Research Article General-Appell Polynomials within the...

12
Hindawi Publishing Corporation International Journal of Analysis Volume 2013, Article ID 328032, 11 pages http://dx.doi.org/10.1155/2013/328032 Research Article General-Appell Polynomials within the Context of Monomiality Principle Subuhi Khan and Nusrat Raza Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India Correspondence should be addressed to Subuhi Khan; [email protected] Received 22 September 2012; Accepted 6 December 2012 Academic Editor: Jacques Liandrat Copyright © 2013 S. Khan and N. Raza. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A general class of the 2-variable polynomials is considered, and its properties are derived. Further, these polynomials are used to introduce the 2-variable general-Appell polynomials (2VgAP). e generating function for the 2VgAP is derived, and a correspondence between these polynomials and the Appell polynomials is established. e differential equation, recurrence relations, and other properties for the 2VgAP are obtained within the context of the monomiality principle. is paper is the first attempt in the direction of introducing a new family of special polynomials, which includes many other new special polynomial families as its particular cases. 1. Introduction and Preliminaries e Appell polynomials are very oſten found in different applications in pure and applied mathematics. e Appell polynomials [1] may be defined by either of the following equivalent conditions: { ()}( ∈ N 0 ) is an Appell set ( being of degree exactly ) if either, (i) (/) () = −1 () ( ∈ N 0 ) or (ii) there exists an exponential generating function of the form () exp () = =0 () ! , (1) where () has (at least the formal) expansion: () = =0 ! ( 0 / = 0) . (2) Roman [2] characterized Appell sequences in several ways. Properties of Appell sequences are naturally handled within the framework of modern classical umbral calculus by Roman [2]. We recall the following result [2, eorem 2.5.3], which can be viewed as an alternate definition of Appell sequences. e sequence () is Appell for (), if and only if 1 () exp () = =0 () ! , (3) where () = =0 ! ( 0 / = 0) . (4) In view of (1) and (3), we have () = 1 () . (5) e Appell class contains important sequences such as the Bernoulli and Euler polynomials and their generalized forms. Some known Appell polynomials are listed in Table 1. We recall that, according to the monomiality principle [15, 16], a polynomial set { ()} N is “quasimonomial”, provided there exist two operators and playing, respectively, the role of multiplicative and derivative operators, for the family of polynomials. ese operators satisfy the following identities, for all N: { ()} = +1 () , (6) { ()} = −1 () . (7)

Transcript of Research Article General-Appell Polynomials within the...

Page 1: Research Article General-Appell Polynomials within the ...downloads.hindawi.com/journals/ijanal/2013/328032.pdf · In order to introduce the -variable general-Appell polyno-mials

Hindawi Publishing CorporationInternational Journal of AnalysisVolume 2013 Article ID 328032 11 pageshttpdxdoiorg1011552013328032

Research ArticleGeneral-Appell Polynomials within theContext of Monomiality Principle

Subuhi Khan and Nusrat Raza

Department of Mathematics Aligarh Muslim University Aligarh 202002 India

Correspondence should be addressed to Subuhi Khan subuhi2006gmailcom

Received 22 September 2012 Accepted 6 December 2012

Academic Editor Jacques Liandrat

Copyright copy 2013 S Khan and N RazaThis is an open access article distributed under the Creative CommonsAttribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

A general class of the 2-variable polynomials is considered and its properties are derived Further these polynomials areused to introduce the 2-variable general-Appell polynomials (2VgAP) The generating function for the 2VgAP is derived anda correspondence between these polynomials and the Appell polynomials is established The differential equation recurrencerelations and other properties for the 2VgAP are obtained within the context of the monomiality principle This paper is the firstattempt in the direction of introducing a new family of special polynomials which includes many other new special polynomialfamilies as its particular cases

1 Introduction and Preliminaries

The Appell polynomials are very often found in differentapplications in pure and applied mathematics The Appellpolynomials [1] may be defined by either of the followingequivalent conditions 119860

119899(119909)(119899 isin N

0) is an Appell set (119860

119899

being of degree exactly 119899) if either

(i) (119889119889119909)119860119899(119909) = 119899119860

119899minus1(119909) (119899 isin N

0) or

(ii) there exists an exponential generating function of theform

119860 (119905) exp (119909119905) =

infin

sum119899=0

119860119899

(119909)119905119899

119899 (1)

where 119860(119905) has (at least the formal) expansion

119860 (119905) =

infin

sum119899=0

119860119899

119905119899

119899(1198600

= 0) (2)

Roman [2] characterized Appell sequences in severalways Properties of Appell sequences are naturally handledwithin the framework of modern classical umbral calculus byRoman [2] We recall the following result [2 Theorem 253]which can be viewed as an alternate definition of Appellsequences

The sequence 119860119899(119909) is Appell for 119892(119905) if and only if

1

119892 (119905)exp (119909119905) =

infin

sum119899=0

119860119899

(119909)119905119899

119899 (3)

where

119892 (119905) =

infin

sum119899=0

119892119899

119905119899

119899(1198920

= 0) (4)

In view of (1) and (3) we have

119860 (119905) =1

119892 (119905) (5)

TheAppell class contains important sequences such as theBernoulli and Euler polynomials and their generalized formsSome known Appell polynomials are listed in Table 1

We recall that according to themonomiality principle [1516] a polynomial set 119901

119899(119909)119899isinN is ldquoquasimonomialrdquo provided

there exist two operators and playing respectivelythe role of multiplicative and derivative operators for thefamily of polynomials These operators satisfy the followingidentities for all 119899 isin N

119901119899

(119909) = 119901119899+1

(119909) (6)

119901119899

(119909) = 119899119901119899minus1

(119909) (7)

2 International Journal of Analysis

Table1Listof

someA

ppellp

olyn

omials

SNo

119892(119905

)119860

(119905)

Generatingfunctio

nsPo

lyno

mials

(I)

119892(119905

)=

(119890119905

minus1)

119905119860

(119905)

=119905

(119890119905minus

1)

119905

(119890119905minus

1)119890119909119905

=infin sum119899=0

119861119899

(119909)

119905119899 119899

TheB

erno

ullipo

lyno

mials[3]

(II)

119892(119905

)=

(119890119905

+1)

2119860

(119905)

=2

(119890119905+

1)

2

(119890119905+

1)119890119909119905

=infin sum119899=0

119864119899

(119909)

119905119899 119899

TheE

uler

polyno

mials[3]

(III)

119892(119905

)=

(119890119905

minus1)120572

119905120572119860

(119905)

=119905120572

(119890119905minus

1)120572

119905120572

(119890119905minus

1)120572

119890119909119905

=infin sum119899=0

119861(120572)

119899(119909

)119905119899 119899

Theg

eneralized

Bernou

llipo

lyno

mials[4]

(IV)

119892(119905

)=

(119890119905

+1)120572

2120572

119860(119905

)=

2120572

(119890119905+

1)120572

2120572

(119890119905+

1)120572

119890119909119905

=infin sum119899=0

119864(120572)

119899(119909

)119905119899 119899

Theg

eneralized

Eulerp

olyn

omials[4]

(V)

119892(119905

)=

(1198901205721119905

minus1)

(1198901205722119905

minus1)

sdotsdotsdot(

119890120572119898119905

minus1)

12057211205722

sdotsdotsdot120572119898

119905119898

12057211205722

sdotsdotsdot120572119898

119905119898

(1198901205721119905minus

1)(1198901205722119905minus

1)sdotsdot

sdot (119890120572119898119905minus

1)119890119909119905

=infin sum119899=0

119861(119898)

119899(119909

|12057211205722

120572119898

)119905119899 119899

Theg

eneralized

Bernou

llipo

lyno

mialsof

order119898

[5]

119860(119905

)=

12057211205722

sdotsdotsdot120572119898

119905119898

(1198901205721119905minus

1)(1198901205722119905minus

1)sdotsdot

sdot (119890120572119898119905minus

1)

(VI)

119892(119905

)=

(1198901205721119905

+1)

(1198901205722119905

+1)

sdotsdotsdot(

119890120572119898119905

+1)

