Research Article Multiple Attribute Decision Making Based...

15
Research Article Multiple Attribute Decision Making Based on Hesitant Fuzzy Einstein Geometric Aggregation Operators Xiaoqiang Zhou 1,2 and Qingguo Li 1 1 College of Mathematics and Econometrics, Hunan University, Changsha 410082, China 2 College of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, China Correspondence should be addressed to Qingguo Li; [email protected] Received 25 June 2013; Accepted 12 November 2013; Published 16 January 2014 Academic Editor: Yi-Chi Wang Copyright Β© 2014 X. Zhou and Q. Li. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We first define an accuracy function of hesitant fuzzy elements (HFEs) and develop a new method to compare two HFEs. en, based on Einstein operators, we give some new operational laws on HFEs and some desirable properties of these operations. We also develop several new hesitant fuzzy aggregation operators, including the hesitant fuzzy Einstein weighted geometric (HFEWG ) operator and the hesitant fuzzy Einstein ordered weighted geometric (HFEWG ) operator, which are the extensions of the weighted geometric operator and the ordered weighted geometric (OWG) operator with hesitant fuzzy information, respectively. Furthermore, we establish the connections between the proposed and the existing hesitant fuzzy aggregation operators and discuss various properties of the proposed operators. Finally, we apply the HFEWG operator to solve the hesitant fuzzy decision making problems. 1. Introduction Atanassov [1, 2] introduced the concept of intuitionistic fuzzy set (IFS) characterized by a membership function and a non- membership function. It is more suitable to deal with fuzzi- ness and uncertainty than the ordinary fuzzy set proposed by Zadeh [3] characterized by one membership function. Information aggregation is an important research topic in many applications such as fuzzy logic systems and multiat- tribute decision making as discussed by Chen and Hwang [4]. Research on aggregation operators with intuitionistic fuzzy information has received increasing attention as shown in the literature. Xu [5] developed some basic arithmetic aggre- gation operators based on intuitionistic fuzzy values (IFVs), such as the intuitionistic fuzzy weighted averaging operator and intuitionistic fuzzy ordered weighted averaging operator, while Xu and Yager [6] presented some basic geometric aggregation operators for aggregating IFVs, including the intuitionistic fuzzy weighted geometric operator and intu- itionistic fuzzy ordered weighted geometric operator. Based on these basic aggregation operators proposed in [6] and [5], many generalized intuitionistic fuzzy aggregation operators have been investigated [5–30]. Recently, Torra and Narukawa [31] and Torra [32] proposed the hesitant fuzzy set (HFS), which is another generalization form of fuzzy set. e char- acteristic of HFS is that it allows membership degree to have a set of possible values. erefore, HFS is a very useful tool in the situations where there are some difficulties in determining the membership of an element to a set. Lately, research on aggregation methods and multiple attribute decision making theories under hesitant fuzzy environment is very active, and a lot of results have been obtained for hesitant fuzzy information [33–43]. For example, Xia et al. [38] developed some confidence induced aggregation operators for hesitant fuzzy information. Xia et al. [37] gave several series of hesitant fuzzy aggregation operators with the help of quasiarithmetic means. Wei [35] explored several hesitant fuzzy prioritized aggregation operators and applied them to hesitant fuzzy decision making problems. Zhu et al. [43] investigated the geometric Bonferroni mean combining the Bonferroni mean and the geometric mean under hesitant fuzzy environment. Xia and Xu [36] presented some hesitant fuzzy operational Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2014, Article ID 745617, 14 pages http://dx.doi.org/10.1155/2014/745617

Transcript of Research Article Multiple Attribute Decision Making Based...

  • Research ArticleMultiple Attribute Decision Making Based onHesitant Fuzzy Einstein Geometric Aggregation Operators

    Xiaoqiang Zhou1,2 and Qingguo Li1

    1 College of Mathematics and Econometrics, Hunan University, Changsha 410082, China2 College of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, China

    Correspondence should be addressed to Qingguo Li; [email protected]

    Received 25 June 2013; Accepted 12 November 2013; Published 16 January 2014

    Academic Editor: Yi-Chi Wang

    Copyright Β© 2014 X. Zhou and Q. Li. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    We first define an accuracy function of hesitant fuzzy elements (HFEs) and develop a new method to compare two HFEs. Then,based on Einstein operators, we give some new operational laws on HFEs and some desirable properties of these operations. Wealso develop several new hesitant fuzzy aggregation operators, including the hesitant fuzzy Einstein weighted geometric (HFEWG

    πœ€)

    operator and the hesitant fuzzy Einstein ordered weighted geometric (HFEWGπœ€) operator, which are the extensions of the

    weighted geometric operator and the ordered weighted geometric (OWG) operator with hesitant fuzzy information, respectively.Furthermore, we establish the connections between the proposed and the existing hesitant fuzzy aggregation operators and discussvarious properties of the proposed operators. Finally, we apply the HFEWG

    πœ€operator to solve the hesitant fuzzy decision making

    problems.

    1. Introduction

    Atanassov [1, 2] introduced the concept of intuitionistic fuzzyset (IFS) characterized by a membership function and a non-membership function. It is more suitable to deal with fuzzi-ness and uncertainty than the ordinary fuzzy set proposedby Zadeh [3] characterized by one membership function.Information aggregation is an important research topic inmany applications such as fuzzy logic systems and multiat-tribute decisionmaking as discussed byChen andHwang [4].Research on aggregation operators with intuitionistic fuzzyinformation has received increasing attention as shown inthe literature. Xu [5] developed some basic arithmetic aggre-gation operators based on intuitionistic fuzzy values (IFVs),such as the intuitionistic fuzzy weighted averaging operatorand intuitionistic fuzzy ordered weighted averaging operator,while Xu and Yager [6] presented some basic geometricaggregation operators for aggregating IFVs, including theintuitionistic fuzzy weighted geometric operator and intu-itionistic fuzzy ordered weighted geometric operator. Basedon these basic aggregation operators proposed in [6] and [5],

    many generalized intuitionistic fuzzy aggregation operatorshave been investigated [5–30]. Recently, Torra and Narukawa[31] and Torra [32] proposed the hesitant fuzzy set (HFS),which is another generalization form of fuzzy set. The char-acteristic of HFS is that it allows membership degree to havea set of possible values.Therefore, HFS is a very useful tool inthe situationswhere there are somedifficulties in determiningthe membership of an element to a set. Lately, research onaggregation methods and multiple attribute decision makingtheories under hesitant fuzzy environment is very active,and a lot of results have been obtained for hesitant fuzzyinformation [33–43]. For example, Xia et al. [38] developedsome confidence induced aggregation operators for hesitantfuzzy information. Xia et al. [37] gave several series of hesitantfuzzy aggregation operators with the help of quasiarithmeticmeans. Wei [35] explored several hesitant fuzzy prioritizedaggregation operators and applied them to hesitant fuzzydecision making problems. Zhu et al. [43] investigated thegeometric Bonferroni mean combining the Bonferroni meanand the geometric mean under hesitant fuzzy environment.Xia and Xu [36] presented some hesitant fuzzy operational

    Hindawi Publishing CorporationJournal of Applied MathematicsVolume 2014, Article ID 745617, 14 pageshttp://dx.doi.org/10.1155/2014/745617

  • 2 Journal of Applied Mathematics

    laws based on the relationship between the HFEs and theIFVs. They also proposed a series of aggregation operators,such as hesitant fuzzy weighted geometric (HFWG) operatorand hesitant fuzzy ordered weighted geometric (HFOWG)operator. Furthermore, they applied the proposed aggrega-tion operators to solve the multiple attribute decisionmakingproblems.

    Note that all aggregation operators introduced previouslyare based on the algebraic product and algebraic sum of IFVs(orHFEs) to carry out the combination process. However, thealgebraic operations include algebraic product and algebraicsum, which are not the unique operations that can be used toperform the intersection and union.There aremany instancesof various t-norms and t-conorms families which can bechosen tomodel the corresponding intersections and unions,among which Einstein product and Einstein sum are goodalternatives for they typically give the same smooth approxi-mation as algebraic product and algebraic sum, respectively.For intuitionistic fuzzy information,Wang and Liu [10, 11, 44]and Wei and Zhao [30] developed some new intuitionisticfuzzy aggregation operators with the help of Einstein oper-ations. For hesitant fuzzy information, however, it seems thatin the literature there is little investigation on aggregationtechniques using the Einstein operations to aggregate hesitantfuzzy information. Therefore, it is necessary to develop somehesitant fuzzy information aggregation operators based onEinstein operations.

    The remainder of this paper is structured as follows.In Section 2, we briefly review some basic concepts andoperations related to IFS andHFS. we also define an accuracyfunction of HFEs to distinguish the two HFEs having thesame score values, based on which we give the new com-parison laws on HFEs. In Section 3, we present some newoperations for HFEs and discuss some basic properties of theproposed operations. In Section 4, we develop some novelhesitant fuzzy geometric aggregation operators with the helpof Einstein operations, such as theHFEWG

    πœ€operator and the

    HFEOWGπœ€operator, and we further study various properties

    of these operators. Section 5 gives an approach to solve themultiple attribute hesitant fuzzy decision making problemsbased on the HFEOWG

    πœ€operator. Finally, Section 6 con-

    cludes the paper.

    2. Preliminaries

    In this section, we briefly introduce Einstein operations andsome notions of IFS and HFS. Meantime, we define anaccuracy function of HFEs and redefine the comparison lawsbetween two HFEs.

    2.1. Einstein Operations. Since the appearance of fuzzy settheory, the set theoretical operators have played an importantrole and received more and more attention. It is well knownthat the t-norms and t-conorms are the general conceptsincluding all types of the specific operators, and they satisfythe requirements of the conjunction and disjunction opera-tors, respectively. There are various t-norms and t-conormsfamilies that can be used to perform the corresponding inter-sections and unions. Einstein sum βŠ•

    πœ€and Einstein product

    βŠ—πœ€are examples of t-conorms and t-norms, respectively.They

    are called Einstein operations and defined as [45]

    π‘₯βŠ—πœ€π‘¦ =

    π‘₯ β‹… 𝑦

    1 + (1 βˆ’ π‘₯) β‹… (1 βˆ’ 𝑦), π‘₯βŠ—

    πœ€π‘¦ =

    π‘₯ + 𝑦

    1 + π‘₯ β‹… 𝑦,

    βˆ€π‘₯, 𝑦 ∈ [0, 1] .

    (1)

    2.2. Intuitionistic Fuzzy Set. Atanassov [1, 2] generalizedthe concept of fuzzy set [3] and defined the concept ofintuitionistic fuzzy set (IFS) as follows.

    Definition 1. Let π‘ˆ be fixed an IFS𝐴 on π‘ˆ is given by;

    𝐴 = {⟨π‘₯, πœ‡π΄(π‘₯) , ]

    𝐴(π‘₯)⟩ | π‘₯ ∈ π‘ˆ} , (2)

    where πœ‡π΄

    : π‘ˆ β†’ [0, 1] and ]𝐴

    : π‘ˆ β†’ [0, 1], with thecondition 0 ≀ πœ‡

    𝐴(π‘₯) + ]

    𝐴(π‘₯) ≀ 1 for all π‘₯ ∈ π‘ˆ. Xu [5] called

    π‘Ž = (πœ‡π‘Ž, ]π‘Ž) an IFV.

    For IFVs, Wang and Liu [11] introduced some operationsas follows.

    Let πœ† > 0, π‘Ž1= (πœ‡π‘Ž1

    , ]π‘Ž1

    ) and π‘Ž2= (πœ‡π‘Ž2

    , ]π‘Ž2

    ) be two IFVs;then

    (1) π‘Ž1βŠ—πœ€π‘Ž2= (

    πœ‡π‘Ž1

    + πœ‡π‘Ž2

    1 + πœ‡π‘Ž1

    πœ‡π‘Ž2

    ,]π‘Ž1

    ]π‘Ž2

    1 + (1 βˆ’ ]π‘Ž1

    ) (1 βˆ’ ]π‘Ž2

    ))

    (2) π‘Ž1βŠ—πœ€π‘Ž2= (

    πœ‡π‘Ž1

    πœ‡π‘Ž2

    1 + (1 βˆ’ πœ‡π‘Ž1

    ) (1 βˆ’ πœ‡π‘Ž2

    ),]π‘Ž1

    + ]π‘Ž2

    1 + ]π‘Ž1

    ]π‘Ž2

    )

    (3) π‘Žβˆ§πœ€πœ†

    1= (

    2]πœ†π‘Ž1

    (2 βˆ’ ]π‘Ž1

    )πœ†

    + ]πœ†π‘Ž1

    ,(1 + πœ‡

    π‘Ž1

    )πœ†

    βˆ’ (1 βˆ’ πœ‡π‘Ž1

    )πœ†

    (1 + πœ‡π‘Ž1

    )πœ†

    + (1 βˆ’ πœ‡π‘Ž1

    )πœ†

    ) .

    (3)

    2.3. Hesitant Fuzzy Set. As another generalization of fuzzyset, HFS was first introduced by Torra and Narukawa [31, 32].

    Definition 2. Let𝑋 be a reference set; anHFS on𝑋 is in termsof a function that when applied to𝑋 returns a subset of [0, 1].

    To be easily understood, Xia and Xu use the followingmathematical symbol to express the HFS:

    𝐻 = {β„Žπ»(π‘₯)

    π‘₯| π‘₯ ∈ 𝑋} , (4)

    where β„Žπ»(π‘₯) is a set of some values in [0, 1], denoting the

    possible membership degrees of the element π‘₯ ∈ 𝑋 to the set𝐻. For convenience, Xu and Xia [40] called β„Ž

    𝐻(π‘₯) a hesitant

    fuzzy element (HFE).Let β„Ž be an HFE, β„Žβˆ’ = min{𝛾 | 𝛾 ∈ β„Ž}, and β„Ž+ = max{𝛾 |

    𝛾 ∈ β„Ž}. Torra and Narukawa [31, 32] define the IFV 𝐴env(β„Ž)as the envelope of β„Ž, where 𝐴env(β„Ž) = (β„Ž

    βˆ’, 1 βˆ’ β„Ž+).

