸𝑇

π‘Žπ‘π‘–π‘‹π‘‡

𝑖𝐸𝑇

𝑏𝑖

πΈπ‘Žπ‘–π‘–π‘‹π‘–

βˆ’π›Όπ‘–πΌ 0 0 0 0 0

πΈπ‘Ž1𝑖𝑋𝑖

0 βˆ’π›Ύ1𝑖𝐼 0 0 0 0

πΈπ‘Ž2𝑖𝑋𝑖

0 0 βˆ’π›Ύ2𝑖𝐼 0 0 0

.

.

. 0 0 0 d 0 0

πΈπ‘Žπ‘π‘–

𝑋𝑖

0 0 0 0 βˆ’π›Ύπ‘π‘–πΌ 0

𝐸𝑏𝑖𝑋𝑖

0 0 0 0 0 βˆ’π›½π‘–πΌ

]]]]]]]]]]

]

< 0,

(18)

where 𝑀𝑖= π‘Ÿπ‘ƒπ‘–π΄π‘–π‘–+ π‘Ÿπ΄π‘‡

𝑖𝑖𝑃𝑖+ π‘Ÿπ‘ƒπ‘–π΄π‘–π‘—+ π‘Ÿπ΄π‘‡

𝑖𝑗𝑃𝑖+ π›Όπ‘–π·π‘Žπ‘–π‘–π·π‘‡

π‘Žπ‘–π‘–

+βˆ‘π‘

𝑗=1,𝑗 =π‘–π›Ύπ‘–π‘—π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—+ 𝛽𝑖𝐡𝑖𝐷𝑏𝑖𝐷𝑇

𝑏𝑖𝐡𝑇

𝑖+ π‘Ÿπ΅π‘–π‘Œπ‘–+ π‘Ÿπ‘Œπ‘‡

𝑖𝐡𝑇

𝑖. In

practice, the feedback matrix𝐾𝑖has no imaginary part. So let

Im(𝑋𝑖) = 0; then 𝑋

𝑖= Re(𝑋

𝑖). According to the relationship

π‘Œπ‘–= 𝐾𝑖𝑋𝑖, the outputmatrixπ‘Œ

𝑖has no imaginary part; that is,

Im(π‘Œπ‘–) = 0; then π‘Œ

𝑖= Re(π‘Œ

𝑖). Substituting π‘Ÿ = cos πœƒ + 𝑗 sin πœƒ

into𝑀𝑖gives

𝑀𝑖= cos πœƒπ΄

𝑖𝑖𝑋𝑖+ cos πœƒπ‘‹

𝑖𝐴𝑇

𝑖𝑖+ cos πœƒπ΄

𝑖𝑗𝑋𝑖+ cos πœƒπ‘‹

𝑖𝐴𝑇

𝑖𝑗

+ π›Όπ‘–π·π‘Žπ‘–π‘–π·π‘‡

π‘Žπ‘–π‘–+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

π›Ύπ‘–π‘—π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—+ 𝛽𝑖𝐡𝑖𝐷𝑏𝑖𝐷𝑇

𝑏𝑖𝐡𝑇

𝑖

+ cos πœƒπ΅π‘–π‘Œπ‘–+ cos πœƒπ‘Œπ‘‡

𝑖𝐡𝑇

𝑖

+ 𝑗 (sin πœƒπ΄π‘–π‘–π‘‹π‘–βˆ’ sin πœƒπ‘‹

𝑖𝐴𝑇

𝑖𝑖+ sin πœƒπ΄

π‘–π‘—π‘‹π‘–βˆ’ sin πœƒπ‘‹

𝑖𝐴𝑇

𝑖𝑗

+ sin πœƒπ΅π‘–π‘Œπ‘–βˆ’ sin πœƒπ‘Œπ‘‡

𝑖𝐡𝑇

𝑖) .

(19)

Based on Lemma 7, the complex LMI (18) is transformed intothe real LMI. Consider

[[[[[[[[[[[[[[[[[[[[[[[[[

[

𝑀1𝑖

𝑋𝑇

𝑖𝐸𝑇

π‘Žπ‘–π‘–π‘‹π‘‡

𝑖𝐸𝑇

π‘Ž1𝑖𝑋𝑇

𝑖𝐸𝑇

π‘Ž2𝑖⋅ β‹… β‹… 𝑋

𝑇

𝑖𝐸𝑇

π‘Žπ‘π‘–π‘‹π‘‡

𝑖𝐸𝑇

𝑏𝑖𝑀2𝑖

0 0 0 0 0 0

πΈπ‘Žπ‘–π‘–π‘‹π‘–

βˆ’π›Όπ‘–πΌ 0 0 0 0 0 0 0 0 0 0 0 0

πΈπ‘Ž1𝑖𝑋𝑖

0 βˆ’π›Ύ1𝑖𝐼 0 0 0 0 0 0 0 0 0 0 0

πΈπ‘Ž2𝑖𝑋𝑖

0 0 βˆ’π›Ύ2𝑖𝐼 0 0 0 0 0 0 0 0 0 0

.

.

. 0 0 0 d 0 0 0 0 0 0 0 0 0

πΈπ‘Žπ‘π‘–

𝑋𝑖

0 0 0 0 βˆ’π›Ύπ‘π‘–πΌ 0 0 0 0 0 0 0 0

𝐸𝑏𝑖𝑋𝑖

0 0 0 0 0 βˆ’π›½π‘–πΌ 0 0 0 0 0 0 0

βˆ’π‘€2𝑖

0 0 0 0 0 0 𝑀1𝑖

𝑋𝑇

𝑖𝐸𝑇

π‘Žπ‘–π‘–π‘‹π‘‡

𝑖𝐸𝑇

π‘Ž1𝑖𝑋𝑇

𝑖𝐸𝑇

π‘Ž2𝑖⋅ β‹… β‹… 𝑋

𝑇

𝑖𝐸𝑇

π‘Žπ‘π‘–π‘‹π‘‡

𝑖𝐸𝑇

𝑏𝑖

0 0 0 0 0 0 0 πΈπ‘Žπ‘–π‘–π‘‹π‘–

βˆ’π›Όπ‘–πΌ 0 0 0 0 0

0 0 0 0 0 0 0 πΈπ‘Ž1𝑖𝑋𝑖

0 βˆ’π›Ύ1𝑖𝐼 0 0 0 0

0 0 0 0 0 0 0 πΈπ‘Ž2𝑖𝑋𝑖

0 0 βˆ’π›Ύ2𝑖𝐼 0 0 0

0 0 0 0 0 0 0

.