2119898

2119898

(1198901205721119905+

1)(1198901205722119905+

1)sdotsdot

sdot (119890120572119898119905+

1)119890119909119905

=infin sum119899=0

119864(119898)

119899(119909

|12057211205722

120572119898

)119905119899 119899

Theg

eneralized

Eulerp

olyn

omialsof

order119898

[5]

119860(119905

)=

2119898

(1198901205721119905+

1)(1198901205722119905+

1)sdotsdot

sdot (119890120572119898119905+

1)

(VII)

119892(119905

)=

119890119905minus

sum119898minus1

ℎ=0

(119905ℎ

ℎ)

119905119898

119860(119905

)=

119905119898

119890119905minus

sum119898minus1

ℎ=0

(119905ℎℎ

)

119905119898

119890119905minus

sum119898minus1

ℎ=0

(119905ℎℎ

)119890119909119905

=infin sum119899=0

119861[119898minus1]

119899(119909

)119905119899 119899

Then

ewgeneralized

Bernou

llipo

lyno

mials[6]

International Journal of Analysis 3

Table1Con

tinued

SNo

119892(119905

)119860

(119905)

Generatingfunctio

nsPo

lyno

mials

(VIII)

119892(119905

)=

(119905

120582119890119905

minus1

)minus120572

119860(119905

)=

(119905

120582119890119905

minus1

)120572

(119905

120582119890119905

minus1

)120572

119890119909119905

=infin sum119899=0

B(120572)

119899(119909

120582)

119905119899 119899

TheA

posto

l-Berno

ullipo

lyno

mialsof

order120572

[7]

(IX)

119892(119905

)=

120582119890119905

minus1

119905119860

(119905)

=119905

120582119890119905

minus1

119905

120582119890119905

minus1

119890119909119905

=infin sum119899=0

B119899

(119909120582

)119905119899 119899

TheA

posto

l-Berno

ullipo

lyno

mials[78]

(X)

119892(119905

)=

(2

120582119890119905

+1

)minus120572

119860(119905

)=

(2

120582119890119905

+1

)120572

(2

120582119890119905

+1

)120572

119890119909119905

=infin sum119899=0

E(120572)

119899(119909

120582)

119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

1120572

=1

TheA

posto

l-Euler

polyno

mialsof

order120572

[79]

(XI)

119892(119905

)=

120582119890119905

+1

2119860

(119905)

=2

120582119890119905

+1

2

120582119890119905

+1

119890119909119905

=infin sum119899=0

E119899

(119909120582

)119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

TheA

posto

l-Euler

polyno

mials[7ndash9

]

(XII)

119892(119905

)=

119890minus(120585∘+1205851119905+12058521199052+sdotsdotsdot+120585119903+1119905119903+1)

119860

(119905)

=119890(120585∘+1205851119905+12058521199052+sdotsdotsdot+120585119903+1119905119903+1)

120585 119903+1

=0

119890(120585∘+1205851119905+12058521199052+sdotsdotsdot+120585119903+1119905119903+1)

119890119909119905

=infin sum119899=0

119860119899

(119909)

119905119899 119899

Theg

eneralized

Gou

ld-H

opperp

olyn

omials[10]

(for

119903=

1the

Hermite

polyno

mials

119867119899(119909

)[11]andfor

119903=

2classical2-orthogon

alpo

lyno

mials)

(XIII)

119892(119905

)=

(1minus

119905 )119898+1

119860(119905

)=

1

(1minus

119905)119898+1

1

(1minus

119905)119898+1119890119909119905

=infin sum119899=0

119866(119898)

119899(119909

)119905119899

TheM

iller-Lee

polyno

mials[1112](for119898

=0the

trun

catedexpo

nentialp

olyn

omials

119890 119899(119909

)[11]andfor

119898=

120573minus

1the

mod

ified

Laguerre

polyno

mials

119891(120573)

119899(119909

)

[13])

(XIV

)119892

(119905)

=(119890119905

+1)

2119905

119860(119905

)=

2119905

(119890119905+

1)

2119905

(119890119905+

1)119890119909119905

=infin sum119899=0

119866119899

(119909)

119905119899 119899

TheG

enocchip

olyn

omials[14

]

4 International Journal of Analysis

The operators and also satisfy the commutationrelation

[ ] = minus = 1 (8)

and thus display the Weyl group structure If the consideredpolynomial set 119901

119899(119909)119899isinN is quasimonomial its properties

can easily be derived from those of the and operatorsIn fact

(i) Combining the recurrences (6) and (7) we have

119901119899

(119909) = 119899119901119899

(119909) (9)

which can be interpreted as the differential equationsatisfied by 119901

119899(119909) if and have a differential

realization(ii) Assuming here and in the sequel 119901

0(119909) = 1 then

119901119899(119909) can be explicitly constructed as

119901119899

(119909) = 119899

1199010

(119909) = 119899

1 (10)

which yields the series definition for 119901119899(119909)

(iii) Identity (10) implies that the exponential generatingfunction of 119901

119899(119909) can be given in the form

exp (119905) 1 =

infin

sum119899=0

119901119899

(119909)119905119899

119899(|119905| lt infin) (11)

We note that the Appell polynomials 119860119899(119909) are quasi-

monomial with respect to the following multiplicative andderivative operators

119860

= 119909 +1198601015840

(119863119909)

119860 (119863119909)

(12a)

or equivalently

119860

= 119909 minus1198921015840

(119863119909)

119892 (119863x) (12b)

119860

= 119863119909 (13)

respectivelyThe special polynomials of two variables are useful from

the point of view of applications in physics Also thesepolynomials allow the derivation of a number of useful iden-tities in a fairly straightforward way and help in introducingnew families of special polynomials For example Bretti etal [17] introduced general classes of two variables Appellpolynomials by using properties of an iterated isomorphismrelated to the Laguerre-type exponentials

We consider the 2-variable general polynomial (2VgP)family 119901

119899(119909 119910) defined by the generating function

119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899(1199010

(119909 119910) = 1) (14)

where 120601(119910 119905) has (at least the formal) series expansion

120601 (119910 119905) =

infin

sum119899=0

120601119899

(119910)119905119899

119899(1206010

(119910) = 0) (15)

We recall that the 2-variable Hermite Kampe de Ferietpolynomials (2VHKdFP) 119867

119899(119909 119910) [18] the Gould-Hopper

polynomials (GHP) 119867(119898)

119899(119909 119910) [19] and the Hermite-Appell

polynomials (HAP)119867

119860119899(119909 119910) [20] are defined by the

generating functions

119890119909119905+119910119905

2

=

infin

sum119899=0

119867119899

(119909 119910)119905119899

119899 (16)

119890119909119905+119910119905

119898

=

infin

sum119899=0

119867(119898)

119899(119909 119910)

119905119899

119899 (17)

119860 (119905) 119890119909119905+119910119905

2

=

infin

sum119899=0

119867119860119899

(119909 119910)119905119899

119899 (18)

respectively Thus in view of generating functions (14) (16)(17) and (18) we note that the 2VHKdFP 119867

119899(119909 119910) the GHP

119867(119898)

119899(119909 119910) and the HAP

119867119860119899(119909 119910) belong to 2VgP family

In this paper operational methods are used to introducecertain new families of special polynomials related to theAppell polynomials In Section 2 some results for the 2-variable general polynomials (2VgP) 119901

119899(119909 119910) are derived

Further the 2-variable general-Appell polynomials (2VgAP)119901119860119899(119909 119910) are introduced and framed within the context

of monomiality principle In Section 3 the Gould-Hopper-Appell polynomials (GHAP)

119867119860(119898)

119899(119909 119910) are considered

and their properties are established Some members belong-ing to theGould-Hopper-Appell polynomial family are given

2 2-Variable General-Appell Polynomials

In order to introduce the 2-variable general-Appell polyno-mials (2VgAP) we need to establish certain results for the2VgP 119901

119899(119909 119910) Therefore first we prove the following results

for the 2VgP 119901119899(119909 119910)

Lemma 1 The 2VgP 119901119899(119909 119910) defined by generating function

(14) where 120601(119910 119905) is given by (15) are quasimonomial underthe action of the following multiplicative and derivative opera-tors

119901

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

(1206011015840

(119909 119905) =120597

120597119905120601 (119909 119905)) (19)