  • Journal of Applied Mathematics 3

    Let𝛼 > 0, β„Ž1and β„Ž2be twoHFEs. Xia andXu [36] defined

    some operations as follows:

    (4) β„Ž1β¨β„Ž2= ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2

    {𝛾1+ 𝛾2βˆ’ 𝛾1𝛾2}

    (5) β„Ž1β¨‚β„Ž2= ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2

    {𝛾1𝛾2}

    (6) π›Όβ„Ž = β‹ƒπ›Ύβˆˆβ„Ž

    {𝛾𝛼

    }

    (7) β„Žπ›Ό

    = β‹ƒπ›Ύβˆˆβ„Ž

    {1 βˆ’ (1 βˆ’ 𝛾)𝛼

    } .

    (5)

    In [36], Xia and Xu defined the score function of anHFE β„Ž to compare the HFEs and gave the comparison laws.

    Definition 3. Let β„Ž be anHFE; 𝑠(β„Ž) = (1/𝑛(β„Ž))βˆ‘π›Ύβˆˆβ„Ž

    𝛾 is calledthe score function of β„Ž, where 𝑛(β„Ž) is the number of values ofβ„Ž. For two HFEs β„Ž

    1and β„Ž

    2, if 𝑠(β„Ž

    1) > 𝑠(β„Ž

    2), then β„Ž

    1> β„Ž2; if

    𝑠(β„Ž1) = 𝑠(β„Ž

    2), then β„Ž

    1= β„Ž2.

    From Definition 3, it can be seen that all HFEs areregarded as the same if their score values are equal. In hesitantfuzzy decision making process, however, we usually need tocompare two HFEs for reordering or ranking. In the casewhere two HFEs have the same score values, they can notbe distinguished by Definition 3. Therefore, it is necessary todevelop a new method to overcome the difficulty.

    For an IFV, Hong and Choi [46] showed that the relationbetween the score function and the accuracy function is sim-ilar to the relation between mean and variance in statistics.From Definition 3, we know that the score value of HFE β„Ž isjust themean of the values in β„Ž.Motivated by the idea ofHongand Choi [46], we can define the accuracy function of HFE β„Žby using the variance of the values in β„Ž.

    Definition 4. Let β„Ž be an HFE; π‘˜(β„Ž) = 1 βˆ’βˆš(1/𝑛(β„Ž))βˆ‘

    π›Ύβˆˆβ„Ž(𝛾 βˆ’ 𝑠(β„Ž))

    2 is called the accuracy function ofβ„Ž, where 𝑛(β„Ž) is the number of values in β„Ž and 𝑠(β„Ž) is thescore function of β„Ž.

    It is well known that an efficient estimator is a measureof the variance of an estimate’s sampling distribution instatistics: the smaller the variance, the better the performanceof the estimator. Motivated by this idea, it is meaningful andappropriate to stipulate that the higher the accuracy degreeof HFE, the better the HFE. Therefore, in the following, wedevelop a new method to compare two HFEs, which is basedon the score function and the accuracy function, defined asfollows.

    Definition 5. Let β„Ž1and β„Ž

    2be two HFEs and let 𝑠(β‹…) and

    π‘˜(β‹…) be the score function and accuracy function of HFEs,respectively. Then

    (1) if 𝑠(β„Ž1) < 𝑠(β„Ž

    2), then β„Ž

    1is smaller than β„Ž

    2, denoted by

    β„Ž1β‰Ί β„Ž2;

    (2) if 𝑠(β„Ž1) = 𝑠(β„Ž

    2), then

    (i) if π‘˜(β„Ž1) < π‘˜(β„Ž

    2), then β„Ž

    1is smaller than β„Ž

    2,

    denoted by β„Ž1β‰Ί β„Ž2;

    (ii) if π‘˜(β„Ž1) = π‘˜(β„Ž

    2), then β„Ž

    1and β„Ž

    2represent

    the same information, denoted by β„Ž1≐ β„Ž2. In

    particular, if 𝛾1= 𝛾2for any 𝛾

    1∈ β„Ž1and 𝛾2∈ β„Ž2,

    then β„Ž1is equal to β„Ž

    2, denoted by β„Ž

    1= β„Ž2.

    Example 6. Let β„Ž1= {0.5}, β„Ž

    2= {0.1, 0.9}, β„Ž

    3= {0.3, 0.7},

    β„Ž4

    = {0.1, 0.3, 0.7, 0.9}, β„Ž5

    = {0.2, 0.4, 0.6, 0.8}, and β„Ž6

    =

    {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}; then 𝑠(β„Ž1) = 𝑠(β„Ž

    2) =

    𝑠(β„Ž3) = 𝑠(β„Ž

    4) = 𝑠(β„Ž

    5) = 𝑠(β„Ž

    6) = 0.5, π‘˜(β„Ž

    1) = 1, π‘˜(β„Ž

    2) = 0.6,

    π‘˜(β„Ž3) = 0.8, π‘˜(β„Ž

    4) = 0.6838, π‘˜(β„Ž

    5) = 0.7764, and π‘˜(β„Ž

    6) =

    0.7418. By Definition 5, we have β„Ž1≻ β„Ž3≻ β„Ž5≻ β„Ž6≻ β„Ž4≻ β„Ž2.

    3. Einstein Operations of Hesitant Fuzzy Sets

    In this section, we will introduce the Einstein operationson HFEs and analyze some desirable properties of theseoperations.Motivated by the operational laws (1)–(3) on IFVsand based on the interconnection between HFEs and IFVs,we give some new operations of HFEs as follows.

    Let 𝛼 > 0, β„Ž, β„Ž1, and β„Ž

    2be three HFEs; then

    (8) β„Ž1βŠ—πœ€β„Ž2= ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2

    {𝛾1+ 𝛾2

    1 + 𝛾1𝛾2

    } ,

    (9) β„Ž1βŠ—πœ€β„Ž2= ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2

    {𝛾1𝛾2

    1 + (1 βˆ’ 𝛾1) (1 βˆ’ 𝛾

    2)} ,

    (10) β„Žβˆ§πœ€π›Ό

    = β‹ƒπ›Ύβˆˆβ„Ž

    {2𝛾𝛼

    (2 βˆ’ 𝛾)𝛼

    + 𝛾𝛼} .

    (6)

    Proposition 7. Let 𝛼 > 0, 𝛼1> 0, 𝛼

    2> 0, β„Ž, β„Ž

    1and β„Ž2be three

    HFEs; then

    (1) β„Ž1βŠ—πœ€β„Ž2= β„Ž2βŠ—πœ€β„Ž1,

    (2) (β„Ž1βŠ—πœ€β„Ž2)βŠ—πœ€β„Ž3= β„Ž1βŠ—πœ€(β„Ž2βŠ—πœ€β„Ž3),

    (3) (β„Ž1βŠ—πœ€β„Ž2)βˆ§πœ€π›Ό

    = β„Žβˆ§πœ€π›Ό

    1βŠ—πœ€β„Žβˆ§πœ€π›Ό

    2,

    (4) (β„Žβˆ§πœ€π›Ό1)βˆ§πœ€π›Ό2 = β„Žβˆ§πœ€(𝛼1𝛼2);

    (5) 𝐴 env(β„Žβˆ§πœ€π›Ό) = (𝐴 env(β„Ž))

    βˆ§πœ€π›Ό,

    (6) 𝐴 env(β„Ž1βŠ—πœ€β„Ž2) = 𝐴 env(β„Ž1)βŠ—πœ€π΄ env(β„Ž2).

    Proof. (1) It is trivial.(2) By the operational law (9), we have

    (β„Ž1βŠ—πœ€β„Ž2) βŠ—πœ€β„Ž3

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2,𝛾3βˆˆβ„Ž3

    { ((𝛾1𝛾2/ (1 + (1 βˆ’ 𝛾

    1) (1 βˆ’ 𝛾

    2))) 𝛾3)

    Γ— (1 + (1 βˆ’ (𝛾1𝛾2/ (1 + (1 βˆ’ 𝛾

    1) (1 βˆ’ 𝛾

    2))))

    Γ— (1 βˆ’ 𝛾3))βˆ’1

    }

  • 4 Journal of Applied Mathematics

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2,𝛾3βˆˆβ„Ž3

    { (𝛾1𝛾2𝛾3) Γ— (1 + (1 βˆ’ 𝛾

    1) (1 βˆ’ 𝛾

    2)

    + (1 βˆ’ 𝛾1) (1 βˆ’ 𝛾

    3) + (1 βˆ’ 𝛾

    2)

    Γ— (1 βˆ’ 𝛾3))βˆ’1

    }

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2,𝛾3βˆˆβ„Ž3

    { (𝛾1(𝛾2𝛾3/ (1 + (1 βˆ’ 𝛾

    2) (1 βˆ’ 𝛾

    3))))

    Γ— (1 + (1 βˆ’ 𝛾1)

    Γ— (1 βˆ’ (𝛾2𝛾3/ (1 + (1 βˆ’ 𝛾

    2) (1 βˆ’ 𝛾

    3)))))βˆ’1

    }

    = β„Ž1βŠ—πœ€(β„Ž2βŠ—πœ€β„Ž3) .

    (7)

    (3) Let β„Ž = β„Ž1βŠ—πœ€β„Ž2; then β„Ž = β„Ž

    1βŠ—πœ€β„Ž2

    =

    ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2

    {𝛾1𝛾2/(1 + (1 βˆ’ 𝛾

    1)(1 βˆ’ 𝛾

    2))}

    (β„Ž1βŠ—πœ€β„Ž2)βˆ§πœ€π›Ό

    = β„Žβˆ§πœ€π›Ό

    = β‹ƒπ›Ύβˆˆβ„Ž

    {2𝛾𝛼

    (2 βˆ’ 𝛾)𝛼

    + 𝛾𝛼}

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2

    { (2(𝛾1𝛾2/ (1 + (1 βˆ’ 𝛾

    1) (1 βˆ’ 𝛾

    2)))𝛼

    )

    Γ— ((2 βˆ’ (𝛾1𝛾2/ (1 + (1 βˆ’ 𝛾

    1) (1 βˆ’ 𝛾

    2))))𝛼

    + (𝛾1𝛾2/ (1 + (1 βˆ’ 𝛾

    1) (1 βˆ’ 𝛾

    2)))𝛼

    )βˆ’1

    }

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2

    {2(𝛾1𝛾2)𝛼

    (4 βˆ’ 2𝛾1βˆ’ 2𝛾2+ 𝛾1𝛾2)𝛼

    + (𝛾1𝛾2)𝛼} ,

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2

    {2(𝛾1𝛾2)𝛼

    (2 βˆ’ 𝛾1)𝛼

    (2 βˆ’ 𝛾2)𝛼

    + (𝛾1𝛾2)𝛼} .

    (8)

    Since β„Žβˆ§πœ€π›Ό1

    = ⋃𝛾1βˆˆβ„Ž{2𝛾𝛼1/((2 βˆ’ 𝛾

    1)𝛼

    + 𝛾𝛼1)} and β„Žβˆ§πœ€π›Ό

    2=

    ⋃𝛾2βˆˆβ„Ž{2𝛾𝛼

    2/((2 βˆ’ 𝛾

    2)𝛼

    + 𝛾𝛼

    2)}, then

    β„Žβˆ§πœ€π›Ό

    1βŠ—πœ€β„Žβˆ§πœ€π›Ό

    2

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2

    { ((2𝛾𝛼

    1/ ((2 βˆ’ 𝛾

    1)𝛼

    + 𝛾𝛼

    1))

    β‹… (2𝛾𝛼

    2/ ((2 βˆ’ 𝛾

    2)𝛼

    + 𝛾𝛼

    2)))

    Γ— (1 + (1 βˆ’ (2𝛾𝛼

    1/ ((2 βˆ’ 𝛾

    1)𝛼

    + 𝛾𝛼

    1)))

    Γ— (1 βˆ’ (2𝛾𝛼

    2/ ((2 βˆ’ 𝛾

    2)𝛼

    + 𝛾𝛼

    2))))βˆ’1

    }

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2

    {2(𝛾1𝛾2)𝛼

    (2 βˆ’ 𝛾1)𝛼

    (2 βˆ’ 𝛾2)𝛼

    + (𝛾1𝛾2)𝛼} .

    (9)

    Thus (β„Ž1βŠ—πœ€β„Ž2)βˆ§πœ€π›Ό

    = β„Žβˆ§πœ€π›Ό

    1βŠ—πœ€β„Žβˆ§πœ€π›Ό

    2.

    (4) Since β„Žβˆ§πœ€π›Ό1 = β‹ƒπ›Ύβˆˆβ„Ž

    {2𝛾𝛼1/((2 βˆ’ 𝛾)𝛼1 + 𝛾𝛼1)}, then

    (β„Žβˆ§πœ€π›Ό1)βˆ§πœ€π›Ό2

    = β‹ƒπ›Ύβˆˆβ„Ž

    { (2(2𝛾𝛼1/ ((2 βˆ’ 𝛾)

    𝛼1 + 𝛾𝛼1))𝛼2

    )

    Γ— ((2 βˆ’ (2𝛾𝛼1/ ((2 βˆ’ 𝛾)𝛼1 + 𝛾𝛼1)))

    𝛼2

    + (2𝛾𝛼1/ ((2 βˆ’ 𝛾)𝛼1 + 𝛾𝛼1))

    𝛼2

    )βˆ’1

    }

    = β‹ƒπ›Ύβˆˆβ„Ž

    {2𝛾(𝛼1𝛼2)

    (2 βˆ’ 𝛾)(𝛼1𝛼2)

    + 𝛾(𝛼1𝛼2)}

    = β„Žβˆ§πœ€(𝛼1𝛼2).