.

. 0 0 0 d 0 0

0 0 0 0 0 0 0 πΈπ‘Žπ‘π‘–

𝑋𝑖

0 0 0 0 βˆ’π›Ύπ‘π‘–πΌ 0

0 0 0 0 0 0 0 𝐸𝑏𝑖𝑋𝑖

0 0 0 0 0 βˆ’π›½π‘–πΌ

]]]]]]]]]]]]]]]]]]]]]]]]]

]

< 0, (20)

where𝑀1𝑖= Re(𝑀

𝑖) and𝑀

2𝑖= Im(𝑀

𝑖). This completes the

proof.

Therefore, the sufficient condition for decentralizedrobust stabilization of fractional order large-scale inter-connected system with norm-bounded uncertainties underadditive gain perturbations is derived. Furthermore, thiscondition is transformed into the solvability problem oflinear matrix inequalities. In summary, by solving the LMI(18), we derive the sufficient condition on stabilizability viadecentralized state feedback of the fractional order uncertainsystem with order 1 < 𝛼 < 2.

4. Nonfragile Controller Design ofFractional Order Large-Scale System withMultiplicative Gain Perturbations

In this section, the nonfragile controller design problem isformulated for the fractional order large-scale interconnectedsystem under multiplicative gain perturbations. Sufficientconditions are established for the decentralized stabilizationof fractional order large-scale interconnected system withnorm-bounded uncertainties under multiplicative gain per-turbations. We are in a position to present our main result.

Theorem 9. Consider the fractional order large-scale uncer-tain system (1) with a commensurate order 1 < 𝛼 < 2. Let

Page 6: Research Article Robust Nonfragile Controllers …downloads.hindawi.com/journals/mpe/2015/206908.pdfResearch Article Robust Nonfragile Controllers Design for Fractional Order Large-Scale

6 Mathematical Problems in Engineering

π‘Ÿ = 𝑒𝑗(π›Όβˆ’1)(πœ‹/2). The fractional order large-scale uncertain

system can be stabilized via decentralized state feedback 𝑒𝑖(𝑑) =

(𝐾𝑖+ Δ𝐾

𝑖)π‘₯𝑖(𝑑) if there exist positive-definite block diagonal

matrices 𝑃𝑖

= block diag[𝑃1, 𝑃2. . . , 𝑃𝑁], matrix π‘Œ

𝑖and

positive number 𝛼𝑖, 𝛾𝑖𝑗, 𝛽𝑖, 𝑖, 𝑗 = 1, 2, . . . , 𝑁, such that the

following matrix inequalities hold:

[[[[[[[[[[[[[[[[[[[[[[[[[

[

𝑀1𝑖

𝑋𝑇

𝑖𝐸𝑇

π‘Žπ‘–π‘–π‘‹π‘‡

𝑖𝐸𝑇

π‘Ž1𝑖𝑋𝑇

𝑖𝐸𝑇

π‘Ž2𝑖⋅ β‹… β‹… 𝑋

𝑇

𝑖𝐸𝑇

π‘Žπ‘π‘–π‘Œπ‘‡

𝑖𝐸𝑇

𝑑𝑖𝑀2𝑖

0 0 0 0 0 0

πΈπ‘Žπ‘–π‘–π‘‹π‘–

βˆ’π›Όπ‘–πΌ 0 0 0 0 0 0 0 0 0 0 0 0

πΈπ‘Ž1𝑖𝑋𝑖

0 βˆ’π›Ύ1𝑖𝐼 0 0 0 0 0 0 0 0 0 0 0

πΈπ‘Ž2𝑖𝑋𝑖

0 0 βˆ’π›Ύ2𝑖𝐼 0 0 0 0 0 0 0 0 0 0

.

.

. 0 0 0 d 0 0 0 0 0 0 0 0 0

πΈπ‘Žπ‘π‘–

𝑋𝑖

0 0 0 0 βˆ’π›Ύπ‘π‘–πΌ 0 0 0 0 0 0 0 0

πΈπ‘‘π‘–π‘Œπ‘–

0 0 0 0 0 βˆ’π›½π‘–πΌ 0 0 0 0 0 0 0

βˆ’π‘€2𝑖

0 0 0 0 0 0 𝑀1𝑖

𝑋𝑇

𝑖𝐸𝑇

π‘Žπ‘–π‘–π‘‹π‘‡

𝑖𝐸𝑇

π‘Ž1𝑖𝑋𝑇

𝑖𝐸𝑇

π‘Ž2𝑖⋅ β‹… β‹… 𝑋

𝑇

𝑖𝐸𝑇

π‘Žπ‘π‘–π‘Œπ‘‡

𝑖𝐸𝑇

𝑑𝑖

0 0 0 0 0 0 0 πΈπ‘Žπ‘–π‘–π‘‹π‘–

βˆ’π›Όπ‘–πΌ 0 0 0 0 0

0 0 0 0 0 0 0 πΈπ‘Ž1𝑖𝑋𝑖

0 βˆ’π›Ύ1𝑖𝐼 0 0 0 0

0 0 0 0 0 0 0 πΈπ‘Ž2𝑖𝑋𝑖

0 0 βˆ’π›Ύ2𝑖𝐼 0 0 0

0 0 0 0 0 0 0

.

.