119901

= 119863119909 (20)

respectively

Proof Differentiating (14) partially with respect to 119905 we have

(119909 +1206011015840

(119910 119905)

120601 (119910 119905)) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899 (21)

International Journal of Analysis 5

Table2Listof

someG

ould-H

opper-A

ppellp

olyn

omials119867

119860(119898)

119899(119909

119910)

SNo

119892(119905

)119860

(119905)

119872119867(119898)119860119875119867(119898)119860

Generatingfunctio

nsPo

lyno

mials

(I)

(119890119905

minus1)

119905

119905

(119890119905minus

1)

119909+

119898119910

119863119898minus1

119909+

((1

minus119863119909)

119890119863119909

minus1)

119863119909

(119890119863119909

minus1)

119863119909

119905

(119890119905minus

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-Be

rnou

llipo

lyno

mials

(II)

(119890119905

+1)

2

2

(119890119905+

1)

119909+

119898119910

119863119898minus1

119909minus

119890119863119909

(119890119863119909

+1)119863119909

2

(119890119905+

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119864(119898)

119899(119909

119910)

119905119899 119899

TheG

ould

Hop

per-Eu

ler

polyno

mials

(III)

(119890119905

minus1)120572

119905120572

119905120572

(119890119905minus

1)120572

119909+

119898119910

119863119898minus1

119909+

120572((1

minus119863119909)

119890119863119909

minus1)

119863119909

(119890119863119909

minus1)

119863119909

119905120572

(119890119905minus

1)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898120572)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-generalized

Bernou

llipo

lyno

mials

(IV)

(119890119905

+1)120572

2120572

2120572

(119890119905+

1)120572

119909+

119898119910

119863119898minus1

119909minus

120572119890119863119909

(119890119863119909

+1)119863119909

2120572

(119890119905+

1)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867119864(119898120572)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-generalized

Eulerp

olyn

omials

(V)

119904 prod ℎ=1

(119890120572ℎ119905

minus1)

120572ℎ119905119904

119909

+119898

119910119863119898minus1

119909+

119898119863minus1

119909minus119898 sum 119903=1

120572119903119890120572119903119863119909

(119890120572119903119863119909

minus1)119863119909

1205721

sdotsdotsdot120572119904119905119904

(1198901205721119905minus

1)sdotsdot

sdot (119890120572119904119905minus

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898119904)

119899(119909

119910|

1205721

120572119904)119905119899 119899

TheG

ould-H

opper-generalized

Bernou

llipo

lyno

mialsof

order119904

119904 prod ℎ=1

120572ℎ

(119890120572ℎ119905minus

1)119905119904

(VI)

119904 prod ℎ=1

(119890120572ℎ119905

+1)

2119904

119909

+119898

119910119863119898minus1

119909minus119898 sum 119903=1

120572119903119890120572119903119863119909119863119909

2119904

(1198901205721119905+

1)sdotsdot

sdot (119890120572119904119905+

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119864(119898119904)

119899(119909

119910|

1205721

120572119904)119905119899 119899

TheG

ould-H

opper-generalized

Eulerp

olyn

omialsof

order119904

119904 prod ℎ=1

2119904

(119890120572ℎ119905+

1)

(VII)

119890119905minus

sum119904minus1

ℎ=0

(119905ℎ

ℎ)

119905119904

119909+

119898119910

119863119898minus1

119909+

119898119863minus1

119909minus

1minus

119863119909

119898minus1

(119898

minus1)

(119890119863119909

minussum119898minus1

ℎ=0

119905ℎℎ

)119863119909

119905119904

119890119905minus

sum119904minus1

ℎ=0

(119905ℎℎ

)119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898[119904minus1])

119899(119909

119910)

119905119899 119899

TheG

ould-H

oppern

ewgeneralized

Bernou

llipo

lyno

mials

119905119904

119890119905minus

sum119904minus1

ℎ=0

(119905ℎℎ

)

6 International Journal of Analysis

Table2Con

tinued

SNo

119892(119905

)119860

(119905)

119872119867(119898)119860119875119867(119898)119860

Generatingfunctio

nsPo

lyno

mials

(VIII)

(119905

120582119890119905

minus1

)minus120572

(119905

120582119890119905

minus1

)120572

119909+

119898119910

119863119898minus1

119909+

120582119890119863119909

(120572minus

119863119909)

minus120572

119863119909

(120582119890119863119909

minus1)

119863119909

(119905

120582119890119905

minus1

)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867B(119898120572)

119899(119909

119910120582

)119905119899 119899

TheG

ould-H

opper-A

posto

l-Berno

ulli

polyno

mialsof

order120572

(IX)

120582119890119905

minus1

119905

119905

120582119890119905

minus1

119909+

119898119910

119863119898minus1

119909+

120582119890119863119909

(1minus

119863119909)

minus1

119863119909

(120582119890119863119909

minus1)

119863119909

119905

120582119890119905

minus1

119890119909119905+119910119905119898

=infin sum119899=0

119867B(119898)

119899(119909

119910120582

)119905119899 119899

TheG

ould-H

opper-A

posto

l-Berno

ulli

polyno

mials

(X)

(2

120582119890119905

+1

)minus120572

(2

120582119890119905

+1

)120572

119909+

119898119910

119863119898minus1

119909minus

120582120572

119890119863119909

(120582119890119863119909

+1)119863119909

(2

120582119890119905

+1

)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867E(119898120572)

119899(119909

119910120582

)119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

1120572

=1

TheG

ould-H

opper-A

posto

l-Euler

polyno

mialsof

order120572

(XI)

120582119890119905

+1

2

2

120582119890119905

+1

119909+

119898119910

119863119898minus1

119909minus

120582119890119863119909

(120582119890119863119909

+1)119863119909

2

120582119890119905

+1

119890119909119905+119910119905119898

=infin sum119899=0

119867E(119898)

119899(119909

119910120582

)119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

TheG

ould-H

opper-A

posto

l-Euler

polyno

mials

(XII)

119890minus(sum119903+1

ℎ=0120585ℎ119905ℎ)

119890(sum119903+1

ℎ=0120585ℎ119905ℎ)

120585 119903+1

=0

119909+

119898119910

119863119898minus1

119909+119903+1

sumℎ=1

ℎ120585 ℎ

119863ℎminus1

119909119863119909

119890(sum119903+1

ℎ=0120585ℎ119905ℎ+119909119905+119910119905119898)

=infin sum119899=0

119867119860(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-generalized

Gou

ld-H

opperp

olyn

omials(fo

r119903=

1

theG

ould-H

opper-Hermite

polyno

mials119867

119867(119898)

119899(119909

119910)andfor

119903=

2the

Gou

ld-H

opperc

lassical

2-orthogon

alpo

lyno

mials)

(XIII)

(1minus

119905 )119904+1

1

(1minus

119905 )119904+1

119909+

119898119910

119863119898minus1

119909minus

119898+

1

1minus

119863119909

119863119909

1

(1minus

119905 )119904+1119890119909119905+119910119905119898

=infin sum119899=0

119867119866(119898119904)

119899(119909

119910)

119905119899

TheG

ould-H

opper-Miller-Lee

polyno

mials(fo

r119904=

0the

Gou

ld-H

opper-trun

catedexpo

nential

polyno

mials119867

119890119898 119899(119909

119910)andfor

119904=

120573minus

1Gou

ld-H

opper-mod

ified

Laguerre

polyno

mials119867

119891(119898120573)

119899(119909

119910))

(XIV

)(119890119905

+1)

2119905

2119905

(119890119905+

1)

119909+

119898119910

119863119898minus1

119909+

119890119863119909

(1minus

119863119909)

+1

(119890119863119909

+1)

119863119909

2119905

(119890119905+

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119866(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-Genocchi

polyno

mials

International Journal of Analysis 7

If 120601(119910 119905) is an invertible series and 1206011015840

(119910 119905)120601(119910 119905) hasTaylorrsquos series expansion in powers of 119905 then in view of theidentity

119863119909

119890119909119905

120601 (119910 119905) = 119905 (119890119909119905

120601 (119910 119905)) (22)

we can write

1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119890119909119905

120601 (119910 119905) =1206011015840

(119910 119905)