    (10)

    (5) By the definition of the envelope of an HFE and theoperation laws (3) and (10), we have

    (𝐴env (β„Ž))βˆ§πœ€π›Ό

    = (β„Žβˆ’

    , 1 βˆ’ β„Ž+

    )βˆ§πœ€π›Ό

    = (2(β„Žβˆ’)

    𝛼

    (2 βˆ’ β„Žβˆ’)𝛼

    + (β„Žβˆ’)𝛼,[1 + (1 βˆ’ β„Ž+)]

    𝛼

    βˆ’ [1 βˆ’ (1 βˆ’ β„Ž+)]𝛼

    [1 + (1 βˆ’ β„Ž+)]𝛼

    + [1 βˆ’ (1 βˆ’ β„Ž+)]𝛼)

    = (2(β„Žβˆ’)

    𝛼

    (2 βˆ’ β„Žβˆ’)𝛼

    + (β„Žβˆ’)𝛼,(2 βˆ’ β„Ž+)

    𝛼

    βˆ’ (β„Ž+)𝛼

    (2 βˆ’ β„Ž+)𝛼

    + (β„Ž+)𝛼) .

    𝐴env (β„Žβˆ§πœ€π›Ό

    )

    = 𝐴env (β‹ƒπ›Ύβˆˆβ„Ž

    {2𝛾𝛼

    (2 βˆ’ 𝛾)𝛼

    + 𝛾𝛼})

    = (2(β„Žβˆ’)

    𝛼

    (2 βˆ’ β„Žβˆ’)𝛼

    + (β„Žβˆ’)𝛼, 1 βˆ’

    2(β„Ž+)𝛼

    (2 βˆ’ β„Ž+)𝛼

    + (β„Ž+)𝛼)

    = (2(β„Žβˆ’)

    𝛼

    (2 βˆ’ β„Žβˆ’)𝛼

    + (β„Žβˆ’)𝛼,(2 βˆ’ β„Ž+)

    𝛼

    βˆ’ (β„Ž+)𝛼

    (2 βˆ’ β„Ž+)𝛼

    + (β„Ž+)𝛼) .

    (11)

    Thus, 𝐴env(β„Žβˆ§πœ€π›Ό

    ) = (𝐴env(β„Ž))βˆ§πœ€π›Ό.

    (6) By the definition of the envelope of an HFE and theoperation laws (2) and (9), we have

    𝐴env (β„Ž1) βŠ—πœ€π΄env (β„Ž2)

    = (β„Žβˆ’

    1, 1 βˆ’ β„Ž

    +

    1) βŠ—πœ€(β„Žβˆ’

    2, 1 βˆ’ β„Ž

    +

    2)

    = (β„Žβˆ’1β„Žβˆ’2

    1 + (1 βˆ’ β„Žβˆ’1) (1 βˆ’ β„Žβˆ’

    2),(1 βˆ’ β„Ž+

    1) + (1 βˆ’ β„Ž+

    2)

    1 + (1 βˆ’ β„Ž+1) (1 βˆ’ β„Ž+

    2))

  • Journal of Applied Mathematics 5

    𝐴env (β„Ž1βŠ—πœ€β„Ž2)

    = 𝐴env ( ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2

    {𝛾1𝛾2

    1 + (1 βˆ’ 𝛾1) (1 βˆ’ 𝛾

    2)})

    = (β„Žβˆ’1β„Žβˆ’2

    1 + (1 βˆ’ β„Žβˆ’1) (1 βˆ’ β„Žβˆ’

    2), 1 βˆ’

    β„Ž+1β„Ž+2

    1 + (1 βˆ’ β„Ž+1) (1 βˆ’ β„Ž+

    2))

    = (β„Žβˆ’1β„Žβˆ’2

    1 + (1 βˆ’ β„Žβˆ’1) (1 βˆ’ β„Žβˆ’

    2),(1 βˆ’ β„Ž+

    1) + (1 βˆ’ β„Ž+

    2)

    1 + (1 βˆ’ β„Ž+1) (1 βˆ’ β„Ž+

    2)) .

    (12)

    Thus, 𝐴env(β„Ž1βŠ—πœ€β„Ž2) = 𝐴env(β„Ž1)βŠ—πœ€π΄env(β„Ž2).

    Remark 8. Let 𝛼1> 0, 𝛼

    2> 0, and β„Ž be an HFE. It is worth

    noting that β„Žβˆ§πœ€π›Ό1βŠ—πœ€β„Žβˆ§πœ€π›Ό2 ≐ β„Žβˆ§πœ€(𝛼1+𝛼2) does not hold necessarily

    in general. To illustrate that, an example is given as follows.

    Example 9. Let β„Ž = (0.3, 0.5), 𝛼1

    = 𝛼2

    = 1; thenβ„Žβˆ§πœ€π›Ό1βŠ—

    πœ€β„Žβˆ§πœ€π›Ό2 = β„ŽβŠ—

    πœ€β„Ž = ⋃

    π›Ύπ‘–βˆˆβ„Ž,π›Ύπ‘—βˆˆβ„Ž,(𝑖,𝑗=1,2)

    {𝛾𝑖𝛾𝑗/(1 + (1 βˆ’

    𝛾𝑖)(1 βˆ’ 𝛾

    𝑗))} = (0.0604, 0.1111, 0.2), and β„Žβˆ§πœ€(𝛼1+𝛼2) =

    β„Žβˆ§πœ€2 = β‹ƒπ›Ύβˆˆβ„Ž

    {2𝛾2/((2 βˆ’ 𝛾)2

    + 𝛾2)} = (0.0604, 0.2). Clearly,𝑠(β„Žβˆ§πœ€π›Ό1βŠ—

    πœ€β„Žβˆ§πœ€π›Ό2) = 0.1238 < 0.1302 = 𝑠(β„Žβˆ§πœ€(𝛼1+𝛼2)). Thus

    β„Žβˆ§πœ€π›Ό1βŠ—πœ€β„Žβˆ§πœ€π›Ό1 β‰Ί β„Žβˆ§πœ€(𝛼1+𝛼2).

    However, if the number of the values in β„Ž is only one, thatis, HFE β„Ž is reduced to a fuzzy value, then the above resultholds.

    Proposition 10. Let 𝛼1> 0, 𝛼

    2> 0, and β„Ž be an HFE, in

    which the number of the values is only one, that is, β„Ž = {𝛾};then β„Žβˆ§πœ€π›Ό1βŠ—

    πœ€β„Žβˆ§πœ€π›Ό2 = β„Žβˆ§πœ€(𝛼1+𝛼2).

    Proof. Since β„Žβˆ§πœ€π›Ό1 = β‹ƒπ›Ύβˆˆβ„Ž

    {2𝛾𝛼1/((2 βˆ’ 𝛾)𝛼1 + 𝛾𝛼1)} and β„Žβˆ§πœ€π›Ό2 =

    β‹ƒπ›Ύβˆˆβ„Ž

    {2𝛾𝛼2/((2 βˆ’ 𝛾)𝛼2 + 𝛾𝛼2)}, then

    β„Žβˆ§πœ€π›Ό1βŠ—πœ€β„Žβˆ§πœ€π›Ό1

    = β‹ƒπ›Ύβˆˆβ„Ž

    { ((2𝛾𝛼1/ ((2 βˆ’ 𝛾)

    𝛼1 + 𝛾𝛼1))

    β‹… (2𝛾𝛼2/ ((2 βˆ’ 𝛾)

    𝛼2 + 𝛾𝛼2)))

    Γ— (1 + (1 βˆ’ (2𝛾𝛼1/ ((2 βˆ’ 𝛾)

    𝛼1 + 𝛾𝛼1)))

    Γ— (1 βˆ’ (2𝛾𝛼2/ ((2 βˆ’ 𝛾)

    𝛼2 + 𝛾𝛼2))))βˆ’1

    }

    = β‹ƒπ›Ύβˆˆβ„Ž

    { (2𝛾𝛼1 β‹… 2𝛾𝛼2) Γ— ([(2 βˆ’ 𝛾)

    𝛼1 + 𝛾𝛼1] β‹… [(2 βˆ’ 𝛾)

    𝛼2 + 𝛾𝛼2]

    + [(2 βˆ’ 𝛾)𝛼1 βˆ’ 𝛾𝛼1]

    β‹… [(2 βˆ’ 𝛾)𝛼2 βˆ’ 𝛾𝛼2])βˆ’1

    }

    = β‹ƒπ›Ύβˆˆβ„Ž

    {2𝛾𝛼1+𝛼2

    (2 βˆ’ 𝛾)𝛼1+𝛼2 + 𝛾𝛼1+𝛼2

    }

    = β„Žβˆ§πœ€(𝛼1+𝛼2)

    .

    (13)

    Proposition 10 shows that it is consistent with the result(iii) in Theorem 2 in the literature [11].

    4. Hesitant Fuzzy Einstein GeometricAggregation Operators

    The weighted geometric operator [47] and the orderedweighted geometric operator [48] are two of the most com-mon and basic aggregation operators. Since their appearance,they have received more and more attention. In this section,we extend them to aggregate hesitant fuzzy information usingEinstein operations.

    4.1. Hesitant Fuzzy Einstein Geometric Weighted AggregationOperator. Based on the operational laws (5) and (7) onHFEs,Xia and Xu [36] developed some hesitant fuzzy aggregationoperators as listed below.

    Let β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs; then.

    (1) the hesitant fuzzy weighted geometric (HFWG) oper-ator

    HFWG (β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) =

    𝑛

    ⨂𝑗=1

    β„Žπ‘—

    πœ”π‘—

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2,...,π›Ύπ‘›βˆˆβ„Žπ‘›

    {

    {

    {

    𝑛

    βˆπ‘—=1

    𝛾𝑗

    πœ”π‘—

    }

    }

    }

    ,

    (14)

    where πœ” = (πœ”1, πœ”2, . . . , πœ”

    𝑛)𝑇 is the weight vector of β„Ž

    𝑗(𝑗 =

    1, 2, . . . , 𝑛) with πœ”π‘—βˆˆ [0, 1] and βˆ‘π‘›

    𝑗=1πœ”π‘—= 1.

    (2) the hesitant fuzzy ordered weighted geometric(HFOWG) operator

    HFOWG (β„Ž1, β„Ž2, . . . , β„Ž

    𝑛)

    =

    𝑛

    ⨂𝑗=1

    𝑀𝑗

    β„ŽπœŽ(𝑗)

    = β‹ƒπ›ΎπœŽ(1)βˆˆβ„ŽπœŽ(1),π›ΎπœŽ(2)βˆˆβ„ŽπœŽ(2),...,π›ΎπœŽ(𝑛)βˆˆβ„ŽπœŽ(𝑛)

    {

    {

    {

    𝑛

    βˆπ‘—=1

    𝛾𝑀𝑗

    𝜎(𝑗)

    }

    }

    }

    ,

    (15)

    where 𝜎(1), 𝜎(2), . . . , 𝜎(𝑛) is a permutation of 1, 2, . . . , 𝑛,such that β„Ž

    𝜎(π‘—βˆ’1)> β„ŽπœŽ(𝑗)

    for all 𝑗 = 2, . . . , 𝑛 and 𝑀 =(𝑀1, 𝑀2, . . . , 𝑀

    𝑛)𝑇 is aggregation-associated vector with 𝑀

    π‘—βˆˆ

    [0, 1] and βˆ‘π‘›π‘—=1

    𝑀𝑗= 1.

    For convenience, let𝐻 be the set of all HFEs. Based on theproposed Einstein operations onHFEs, we develop some newaggregation operators for HFEs and discuss their desirableproperties.

  • 6 Journal of Applied Mathematics

    Definition 11. Let β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs.

    A hesitant fuzzy Einstein weighted geometric (HFEWGπœ€)

    operator of dimension 𝑛 is a mapping HFEWGπœ€: 𝐻𝑛 β†’ 𝐻

    defined as follows:

    HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛)

    =

    𝑛

    β¨‚πœ€

    𝑗=1

    β„Žβˆ§πœ€πœ”π‘—

    𝑗

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2,...,π›Ύπ‘›βˆˆβ„Žπ‘›

    {

    {

    {

    2βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗

    βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)πœ”π‘—

    +βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗

    }

    }

    }

    ,

    (16)

    where 𝑀 = (𝑀1, 𝑀2, . . . , 𝑀

    𝑛)𝑇 is the weight vector of β„Ž

    𝑗(𝑗 =

    1, 2, . . . , 𝑛) and 𝑀𝑗> 0,βˆ‘π‘›

    𝑗=1𝑀𝑗= 1. In particular, when 𝑀

    𝑗=

    1/𝑛, 𝑗 = 1, 2, . . . , 𝑛, the HFEWGπœ€operator is reduced to the

    hesitant fuzzy Einstein geometric (HFEGπœ€) operator:

    HFEGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛)

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2,...,π›Ύπ‘›βˆˆβ„Žπ‘›

    {

    {

    {

    2βˆπ‘›

    𝑗=1𝛾1/𝑛

    𝑗

    βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)1/𝑛

    +βˆπ‘›

    𝑗=1𝛾1/𝑛

    𝑗

    }

    }

    }

    .(17)

    From Proposition 10, we easily get the following result.

    Corollary 12. If all β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛) are equal and the

    number of values in β„Žπ‘—is only one, that is, β„Ž

    𝑗= β„Ž = {𝛾} for

    all 𝑗 = 1, 2, . . . , 𝑛, then

    HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) = β„Ž. (18)

    Note that the HFEWGπœ€operator is not idempotent in

    general; we give the following example to illustrate this case.