. 0 0 0 d 0 0

0 0 0 0 0 0 0 πΈπ‘Žπ‘π‘–

𝑋𝑖

0 0 0 0 βˆ’π›Ύπ‘π‘–πΌ 0

0 0 0 0 0 0 0 πΈπ‘‘π‘–π‘Œπ‘–

0 0 0 0 0 βˆ’π›½π‘–πΌ

]]]]]]]]]]]]]]]]]]]]]]]]]

]

< 0, (21)

where𝑀𝑖= π‘Ÿπ‘ƒπ‘–π΄π‘–π‘–+ π‘Ÿπ΄π‘‡

𝑖𝑖𝑃𝑖+ π‘Ÿπ‘ƒπ‘–π΄π‘–π‘—+ π‘Ÿπ΄π‘‡

𝑖𝑗𝑃𝑖+ π›Όπ‘–π·π‘Žπ‘–π‘–π·π‘‡

π‘Žπ‘–π‘–+

βˆ‘π‘

𝑗=1,π‘—π›Ύπ‘–π‘—π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—+ 𝛽𝑖𝐡𝑖𝐷𝑑𝑖𝐷𝑇

𝑑𝑖𝐡𝑇

𝑖+ π‘Ÿπ΅π‘–π‘Œπ‘–+ π‘Ÿπ‘Œπ‘‡

𝑖𝐡𝑇

𝑖, 𝑋𝑖=

π‘ƒβˆ’1

𝑖, and 𝑀

1𝑖and 𝑀

2𝑖are the real part and imaginary

part of matrices 𝑀𝑖, respectively. Moreover, the stabilization

decentralized state-feedback gain matrix is given by 𝐾𝑖= π‘Œπ‘–π‘ƒπ‘–.

Proof. By the means of decentralized state-feedback controllaw (2), the closed-loop fractional order large-scale intercon-nected system is obtained as

𝑑𝛼

π‘₯𝑖(𝑑)

𝑑𝑑𝛼

= [𝐴𝑖𝑖+ Δ𝐴𝑖𝑖] π‘₯𝑖(𝑑) +

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

[𝐴𝑖𝑗+ Δ𝐴𝑖𝑗] π‘₯𝑗(𝑑)

+ 𝐡𝑖[𝐾𝑖+ Δ𝐾𝑖] π‘₯𝑖(𝑑) ,

(22)where 𝑖, 𝑗 = 1, 2, . . . 𝑁, Δ𝐾

𝑖= 𝐷𝑏𝑖𝐹𝑏𝑖𝐸𝑏𝑖𝐾𝑖. Based on

Lemma 6, the necessary and sufficient condition on theasymptotical stability of the fractional order system withorder 1 < 𝛼 < 2 is that π‘Ÿπ‘ƒπ΄ + π‘Ÿπ΄

𝑇

𝑃 < 0.According to Definition 1, the sufficient condition on the

stabilization of fractional order large-scale interconnectedsystem satisfies the following quadratic matrix inequality:𝑁

βˆ‘

𝑖=1

πœβˆ—

{π‘Ÿπ‘ƒ [(𝐴 + Δ𝐴) + 𝐡 (𝐾 + Δ𝐾)]

+ π‘Ÿ[(𝐴 + Δ𝐴) + 𝐡 (𝐾 + Δ𝐾)]𝑇

𝑃} 𝜁 < 0,

(23)

𝑁

βˆ‘

𝑖=1

{

{

{

πœβˆ—

𝑖[π‘Ÿπ‘ƒπ‘–π΄π‘–π‘–+ π‘Ÿπ΄π‘‡

𝑖𝑖𝑃𝑖+ π‘Ÿπ‘ƒπ‘–Ξ”π΄π‘–π‘–+ π‘ŸΞ”π΄

𝑇

𝑖𝑖𝑃𝑖

+ π‘Ÿπ‘ƒπ‘–π΅π‘–πΎπ‘–+ π‘ŸπΎπ‘‡

𝑖𝐡𝑇

𝑖𝑃𝑖+ π‘Ÿπ‘ƒπ‘–π΅π‘–Ξ”πΎπ‘–+ π‘Ÿπ‘ƒπ‘–Ξ”πΎπ‘‡

𝑖𝐡𝑇

𝑖] πœπ‘–

+ 2π‘Ÿπœβˆ—

𝑖

[

[

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

(𝐴𝑖𝑗+ Δ𝐴𝑖𝑗)]

]

πœπ‘—

}

}

}

< 0.

(24)

Consequently, the sufficient condition on the decentralizedstabilization of fractional order large-scale interconnectedsystem is that quadratic matrix inequality (23) holds.

Based on Lemmas 3 and 4, by means of enlarging theinequality we have

π‘Ÿπ‘ƒπ‘–Ξ”π΄π‘–π‘–+ π‘ŸΞ”π΄

𝑇

𝑖𝑖𝑃𝑖≀ π›Όπ‘–π‘ƒπ‘–π·π‘Žπ‘–π‘–π·π‘‡

π‘Žπ‘–π‘–π‘ƒπ‘–+ π›Όβˆ’1

𝑖𝐸𝑇

π‘Žπ‘–π‘–πΈπ‘Žπ‘–π‘–. (25)

Likewise, it is obtained that

π‘Ÿπ‘ƒπ‘–π΅π‘–Ξ”πΎπ‘–+ π‘ŸΞ”πΎ

𝑇

𝑖𝐡𝑇

𝑖𝑃𝑖

= π‘Ÿπ‘ƒπ‘–π΅π‘–π·π‘‘π‘–πΉπ‘‘π‘–πΈπ‘‘π‘–πΎπ‘–+ π‘ŸπΎπ‘‡

𝑖𝐸𝑇

𝑑𝑖𝐹𝑇

𝑑𝑖𝐷𝑇

𝑑𝑖𝐡𝑇

𝑖𝑃𝑖

≀ 𝛽𝑖𝑃𝑖𝐡𝑖𝐷𝑑𝑖𝐷𝑇

𝑑𝑖𝐡𝑇

𝑖𝑃𝑖+ π›½βˆ’1

𝑖𝐾𝑇

𝑖𝐸𝑇

𝑑𝑖𝐸𝑑𝑖𝐾𝑖,

(26)

𝑁

βˆ‘

𝑖=1

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

πœβˆ—

𝑖[π‘Ÿπ‘ƒπ‘–Ξ”π΄π‘–π‘—+ π‘ŸΞ”π΄

𝑇

𝑖𝑗𝑃𝑖] πœπ‘—

≀

𝑁

βˆ‘

𝑖=1

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

πœβˆ—

π‘–π›Ύπ‘–π‘—π‘ƒπ‘–π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—π‘ƒπ‘–πœπ‘–

+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

𝑁

βˆ‘

𝑖=1

πœβˆ—

π‘—π›Ύβˆ’1

𝑖𝑗𝐸𝑇

π‘Žπ‘–π‘—πΈπ‘Žπ‘–π‘—πœπ‘—

Page 7: Research Article Robust Nonfragile Controllers …downloads.hindawi.com/journals/mpe/2015/206908.pdfResearch Article Robust Nonfragile Controllers Design for Fractional Order Large-Scale

Mathematical Problems in Engineering 7

≀

𝑁

βˆ‘

𝑖=1

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

πœβˆ—

π‘–π›Ύπ‘–π‘—π‘ƒπ‘–π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—π‘ƒπ‘–πœπ‘–

+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

𝑁

βˆ‘

𝑖=1

πœβˆ—

π‘–π›Ύβˆ’1

𝑗𝑖𝐸𝑇

π‘Žπ‘—π‘–πΈπ‘Žπ‘—π‘–πœπ‘–.