120601 (119910 119905)(119890119909119905

120601 (119910 119905)) (23)

Now using (23) in the lhs of (21) we find

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899 (24)

Making use of generating function (14) in the lhs of theabove equation we have

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

)

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899

(25)

which on equating the coefficients of like powers of 119905 in bothsides gives

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

) 119901119899

(119909 119910) = 119901119899+1

(119909 119910) (26)

Thus in view of monomiality principle equation (6) theabove equation yields assertion (19) of Lemma 1 Again usingidentity (22) in (14) we have

119863119909

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 =

infin

sum119899=1

119901119899minus1

(119909 119910)119905119899

(119899 minus 1) (27)

Equating the coefficients of like powers of 119905 in both sidesof (27) we find

119863119909

119901119899

(119909 119910) = 119899119901119899minus1

(119909 119910) (119899 ge 1) (28)

which in view of monomiality principle equation (7) yieldsassertion (20) of Lemma 1

Remark 2 The operators given by (19) and (20) satisfycommutation relation (8) Also using expressions (19) and(20) in (9) we get the following differential equation satisfiedby 2VgP 119901

119899(119909 119910)

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

minus 119899) 119901119899

(119909 119910) = 0 (29)

Remark 3 Since 1199010(119909 119910) = 1 therefore in view of monomi-

ality principle equation (10) we have

119901119899

(119909 119910) = (119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

)

119899

1 (1199010

(119909 119910) = 1) (30)

Also in view of (11) (14) and (19) we have

exp (119901119905) 1 = 119890

119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 (31)

Now we proceed to introduce the 2-variable general-Appell polynomials (2VgAP) In order to derive the gener-ating functions for the 2VgAP we take the 2VgP 119901

119899(119909 119910) as

the base in the Appell polynomials generating function (1)Thus replacing 119909 by the multiplicative operator

119901of the

2VgP 119901119899(119909 119910) in the lhs of (1) and denoting the resultant

2VgAP by119901119860119899(119909 119910) we have

119860 (119905) 119890(119901119905)

=

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (32)

Now using (31) in the exponential term in the lhs of(32) we get the generating function for

119901119860119899(119909 119910) as

119860 (119905) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (33)

In view of (5) generating function (33) can be expressedequivalently as

1

119892 (119905)119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (34)

Now we frame the 2VgAP119901119860119899(119909 119910) within the context

of monomiality principle formalism We prove the followingresults

Theorem 4 The 2VgAP119901119860119899(119909 119910) are quasimonomial with

respect to the following multiplicative and derivative operators

119901119860

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

(35a)

or equivalently

119901119860

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

minus1198921015840

(119863119909)

119892 (119863119909)

(35b)

119901119860

= 119863119909 (36)

respectively

Proof Differentiating (33) partially with respect to 119905 we find

(119909 +1206011015840

(119910 119905)

120601 (119910 119905)+

1198601015840

(119905)

119860 (119905)) 119860 (119905) 119890

119909119905

120601 (119910 119905)

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(37)

Since 119860(119905) and 120601(119910 119905) are invertible series of 119905 therefore1198601015840

(119905)119860(119905) and 1206011015840

(119910 119905)120601(119910 119905) possess power series expan-sions of 119905 Thus in view of identity (22) we have

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119860 (119905) 119890119909119905

120601 (119910 119905)

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(38)

8 International Journal of Analysis

which on using generating function (33) becomes

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

)

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(39)

or equivalentlyinfin

sum119899=0

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119901119860119899

(119909 119910)119905119899

119899

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(40)

Now equating the coefficients of like powers of 119905 in theabove equation we find

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119901119860119899

(119909 119910) =119901119860119899+1

(119909 119910)

(41)

which in view of (6) yields assertion (35a) of Theorem 4Also in view of relation (5) assertion (35a) can be expressedequivalently as (35b)

Again in view of identity (22) we have

119863119909

119860 (119905) 119890119909119905

120601 (119910 119905) = 119905119860 (119905) 119890119909119905

120601 (119910 119905) (42)

which on using generating function (33) becomes

119863119909

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 =

infin

sum119899=1

119901119860119899minus1

(119909 119910)119905119899

(119899 minus 1) (43)

Equating the coefficients of like powers of 119905 in the aboveequation we find

119863119909

119901119860119899

(119909 119910) = 119899119901119860119899minus1

(119909 119910) (119899 ge 1) (44)

which in view of (7) yields assertion (36) ofTheorem 4

Theorem 5 The 2VgAP119901119860119899

(119909 119910) satisfy the following differ-ential equations

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

+1198601015840

(119863119909)

119860 (119863119909)

119863119909

minus 119899)119901119860119899

(119909 119910) = 0

(45a)

or equivalently

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

minus1198921015840

(119863119909)

119892 (119863119909)

119863119909

minus 119899)119901119860119899

(119909 119910) = 0

(45b)

Proof Using (35a) and (36) in (9) we get assertion (45a) Fur-ther using (35b) and (36) in (9) we get assertion (45b)

Note 1 With the help of the results derived above and bytaking 119860(119905) (or 119892(119905)) of the Appell polynomials listed inTable 1 we can derive the generating function and otherresults for the members belonging to 2VgAP family

3 Examples

We consider examples of certain members belonging to the2VgAP family

Taking 120601(119910 119905) = 119890119910119905119898

(that is when the 2VgP 119901119899(119909 119910)

reduces to the GHP 119867(119898)

119899(119909 119910)) in generating function

(33) we find that the Gould-Hopper-Appell polynomials(GHAP)

119867119860(119898)

119899(119909 119910) are defined by the following generating

function

119860 (119905) 119890(119909119905+119910119905

119898)

=

infin

sum119899=0

119867119860(119898)

119899(119909 119910)

119905119899

119899(46)

or equivalently

1

119892 (119905)119890(119909119905+119910119905

119898)

=

infin

sum119899=0

119867119860(119898)

119899(119909 119910)

119905119899

119899 (47)

Using (1) in (46) (or (3) in (47)) we get the followingseries definition for

119867119860(119898)

119899(119909 119910) in terms of the Appell

polynomials 119860119899(119909)

119867119860(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119860119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (48)

In view of (35a) (35b) and (36) we note that the GHAP119867

119860(119898)

119899(119909 119910) are quasimonomial under the action of the

following multiplicative and derivative operators

119867(119898)119860

= 119909 + 119898119910119863119898minus1

119909+

1198601015840

(119863119909)

119860 (119863119909)

(49a)

or equivalently

119867(119898)119860

= 119909 + 119898119910119863119898minus1

119909minus

1198921015840

(119863119909)

119892 (119863119909)

(49b)

119867(119898)119860

= 119863119909 (50)

respectively Also in view of (45a) and (45b) we find thatthe GHAP

119867119860(119898)

119899(119909 119910) satisfy the following differential

equation

(119909119863119909

+ 119898119910119863119898

119909+

1198601015840

(119863119909)

119860 (119863119909)

119863119909

minus 119899)119867

119860(119898)

119899(119909 119910) = 0

(51a)

or equivalently

(119909119863119909

+ 119898119910119863119898

119909minus

1198921015840

(119863119909)

119892 (119863119909)

119863119909

minus 119899)119867

119860(119898)

119899(119909 119910) = 0

(51b)

Remark 6 In view of (16) and (17) we note that for 119898 =

2 the GHAP119867

119860(119898)

119899(119909 119910) reduce to the Hermite-Appell

polynomials (HAP)119867

119860119899(119909 119910) Therefore taking 119898 = 2 in

(46) (47) (48) (49a) (49b) (50) (51a) and (51b) we get thecorresponding results for the HAP

119867119860119899(119909 119910)

International Journal of Analysis 9

Remark 7 In view of (16) we note that the 2VHKdFP119867119899(119909 119910) are related to the classical Hermite polynomials

119867119899(119909) [11] or 119867119890

119899(119909) as

119867119899

(2119909 minus1) = 119867119899

(119909)

119867119899

(119909 minus1

2) = 119867119890

119899(119909)

(52)