    Example 13. Let β„Ž1

    = β„Ž2

    = β„Ž3

    = β„Ž = (0.3, 0.7), 𝑀 =(0.4, 0.25, 0.35)

    𝑇; then HFEWGπœ€(β„Ž1, β„Ž2, β„Ž3) = {0.3, 0.4137,

    0.3782, 0.5126, 0.4323, 0.579, 0.5342, 0.7}. ByDefinition 3, wehave 𝑠(HFEWG

    πœ€(β„Ž1, β„Ž2, β„Ž3)) = 0.4812 < 0.5 = 𝑠(β„Ž). Hence

    HFEWGπœ€(β„Ž1, β„Ž2, β„Ž3) β‰Ί β„Ž.

    Lemma 14 (see [18, 49]). Let 𝛾𝑗> 0, 𝑀

    𝑗> 0, 𝑗 = 1, 2, . . . , 𝑛,

    and βˆ‘π‘›π‘—=1

    𝑀𝑗= 1. Then

    𝑛

    βˆπ‘—=1

    𝛾𝑀𝑗

    𝑗≀

    𝑛

    βˆ‘π‘—=1

    𝑀𝑗𝛾𝑗 (19)

    with equality if and only if 𝛾1= 𝛾2= β‹… β‹… β‹… = 𝛾

    𝑛.

    Theorem 15. Let β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs

    and 𝑀 = (𝑀1, 𝑀2, . . . , 𝑀

    𝑛)𝑇 the weight vector of β„Ž

    𝑗(𝑗 =

    1, 2, . . . , 𝑛) with π‘€π‘—βˆˆ [0, 1] and βˆ‘π‘›

    𝑗=1𝑀𝑗= 1. Then

    HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) βͺ° HFWG (β„Ž

    1, β„Ž2, . . . , β„Ž

    𝑛) , (20)

    where the equality holds if only if all β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛) are

    equal and the number of values in β„Žπ‘—is only one.

    Proof. For any π›Ύπ‘—βˆˆ β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛), by Lemma 14, we have

    𝑛

    βˆπ‘—=1

    (2 βˆ’ 𝛾𝑗)𝑀𝑗

    +

    𝑛

    βˆπ‘—=1

    𝛾𝑀𝑗

    𝑗≀

    𝑛

    βˆ‘π‘—=1

    𝑀𝑗(2 βˆ’ 𝛾

    𝑗) +

    𝑛

    βˆ‘π‘—=1

    𝑀𝑗𝛾𝑗= 2. (21)

    Then

    2βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗

    βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)πœ”π‘—

    +βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗

    β‰₯

    𝑛

    βˆπ‘—=1

    π›Ύπœ”π‘—

    𝑗. (22)

    It follows that 𝑠(βŠ—πœ€

    𝑛

    𝑗=1β„Žβˆ§πœ€πœ”π‘—

    𝑗) β‰₯ 𝑠(βŠ—

    πœ€

    𝑛

    𝑗=1β„Žπœ”π‘—

    𝑗), which completes

    the proof of Theorem 15.

    Theorem 15 tells us the result that the HFEWGπœ€operator

    shows the decision maker’s more optimistic attitude than theHFWA operator proposed by Xia and Xu [36] (i.e., (15)) inaggregation process. To illustrate that, we give an exampleadopted from Example 1 in [36] as follows.

    Example 16. Let β„Ž1= (0.2, 0.3, 0.5), β„Ž

    2= (0.4, 0.6) be two

    HFEs, and let 𝑀 = (0.7, 0.3)𝑇 be the weight vector of β„Žπ‘—(𝑗 =

    1, 2); then by Definition 11, we have

    HFEWGπœ€(β„Ž1, β„Ž2) = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2

    {

    {

    {

    2∏2

    𝑗=1π›Ύπœ”π‘—

    𝑗

    ∏2

    𝑗=1(2 βˆ’ 𝛾

    𝑗)πœ”π‘—

    +∏2

    𝑗=1π›Ύπœ”π‘—

    𝑗

    }

    }

    }

    = {0.2482, 0.2856, 0.3276, 0.3744,

    0.4683, 0.5288} .

    (23)

    However, Xia and Xu [36] used the HFWG operator toaggregate the β„Ž

    𝑗(𝑗 = 1, 2) and got

    HFEG (β„Ž1, β„Ž2)

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2

    {

    {

    {

    2

    βˆπ‘—=1

    𝛾𝑀𝑗

    𝑗

    }

    }

    }

    = {0.2462, 0.2781, 0.3270, 0.3693, 0.4676, 0.5281} .

    (24)

    It is clear that 𝑠(HFEWGπœ€(β„Ž1, β„Ž2)) = 0.3722 > 0.3694 =

    𝑠(HFEG(β„Ž1, β„Ž2)). Thus HFEWG

    πœ€(β„Ž1, β„Ž2) ≻ HFEG(β„Ž

    1, β„Ž2).

    Based onDefinition 11 and the proposed operational laws,we can obtain the following properties onHFEWG

    πœ€operator.

    Theorem 17. Let 𝛼 > 0, β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛), be a collection of

    HFEs and 𝑀 = (𝑀1, 𝑀2, . . . , 𝑀

    𝑛)𝑇 the weight vector of β„Ž

    𝑗(𝑗 =

    1, 2, . . . , 𝑛) with π‘€π‘—βˆˆ [0, 1] and βˆ‘π‘›

    𝑖=1𝑀𝑗= 1. Then

    HFEWGπœ€(β„Žβˆ§πœ€π›Ό

    1, β„Žβˆ§πœ€π›Ό

    2, . . . , β„Ž

    βˆ§πœ€π›Ό

    𝑛)

    = (HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛))βˆ§πœ€π›Ό

    .

    (25)

  • Journal of Applied Mathematics 7

    Proof. Since β„Žβˆ§πœ€π›Όπ‘—

    = β‹ƒπ›Ύβˆˆβ„Žπ‘—

    {2𝛾𝛼𝑗/((2 βˆ’ 𝛾

    𝑗)𝛼

    + 𝛾𝛼𝑗)} for all 𝑗 =

    1, 2, . . . , 𝑛, by the definition of HFEWGπœ€, we have

    HFEWGπœ€(β„Žβˆ§πœ€π›Ό

    1, β„Žβˆ§πœ€π›Ό

    2, . . . , β„Ž

    βˆ§πœ€π›Ό

    𝑛)

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2,...,π›Ύπ‘›βˆˆβ„Žπ‘›

    {

    {

    {

    (2

    𝑛

    βˆπ‘—=1

    (2𝛾𝛼

    𝑗/ ((2 βˆ’ 𝛾

    𝑗)𝛼

    + 𝛾𝛼

    𝑗))πœ”π‘—

    )

    Γ— (

    𝑛

    βˆπ‘—=1

    (2 βˆ’ (2𝛾𝛼

    𝑗/ ((2 βˆ’ 𝛾

    𝑗)𝛼

    + 𝛾𝛼

    𝑗)))πœ”π‘—

    +

    𝑛

    βˆπ‘—=1

    (2𝛾𝛼

    𝑗/ ((2 βˆ’ 𝛾

    𝑗)𝛼

    + 𝛾𝛼

    𝑗))πœ”π‘—

    )

    βˆ’1

    }

    }

    }

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2,...,π›Ύπ‘›βˆˆβ„Žπ‘›

    {

    {

    {

    2βˆπ‘›

    𝑗=1π›Ύπ›Όπœ”π‘—

    𝑗

    βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)π›Όπœ”π‘—

    +βˆπ‘›

    𝑗=1π›Ύπ›Όπœ”π‘—

    𝑗

    }

    }

    }

    .

    (26)

    Since HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) =

    ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2,...,π›Ύπ‘›βˆˆβ„Žπ‘›

    {2βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗/(βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)πœ”π‘— + ∏

    𝑛

    𝑗=1π›Ύπœ”π‘—

    𝑗)},

    then

    (HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛))βˆ§πœ€π›Ό

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2,...,π›Ύπ‘›βˆˆβ„Žπ‘›

    {

    {

    {

    (2(2

    𝑛

    βˆπ‘—=1

    π›Ύπœ”π‘—

    𝑗/(

    𝑛

    βˆπ‘—=1

    (2 βˆ’ 𝛾𝑗)πœ”π‘—

    +

    𝑛

    βˆπ‘—=1

    π›Ύπœ”π‘—

    𝑗))

    𝛼

    )

    Γ— ((2 βˆ’ (2

    𝑛

    βˆπ‘—=1

    π›Ύπœ”π‘—

    𝑗/(

    𝑛

    βˆπ‘—=1

    (2 βˆ’ 𝛾𝑗)πœ”π‘—

    +

    𝑛

    βˆπ‘—=1

    π›Ύπœ”π‘—

    𝑗)))

    𝛼

    + (2

    𝑛

    βˆπ‘—=1

    π›Ύπœ”π‘—

    𝑗/(

    𝑛

    βˆπ‘—=1

    (2 βˆ’ 𝛾𝑗)πœ”π‘—

    +

    𝑛

    βˆπ‘—=1

    π›Ύπœ”π‘—

    𝑗))

    𝛼

    )

    βˆ’1

    }

    }

    }

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2,...,π›Ύπ‘›βˆˆβ„Žπ‘›

    {

    {

    {

    2(βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗)𝛼

    (βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)πœ”π‘—

    )𝛼

    + (βˆπ‘›

    𝑗=1π›Ύπ›Όπœ”π‘—

    𝑗)𝛼

    }

    }

    }

    = ⋃𝛾1βˆˆβ„Ž1,𝛾2βˆˆβ„Ž2,...,π›Ύπ‘›βˆˆβ„Žπ‘›

    {

    {

    {

    2βˆπ‘›

    𝑗=1π›Ύπ›Όπœ”π‘—

    𝑗

    βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)π›Όπœ”π‘—

    +βˆπ‘›

    𝑗=1π›Ύπ›Όπœ”π‘—

    𝑗

    }

    }

    }

    .

    (27)

    Theorem 18. Let β„Ž be an𝐻𝐹𝐸, β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛) a collection

    of HFEs, and 𝑀 = (𝑀1, 𝑀2, . . . , 𝑀

    𝑛)𝑇 the weight vector of β„Ž

    𝑗

    (𝑗 = 1, 2, . . . , 𝑛) with π‘€π‘—βˆˆ [0, 1] and βˆ‘π‘›

    𝑖=1𝑀𝑗= 1. Then

    HFEWGπœ€(β„Ž1βŠ—πœ€β„Ž, β„Ž2βŠ—πœ€β„Ž, . . . , β„Ž

    π‘›βŠ—πœ€β„Ž)

    = HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) βŠ—πœ€β„Ž.

    (28)

    Proof. By the definition of HFEWGπœ€and Einstein product

    operator of HFEs, we have

    HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) βŠ—πœ€β„Ž

    = β‹ƒπ›Ύβˆˆβ„Ž,𝛾

    π‘—βˆˆβ„Žπ‘—,𝑗=1,...,𝑛

    {

    {

    {

    (2βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗/ (βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)πœ”π‘—

    +βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗)) β‹… 𝛾

    1 + (1 βˆ’ (2βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗/ (βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)πœ”π‘—

    +βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗))) (1 βˆ’ 𝛾)

    }

    }

    }

    = β‹ƒπ›Ύβˆˆβ„Ž,𝛾

    π‘—βˆˆβ„Žπ‘—,𝑗=1,...,𝑛

    {

    {

    {

    2π›Ύβˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗

    (2 βˆ’ 𝛾)βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)πœ”π‘—

    + π›Ύβˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗

    }

    }

    }

    .