(27)

Substituting (24), (25), and (26) into (24) results in the follow-ing quadratic matrix inequality, and we have

𝑁

βˆ‘

𝑖=1

{

{

{

πœβˆ—

𝑖

[

[

π‘Ÿπ‘ƒπ‘–π΄π‘–π‘–+ π‘Ÿπ΄π‘‡

𝑖𝑖𝑃𝑖+ π‘Ÿπ‘ƒπ‘–π΄π‘–π‘—+ π‘Ÿπ΄π‘‡

𝑖𝑗𝑃𝑖

+ π‘Ÿπ‘ƒπ‘–π΅π‘–πΎπ‘–+ π‘ŸπΎπ‘‡

𝑖𝐡𝑇

𝑖𝑃𝑖+ π›Όπ‘–π‘ƒπ‘–π·π‘Žπ‘–π‘–π·π‘‡

π‘Žπ‘–π‘–π‘ƒπ‘–

+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

π›Ύπ‘–π‘—π‘ƒπ‘–π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—π‘ƒπ‘–+ π›Όβˆ’1

𝑖𝐸𝑇

π‘Žπ‘–π‘–πΈπ‘Žπ‘–π‘–

+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

π›Ύβˆ’1

𝑖𝑗𝐸𝑇

π‘Žπ‘–π‘—πΈπ‘Žπ‘–π‘—+ π›½βˆ’1

𝑖𝐾𝑇

𝑖𝐸𝑇

𝑏𝑖𝐸𝑏𝑖𝐾𝑖

+ 𝛽𝑖𝑃𝑖𝐡𝑖𝐷𝑏𝑖𝐷𝑇

𝑏𝑖𝐡𝑇

𝑖𝑃𝑖

]

]

πœπ‘–

}

}

}

< 0,

𝑁

βˆ‘

𝑖=1

{

{

{

π‘Ÿπ‘ƒπ‘–π΄π‘–π‘–+ π‘Ÿπ΄π‘‡

𝑖𝑖𝑃𝑖+ π‘Ÿπ‘ƒπ‘–π΄π‘–π‘—+ π‘Ÿπ΄π‘‡

𝑖𝑗𝑃𝑖

+ π‘Ÿπ‘ƒπ‘–π΅π‘–πΎπ‘–+ π‘ŸπΎπ‘‡

𝑖𝐡𝑇

𝑖𝑃𝑖

+ π›Όπ‘–π‘ƒπ‘–π·π‘Žπ‘–π‘–π·π‘‡

π‘Žπ‘–π‘–π‘ƒπ‘–+ 𝑃𝑖

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

(π›Ύπ‘–π‘—π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—) 𝑃𝑖

+ π›Όβˆ’1

𝑖𝐸𝑇

π‘Žπ‘–π‘–πΈπ‘Žπ‘–π‘–+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

π›Ύβˆ’1

𝑖𝑗𝐸𝑇

π‘Žπ‘–π‘—πΈπ‘Žπ‘–π‘—

+ 𝛽𝑖𝑃𝑖𝐡𝑖𝐷𝑑𝑖𝐷𝑇

𝑑𝑖𝐡𝑇

𝑖𝑃𝑖+ π›½βˆ’1

𝑖𝐾𝑇

𝑖𝐸𝑇

𝑑𝑖𝐸𝑑𝑖𝐾𝑖

}

}

}

< 0.

(28)