Therefore taking 119910 = minus1 and replacing 119909 by 2119909 (or taking119910 = minus12) in (46)ndash(51b) we get the corresponding resultsfor the classical Hermite-Appell polynomials

119867119860119899(119909) (or

119867119890119860119899(119909))

There are several members belonging to 2VgP familyThus the results for the corresponding 2VgAP can be obtainedby taking other examples We present the list of somemembers belonging to the GHAP family in Table 2

Note 2 Since for 119898 = 2 the GHAP119867

119860119898

119899(119909 119910) reduce to the

HAP119867

119860119899(119909 119910) therefore for 119898 = 2 Table 2 gives the list of

the corresponding HAP119867

119860119899(119909 119910)

The results established in this paper are general andinclude new families of special polynomials consequentlyintroducing many new special polynomials

Appendix

New classes of Bernoulli numbers and polynomials areintroduced which are used to evaluate partial sums involv-ing other special polynomials see for example [21 22]Here we consider the Gould-Hopper-Bernoulli polyno-mials (GHBP) Gould-Hopper-Euler polynomials (GHEP)Hermite-Bernoulli polynomials (HBP) Hermite-Euler poly-nomials (HEP) classical Hermite-Bernoulli polynomials(cHBP) and classical Hermite-Euler polynomials (cHEP)We give the surface plots of these polynomials for suitablevalues of the parameters and indices Also we give the graphsof the corresponding single-variable polynomials

The GHBP119867

119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) and HEP

119867119864119899(119909 119910) are defined by the following

series

119867119861(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119861119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A1)

119867119864(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119864119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A2)

119867119861119899

(119909 119910) = 119899

[1198992]

sum119903=0

119861119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A3)

119867119864119899

(119909 119910) = 119899

[1198992]

sum119903=0

119864119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A4)

respectively Taking 119910 = minus12 in (A3) and (A4) we get theseries definitions for the cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909)

as

119867119861119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119861119899minus2119903

(119909)

(119899 minus 2119903)119903 (A5)

119867119864119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119864119899minus2119903

(119909)

(119899 minus 2119903)119903 (A6)

respectivelyTo draw the surface plots of these polynomials we use

the values of the Bernoulli polynomials 119861119899(119909) and the Euler

polynomials 119864119899(119909) for 119899 = 0 1 2 3 4 and 5 We give the list

of the first fewBernoulli and the Euler polynomials in Table 3Now we consider the GHBP

119867119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) HEP

119867119864119899(119909 119910) cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909) for 119898 = 3 and 119899 = 5 so that

we have

119867119861(3)

5(119909 119910) = 119861

5(119909) + 60119861

2(119909) 119910 (A7)

119867119864(3)

5(119909 119910) = 119864

5(119909) + 60119864

2(119909) 119910 (A8)

1198671198615

(119909 119910) = 1198615

(119909) + 201198613

(119909) 119910 + 601198611

(119909) 1199102

(A9)

1198671198645

(119909 119910) = 1198645

(119909) + 201198643

(119909) 119910 + 601198641

(119909) 1199102

(A10)

1198671198901198615

(119909) = 1198615

(119909) minus 101198613

(119909) + 151198611

(119909) (A11)

1198671198901198645

(119909) = 1198645

(119909) minus 101198643

(119909) + 151198641

(119909) (A12)

respectively Using the particular values of 119861119899(119909) and 119864

119899(119909)

given in Table 3 we find

119867119861(3)

5(119909 119910)=119909

5

minus5

21199094

+5

31199093

+601199092

119910minus60119909119910minus1

6119909+

1

10119910

(A13)

119867119864(3)

5(119909 119910)=119909

5

minus5

21199094

+601199092

119910+5

31199092

minus60119909119910minus1

2+

1

10119910

(A14)

119867

1198615

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 +5

31199093

+ 601199091199102

minus 601199092

119910 + 10119909119910 minus 301199102

minus1

6119909

(A15)

1198671198645

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 + 601199091199102

minus 301199092

119910 +5

31199092

minus 301199102

+10

3119910 minus

1

2

(A16)

1198671198901198615

(119909) = 1199095

minus5

21199094

minus25

31199093

+ 151199092

+59

6119909 minus

15

2 (A17)

1198671198901198645

(119909) = 1199095

minus5

21199094

minus 101199093

+50

31199092

+ 15119909 minus29

3 (A18)

respectively

10 International Journal of Analysis

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(a)

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(b)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(c)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(d)

minus5 0 5minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(e)minus5 0 5

minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(f)

Figure 1

Table 3 List of the first few Bernoulli and the Euler polynomials

119899 0 1 2 3 4 5

119861119899(119909) 1 119909 minus

1

21199092

minus 119909 +1

61199093

minus3

21199092

+119909

21199094

minus 21199093

+ 1199092

minus1

301199095

minus5

21199094

+5

31199093

minus119909

6

119864119899(119909) 1 119909 minus

1

21199092

minus 119909 1199093

minus3

21199092

+1

61199094

minus 21199093

+2

3119909 119909

5

minus5

21199094

+5

31199092

minus1

2

International Journal of Analysis 11

In view of equations (A13)ndash(A18) we get Figure 1

Acknowledgments

The authors are thankful to the anonymous referee for usefulsuggestions towards the improvement of the paperThis workhas been done under the Senior Research Fellowship (OfficeMemo no AcadD-1562MR) sanctioned to the secondauthor by the University Grants Commission Governmentof India New Delhi

References

[1] P Appell ldquoSur une classe de polynomesrdquo Annales Scientifiquesde lrsquoEcole Normale Superieure vol 9 pp 119ndash144 1880

[2] S Roman The Umbral Calculus vol 111 of Pure and AppliedMathematics Academic Press New York NY USA 1984

[3] E D Rainville Special Functions Macmillan New York NYUSA 1960 reprinted by Chelsea Bronx NY USA 1971

[4] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol III McGraw-Hill NewYork NY USA 1955

[5] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol II McGraw-Hill NewYork NY USA 1953

[6] G Bretti P Natalini and P E Ricci ldquoGeneralizations ofthe Bernoulli and Appell polynomialsrdquo Abstract and AppliedAnalysis vol 2004 no 7 pp 613ndash623 2004

[7] Q-M Luo and H M Srivastava ldquoSome generalizations of theApostol-Bernoulli and Apostol-Euler polynomialsrdquo Journal ofMathematical Analysis and Applications vol 308 no 1 pp 290ndash302 2005

[8] T M Apostol ldquoOn the Lerch zeta functionrdquo Pacific Journal ofMathematics vol 1 pp 161ndash167 1951

[9] Q-M Luo ldquoApostol-Euler polynomials of higher order andGaussian hypergeometric functionsrdquo Taiwanese Journal ofMathematics vol 10 no 4 pp 917ndash925 2006

[10] K Douak ldquoThe relation of the 119889-orthogonal polynomials tothe Appell polynomialsrdquo Journal of Computational and AppliedMathematics vol 70 no 2 pp 279ndash295 1996

[11] L C Andrews Special Functions for Engineers and AppliedMathematicians Macmillan New York NY USA 1985

[12] G Dattoli S Lorenzutta and D Sacchetti ldquoIntegral represen-tations of new families of polynomialsrdquo Italian Journal of Pureand Applied Mathematics no 15 pp 19ndash28 2004

[13] W Magnus F Oberhettinger and R P Soni Formulas andTheorems for the Special Functions of Mathematical Physicsvol 52 of Die Grundlehren der mathematischen WissenschaftenSpringer New York NY USA 3rd edition 1966

[14] G Dattoli M Migliorati and H M Srivastava ldquoSheffer poly-nomials monomiality principle algebraic methods and thetheory of classical polynomialsrdquo Mathematical and ComputerModelling vol 45 no 9-10 pp 1033ndash1041 2007

[15] J F Steffensen ldquoThe poweroid an extension of the mathemat-ical notion of powerrdquo Acta Mathematica vol 73 pp 333ndash3661941

[16] G Dattoli ldquoHermite-Bessel and Laguerre-Bessel functions aby-product of the monomiality principlerdquo in Advanced SpecialFunctions and Applications (Melfi 1999) vol 1 of ProcMelfi SchAdv Top Math Phys pp 147ndash164 Aracne Rome Italy 2000