    (29)

    Since β„Žπ‘—βŠ—πœ€β„Ž = ⋃

    π›Ύπ‘—βˆˆβ„Žπ‘—,π›Ύβˆˆβ„Ž

    {𝛾𝑗𝛾/(1 + (1 βˆ’ 𝛾

    𝑗)(1 βˆ’ 𝛾))} for all 𝑗 =

    1, 2, . . . , 𝑛, by the definition of HFEWGπœ€, we have

    HFEWGπœ€(β„Ž1βŠ—πœ€β„Ž, β„Ž2βŠ—πœ€β„Ž, . . . , β„Ž

    π‘›βŠ•πœ€β„Ž)

    = β‹ƒπ›Ύβˆˆβ„Ž,𝛾

    π‘—βˆˆβ„Žπ‘—,𝑗=1,...,𝑛

    {

    {

    {

    (2

    𝑛

    βˆπ‘—=1

    (𝛾𝑗𝛾/ (1 + (1 βˆ’ 𝛾

    𝑗) (1 βˆ’ 𝛾)))

    πœ”π‘—

    )

    Γ— (

    𝑛

    βˆπ‘—=1

    (2 βˆ’ (𝛾𝑗𝛾/ (1 + (1 βˆ’ 𝛾

    𝑗)

    Γ— (1 βˆ’ 𝛾))))πœ”π‘—

    +

    𝑛

    βˆπ‘—=1

    (𝛾𝑗𝛾/ (1 + (1 βˆ’ 𝛾

    𝑗)

    Γ— (1 βˆ’ 𝛾)))𝑀𝑗)

    βˆ’1

    }

    }

    }

    = β‹ƒπ›Ύβˆˆβ„Ž,𝛾

    π‘—βˆˆβ„Žπ‘—,𝑗=1,...,𝑛

    {

    {

    {

    2βˆπ‘›

    𝑗=1(𝛾𝑗𝛾)πœ”π‘—

    βˆπ‘›

    𝑗=1((2 βˆ’ 𝛾

    𝑗) (2 βˆ’ 𝛾))

    πœ”π‘—

    +βˆπ‘›

    𝑗=1(𝛾𝑗𝛾)πœ”π‘—

    }

    }

    }

  • 8 Journal of Applied Mathematics

    = β‹ƒπ›Ύβˆˆβ„Ž,𝛾

    π‘—βˆˆβ„Žπ‘—,𝑗=1,...,𝑛

    {

    {

    {

    (2

    𝑛

    βˆπ‘—=1

    π›Ύπœ”π‘— β‹…

    𝑛

    βˆπ‘—=1

    π›Ύπœ”π‘—

    𝑗)

    Γ— (

    𝑛

    βˆπ‘—=1

    (2 βˆ’ 𝛾)πœ”π‘— β‹…

    𝑛

    βˆπ‘—=1

    (2 βˆ’ 𝛾𝑗)πœ”π‘—

    +

    𝑛

    βˆπ‘—=1

    π›Ύπœ”π‘—

    β‹…

    𝑛

    βˆπ‘—=1

    π›Ύπœ”π‘—

    𝑗)

    βˆ’1

    }

    }

    }

    = β‹ƒπ›Ύβˆˆβ„Ž,𝛾

    π‘—βˆˆβ„Žπ‘—,𝑗=1,...,𝑛

    {

    {

    {

    (2π›Ύβˆ‘π‘›

    𝑗=1πœ”π‘— β‹…

    𝑛

    βˆπ‘—=1

    π›Ύπœ”π‘—

    𝑗)

    Γ— ((2 βˆ’ 𝛾)βˆ‘π‘›

    𝑗=1πœ”π‘— β‹…

    𝑛

    βˆπ‘—=1

    (2 βˆ’ 𝛾𝑗)πœ”π‘—

    + π›Ύβˆ‘π‘›

    𝑗=1πœ”π‘— β‹…

    𝑛

    βˆπ‘—=1

    π›Ύπœ”π‘—

    𝑗)

    βˆ’1

    }

    }

    }

    = β‹ƒπ›Ύβˆˆβ„Ž,𝛾

    π‘—βˆˆβ„Žπ‘—,𝑗=1,...,𝑛

    {

    {

    {

    2π›Ύβˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗

    (2 βˆ’ 𝛾)βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)πœ”π‘—

    + π›Ύβˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗

    }

    }

    }

    .

    (30)

    Based onTheorems 17 and 18, the following property canbe obtained easily.

    Theorem 19. Let 𝛼 > 0, β„Ž be an HFE, let β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛)

    be a collection of HFEs, and let 𝑀 = (𝑀1, 𝑀2, . . . , 𝑀

    𝑛)𝑇 be the

    weight vector of β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛) with 𝑀

    π‘—βˆˆ [0, 1] and

    βˆ‘π‘›

    𝑖=1𝑀𝑗= 1. Then

    HFEWGπœ€(β„Žβˆ§πœ€π›Ό

    1βŠ—πœ€β„Ž, β„Žβˆ§πœ€π›Ό

    1βŠ—πœ€β„Ž, . . . , β„Ž

    βˆ§πœ€π›Ό

    π‘›βŠ—πœ€β„Ž)

    = (HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) βŠ—πœ€β„Ž)βˆ§πœ€π›Ό

    .

    (31)

    Theorem 20. Let β„Žπ‘—and β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛) be two collections

    of HFEs and𝑀 = (𝑀1, 𝑀2, . . . , 𝑀

    𝑛)𝑇 the weight vector of β„Ž

    𝑗(𝑗 =

    1, 2, . . . , 𝑛) with π‘€π‘—βˆˆ [0, 1] and βˆ‘π‘›

    𝑖=1𝑀𝑗= 1. Then

    HFEWGπœ€(β„Ž1βŠ—πœ€β„Ž

    1, β„Ž2βŠ—πœ€β„Ž

    2, . . . , β„Ž

    π‘›βŠ—πœ€β„Ž

    𝑛)

    = HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) βŠ—πœ€HFEWG

    πœ€(β„Ž

    1, β„Ž

    2, . . . , β„Ž

    𝑛) .

    (32)

    Proof. By the definition of HFEWGπœ€and Einstein product

    operator of HFEs, we have

    HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) βŠ—πœ€HFEWG

    πœ€(β„Ž

    1, β„Ž

    2, . . . , β„Ž

    𝑛)

    = ⋃

    π›Ύπ‘—βˆˆβ„Žπ‘—,𝛾

    π‘—βˆˆβ„Ž

    𝑗,𝑗=1,...,𝑛

    {

    {

    {

    (2βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗/ (βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)πœ”π‘—

    +βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗)) β‹… (2∏

    𝑛

    𝑗=1𝛾𝑗

    πœ”π‘—

    / (βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)πœ”π‘—

    +βˆπ‘›

    𝑗=1𝛾𝑗

    πœ”π‘—

    ))

    1 + (1 βˆ’ (2βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗/ (βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)πœ”π‘—

    +βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗))) (1 βˆ’ (2∏

    𝑛

    𝑗=1𝛾𝑗

    πœ”π‘—/ (∏

    𝑛

    𝑗=1(2 βˆ’ 𝛾

    𝑗)πœ”π‘—

    +βˆπ‘›

    𝑗=1𝛾𝑗

    πœ”π‘—)))

    }

    }

    }

    = ⋃

    π›Ύπ‘—βˆˆβ„Žπ‘—,𝛾

    π‘—βˆˆβ„Ž

    𝑗,𝑗=1,...,𝑛

    {

    {

    {

    2βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗⋅ βˆπ‘›

    𝑗=1𝛾𝑗

    πœ”π‘—

    βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)πœ”π‘—

    β‹… βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)πœ”π‘—

    +βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗⋅ βˆπ‘›

    𝑗=1𝛾𝑗

    πœ”π‘—

    }

    }

    }

    .

    (33)

    Since β„Žπ‘—βŠ—πœ€β„Žπ‘—= β‹ƒπ›Ύπ‘—βˆˆβ„Žπ‘—,𝛾

    π‘—βˆˆβ„Ž

    𝑗

    {𝛾𝑗𝛾𝑗/(1 + (1 βˆ’ 𝛾

    𝑗)(1 βˆ’ 𝛾

    𝑗))} for all

    𝑗 = 1, 2, . . . , 𝑛, by the definition of HFEWGπœ€, we have

    HFEWGπœ€(β„Ž1β¨‚πœ€

    β„Ž

    1, β„Ž2β¨‚πœ€

    β„Ž

    2, . . . , β„Ž

    π‘›β¨‚πœ€

    β„Ž

    𝑛)

    = ⋃

    π›Ύπ‘—βˆˆβ„Žπ‘—,𝛾

    π‘—βˆˆβ„Ž

    𝑗,𝑗=1,...,𝑛

    {

    {

    {

    (2

    𝑛

    βˆπ‘—=1

    (𝛾𝑗𝛾

    𝑗/ (1 + (1 βˆ’ 𝛾

    𝑗) (1 βˆ’ 𝛾

    𝑗)))πœ”π‘—

    )

    Γ— (

    𝑛

    βˆπ‘—=1

    (2 βˆ’ (𝛾𝑗𝛾

    𝑗/ (1 + (1 βˆ’ 𝛾

    𝑗)

    Γ— (1 βˆ’ 𝛾

    𝑗))))πœ”π‘—

    +

    𝑛

    βˆπ‘—=1

    (𝛾𝑗𝛾

    𝑗/ (1 + (1 βˆ’ 𝛾

    𝑗)

    Γ— (1 βˆ’ 𝛾

    𝑗)))πœ”π‘—

    )

    βˆ’1

    }

    }

    }

    = ⋃

    π›Ύπ‘—βˆˆβ„Žπ‘—,𝛾

    π‘—βˆˆβ„Ž

    𝑗,𝑗=1,...,𝑛

    {

    {

    {

    (2

    𝑛

    βˆπ‘—=1

    (𝛾𝑗𝛾

    𝑗)πœ”π‘—

    )

    Γ— (

    𝑛

    βˆπ‘—=1

    [(2 βˆ’ 𝛾𝑗) (2 βˆ’ 𝛾

    𝑗)]πœ”π‘—

    +

    𝑛

    βˆπ‘—=1

    (𝛾𝑗𝛾

    𝑗)πœ”π‘—

    )

    βˆ’1

    }

    }

    }

    = ⋃

    π›Ύπ‘—βˆˆβ„Žπ‘—,𝛾

    π‘—βˆˆβ„Ž

    𝑗,𝑗=1,...,𝑛

    {

    {

    {

    (2

    𝑛

    βˆπ‘—=1

    π›Ύπœ”π‘—

    𝑗⋅

    𝑛

    βˆπ‘—=1

    𝛾

    𝑗

    πœ”π‘—

    )

  • Journal of Applied Mathematics 9

    Γ— (

    𝑛

    βˆπ‘—=1

    (2 βˆ’ 𝛾𝑗)πœ”π‘—

    β‹…

    𝑛

    βˆπ‘—=1

    (2 βˆ’ 𝛾

    𝑗)πœ”π‘—

    +

    𝑛

    βˆπ‘—=1

    π›Ύπœ”π‘—

    𝑗⋅

    𝑛

    βˆπ‘—=1

    𝛾

    𝑗

    πœ”π‘—

    )

    βˆ’1

    }

    }

    }

    .

    (34)

    Theorem 21. Let β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs,

    β„Žβˆ’min = min𝑗{β„Žβˆ’

    𝑗| β„Žβˆ’π‘—= min{𝛾

    π‘—βˆˆ β„Žπ‘—}}, and β„Ž+max = max𝑗{β„Ž

    +

    𝑗|

    β„Ž+𝑗= max{𝛾

    π‘—βˆˆ β„Žπ‘—}}, and let 𝑀 = (𝑀

    1, 𝑀2, . . . , 𝑀

    𝑛)𝑇 be the

    weight vector of β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛) with 𝑀

    π‘—βˆˆ [0, 1] and

    βˆ‘π‘›

    𝑖=1𝑀𝑗= 1. Then

    β„Žβˆ’

    min βͺ― HFEWGπœ€ (β„Ž1, β„Ž2, . . . , β„Žπ‘›) βͺ― β„Ž+

    max, (35)

    where the equality holds if only if all β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛) are

    equal and the number of values in β„Žπ‘—is only one.

    Proof. Let 𝑓(𝑑) = (2 βˆ’ 𝑑)/𝑑, 𝑑 ∈ [0, 1]. Then 𝑓(𝑑) = βˆ’2/𝑑2 < 0.Hence 𝑓(𝑑) is a decreasing function. Since β„Žβˆ’min ≀ β„Ž

    βˆ’

    𝑗≀ 𝛾𝑗≀

    β„Ž+𝑗≀ β„Ž+max for any 𝛾𝑗 ∈ β„Žπ‘— (𝑗 = 1, 2, . . . , 𝑛), then 𝑓(β„Ž

    +

    max) ≀

    𝑓(𝛾𝑗) ≀ 𝑓(β„Žβˆ’min); that is, (2 βˆ’ β„Ž

    +

    max)/β„Ž+

    max ≀ (2 βˆ’ 𝛾𝑗)/𝛾𝑗 ≀

    (2βˆ’β„Žβˆ’min)/β„Žβˆ’

    min. Then for any 𝛾𝑗 ∈ β„Žπ‘— (𝑗 = 1, 2, . . . , 𝑛), we have

    𝑛

    βˆπ‘—=1

    (2 βˆ’ β„Ž+maxβ„Ž+max

    )

    𝑀𝑗

    ≀

    𝑛

    βˆπ‘—=1

    (2 βˆ’ 𝛾𝑗

    𝛾𝑗

    )

    𝑀𝑗

    ≀

    𝑛

    βˆπ‘—=1

    (1 βˆ’ β„Žβˆ’min1 + β„Žβˆ’min

    )

    𝑀𝑗

    ⇐⇒ (2 βˆ’ β„Ž+maxβ„Ž+max

    )

    βˆ‘π‘›

    𝑗=1𝑀𝑗

    ≀

    𝑛

    βˆπ‘—=1

    (2 βˆ’ 𝛾𝑗

    𝛾𝑗

    )

    𝑀𝑗

    ≀ (1 βˆ’ β„Žβˆ’min1 + β„Žβˆ’min

    )

    βˆ‘π‘›

    𝑗=1𝑀𝑗

    ⇐⇒ (2 βˆ’ β„Ž+maxβ„Ž+max

    )

    ≀

    𝑛

    βˆπ‘—=1

    (2 βˆ’ 𝛾𝑗

    𝛾𝑗

    )

    𝑀𝑗

    ≀ (1 βˆ’ β„Žβˆ’min1 + β„Žβˆ’min

    ) ⇐⇒2

    β„Ž+max

    ≀

    𝑛

    βˆπ‘—=1

    (2 βˆ’ 𝛾𝑗

    𝛾𝑗

    )

    𝑀𝑗

    + 1 ≀2

    β„Žβˆ’min⇐⇒

    β„Žβˆ’

    min2

    ≀1

    βˆπ‘›

    𝑗=1((2 βˆ’ 𝛾

    𝑗) /𝛾𝑗)𝑀𝑗

    + 1≀ (

    β„Ž+max2

    ) ⇐⇒ β„Žβˆ’

    min

    ≀2

    βˆπ‘›

    𝑗=1((2 βˆ’ 𝛾

    𝑗) /𝛾𝑗)𝑀𝑗

    + 1≀ β„Ž+

    max ⇐⇒ β„Žβˆ’

    min

    ≀2βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗

    βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑗)πœ”π‘—

    +βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑗

    ≀ β„Ž+

    max.

    (36)

    It follows that β„Žβˆ’min ≀ 𝑠(HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Žπ‘›)) ≀ β„Ž+

    max.Thus we have β„Žβˆ’min βͺ― HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Žπ‘›) βͺ― β„Ž

    +

    max.