Let 𝑋𝑖= π‘ƒβˆ’1

𝑖and π‘Œ

𝑖= 𝐾𝑖𝑋𝑖. By premultiplying and post-

multiplying π‘ƒβˆ’1𝑖

onto (27), one has

𝑁

βˆ‘

𝑖=1

{

{

{

π‘Ÿπ΄π‘–π‘–π‘ƒβˆ’1

𝑖+ π‘Ÿπ‘ƒβˆ’1

𝑖𝐴𝑇

𝑖𝑖+ π‘Ÿπ΄π‘–π‘—π‘ƒβˆ’1

𝑖+ π‘Ÿπ‘ƒβˆ’1

𝑖𝐴𝑇

𝑖𝑗

+ π‘Ÿπ΅π‘–πΎπ‘–π‘ƒβˆ’1

𝑖+ π‘Ÿπ‘ƒβˆ’1

𝑖𝐾𝑇

𝑖𝐡𝑇

𝑖

+ π›Όπ‘–π·π‘Žπ‘–π‘–π·π‘‡

π‘Žπ‘–π‘–+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

π›Ύπ‘–π‘—π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—

+ π›Όβˆ’1

π‘–π‘ƒβˆ’1

𝑖𝐸𝑇

π‘Žπ‘–π‘–πΈπ‘Žπ‘–π‘–π‘ƒβˆ’1

𝑖

+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

π›Ύβˆ’1

π‘–π‘—π‘ƒβˆ’1

𝑖𝐸𝑇

π‘Žπ‘–π‘—πΈπ‘Žπ‘–π‘—π‘ƒβˆ’1

𝑖+ 𝛽𝑖𝐡𝑖𝐷𝑑𝑖𝐷𝑇

𝑑𝑖𝐡𝑇

𝑖

+ π›½βˆ’1

π‘–π‘ƒβˆ’1

𝑖𝐾𝑇

𝑖𝐸𝑇

π‘‘π‘–πΈπ‘‘π‘–πΎπ‘–π‘ƒβˆ’1

𝑖

}

}

}

=

𝑁

βˆ‘

𝑖=1

{

{

{

π‘Ÿπ΄π‘–π‘–π‘‹π‘–+ π‘Ÿπ‘‹π‘–π΄π‘‡

𝑖𝑖+ π‘Ÿπ΄π‘–π‘—π‘‹π‘–

+ π‘Ÿπ‘‹π‘–π΄π‘‡

𝑖𝑗+ π‘Ÿπ΅π‘–π‘Œπ‘–+ π‘Ÿπ‘Œπ‘‡

𝑖𝐡𝑇

𝑖

+ π›Όπ‘–π·π‘Žπ‘–π‘–π·π‘‡

π‘Žπ‘–π‘–+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

π›Ύπ‘–π‘—π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—

+ π›Όβˆ’1

𝑖𝑋𝑖𝐸𝑇

π‘Žπ‘–π‘–πΈπ‘Žπ‘–π‘–π‘‹π‘–

+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

π›Ύβˆ’1

𝑖𝑗𝑋𝑖𝐸𝑇

π‘Žπ‘–π‘—πΈπ‘Žπ‘–π‘—π‘‹π‘–

+𝛽𝑖𝐡𝑖𝐷𝑑𝑖𝐷𝑇

𝑑𝑖𝐡𝑇

𝑖+ π›½βˆ’1

π‘–π‘Œπ‘‡

𝑖𝐸𝑇

π‘‘π‘–πΈπ‘‘π‘–π‘Œπ‘–

}

}

}

> 0.

(29)

If the quadratic matrix inequality holds, then the fractionalorder large-scale interconnected system is asymptoticallystable. By applying Schur complement, the above matrixinequality is equivalent to the following complex LMI:

[[[[[[[[[[[[

[

𝑀𝑖

𝑋𝑇

𝑖𝐸𝑇

π‘Žπ‘–π‘–π‘‹π‘‡

𝑖𝐸𝑇

π‘Ž1𝑖𝑋𝑇

𝑖𝐸𝑇

π‘Ž2𝑖⋅ β‹… β‹… 𝑋

𝑇

𝑖𝐸𝑇

π‘Žπ‘π‘–π‘Œπ‘‡

𝑖𝐸𝑇

𝑑𝑖

πΈπ‘Žπ‘–π‘–π‘‹π‘–

βˆ’π›Όπ‘–πΌ 0 0 0 0 0

πΈπ‘Ž1𝑖𝑋𝑖

0 βˆ’π›Ύ1𝑖𝐼 0 0 0 0

πΈπ‘Ž2𝑖𝑋𝑖

0 0 βˆ’π›Ύ2𝑖𝐼 0 0 0

.

.

. 0 0 0 d 0 0

πΈπ‘Žπ‘π‘–

𝑋𝑖

0 0 0 0 βˆ’π›Ύπ‘π‘–πΌ 0

πΈπ‘‘π‘–π‘Œπ‘–

0 0 0 0 0 βˆ’π›½π‘–πΌ

]]]]]]]]]]]]

]

< 0,

(30)

where𝑀𝑖= π‘Ÿπ‘ƒπ‘–π΄π‘–π‘–+ π‘Ÿπ΄π‘‡

𝑖𝑖𝑃𝑖+ π‘Ÿπ‘ƒπ‘–π΄π‘–π‘—+ π‘Ÿπ΄π‘‡

𝑖𝑗𝑃𝑖+ π›Όπ‘–π·π‘Žπ‘–π‘–π·π‘‡

π‘Žπ‘–π‘–+

βˆ‘π‘

𝑗=1,𝑗 =π‘–π›Ύπ‘–π‘—π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—+ 𝛽𝑖𝐡𝑖𝐷𝑑𝑖𝐷𝑇

𝑑𝑖𝐡𝑇

𝑖+ π‘Ÿπ΅π‘–π‘Œπ‘–+ π‘Ÿπ‘Œπ‘‡

𝑖𝐡𝑇

𝑖. In

practice, the feedback matrix𝐾𝑖has no imaginary part. So let

Im(𝑋𝑖) = 0; then 𝑋

𝑖= Re(𝑋

𝑖). According to the relationship

π‘Œπ‘–= 𝐾𝑖𝑋𝑖, the outputmatrixπ‘Œ

𝑖has no imaginary part; that is,

Page 8: Research Article Robust Nonfragile Controllers …downloads.hindawi.com/journals/mpe/2015/206908.pdfResearch Article Robust Nonfragile Controllers Design for Fractional Order Large-Scale

8 Mathematical Problems in Engineering

Im(π‘Œπ‘–) = 0; then π‘Œ

𝑖= Re(π‘Œ

𝑖). Substituting π‘Ÿ = cos πœƒ + 𝑗 sin πœƒ

into𝑀𝑖gives

𝑀𝑖= cos πœƒπ΄

𝑖𝑖𝑋𝑖+ cos πœƒπ‘‹

𝑖𝐴𝑇

𝑖𝑖+ cos πœƒπ΄

𝑖𝑗𝑋𝑖+ cos πœƒπ‘‹

𝑖𝐴𝑇

𝑖𝑗

+ π›Όπ‘–π·π‘Žπ‘–π‘–π·π‘‡

π‘Žπ‘–π‘–+

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

π›Ύπ‘–π‘—π·π‘Žπ‘–π‘—π·π‘‡

π‘Žπ‘–π‘—+ 𝛽𝑖𝐡𝑖𝐷𝑑𝑖𝐷𝑇

𝑑𝑖𝐡𝑇

𝑖

+ cos πœƒπ΅π‘–π‘Œπ‘–+ cos πœƒπ‘Œπ‘‡

𝑖𝐡𝑇

𝑖

+ 𝑗 (sin πœƒπ΄π‘–π‘–π‘‹π‘–βˆ’ sin πœƒπ‘‹

𝑖𝐴𝑇

𝑖𝑖+ sin πœƒπ΄

π‘–π‘—π‘‹π‘–βˆ’ sin πœƒπ‘‹

𝑖𝐴𝑇

𝑖𝑗

+ sin πœƒπ΅π‘–π‘Œπ‘–βˆ’ sin πœƒπ‘Œπ‘‡

𝑖𝐡𝑇

𝑖) .