[17] G Bretti C Cesarano and P E Ricci ldquoLaguerre-type expo-nentials and generalized Appell polynomialsrdquo Computers ampMathematics with Applications vol 48 no 5-6 pp 833ndash8392004

[18] P Appell and J Kampe de Feriet Fonctions Hypergeometriqueset Hyperspheriques Polynomes drsquo Hermite Gauthier-VillarsParis France 1926

[19] H W Gould and A T Hopper ldquoOperational formulas con-nected with two generalizations of Hermite polynomialsrdquoDukeMathematical Journal vol 29 pp 51ndash63 1962

[20] S Khan G Yasmin R Khan and N A M Hassan ldquoHermite-based Appell polynomials properties and applicationsrdquo Journalof Mathematical Analysis and Applications vol 351 no 2 pp756ndash764 2009

[21] G Dattoli C Cesarano and S Lorenzutta ldquoBernoulli numbersand polynomials from amore general point of viewrdquo RendicontidiMatematica e delle sueApplicazioni vol 22 pp 193ndash202 2002

[22] G Dattoli S Lorenzutta and C Cesarano ldquoFinite sums andgeneralized forms of Bernoulli polynomialsrdquo Rendiconti diMatematica e delle sue Applicazioni vol 19 no 3 pp 385ndash3911999

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article General-Appell Polynomials within the ...downloads.hindawi.com/journals/ijanal/2013/328032.pdf · In order to introduce the -variable general-Appell polyno-mials

2 International Journal of Analysis

Table1Listof

someA

ppellp

olyn

omials

SNo

119892(119905

)119860

(119905)

Generatingfunctio

nsPo

lyno

mials

(I)

119892(119905

)=

(119890119905

minus1)

119905119860

(119905)

=119905

(119890119905minus

1)

119905

(119890119905minus

1)119890119909119905

=infin sum119899=0

119861119899

(119909)

119905119899 119899

TheB

erno

ullipo

lyno

mials[3]

(II)

119892(119905

)=

(119890119905

+1)

2119860

(119905)

=2

(119890119905+

1)

2

(119890119905+

1)119890119909119905

=infin sum119899=0

119864119899

(119909)

119905119899 119899

TheE

uler

polyno

mials[3]

(III)

119892(119905

)=

(119890119905

minus1)120572

119905120572119860

(119905)

=119905120572

(119890119905minus

1)120572

119905120572

(119890119905minus

1)120572

119890119909119905

=infin sum119899=0

119861(120572)

119899(119909

)119905119899 119899

Theg

eneralized

Bernou

llipo

lyno

mials[4]

(IV)

119892(119905

)=

(119890119905

+1)120572

2120572

119860(119905

)=

2120572

(119890119905+

1)120572

2120572

(119890119905+

1)120572

119890119909119905

=infin sum119899=0

119864(120572)

119899(119909

)119905119899 119899

Theg

eneralized

Eulerp

olyn

omials[4]

(V)

119892(119905

)=

(1198901205721119905

minus1)

(1198901205722119905

minus1)

sdotsdotsdot(

119890120572119898119905

minus1)

12057211205722

sdotsdotsdot120572119898

119905119898

12057211205722

sdotsdotsdot120572119898

119905119898

(1198901205721119905minus

1)(1198901205722119905minus

1)sdotsdot

sdot (119890120572119898119905minus

1)119890119909119905

=infin sum119899=0

119861(119898)

119899(119909

|12057211205722

120572119898

)119905119899 119899

Theg

eneralized

Bernou

llipo

lyno

mialsof

order119898

[5]

119860(119905

)=

12057211205722

sdotsdotsdot120572119898

119905119898

(1198901205721119905minus

1)(1198901205722119905minus

1)sdotsdot

sdot (119890120572119898119905minus

1)

(VI)

119892(119905

)=

(1198901205721119905

+1)

(1198901205722119905

+1)

sdotsdotsdot(

119890120572119898119905

+1)

2119898

2119898

(1198901205721119905+

1)(1198901205722119905+

1)sdotsdot

sdot (119890120572119898119905+

1)119890119909119905

=infin sum119899=0

119864(119898)

119899(119909

|12057211205722

120572119898

)119905119899 119899

Theg

eneralized

Eulerp

olyn

omialsof

order119898

[5]

119860(119905

)=

2119898

(1198901205721119905+

1)(1198901205722119905+

1)sdotsdot

sdot (119890120572119898119905+

1)

(VII)

119892(119905

)=

119890119905minus

sum119898minus1

ℎ=0

(119905ℎ

ℎ)

119905119898

119860(119905

)=

119905119898

119890119905minus

sum119898minus1

ℎ=0

(119905ℎℎ

)

119905119898

119890119905minus

sum119898minus1

ℎ=0

(119905ℎℎ

)119890119909119905

=infin sum119899=0

119861[119898minus1]

119899(119909

)119905119899 119899

Then

ewgeneralized

Bernou

llipo

lyno

mials[6]

International Journal of Analysis 3

Table1Con

tinued

SNo

119892(119905

)119860

(119905)

Generatingfunctio

nsPo

lyno

mials

(VIII)

119892(119905

)=

(119905

120582119890119905

minus1

)minus120572

119860(119905

)=

(119905

120582119890119905

minus1

)120572

(119905

120582119890119905

minus1

)120572

119890119909119905

=infin sum119899=0

B(120572)

119899(119909

120582)

119905119899 119899

TheA

posto

l-Berno

ullipo

lyno

mialsof

order120572

[7]

(IX)

119892(119905

)=

120582119890119905

minus1

119905119860

(119905)

=119905

120582119890119905

minus1

119905

120582119890119905

minus1

119890119909119905

=infin sum119899=0

B119899

(119909120582

)119905119899 119899

TheA

posto

l-Berno

ullipo

lyno

mials[78]

(X)

119892(119905

)=

(2

120582119890119905

+1

)minus120572

119860(119905

)=

(2

120582119890119905

+1

)120572

(2

120582119890119905

+1

)120572

119890119909119905

=infin sum119899=0

E(120572)

119899(119909

120582)

119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

1120572

=1

TheA

posto

l-Euler

polyno

mialsof

order120572

[79]

(XI)

119892(119905

)=

120582119890119905

+1

2119860

(119905)

=2

120582119890119905

+1

2

120582119890119905

+1

119890119909119905

=infin sum119899=0

E119899

(119909120582

)119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

TheA

posto

l-Euler

polyno

mials[7ndash9

]

(XII)

119892(119905

)=

119890minus(120585∘+1205851119905+12058521199052+sdotsdotsdot+120585119903+1119905119903+1)

119860

(119905)

=119890(120585∘+1205851119905+12058521199052+sdotsdotsdot+120585119903+1119905119903+1)

120585 119903+1

=0

119890(120585∘+1205851119905+12058521199052+sdotsdotsdot+120585119903+1119905119903+1)

119890119909119905

=infin sum119899=0

119860119899

(119909)

119905119899 119899

Theg

eneralized

Gou

ld-H

opperp

olyn

omials[10]

(for

119903=

1the

Hermite

polyno

mials

119867119899(119909

)[11]andfor

119903=

2classical2-orthogon

alpo

lyno

mials)

(XIII)

119892(119905

)=

(1minus

119905 )119898+1

119860(119905

)=

1

(1minus

119905)119898+1

1

(1minus

119905)119898+1119890119909119905

=infin sum119899=0

119866(119898)

119899(119909

)119905119899

TheM

iller-Lee

polyno

mials[1112](for119898

=0the

trun

catedexpo

nentialp

olyn

omials

119890 119899(119909

)[11]andfor

119898=

120573minus

1the

mod

ified

Laguerre

polyno

mials

119891(120573)

119899(119909

)

[13])

(XIV

)119892

(119905)

=(119890119905

+1)

2119905

119860(119905

)=

2119905

(119890119905+

1)

2119905

(119890119905+

1)119890119909119905

=infin sum119899=0

119866119899

(119909)

119905119899 119899

TheG

enocchip

olyn

omials[14

]