    Remark 22. Let β„Žπ‘—and β„Ž

    𝑗(𝑗 = 1, 2, . . . , 𝑛) be two collections

    ofHFEs, and β„Žπ‘—β‰Ί β„Ž

    𝑗for all 𝑗; thenHFEWG

    πœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) β‰Ί

    HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) does not hold necessarily in general.

    To illustrate that, an example is given as follows.

    Example 23. Let β„Ž1

    = (0.45, 0.6), β„Ž2

    = (0.6, 0.7), β„Ž3

    =

    (0.5, 0.6), β„Ž1= (0.2, 0.9), β„Ž

    2= (0.45, 0.95), β„Ž

    3= (0.35, 0.8),

    and 𝑀 = (0.5, 0.3, 0.2)𝑇; then HFEWGπœ€(β„Ž1, β„Ž2, β„Ž3) = {0.5024,

    0.5215, 0.5286, 0.5483, 0.5791, 0.6, 0.6077, 0.6291} andHFEWG

    πœ€(β„Ž1, β„Ž2, β„Ž3) = {0.2778, 0.3372, 0.3835, 0.4595,

    0.6088, 0.7099, 0.7833, 0.8947}. By Definition 3, we have𝑠(HFEWG

    πœ€(β„Ž1, β„Ž2, β„Ž3)) = 0.5646 and 𝑠(HFEWG

    πœ€(β„Ž1, β„Ž2,

    β„Ž3)) = 0.5568. It follows that HFEWG

    πœ€(β„Ž1, β„Ž2, β„Ž3) ≻

    HFEWGπœ€(β„Ž1, β„Ž2, β„Ž3). Clearly, β„Ž

    𝑗≺ β„Žπ‘—for 𝑗 = 1, 2, 3, but

    HFEWGπœ€(β„Ž1, β„Ž2, β„Ž3) ≻ HFEWG

    πœ€(β„Ž

    1, β„Ž

    2, β„Ž

    3).

    4.2. Hesitant Fuzzy Einstein Ordered Weighted AveragingOperator. Similar to the HFOWG operator introduced byXia and Xu [36] (i.e., (15)), in what follows, we developan (HFEOWG

    πœ€) operator, which is an extension of OWA

    operator proposed by Yager [50].

    Definition 24. For a collection of the HFEs β„Žπ‘—(𝑗 =

    1, 2, . . . , 𝑛), a hesitant fuzzy Einstein ordered weighted aver-aging (HFEOWG

    πœ€) operator is a mapping HFEWG

    πœ€: 𝐻𝑛

    β†’

    𝐻 such that

    HFEOWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛)

    =

    𝑛

    β¨‚πœ€

    𝑗=1

    β„Žβˆ§πœ€π‘€π‘—

    𝜎(𝑗)

    = β‹ƒπ›ΎπœŽ(1)βˆˆβ„ŽπœŽ(1),π›ΎπœŽ(2)βˆˆβ„ŽπœŽ(2),...,π›ΎπœŽ(𝑛)βˆˆβ„ŽπœŽ(𝑛)

    {

    {

    {

    (2

    𝑛

    βˆπ‘—=1

    𝛾𝑀𝑗

    𝜎(𝑗))

    Γ— (

    𝑛

    βˆπ‘—=1

    (2 βˆ’ π›ΎπœŽ(𝑗)

    )𝑀𝑗

    +

    𝑛

    βˆπ‘—=1

    𝛾𝑀𝑗

    𝜎(𝑗))

    βˆ’1

    }

    }

    }

    ,

    (37)

    where (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a permutation of (1, 2, . . . , 𝑛),such that β„Ž

    𝜎(π‘—βˆ’1)≻ β„Ž

    𝜎(𝑗)for all 𝑗 = 2, . . . , 𝑛 and

    𝑀 = (𝑀1, 𝑀2, . . . , 𝑀

    𝑛)𝑇 is aggregation-associated vector with

    𝑀𝑗

    ∈ [0, 1] and βˆ‘π‘›π‘—=1

    𝑀𝑗

    = 1. In particular, if 𝑀 =(1/𝑛, 1/𝑛, . . . , 1/𝑛)

    𝑇, then the HFEOWGπœ€operator is reduced

    to the HFEAπœ€operator of dimension 𝑛 (i.e., (17)).

  • 10 Journal of Applied Mathematics

    Note that the HFEOWGπœ€weights can be obtained similar

    to the OWA weights. Several methods have been introducedto determine the OWA weights in [20, 21, 50–53].

    Similar to the HFEWGπœ€operator, the HFEOWG

    πœ€opera-

    tor has the following properties.

    Theorem 25. Let β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs

    and 𝑀 = (𝑀1, 𝑀2, . . . , 𝑀

    𝑛)𝑇 the weight vector of β„Ž

    𝑗(𝑗 =

    1, 2, . . . , 𝑛) with π‘€π‘—βˆˆ [0, 1] and βˆ‘π‘›

    𝑗=1𝑀𝑗= 1. Then

    HFEOWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) βͺ° HFOWG (β„Ž

    1, β„Ž2, . . . , β„Ž

    𝑛) ,

    (38)

    where the equality holds if only if all β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛) are

    equal and the number of values in β„Žπ‘—is only one.

    From Theorem 25, we can conclude that the valuesobtained by the HFEOWG

    πœ€operator are not less than the

    ones obtained by the HFOWA operator proposed by Xiaand Xu [36]. To illustrate that, let us consider the followingexample.

    Example 26. Let β„Ž1

    = (0.1, 0.4, 0.7), β„Ž2

    = (0.3, 0.5), andβ„Ž3

    = (0.2, 0.6) be three HFEs and suppose that 𝑀 =(0.2, 0.45, 0.35)

    𝑇 is the associated vector of the aggregationoperator.

    By Definitions 3 and 4, we calculate the score values andthe accuracy values of β„Ž

    1, β„Ž2, and β„Ž

    3as follows, respectively:

    𝑠(β„Ž1) = 𝑠(β„Ž

    2) = 𝑠(β„Ž

    3) = 0.5, π‘˜(β„Ž

    1) = 0.7551, π‘˜(β„Ž

    2) = 0.9,

    π‘˜(β„Ž3) = 0.8.According to Definition 5, we have β„Ž

    2β‰Ί β„Ž3β‰Ί β„Ž1. Then

    β„ŽπœŽ(1)

    = β„Ž2, β„ŽπœŽ(2)

    = β„Ž3, β„ŽπœŽ(3)

    = β„Ž1.

    By the definition of HFEOWGπœ€, we have

    HFEOWGπœ€(β„Ž1, β„Ž2, β„Ž3)

    =

    3

    β¨‚πœ€

    𝑗=1

    β„Žβˆ§πœ€π‘€π‘—

    𝜎(𝑗)

    = β‹ƒπ›ΎπœŽ(1)βˆˆβ„ŽπœŽ(1),π›ΎπœŽ(2)βˆˆβ„ŽπœŽ(2),π›ΎπœŽ(3)βˆˆβ„ŽπœŽ(3)

    {{

    {{

    {

    2∏3

    𝑗=1𝛾𝑀𝑗

    𝜎(𝑗)

    ∏3

    𝑗=1(2 βˆ’ 𝛾

    𝜎(𝑗))𝑀𝑗

    +∏3

    𝑗=1𝛾𝑀𝑗

    𝜎(𝑗)

    }}

    }}

    }

    = {0.1716, 0.2787, 0.3495, 0.2939, 0.4582, 0.5598, 0.1926,

    0.3106, 0.3877, 0.3272, 0.5047, 0.6125} .

    (39)

    If we use the HFOWA operator, which was given by Xia andXu [36] (i.e., (15)), to aggregate the HFEs β„Ž

    𝑗(𝑖 = 1, 2, 3), then

    we have

    HFOWG (β„Ž1, β„Ž2, . . . , β„Ž

    𝑛)

    =

    3

    ⨂𝑗=1

    β„Žπ‘€π‘—

    𝜎(𝑗)= β‹ƒπ›ΎπœŽ(1)βˆˆβ„ŽπœŽ(1),π›ΎπœŽ(2)βˆˆβ„ŽπœŽ(2),π›ΎπœŽ(3)βˆˆβ„ŽπœŽ(3)

    {

    {

    {

    3

    βˆπ‘—=1

    𝛾𝑀𝑗

    𝜎(𝑗)

    }

    }

    }

    = {0.1702, 0.2764, 0.3363, 0.2790, 0.4532, 0.5513,

    0.1885, 0.3062, 0.3724, 0.3090, 0.5020, 0.6106} .

    (40)

    Clearly, 𝑠(HFEOWGπœ€(β„Ž1, β„Ž2, β„Ž3)) = 0.3706 > 0.3629 =

    𝑠(HFOWG(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛)). By Definition 3, we have

    HFEOWGπœ€(β„Ž1, β„Ž2, β„Ž3) ≻ HFOWG(β„Ž

    1, β„Ž2, β„Ž3).

    Theorem 27. Let 𝛼 > 0, β„Ž be an HFE, let β„Žπ‘—and β„Ž

    𝑗

    (𝑗 = 1, 2, . . . , 𝑛) be two collection of HFEs, and let 𝑀 =(𝑀1, 𝑀2, . . . , 𝑀

    𝑛)𝑇 be an aggregation-associated vector with

    π‘€π‘—βˆˆ [0, 1] and βˆ‘π‘›

    𝑗=1𝑀𝑗= 1. Then

    (1) HFEWGπœ€(β„Žβˆ§πœ€π›Ό

    1, β„Žβˆ§πœ€π›Ό

    2, . . . , β„Žβˆ§πœ€π›Ό

    𝑛) =

    (HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛))βˆ§πœ€π›Ό,

    (2) HFEWGπœ€(β„Ž1βŠ—πœ€β„Ž, β„Ž2βŠ—πœ€β„Ž, . . . , β„Ž

    π‘›βŠ—πœ€β„Ž) = HFEWG

    πœ€(β„Ž1,

    β„Ž2, . . . , β„Ž

    𝑛)βŠ—πœ€β„Ž,

    (3) HFEWGπœ€(β„Žβˆ§πœ€π›Ό

    1βŠ—πœ€β„Ž, β„Žβˆ§πœ€π›Ό

    1βŠ—πœ€β„Ž, . . . , β„Žβˆ§πœ€π›Ό

    π‘›βŠ—πœ€β„Ž) =

    (HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛)βŠ—πœ€β„Ž)βˆ§πœ€π›Ό,

    (4) HFEWGπœ€(β„Ž1βŠ—πœ€β„Ž1, β„Ž2βŠ—πœ€β„Ž2, . . . , β„Ž

    π‘›βŠ—πœ€β„Žπ‘›) =

    HFEWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛)βŠ—πœ€HFEWG

    πœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛).

    Theorem 28. Let β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs

    and let 𝑀 = (𝑀1, 𝑀2, . . . , 𝑀

    𝑛)𝑇 be an aggregation-associated

    vector with π‘€π‘—βˆˆ [0, 1] and βˆ‘π‘›

    𝑗=1𝑀𝑗= 1. Then

    β„Žβˆ’

    min βͺ― HFEOWGπœ€ (β„Ž1, β„Ž2, . . . , β„Žπ‘›) βͺ― β„Ž+

    max, (41)

    where β„Žβˆ’min = min𝑗{β„Žβˆ’

    𝑗| β„Žβˆ’π‘—= min{𝛾

    π‘—βˆˆ β„Žπ‘—}} and β„Ž+max =

    max𝑗{β„Ž+𝑗| β„Ž+𝑗= max{𝛾

    π‘—βˆˆ β„Žπ‘—}}.

    Besides the above properties, we can get the followingdesirable results on the HFOWG

    πœ€operator.

    Theorem 29. Let β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs,

    and let 𝑀 = (𝑀1, 𝑀2, . . . , 𝑀

    𝑛)𝑇 be an aggregation-associated

    vector with π‘€π‘—βˆˆ [0, 1] and βˆ‘π‘›

    𝑗=1𝑀𝑗= 1. Then

    HFEOWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) = HFEOWG

    πœ€(β„Ž

    1, β„Ž

    2, . . . , β„Ž

    𝑛) ,

    (42)

    where (β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) is any permutation of (β„Ž

    1, β„Ž2, . . . , β„Ž

    𝑛).

    Proof. Let HFEOWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) = βŠ—

    πœ€

    𝑛

    𝑗=1β„Žβˆ§πœ€π‘€π‘—

    𝜎(𝑗)

    and HFEOWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) = βŠ—

    πœ€

    𝑛

    𝑗=1β„ŽπœŽ(𝑗)

    βˆ§πœ€π‘€π‘— . Since

    (β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) is any permutation of (β„Ž

    1, β„Ž2, . . . , β„Ž

    𝑛),

    then we have β„ŽπœŽ(𝑗)

    = β„ŽπœŽ(𝑗)

    (𝑗 = 1, 2, . . . , 𝑛). ThusHFEOWG

    πœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛) = HFEOWG

    πœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛).

    Theorem 30. Let β„Žπ‘—(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs,

    and let 𝑀 = (𝑀1, 𝑀2, . . . , 𝑀

    𝑛)𝑇 be an aggregation-associated

    vector with π‘€π‘—βˆˆ [0, 1] and βˆ‘π‘›

    𝑗=1𝑀𝑗= 1. Then

    (1) if 𝑀 = (0, 0, . . . , 1), then HFOWGπœ€(β„Ž1, β„Ž2, . . . , β„Ž

    𝑛)=

    min{β„Ž1, β„Ž2, . . . , β„Ž

    𝑛};

  • Journal of Applied Mathematics 11

    (2) if 𝑀 = (1, 0, . . . , 0), then HFOWGπœ€(β„Ž1, β„Ž2, . . .,

    β„Žπ‘›)=max{β„Ž

    1, β„Ž2, . . . , β„Ž

    𝑛};

    (3) if 𝑀𝑗= 1 and 𝑀

    𝑖= 0 (𝑖 ΜΈ= 𝑗), then HFOWG

    πœ€(β„Ž1, β„Ž2, . . .,

    β„Žπ‘›) = β„Ž

    𝜎(𝑗), where β„Ž

    𝜎(𝑗)is the 𝑗th largest of β„Ž

    𝑖(𝑖 =

    1, 2, . . . , 𝑛).