(31)

Based on Lemma 7, the complex LMI (30) is transformed intothe real LMI. Consider

[[[[[[[[[[[[[[[[[[[[[[[[[

[

𝑀1𝑖

𝑋𝑇

𝑖𝐸𝑇

π‘Žπ‘–π‘–π‘‹π‘‡

𝑖𝐸𝑇

π‘Ž1𝑖𝑋𝑇

𝑖𝐸𝑇

π‘Ž2𝑖⋅ β‹… β‹… 𝑋

𝑇

𝑖𝐸𝑇

π‘Žπ‘π‘–π‘Œπ‘‡

𝑖𝐸𝑇

𝑑𝑖𝑀2𝑖

0 0 0 0 0 0

πΈπ‘Žπ‘–π‘–π‘‹π‘–

βˆ’π›Όπ‘–πΌ 0 0 0 0 0 0 0 0 0 0 0 0

πΈπ‘Ž1𝑖𝑋𝑖

0 βˆ’π›Ύ1𝑖𝐼 0 0 0 0 0 0 0 0 0 0 0

πΈπ‘Ž2𝑖𝑋𝑖

0 0 βˆ’π›Ύ2𝑖𝐼 0 0 0 0 0 0 0 0 0 0

.

.

. 0 0 0 d 0 0 0 0 0 0 0 0 0

πΈπ‘Žπ‘π‘–

𝑋𝑖

0 0 0 0 βˆ’π›Ύπ‘π‘–πΌ 0 0 0 0 0 0 0 0

πΈπ‘‘π‘–π‘Œπ‘–

0 0 0 0 0 βˆ’π›½π‘–πΌ 0 0 0 0 0 0 0

βˆ’π‘€2𝑖

0 0 0 0 0 0 𝑀1𝑖

𝑋𝑇

𝑖𝐸𝑇

π‘Žπ‘–π‘–π‘‹π‘‡

𝑖𝐸𝑇

π‘Ž1𝑖𝑋𝑇

𝑖𝐸𝑇

π‘Ž2𝑖⋅ β‹… β‹… 𝑋

𝑇

𝑖𝐸𝑇

π‘Žπ‘π‘–π‘Œπ‘‡

𝑖𝐸𝑇

𝑑𝑖

0 0 0 0 0 0 0 πΈπ‘Žπ‘–π‘–π‘‹π‘–

βˆ’π›Όπ‘–πΌ 0 0 0 0 0

0 0 0 0 0 0 0 πΈπ‘Ž1𝑖𝑋𝑖

0 βˆ’π›Ύ1𝑖𝐼 0 0 0 0

0 0 0 0 0 0 0 πΈπ‘Ž2𝑖𝑋𝑖

0 0 βˆ’π›Ύ2𝑖𝐼 0 0 0

0 0 0 0 0 0 0

.

.

. 0 0 0 d 0 0

0 0 0 0 0 0 0 πΈπ‘Žπ‘π‘–

𝑋𝑖

0 0 0 0 βˆ’π›Ύπ‘π‘–πΌ 0

0 0 0 0 0 0 0 πΈπ‘‘π‘–π‘Œπ‘–

0 0 0 0 0 βˆ’π›½π‘–πΌ

]]]]]]]]]]]]]]]]]]]]]]]]]

]

< 0, (32)

where𝑀1𝑖= Re(𝑀

𝑖),𝑀2𝑖= Im(𝑀

𝑖).

This completes the proof.

Therefore, the sufficient condition for decentralizedrobust stabilization of fractional order large-scale inter-connected system with norm-bounded uncertainties undermultiplicative gain perturbations is obtained. Furthermore,this condition is transformed into the solvability problem oflinear matrix inequalities. In summary, by solving the LMI(27), we derive the sufficient conditions on stabilizability viadecentralized state feedback of the uncertain fractional ordersystem under multiplicative gain perturbations.

5. Numerical Examples

In this section, to verify and demonstrate the effective-ness of the proposed method, two numerical examples areinvestigated. The fractional order large-scale interconnecteduncertain system under controller gain perturbations isstabilized by the decentralized state feedback controllers.TheAdams-type predictor-corrector method [29] is used for thenumerical solution of fractional differential equations duringthe simulation.

Example 1. Consider the stabilization problem of fractionalorder large-scale interconnected uncertain system underadditive gain perturbations:

𝑑𝛼

π‘₯ (𝑑)

𝑑𝑑𝛼

= [𝐴𝑖𝑖+ Δ𝐴𝑖𝑖] π‘₯𝑖(𝑑) +

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

[𝐴𝑖𝑗+ Δ𝐴𝑖𝑗] π‘₯𝑗(𝑑)

+ 𝐡𝑖[𝐾𝑖+ Δ𝐾𝑖] π‘₯𝑖(𝑑) ,

(33)

where 𝑖, 𝑗 = 1, 2, . . . 𝑁, 𝛼 = 1.5,𝑁 = 2, πœ™ = πœ‹/3,

𝐴11= [

βˆ’2.5 3.7

1.9 βˆ’2] , 𝐴

12= [

3.5 1.2

1.2 3.5] ,

𝐴21= [

0.2 βˆ’0.1

0.3 0.1] , 𝐴

22= [

1.8 1.2

βˆ’1.2 0.8] ,

𝐡1= [

1

1] , 𝐡

2= [

0 15

15 25] ,

Δ𝐴11= π·π‘Ž11πΉπ‘Ž11πΈπ‘Ž11

= [0.4 0.2

1 0.3] [

sin (πœ™) 0

0 sin (πœ™)] [0.4 0.2

1 0.3] ,

Δ𝐴22= π·π‘Ž22πΉπ‘Ž22πΈπ‘Ž22

= [0.4 0.2

1 0.3] [

sin (πœ™) 0

0 sin (πœ™)] [0.3 0.5

0.1 0.5] ,

Page 9: Research Article Robust Nonfragile Controllers …downloads.hindawi.com/journals/mpe/2015/206908.pdfResearch Article Robust Nonfragile Controllers Design for Fractional Order Large-Scale

Mathematical Problems in Engineering 9

Δ𝐴12= π·π‘Ž12πΉπ‘Ž12πΈπ‘Ž12

= [0.5

0.3] [

sin (πœ™) 0

0 sin (πœ™)] [0.3 0.5

0.1 0.5] ,

Δ𝐴21= π·π‘Ž21πΉπ‘Ž21πΈπ‘Ž21

= [0.5

0.3] [

sin (πœ™) 0

0 sin (πœ™)] [0.4 0.2

1 0.3] .