4 International Journal of Analysis

The operators and also satisfy the commutationrelation

[ ] = minus = 1 (8)

and thus display the Weyl group structure If the consideredpolynomial set 119901

119899(119909)119899isinN is quasimonomial its properties

can easily be derived from those of the and operatorsIn fact

(i) Combining the recurrences (6) and (7) we have

119901119899

(119909) = 119899119901119899

(119909) (9)

which can be interpreted as the differential equationsatisfied by 119901

119899(119909) if and have a differential

realization(ii) Assuming here and in the sequel 119901

0(119909) = 1 then

119901119899(119909) can be explicitly constructed as

119901119899

(119909) = 119899

1199010

(119909) = 119899

1 (10)

which yields the series definition for 119901119899(119909)

(iii) Identity (10) implies that the exponential generatingfunction of 119901

119899(119909) can be given in the form

exp (119905) 1 =

infin

sum119899=0

119901119899

(119909)119905119899

119899(|119905| lt infin) (11)

We note that the Appell polynomials 119860119899(119909) are quasi-

monomial with respect to the following multiplicative andderivative operators

119860

= 119909 +1198601015840

(119863119909)

119860 (119863119909)

(12a)

or equivalently

119860

= 119909 minus1198921015840

(119863119909)

119892 (119863x) (12b)

119860

= 119863119909 (13)

respectivelyThe special polynomials of two variables are useful from

the point of view of applications in physics Also thesepolynomials allow the derivation of a number of useful iden-tities in a fairly straightforward way and help in introducingnew families of special polynomials For example Bretti etal [17] introduced general classes of two variables Appellpolynomials by using properties of an iterated isomorphismrelated to the Laguerre-type exponentials

We consider the 2-variable general polynomial (2VgP)family 119901

119899(119909 119910) defined by the generating function

119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899(1199010

(119909 119910) = 1) (14)

where 120601(119910 119905) has (at least the formal) series expansion

120601 (119910 119905) =

infin

sum119899=0

120601119899

(119910)119905119899

119899(1206010

(119910) = 0) (15)

We recall that the 2-variable Hermite Kampe de Ferietpolynomials (2VHKdFP) 119867

119899(119909 119910) [18] the Gould-Hopper

polynomials (GHP) 119867(119898)

119899(119909 119910) [19] and the Hermite-Appell

polynomials (HAP)119867

119860119899(119909 119910) [20] are defined by the

generating functions

119890119909119905+119910119905

2

=

infin

sum119899=0

119867119899

(119909 119910)119905119899

119899 (16)

119890119909119905+119910119905

119898

=

infin

sum119899=0

119867(119898)

119899(119909 119910)

119905119899

119899 (17)

119860 (119905) 119890119909119905+119910119905

2

=

infin

sum119899=0

119867119860119899

(119909 119910)119905119899

119899 (18)

respectively Thus in view of generating functions (14) (16)(17) and (18) we note that the 2VHKdFP 119867

119899(119909 119910) the GHP

119867(119898)

119899(119909 119910) and the HAP

119867119860119899(119909 119910) belong to 2VgP family

In this paper operational methods are used to introducecertain new families of special polynomials related to theAppell polynomials In Section 2 some results for the 2-variable general polynomials (2VgP) 119901

119899(119909 119910) are derived

Further the 2-variable general-Appell polynomials (2VgAP)119901119860119899(119909 119910) are introduced and framed within the context

of monomiality principle In Section 3 the Gould-Hopper-Appell polynomials (GHAP)

119867119860(119898)

119899(119909 119910) are considered

and their properties are established Some members belong-ing to theGould-Hopper-Appell polynomial family are given

2 2-Variable General-Appell Polynomials

In order to introduce the 2-variable general-Appell polyno-mials (2VgAP) we need to establish certain results for the2VgP 119901

119899(119909 119910) Therefore first we prove the following results

for the 2VgP 119901119899(119909 119910)

Lemma 1 The 2VgP 119901119899(119909 119910) defined by generating function

(14) where 120601(119910 119905) is given by (15) are quasimonomial underthe action of the following multiplicative and derivative opera-tors

119901

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

(1206011015840

(119909 119905) =120597

120597119905120601 (119909 119905)) (19)

119901

= 119863119909 (20)

respectively

Proof Differentiating (14) partially with respect to 119905 we have

(119909 +1206011015840

(119910 119905)

120601 (119910 119905)) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899 (21)

International Journal of Analysis 5

Table2Listof

someG

ould-H

opper-A

ppellp

olyn

omials119867

119860(119898)

119899(119909

119910)

SNo

119892(119905

)119860

(119905)

119872119867(119898)119860119875119867(119898)119860

Generatingfunctio

nsPo

lyno

mials

(I)

(119890119905

minus1)

119905

119905

(119890119905minus

1)

119909+

119898119910

119863119898minus1

119909+

((1

minus119863119909)

119890119863119909

minus1)

119863119909

(119890119863119909

minus1)

119863119909

119905

(119890119905minus

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-Be

rnou

llipo

lyno

mials

(II)

(119890119905

+1)

2

2

(119890119905+

1)

119909+

119898119910

119863119898minus1

119909minus

119890119863119909

(119890119863119909

+1)119863119909

2

(119890119905+

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119864(119898)

119899(119909

119910)

119905119899 119899

TheG

ould

Hop

per-Eu

ler

polyno

mials

(III)

(119890119905

minus1)120572

119905120572

119905120572

(119890119905minus

1)120572

119909+

119898119910

119863119898minus1

119909+

120572((1

minus119863119909)

119890119863119909

minus1)

119863119909

(119890119863119909

minus1)

119863119909

119905120572

(119890119905minus

1)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898120572)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-generalized

Bernou

llipo

lyno

mials

(IV)

(119890119905

+1)120572

2120572

2120572

(119890119905+

1)120572

119909+

119898119910

119863119898minus1

119909minus

120572119890119863119909

(119890119863119909

+1)119863119909

2120572

(119890119905+

1)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867119864(119898120572)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-generalized

Eulerp

olyn

omials

(V)

119904 prod ℎ=1

(119890120572ℎ119905

minus1)

120572ℎ119905119904

119909

+119898

119910119863119898minus1

119909+

119898119863minus1

119909minus119898 sum 119903=1

120572119903119890120572119903119863119909

(119890120572119903119863119909

minus1)119863119909

1205721

sdotsdotsdot120572119904119905119904

(1198901205721119905minus

1)sdotsdot

sdot (119890120572119904119905minus

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898119904)

119899(119909

119910|

1205721

120572119904)119905119899 119899

TheG

ould-H

opper-generalized

Bernou

llipo

lyno

mialsof

order119904

119904 prod ℎ=1

120572ℎ

(119890120572ℎ119905minus

1)119905119904

(VI)

119904 prod ℎ=1

(119890120572ℎ119905

+1)

2119904

119909

+119898

119910119863119898minus1

119909minus119898 sum 119903=1

120572119903119890120572119903119863119909119863119909

2119904

(1198901205721119905+

1)sdotsdot

sdot (119890120572119904119905+

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119864(119898119904)

119899(119909

119910|

1205721

120572119904)119905119899 119899

TheG

ould-H

opper-generalized

Eulerp

olyn

omialsof

order119904

119904 prod ℎ=1

2119904

(119890120572ℎ119905+

1)

(VII)

119890119905minus

sum119904minus1

ℎ=0

(119905ℎ

ℎ)

119905119904

119909+

119898119910

119863119898minus1

119909+

119898119863minus1

119909minus

1minus

119863119909

119898minus1

(119898

minus1)

(119890119863119909

minussum119898minus1

ℎ=0

119905ℎℎ

)119863119909

119905119904

119890119905minus

sum119904minus1

ℎ=0

(119905ℎℎ

)119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898[119904minus1])

119899(119909

119910)

119905119899 119899

TheG

ould-H

oppern

ewgeneralized

Bernou

llipo

lyno

mials

119905119904

119890119905minus

sum119904minus1

ℎ=0

(119905ℎℎ

)

6 International Journal of Analysis

Table2Con

tinued

SNo

119892(119905

)119860

(119905)

119872119867(119898)119860119875119867(119898)119860

Generatingfunctio

nsPo

lyno

mials

(VIII)