    5. An Application in HesitantFuzzy Decision Making

    In this section, we apply the HFEWGπœ€and HFEOWG

    πœ€

    operators to multiple attribute decision making with hesitantfuzzy information.

    For hesitant fuzzy multiple attribute decision makingproblems, let π‘Œ = {π‘Œ

    1, π‘Œ2, . . . , π‘Œ

    π‘š} be a discrete set of

    alternatives, let 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴

    𝑛} be a collection of

    attributes, and let πœ” = (πœ”1, πœ”2, . . . , πœ”

    𝑛)𝑇 be the weight vector

    of 𝐴𝑗(𝑗 = 1, 2, . . . , 𝑛) with πœ”

    𝑗β‰₯ 0, 𝑗 = 1, 2, . . . , 𝑛, and

    βˆ‘π‘›

    𝑗=1πœ”π‘—= 1. If the decision makers provide several values for

    the alternative π‘Œπ‘–(𝑖 = 1, 2, . . . , π‘š) under the attribute 𝐴

    𝑗(𝑗 =

    1, 2, . . . , 𝑛)with anonymity, these values can be considered asan HFE β„Ž

    𝑖𝑗. In the case where two decision makers provide

    the same value, the value emerges only once in β„Žπ‘–π‘—. Suppose

    that the decision matrix 𝐻 = (β„Žπ‘–π‘—)π‘šΓ—π‘›

    is the hesitant fuzzydecision matrix, where β„Ž

    𝑖𝑗(𝑖 = 1, 2, . . . , π‘š, 𝑗 = 1, 2, . . . , 𝑛) are

    in the form of HFEs.To get the best alternative, we can utilize the HFEWG

    πœ€

    operator or the HFEOWGπœ€operator; that is,

    β„Žπ‘–= HFEWG

    πœ€(β„Žπ‘–1, β„Žπ‘–2, . . . , β„Ž

    𝑖𝑛)

    = ⋃𝛾𝑖1βˆˆβ„Žπ‘–1,𝛾𝑖2βˆˆβ„Žπ‘–2,...,π›Ύπ‘–π‘›βˆˆβ„Žπ‘–π‘›

    {

    {

    {

    2βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑖𝑗

    βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    𝑖𝑗)πœ”π‘—

    +βˆπ‘›

    𝑗=1π›Ύπœ”π‘—

    𝑖𝑗

    }

    }

    }

    (43)

    or

    β„Žπ‘–= HFEOWG

    πœ€(β„Žπ‘–1, β„Žπ‘–2, . . . , β„Ž

    𝑖𝑛)

    = β‹ƒπ›Ύπ‘–πœŽ(𝑗)βˆˆβ„Žπ‘–πœŽ(𝑗),𝑗=1,2,...,𝑛

    {{

    {{

    {

    2βˆπ‘›

    𝑗=1𝛾𝑀𝑗

    π‘–πœŽ(𝑗)

    βˆπ‘›

    𝑗=1(2 βˆ’ 𝛾

    π‘–πœŽ(𝑗))𝑀𝑗

    +βˆπ‘›

    𝑗=1𝛾𝑀𝑗

    π‘–πœŽ(𝑗)

    }}

    }}

    }(44)

    to derive the overall value β„Žπ‘–of the alternatives π‘Œ

    𝑖(𝑖 =

    1, 2, . . . , π‘š), where𝑀 = (𝑀1, 𝑀2, . . . , 𝑀

    𝑛)𝑇 is the weight vector

    related to the HFEOWAπœ€operator, such that 𝑀

    𝑗β‰₯ 0, 𝑗 =

    1, 2, . . . , 𝑛, and βˆ‘π‘›π‘—=1

    𝑀𝑗= 1, which can be obtained by the

    normal distribution based method [20].Then by Definition 3, we compute the scores 𝑠(β„Ž

    𝑖) (𝑖 =

    1, 2, . . . , π‘š) of the overall values β„Žπ‘–(𝑖 = 1, 2, . . . , π‘š) and use

    the scores 𝑠(β„Žπ‘–) (𝑖 = 1, 2, . . . , π‘š) to rank the alternatives

    π‘Œ = {π‘Œ1, π‘Œ2, . . . , π‘Œ

    π‘š} and then select the best one (note that

    if there is no difference between the two scores β„Žπ‘–and β„Ž

    𝑗,

    thenwe need to compute the accuracy degrees π‘˜(β„Žπ‘–) and π‘˜(β„Ž

    𝑗)

    of the overall values β„Žπ‘–and β„Ž

    𝑗by Definition 4, respectively,

    and then rank the alternatives π‘Œπ‘–and π‘Œ

    𝑗in accordance with

    Definition 5).In the following, an example on multiple attribute deci-

    sion making problem involving a customer buying a car,

    which is adopted from Herrera and Martinez [54], is givento illustrate the proposed method using the HFEOWG

    πœ€

    operator.

    Example 31. Consider that a customer wants to buy a car,which will be chosen from five types π‘Œ

    𝑖(𝑖 = 1, 2, . . . , 5).

    In the process of choosing one of the cars, four factors areconsidered:𝐴

    1is the consumption petrol,𝐴

    2is the price,𝐴

    3

    is the degree of comfort, and 𝐴4is the safety factor. Suppose

    that the characteristic information of the alternatives π‘Œπ‘–(𝑖 =

    1, 2, . . . , 5) can be represented by HFEs β„Žπ‘–π‘—(𝑖 = 1, 2, . . . , 5; 𝑗 =

    1, 2, . . . , 4), and the hesitant fuzzy decision matrix is given inTable 1.

    To use HFEOWGπœ€operator, we first reorder the β„Ž

    𝑖𝑗(𝑗 =

    1, 2, . . . , 4) for each alternative π‘Œπ‘–(𝑖 = 1, 2, . . . , 5). According

    to Definitions 3 and 4, we compute the score values andaccuracy degrees of 𝑠(β„Ž

    𝑖𝑗) (𝑖 = 1, 2, . . . , 5; 𝑗 = 1, 2, . . . , 4) as

    follows:

    𝑠 (β„Ž11) = 0.45, 𝑠 (β„Ž

    12) = 0.75, 𝑠 (β„Ž

    13) = 0.3,

    𝑠 (β„Ž14) = 0.3, π‘˜ (β„Ž

    13) = 0.9184, π‘˜ (β„Ž

    14) = 0.9;

    𝑠 (β„Ž21) = 0.5, 𝑠 (β„Ž

    22) = 0.7, 𝑠 (β„Ž

    23) = 0.7,

    𝑠 (β„Ž24) = 0.5, π‘˜ (β„Ž

    21) = 0.7551, π‘˜ (β„Ž

    24) = 0.8129,

    π‘˜ (β„Ž22) = 0.8367, π‘˜ (β„Ž

    23) = 0.9;

    𝑠 (β„Ž31) = 0.85, 𝑠 (β„Ž

    32) = 0.4, 𝑠 (β„Ž

    33) = 0.35,

    𝑠 (β„Ž34) = 0.4, π‘˜ (β„Ž

    32) = 0.8367, π‘˜ (β„Ž

    34) = 0.7764;

    𝑠 (β„Ž41) = 0.6, 𝑠 (β„Ž

    42) = 0.6, 𝑠 (β„Ž

    43) = 0.3,

    𝑠 (β„Ž44) = 0.4, π‘˜ (β„Ž

    41) = 0.772, π‘˜ (β„Ž

    42) = 0.8367;

    𝑠 (β„Ž51) = 0.5, 𝑠 (β„Ž

    52) = 0.3, 𝑠 (β„Ž

    53) = 0.5,

    𝑠 (β„Ž54) = 0.35, π‘˜ (β„Ž

    51) = 0.8367, π‘˜ (β„Ž

    53) = 0.8129.

    (45)

    Then by Definition 5, we have

    β„Ž1𝜎(1)

    = β„Ž12, β„Ž1𝜎(2)

    = β„Ž11, β„Ž1𝜎(3)

    = β„Ž13, β„Ž1𝜎(4)

    = β„Ž14;

    β„Ž2𝜎(1)

    = β„Ž23, β„Ž2𝜎(2)

    = β„Ž22, β„Ž2𝜎(3)

    = β„Ž24, β„Ž2𝜎(4)

    = β„Ž21;

    β„Ž3𝜎(1)

    = β„Ž31, β„Ž3𝜎(2)

    = β„Ž32, β„Ž3𝜎(3)

    = β„Ž34, β„Ž3𝜎(4)

    = β„Ž33;

    β„Ž4𝜎(1)

    = β„Ž42, β„Ž4𝜎(2)

    = β„Ž41, β„Ž4𝜎(3)

    = β„Ž44, β„Ž4𝜎(4)

    = β„Ž43;

    β„Ž5𝜎(1)

    = β„Ž51, β„Ž5𝜎(2)

    = β„Ž53, β„Ž5𝜎(3)

    = β„Ž54, β„Ž5𝜎(4)

    = β„Ž52.

    (46)

    Suppose that 𝑀 = (0.1835, 0.3165, 0.3165, 0.1835)𝑇 is theweighted vector related to the HFEOWA

    πœ€operator and it

    is derived by the normal distribution based method [20].Thenwe utilize theHFEOWA

    πœ€operator to obtain the hesitant

  • 12 Journal of Applied Mathematics

    Table 1: Hesitant fuzzy decision making matrix.

    𝐴1

    𝐴2

    𝐴3

    𝐴4

    π‘Œ1

    {0.4, 0.5} {0.7, 0.8} {0.2, 0.3, 0.4} {0.2, 0.4}

    π‘Œ2

    {0.2, 0.5, 0.8} {0.5, 0.7, 0.9} {0.6, 0.8} {0.2, 0.5, 0.6, 0.7}

    π‘Œ3

    {0.8, 0.9} {0.2, 0.4, 0.6} {0.2, 0.3, 0.4, 0.5} {0.1, 0.3, 0.5, 0.7}

    π‘Œ4

    {0.3, 0.4, 0.6, 0.8, 0.9} {0.4, 0.6, 0.8} {0.1, 0.2, 0.4, 0.5} {0.2, 0.3, 0.5, 0.6}

    π‘Œ5

    {0.3, 0.5, 0.7} {0.2, 0.3, 0.4} {0.2, 0.5, 0.6, 0.7} {0.1, 0.3, 0.4, 0.6}

    fuzzy elements β„Žπ‘–(𝑖 = 1, 2, 3, 4, 5) for the alternatives 𝑋

    𝑖

    (𝑖 = 1, 2, 3, 4, 5). Take alternative𝑋1for an example; we have

    β„Ž1= HFEOWG

    πœ€(β„Ž11, β„Ž12, . . . , β„Ž

    14)

    = ⋃𝛾1𝜎(𝑗)βˆˆβ„Ž1𝜎(𝑗),𝑗=1,2,3,4

    {{

    {{

    {

    2∏4

    𝑗=1𝛾𝑀𝑗

    1𝜎(𝑗)

    ∏4

    𝑗=1(2 βˆ’ 𝛾

    1𝜎(𝑗))𝑀𝑗

    +∏4

    𝑗=1𝛾𝑀𝑗

    1𝜎(𝑗)

    }}

    }}

    }

    = {0.3220, 0.3642, 0.3635, 0.4099, 0.3974, 0.4470,

    0.3473, 0.3921, 0.3914, 0.4403, 0.4272, 0.4794,

    0.3327, 0.3760, 0.3753, 0.4228, 0.4101, 0.4607,

    0.3587, 0.4046, 0.4039, 0.4539, 0.4405, 0.4938} .

    (47)

    The results can be obtained similarly for the other alterna-tives; here we will not list them for vast amounts of data. ByDefinition 3, the score values 𝑠(β„Ž

    𝑖) of β„Žπ‘–(𝑖 = 1, 2, 3, 4, 5) can

    be computed as follows:

    𝑠 (β„Ž1) = 0.4048, 𝑠 (β„Ž

    2) = 0.5758, 𝑠 (β„Ž

    3) = 0.4311,

    𝑠 (β„Ž4) = 0.4479, 𝑠 (β„Ž

    5) = 0.3620.

    (48)

    According to the scores 𝑠(β„Žπ‘–) of the overall hesitant fuzzy

    values β„Žπ‘–(𝑖 = 1, 2, 3, 4, 5), we can rank all the alternatives 𝑋

    𝑖:

    𝑋2≻ 𝑋4≻ 𝑋3≻ 𝑋1≻ 𝑋5. Thus the optimal alternative is

    𝑋2.If we use the HFWG operator introduced by Xia and Xu

    [36] to aggregate the hesitant fuzzy values, then

    𝑠 (β„Ž1) = 0.3960, 𝑠 (β„Ž

    2) = 0.5630, 𝑠 (β„Ž

    3) = 0.4164,

    𝑠 (β„Ž4) = 0.4344, 𝑠 (β„Ž

    5) = 0.3548.

    (49)

    By Definition 5, we have𝑋2≻ 𝑋4≻ 𝑋3≻ 𝑋1≻ 𝑋5.