(34)

Meanwhile, the following additive gain perturbations areconsidered:

Δ𝐾1= 𝐷𝑏1𝐹𝑏1𝐸𝑏1= [0.5 0.3] [

sin (πœ™) 0

0 sin (πœ™)] [0.4 0.2

1 0.3] ,

Δ𝐾2= 𝐷𝑏2𝐹𝑏2𝐸𝑏2= [

0.5 0

0 0.5] [

sin (πœ™) 0

0 sin (πœ™)] [0.5 0

0 0.5] .

(35)

By using the LMI technique, it is verified that the matrixinequalities are feasible in view of Theorem 8. So the decen-tralized local state feedback gain matrix is obtained as

𝐾1= [βˆ’58.6565 βˆ’61.7286] ,

𝐾2= [

βˆ’0.2560 βˆ’6.2675

βˆ’1.7459 βˆ’4.9510] .

(36)

The time responses of system are shown in Figure 1. It isobserved that its four states all converge to zero. It can beconcluded that fractional order large-scale interconnectedsystem with additive gain perturbations can be stabilized bythe nonfragile controller.

Example 2. Consider the stabilization problem of fractionalorder large-scale interconnected uncertain system with mul-tiplicative gain perturbations:

𝑑𝛼

π‘₯ (𝑑)

𝑑𝑑𝛼

= [𝐴𝑖𝑖+ Δ𝐴𝑖𝑖] π‘₯𝑖(𝑑) +

𝑁

βˆ‘

𝑗=1,𝑗 =𝑖

[𝐴𝑖𝑗+ Δ𝐴𝑖𝑗] π‘₯𝑗(𝑑)

+ 𝐡𝑖[𝐾𝑖+ Δ𝐾𝑖] π‘₯𝑖(𝑑) ,

(37)

where 𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝛼 = 1.5,𝑁 = 2, πœ™ = πœ‹/3,

𝐴11= [

βˆ’3.7 3.5

1.9 βˆ’3] , 𝐴

12= [

0.5 0.2

0.2 0.5] ,

𝐴21= [

0.2 βˆ’0.1

0.3 0.1] , 𝐴

22= [

1 0.2

βˆ’0.2 0.8] ,

𝐡1= [

6.5

0] , 𝐡

2= [

0.5 0.5

0 1.5] ,

Δ𝐴11= π·π‘Ž11πΉπ‘Ž11πΈπ‘Ž11

= [0.4 0.2

1 0.3] [

sin (πœ™) 0

0 sin (πœ™)] [0.4 0.2

1 0.3] ,

0 1 2 3 4 5t

x1

x2

x3

x4

1

0.5

0

βˆ’0.5

Figure 1: Example 1: time responses of the closed-loop fractionalorder large-scale interconnected uncertain system.

Δ𝐴22= π·π‘Ž22πΉπ‘Ž22πΈπ‘Ž22

= [0.4 0.2

1 0.3] [

sin (πœ™) 0

0 sin (πœ™)] [0.3 0.5

0.1 0.5] ,

Δ𝐴12= π·π‘Ž12πΉπ‘Ž12πΈπ‘Ž12

= [0.5

0.3] [

sin (πœ™) 0

0 sin (πœ™)] [0.3 0.5

0.1 0.5] ,

Δ𝐴21= π·π‘Ž21πΉπ‘Ž21πΈπ‘Ž21

= [0.5

0.3] [

sin (πœ™) 0

0 sin (πœ™)] [0.4 0.2

1 0.3] .

(38)

Meanwhile, the following multiplicative gain perturbationsare considered:

𝐷𝑑1= [10.5 10.5] , 𝐸

𝑑1= [

2.2

2.2] ,

𝐷𝑑2= [

0.5 0

0 0.5] , 𝐸

𝑑2= [

0.5 0

0 0.5] .

(39)

By using the LMI technique, it is verified that the matrixinequalities are feasible in view of Theorem 9. So the decen-tralized local state feedback gain matrix is obtained as

𝐾1= [βˆ’0.0304 βˆ’0.0119] , 𝐾

2= [

βˆ’3.0473 2.8800

2.0568 βˆ’2.2810] .

(40)

The time responses of system are shown in Figure 2. It isshown that its four states all converge to zero. It can beconcluded that fractional order large-scale interconnectedsystem with multiplicative gain perturbations can be stabi-lized by the nonfragile controller.

Page 10: Research Article Robust Nonfragile Controllers …downloads.hindawi.com/journals/mpe/2015/206908.pdfResearch Article Robust Nonfragile Controllers Design for Fractional Order Large-Scale

10 Mathematical Problems in Engineering

0 20 40 60 80 100t

x1

x2

x3

x4

1

1.5

0.5

0

βˆ’0.5

βˆ’1

Figure 2: Example 2: time responses of the closed-loop fractionalorder large-scale interconnected uncertain system.

6. Conclusions

In this paper, sufficient conditions have been derived on thestabilization of fractional order large-scale interconnecteduncertain system with a commensurate order 1 < 𝛼 < 2

under two kinds of controller gain perturbations, that is,additive and multiplicative gain perturbations. The proposedmethod is based on the stability criterion of fractional ordersystem by using the complex Lyapunov inequality. Moreover,the nonfragile controllers are designed. Simulation resultshave demonstrated the effectiveness of the proposedmethod.

Conflict of Interests

The author declares that there is no conflict of interestsregarding to the publication of this paper.

Acknowledgment

This work was supported in part by a Zhiyuan Professorshipat Shanghai Jiao Tong University.

References

[1] D.-Z. Zheng, β€œDecentralized output feedback stabilization of aclass of nonlinear interconnected systems,” IEEE Transactionson Automatic Control, vol. 34, no. 12, pp. 1297–1300, 1989.

[2] L. Bakule, β€œDecentralized control: an overview,”Annual Reviewsin Control, vol. 32, no. 1, pp. 87–98, 2008.

[3] J. Sandell, P. Varaiya, M. Athans, and M. G. Safonov, β€œSurveyof decentralized control methods for large scale systems,” IEEETransactions on Automatic Control, vol. AC-23, no. 2, pp. 108–128, 1978.

[4] J. H. Chou, S. J. Ho, and I. R. Horng, β€œRobustness of disk-sta-bility for perturbed large-scale systems,”Automatica, vol. 28, no.5, pp. 1063–1066, 1992.

[5] S. Ghosh, S. K. Das, and G. Ray, β€œDecentralized stabilization ofuncertain systemswith interconnection and feedback delays: anLMI approach,” IEEE Transactions on Automatic Control, vol.54, no. 4, pp. 905–912, 2009.

[6] J. H. Park, β€œRobust decentralized stabilization of uncertainlarge-scale discrete-time systems with delays,” Journal of Opti-mization Theory and Applications, vol. 113, no. 1, pp. 105–119,2002.

[7] O.M. Kown and J. H. Park, β€œDecentralized guaranteed cost con-trol for uncertain large-scale systems using delayed feedback:LMI optimization approach,” Journal of Optimization Theoryand Applications, vol. 129, no. 3, pp. 391–414, 2006.

[8] G. J. Silva, A. Datta, and S. P. Bhattacharyya, PID Controllers forTime-Delay Systems, Birkhauser, Boston, Mass, USA, 2004.

[9] L. H. Keel and S. P. Bhattacharyya, β€œRobust, fragile, or optimal?”IEEETransactions onAutomatic Control, vol. 42, no. 8, pp. 1098–1105, 1997.

[10] P. Dorato, β€œNon-fragile controller design: an overview,” inProceedings of the American Control Conference (ACC ’98), vol.5, pp. 2829–2831, June 1998.

[11] J. H. Park, β€œRobust non-fragile guaranteed cost control ofuncertain large-scale systems with time-delays in subsysteminterconnections,” International Journal of Systems Science, vol.35, no. 4, pp. 233–241, 2004.

[12] W. M. Haddad and J. R. Corrado, β€œRobust resilient dynamiccontrollers for systems with parametric uncertainty and con-troller gain variations,” International Journal of Control, vol. 73,no. 15, pp. 1405–1423, 2000.

[13] H. Oya and K. Hagino, β€œTrajectory-based design of robust non-fragile controllers for a class of uncertain linear continuous-time systems,” International Journal of Control, vol. 80, no. 12,pp. 1849–1862, 2007.

[14] Z. Feng and J. Lam, β€œRobust reliable dissipative filtering fordiscrete delay singular systems,” Signal Processing, vol. 92, no.12, pp. 3010–3025, 2012.

[15] Z. Feng and J. Lam, β€œReliable dissipative control for singularMarkovian systems,” Asian Journal of Control, vol. 15, no. 3, pp.901–910, 2013.

[16] D. Matignon, β€œStability properties for generalized fractionaldifferential systems,” in Systemes Differentiels Fractionnaires,Modeles, Methodes et Applications, vol. 5 of ESAIM Proceedings,pp. 145–158, SMAI, Paris, France, 1998.

[17] I. Podlubny, Fractional Differential Equations, Academic Press,New York, NY, USA, 1999.

[18] C. Bonnet and J. R. Partington, β€œCoprime factorizations andstability of fractional differential systems,” Systems & ControlLetters, vol. 41, no. 3, pp. 167–174, 2000.

[19] C. Bonnet and J. R. Partington, β€œAnalysis of fractional delay sys-tems of retarded and neutral type,”Automatica, vol. 38, no. 7, pp.1133–1138, 2002.

[20] C. Bonnet and J. R. Partington, β€œStabilization of some fractionaldelay systems of neutral type,” Automatica, vol. 43, no. 12, pp.2047–2053, 2007.

[21] H.-S. Ahn, Y. Q. Chen, and I. Podlubny, β€œRobust stabilitytest of a class of linear time-invariant interval fractional-ordersystem using Lyapunov inequality,” Applied Mathematics andComputation, vol. 187, no. 1, pp. 27–34, 2007.

[22] H. S. Ahn and Y. Chen, β€œNecessary and sufficient stability con-dition of fractional-order interval linear systems,” Automatica,vol. 44, no. 11, pp. 2985–2988, 2008.

Page 11: Research Article Robust Nonfragile Controllers …downloads.hindawi.com/journals/mpe/2015/206908.pdfResearch Article Robust Nonfragile Controllers Design for Fractional Order Large-Scale

Mathematical Problems in Engineering 11

[23] M. Moze, J. Sabatier, and A. Oustaloup, β€œLMI tools for stabilityanalysis of fractional systems,” in Proceedings of the ASME2005 International Design Engineering Technical Conferencesand Computers and Information in Engineering Conference(IDETC/CIE ’05), pp. 1611–1619, Long Beach, Calif, USA, 2005.

[24] C. Farges, M. Moze, and J. Sabatier, β€œPseudo-state feedbackstabilization of commensurate fractional order systems,” Auto-matica, vol. 46, no. 10, pp. 1730–1734, 2010.

[25] J. Y. Lin, β€œRobust resilient controllers synthesis for uncertainfractional-order large-scale interconnected system,” Journal ofthe Franklin Institute. Engineering andAppliedMathematics, vol.351, no. 3, pp. 1630–1643, 2014.

[26] R. A. Horn andC. R. Johnson,Matrix Analysis, CambridgeUni-versity Press, Cambridge, UK, 1985.

[27] P. P. Khargonekar, I. R. Petersen, and K. Zhou, β€œRobust stabi-lization of uncertain linear systems: quadratic stabilizability and𝐻∞

control theory,” IEEE Transactions on Automatic Control,vol. 35, no. 3, pp. 356–361, 1990.

[28] D. Matignon, β€œStability results for fractional differential equa-tions with applications to control processing,” inComputationalEngineering in Systems Applications, vol. 2, pp. 963–968, 1996.

[29] K. Diethelm, N. J. Ford, and A. D. Freed, β€œA predictor-correctorapproach for the numerical solution of fractional differentialequations,”Nonlinear Dynamics, vol. 29, no. 1–4, pp. 3–22, 2002.

Page 12: Research Article Robust Nonfragile Controllers …downloads.hindawi.com/journals/mpe/2015/206908.pdfResearch Article Robust Nonfragile Controllers Design for Fractional Order Large-Scale

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of