    Note that the rankings are the same in such two cases, butthe overall values of alternatives by the HFEOWG

    πœ€operator

    are not smaller than the ones by the HFOWG operator.It shows that the attitude of the decision maker using theproposed HFEOWG

    πœ€operator is more optimistic than the

    one using the HFOWG operator introduced by Xia andXu [36] in aggregation process. Therefore, according to thedecision makers’ optimistic (or pessimistic) attitudes, thedifferent hesitant fuzzy aggregation operators can be used toaggregate the hesitant fuzzy information in decision makingprocess.

    6. Conclusions

    The purpose of multicriteria decision making is to select theoptimal alternative from several alternatives or to get theirranking by aggregating the performances of each alternativeunder some attributes, which is the pervasive phenomenonin modern life. Hesitancy is the most common problemin decision making, for which hesitant fuzzy set can beconsidered as a suitable means allowing several possibledegrees for an element to a set. Therefore, the hesitant fuzzymultiple attribute decision making problems have receivedmore and more attention. In this paper, an accuracy functionof HFEs has been defined for distinguishing between thetwo HFEs having the same score values, and a new orderrelation between two HFEs has been provided. Some Ein-stein operations on HFEs and their basic properties havebeen presented. With the help of the proposed operations,several new hesitant fuzzy aggregation operators includingthe HFEWG

    πœ€operator and HFEOWG

    πœ€operator have been

    developed, which are extensions of the weighted geometricoperator and the OWGoperator with hesitant fuzzy informa-tion, respectively. Moreover, some desirable properties of theproposed operators have been discussed and the relationshipsbetween the proposed operators and the existing hesitantfuzzy aggregation operators introduced by Xia and Xu [36]have been established. Finally, based on the HFEOWG

    πœ€

    operator, an approach of hesitant fuzzy decision making hasbeen given and a practical example has been presented todemonstrate its practicality and effectiveness.

    Conflict of Interests

    The authors declared that there is no conflict of interestsregarding the publication of this paper.

    Acknowledgments

    The authors are very grateful to the editors and the anony-mous reviewers for their insightful and constructive com-ments and suggestions that have led to an improved version ofthis paper. This work was supported by the National NaturalScience Foundation of China (nos. 11071061 and 11101135)and the National Basic Research Program of China (no.2011CB311808).

    References

    [1] K. T. Atanassov, β€œIntuitionistic fuzzy sets,” Fuzzy Sets andSystems, vol. 20, no. 1, pp. 87–96, 1986.

  • Journal of Applied Mathematics 13

    [2] K. T. Atanassov, β€œMore on intuitionistic fuzzy sets,” Fuzzy Setsand Systems, vol. 33, no. 1, pp. 37–45, 1989.

    [3] L. A. Zadeh, β€œFuzzy sets,” Information and Control, vol. 8, no. 3,pp. 338–353, 1965.

    [4] S. Chen and C. Hwang, Fuzzy Multiple Attribute DecisionMaking, Springer, Berlin, Germany, 1992.

    [5] Z. Xu, β€œIntuitionistic fuzzy aggregation operators,” IEEE Trans-actions on Fuzzy Systems, vol. 15, no. 6, pp. 1179–1187, 2007.

    [6] Z. Xu and R. R. Yager, β€œSome geometric aggregation operatorsbased on intuitionistic fuzzy sets,” International Journal ofGeneral Systems, vol. 35, no. 4, pp. 417–433, 2006.

    [7] D.-F. Li, β€œMultiattribute decision making method based ongeneralized OWA operators with intuitionistic fuzzy sets,”Expert Systems with Applications, vol. 37, no. 12, pp. 8673–8678,2010.

    [8] D.-F. Li, β€œTheGOWAoperator based approach tomultiattributedecision making using intuitionistic fuzzy sets,” Mathematicaland Computer Modelling, vol. 53, no. 5-6, pp. 1182–1196, 2011.

    [9] J. M. Merigó and M. Casanovas, β€œFuzzy generalized hybridaggregation operators and its application in fuzzy decisionmaking,” International Journal of Fuzzy Systems, vol. 12, no. 1,pp. 15–24, 2010.

    [10] W. Wang and X. Liu, β€œIntuitionistic fuzzy information aggre-gation using einstein operations,” IEEE Transactions on FuzzySystems, vol. 20, no. 5, pp. 923–938, 2012.

    [11] W.Wang andX. Liu, β€œIntuitionistic fuzzy geometric aggregationoperators based on einstein operations,” International Journal ofIntelligent Systems, vol. 26, no. 11, pp. 1049–1075, 2011.

    [12] G. Wei, β€œSome induced geometric aggregation operators withintuitionistic fuzzy information and their application to groupdecisionmaking,”Applied Soft Computing Journal, vol. 10, no. 2,pp. 423–431, 2010.

    [13] G. W. Wei, β€œSome geometric aggregation functions and theirapplication to dynamic multiple attribute decision makingin the intuitionistic fuzzy setting,” International Journal ofUncertainty, Fuzziness and Knowlege-Based Systems, vol. 17, no.2, pp. 179–196, 2009.

    [14] G. Wei, β€œSome induced geometric aggregation operators withintuitionistic fuzzy information and their application to groupdecisionmaking,”Applied Soft Computing Journal, vol. 10, no. 2,pp. 423–431, 2010.

    [15] G. Wei and X. Zhao, β€œSome induced correlated aggregatingoperators with intuitionistic fuzzy information and their appli-cation to multiple attribute group decision making,” ExpertSystems with Applications, vol. 39, no. 2, pp. 2026–2034, 2012.

    [16] M. Xia and Z. Xu, β€œEntropy/cross entropy-based group decisionmaking under intuitionistic fuzzy environment,” InformationFusion, vol. 13, no. 1, pp. 31–47, 2012.

    [17] Z. Xu, β€œSome similarity measures of intuitionistic fuzzy sets andtheir applications to multiple attribute decision making,” FuzzyOptimization and Decision Making, vol. 6, no. 2, pp. 109–121,2007.

    [18] Z. Xu, β€œOn consistency of the weighted geometric meancomplex judgement matrix in AHP,” European Journal of Oper-ational Research, vol. 126, no. 3, pp. 683–687, 2000.

    [19] Z. Xu, β€œApproaches to multiple attribute group decisionmakingbased on intuitionistic fuzzy power aggregation operators,”Knowledge-Based Systems, vol. 24, no. 6, pp. 749–760, 2011.

    [20] Z. Xu, β€œAn overview ofmethods for determiningOWAweights,”International Journal of Intelligent Systems, vol. 20, no. 8, pp.843–865, 2005.

    [21] Z. S. Xu and Q. L. Da, β€œThe uncertain OWA operator,” Interna-tional Journal of Intelligent Systems, vol. 17, no. 6, pp. 569–575,2002.

    [22] Z. S. Xu, β€œModels for multiple attribute decision makingwith intuitionistic fuzzy information,” International Journal ofUncertainty, Fuzziness and Knowlege-Based Systems, vol. 15, no.3, pp. 285–297, 2007.

    [23] Z. Xu, β€œMulti-person multi-attribute decision making modelsunder intuitionistic fuzzy environment,” Fuzzy Optimizationand Decision Making, vol. 6, no. 3, pp. 221–236, 2007.

    [24] Z. Xu and R. R. Yager, β€œIntuitionistic fuzzy bonferroni means,”IEEE Transactions on Systems, Man, and Cybernetics B, vol. 41,no. 2, pp. 568–578, 2011.

    [25] Z. Xu and X. Cai, β€œRecent advances in intuitionistic fuzzyinformation aggregation,” Fuzzy Optimization and DecisionMaking, vol. 9, no. 4, pp. 359–381, 2010.

    [26] R. R. Yager, β€œSome aspects of intuitionistic fuzzy sets,” FuzzyOptimization andDecisionMaking, vol. 8, no. 1, pp. 67–90, 2009.

    [27] J. Ye, β€œFuzzy decision-making method based on the weightedcorrelation coefficient under intuitionistic fuzzy environment,”European Journal of Operational Research, vol. 205, no. 1, pp.202–204, 2010.

    [28] J. Ye, β€œMulticriteria fuzzy decision-making method usingentropy weights-based correlation coefficients of interval-valued intuitionistic fuzzy sets,” Applied Mathematical Mod-elling, vol. 34, no. 12, pp. 3864–3870, 2010.

    [29] J. Ye, β€œCosine similarity measures for intuitionistic fuzzy setsand their applications,”Mathematical and Computer Modelling,vol. 53, no. 1-2, pp. 91–97, 2011.

    [30] G. Wei and X. Zhao, β€œSome induced correlated aggregatingoperators with intuitionistic fuzzy information and their appli-cation to multiple attribute group decision making,” ExpertSystems with Applications, vol. 39, no. 2, pp. 2026–2034, 2012.

    [31] V. Torra andY.Narukawa, β€œOn hesitant fuzzy sets and decision,”in Proceedings of the IEEE International Conference on FuzzySystems, pp. 1378–1382, Jeju Island, Korea, August 2009.

    [32] V. Torra, β€œHesitant fuzzy sets,” International Journal of IntelligentSystems, vol. 25, no. 6, pp. 529–539, 2010.

    [33] X. Gu, Y. Wang, and B. Yang, β€œA method for hesitant fuzzymultiple attribute decision making and its application to riskinvestment,” Journal of Convergence Information Technology,vol. 6, no. 6, pp. 282–287, 2011.

    [34] R. M. Rodriguez, L. Martinez, and F. Herrera, β€œHesitant fuzzylinguistic term sets for decision making,” IEEE Transactions onFuzzy Systems, vol. 20, no. 1, pp. 109–119, 2012.

    [35] G. Wei, β€œHesitant fuzzy prioritized operators and their appli-cation to multiple attribute decision making,” Knowledge-BasedSystems, vol. 31, pp. 176–182, 2012.

    [36] M. Xia and Z. Xu, β€œHesitant fuzzy information aggregationin decision making,” International Journal of ApproximateReasoning, vol. 52, no. 3, pp. 395–407, 2011.

    [37] M. Xia, Z. Xu, and N. Chen, β€œSome hesitant fuzzy aggregationoperators with their application ingroup decision making,”GroupDecision andNegotiation, vol. 22, no. 2, pp. 259–279, 2013.

    [38] M. Xia, Z. Xu, and N. Chen, β€œInduced aggregation under confi-dence levels,” International Journal of Uncertainty, Fuzziness andKnowlege-Based Systems, vol. 19, no. 2, pp. 201–227, 2011.

    [39] Z. Xu andM.Xia, β€œDistance and similaritymeasures for hesitantfuzzy sets,” Information Sciences, vol. 181, no. 11, pp. 2128–2138,2011.

  • 14 Journal of Applied Mathematics

    [40] Z. Xu and M. Xia, β€œOn distance and correlation measures ofhesitant fuzzy information,” International Journal of IntelligentSystems, vol. 26, no. 5, pp. 410–425, 2011.

    [41] Z. Xu and M. Xia, β€œHesitant fuzzy entropy and cross-entropyand their use in multiattributedecision-making,” InternationalJournal of Intelligent System, vol. 27, no. 9, pp. 799–822, 2012.

    [42] D. Yu, Y. Wu, and W. Zhou, β€œMulti-criteria decision makingbased on Choquet integral under hesitant fuzzy environment,”Journal of Computational Information Systems, vol. 7, no. 12, pp.4506–4513, 2011.

    [43] B. Zhu, Z. Xu, andM.Xia, β€œHesitant fuzzy geometric Bonferronimeans,” Information Sciences, vol. 205, pp. 72–85, 2012.

    [44] W.Wang andX. Liu, β€œInterval-valued intuitionistic fuzzy hybridweighted averaging operatorbased on Einstein operation and itsapplication to decisionmaking,” Journal of Intelligent and FuzzySystems, vol. 25, no. 2, pp. 279–290, 2013.

    [45] E. P. Klement, R. Mesiar, and E. Pap, β€œTriangular norms.Position paper I: basic analytical and algebraic properties,”Fuzzy Sets and Systems, vol. 143, no. 1, pp. 5–26, 2004.

    [46] D. H. Hong and C.-H. Choi, β€œMulticriteria fuzzy decision-making problems based on vague set theory,” Fuzzy Sets andSystems, vol. 114, no. 1, pp. 103–113, 2000.

    [47] C. Benjamin, L. Ehie, and Y. Omurtag, β€œPlanning facilities at theuniversity of missourirolla,” Interface, vol. 22, no. 4, 1992.

    [48] Z. S. Xu and Q. L. Da, β€œThe ordered weighted geometricaveraging operators,” International Journal of Intelligent Systems,vol. 17, no. 7, pp. 709–716, 2002.

    [49] V. Torra and Y. Narukawa, Modeling Decisions: InformationFusion and Aggregation Operators, Springer, 2007.

    [50] R. R. Yager, β€œOn ordered weighted averaging aggregationoperators in multicriteria decisionmaking,” IEEE Transactionson Systems,Man andCybernetics, vol. 18, no. 1, pp. 183–190, 1988.

    [51] R. R. Yager and Z. Xu, β€œThe continuous ordered weightedgeometric operator and its application to decision making,”Fuzzy Sets and Systems, vol. 157, no. 10, pp. 1393–1402, 2006.

    [52] R. R. Yager andD. P. Filev, β€œInduced orderedweighted averagingoperators,” IEEE Transactions on Systems, Man, and CyberneticsB, vol. 29, no. 2, pp. 141–150, 1999.

    [53] D. Filev and R. R. Yager, β€œOn the issue of obtaining OWAoperator weights,” Fuzzy Sets and Systems, vol. 94, no. 2, pp. 157–169, 1998.

    [54] F. Herrera and L. Martinez, β€œAn approach for combininglinguistic and numerical information based on the 2-tuplefuzzy linguistic representation model in decision-making,”International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, vol. 8, no. 5, pp. 539–562, 2000.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of