(119905

120582119890119905

minus1

)minus120572

(119905

120582119890119905

minus1

)120572

119909+

119898119910

119863119898minus1

119909+

120582119890119863119909

(120572minus

119863119909)

minus120572

119863119909

(120582119890119863119909

minus1)

119863119909

(119905

120582119890119905

minus1

)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867B(119898120572)

119899(119909

119910120582

)119905119899 119899

TheG

ould-H

opper-A

posto

l-Berno

ulli

polyno

mialsof

order120572

(IX)

120582119890119905

minus1

119905

119905

120582119890119905

minus1

119909+

119898119910

119863119898minus1

119909+

120582119890119863119909

(1minus

119863119909)

minus1

119863119909

(120582119890119863119909

minus1)

119863119909

119905

120582119890119905

minus1

119890119909119905+119910119905119898

=infin sum119899=0

119867B(119898)

119899(119909

119910120582

)119905119899 119899

TheG

ould-H

opper-A

posto

l-Berno

ulli

polyno

mials

(X)

(2

120582119890119905

+1

)minus120572

(2

120582119890119905

+1

)120572

119909+

119898119910

119863119898minus1

119909minus

120582120572

119890119863119909

(120582119890119863119909

+1)119863119909

(2

120582119890119905

+1

)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867E(119898120572)

119899(119909

119910120582

)119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

1120572

=1

TheG

ould-H

opper-A

posto

l-Euler

polyno

mialsof

order120572

(XI)

120582119890119905

+1

2

2

120582119890119905

+1

119909+

119898119910

119863119898minus1

119909minus

120582119890119863119909

(120582119890119863119909

+1)119863119909

2

120582119890119905

+1

119890119909119905+119910119905119898

=infin sum119899=0

119867E(119898)

119899(119909

119910120582

)119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

TheG

ould-H

opper-A

posto

l-Euler

polyno

mials

(XII)

119890minus(sum119903+1

ℎ=0120585ℎ119905ℎ)

119890(sum119903+1

ℎ=0120585ℎ119905ℎ)

120585 119903+1

=0

119909+

119898119910

119863119898minus1

119909+119903+1

sumℎ=1

ℎ120585 ℎ

119863ℎminus1

119909119863119909

119890(sum119903+1

ℎ=0120585ℎ119905ℎ+119909119905+119910119905119898)

=infin sum119899=0

119867119860(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-generalized

Gou

ld-H

opperp

olyn

omials(fo

r119903=

1

theG

ould-H

opper-Hermite

polyno

mials119867

119867(119898)

119899(119909

119910)andfor

119903=

2the

Gou

ld-H

opperc

lassical

2-orthogon

alpo

lyno

mials)

(XIII)

(1minus

119905 )119904+1

1

(1minus

119905 )119904+1

119909+

119898119910

119863119898minus1

119909minus

119898+

1

1minus

119863119909

119863119909

1

(1minus

119905 )119904+1119890119909119905+119910119905119898

=infin sum119899=0

119867119866(119898119904)

119899(119909

119910)

119905119899

TheG

ould-H

opper-Miller-Lee

polyno

mials(fo

r119904=

0the

Gou

ld-H

opper-trun

catedexpo

nential

polyno

mials119867

119890119898 119899(119909

119910)andfor

119904=

120573minus

1Gou

ld-H

opper-mod

ified

Laguerre

polyno

mials119867

119891(119898120573)

119899(119909

119910))

(XIV

)(119890119905

+1)

2119905

2119905

(119890119905+

1)

119909+

119898119910

119863119898minus1

119909+

119890119863119909

(1minus

119863119909)

+1

(119890119863119909

+1)

119863119909

2119905

(119890119905+

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119866(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-Genocchi

polyno

mials

International Journal of Analysis 7

If 120601(119910 119905) is an invertible series and 1206011015840

(119910 119905)120601(119910 119905) hasTaylorrsquos series expansion in powers of 119905 then in view of theidentity

119863119909

119890119909119905

120601 (119910 119905) = 119905 (119890119909119905

120601 (119910 119905)) (22)

we can write

1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119890119909119905

120601 (119910 119905) =1206011015840

(119910 119905)

120601 (119910 119905)(119890119909119905

120601 (119910 119905)) (23)

Now using (23) in the lhs of (21) we find

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899 (24)

Making use of generating function (14) in the lhs of theabove equation we have

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

)

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899

(25)

which on equating the coefficients of like powers of 119905 in bothsides gives

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

) 119901119899

(119909 119910) = 119901119899+1

(119909 119910) (26)

Thus in view of monomiality principle equation (6) theabove equation yields assertion (19) of Lemma 1 Again usingidentity (22) in (14) we have

119863119909

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 =

infin

sum119899=1

119901119899minus1

(119909 119910)119905119899

(119899 minus 1) (27)

Equating the coefficients of like powers of 119905 in both sidesof (27) we find

119863119909

119901119899

(119909 119910) = 119899119901119899minus1

(119909 119910) (119899 ge 1) (28)

which in view of monomiality principle equation (7) yieldsassertion (20) of Lemma 1

Remark 2 The operators given by (19) and (20) satisfycommutation relation (8) Also using expressions (19) and(20) in (9) we get the following differential equation satisfiedby 2VgP 119901

119899(119909 119910)

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

minus 119899) 119901119899

(119909 119910) = 0 (29)

Remark 3 Since 1199010(119909 119910) = 1 therefore in view of monomi-

ality principle equation (10) we have

119901119899

(119909 119910) = (119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

)

119899

1 (1199010

(119909 119910) = 1) (30)

Also in view of (11) (14) and (19) we have

exp (119901119905) 1 = 119890

119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 (31)

Now we proceed to introduce the 2-variable general-Appell polynomials (2VgAP) In order to derive the gener-ating functions for the 2VgAP we take the 2VgP 119901

119899(119909 119910) as

the base in the Appell polynomials generating function (1)Thus replacing 119909 by the multiplicative operator

119901of the

2VgP 119901119899(119909 119910) in the lhs of (1) and denoting the resultant

2VgAP by119901119860119899(119909 119910) we have

119860 (119905) 119890(119901119905)

=

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (32)

Now using (31) in the exponential term in the lhs of(32) we get the generating function for

119901119860119899(119909 119910) as

119860 (119905) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (33)

In view of (5) generating function (33) can be expressedequivalently as

1

119892 (119905)119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (34)

Now we frame the 2VgAP119901119860119899(119909 119910) within the context

of monomiality principle formalism We prove the followingresults

Theorem 4 The 2VgAP119901119860119899(119909 119910) are quasimonomial with

respect to the following multiplicative and derivative operators

119901119860

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

(35a)

or equivalently

119901119860

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

minus1198921015840

(119863119909)

119892 (119863119909)

(35b)

119901119860

= 119863119909 (36)

respectively

Proof Differentiating (33) partially with respect to 119905 we find

(119909 +1206011015840

(119910 119905)

120601 (119910 119905)+

1198601015840

(119905)

119860 (119905)) 119860 (119905) 119890

119909119905

120601 (119910 119905)

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(37)

Since 119860(119905) and 120601(119910 119905) are invertible series of 119905 therefore1198601015840

(119905)119860(119905) and 1206011015840

(119910 119905)120601(119910 119905) possess power series expan-sions of 119905 Thus in view of identity (22) we have

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119860 (119905) 119890119909119905

120601 (119910 119905)

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(38)

8 International Journal of Analysis

which on using generating function (33) becomes

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

)

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(39)

or equivalentlyinfin

sum119899=0

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119901119860119899

(119909 119910)119905119899

119899

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(40)

Now equating the coefficients of like powers of 119905 in theabove equation we find

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119901119860119899

(119909 119910) =119901119860119899+1

(119909 119910)

(41)

which in view of (6) yields assertion (35a) of Theorem 4Also in view of relation (5) assertion (35a) can be expressedequivalently as (35b)

Again in view of identity (22) we have

119863119909

119860 (119905) 119890119909119905

120601 (119910 119905) = 119905119860 (119905) 119890119909119905

120601 (119910 119905) (42)

which on using generating function (33) becomes

119863119909

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 =

infin

sum119899=1

119901119860119899minus1

(119909 119910)119905119899

(119899 minus 1) (43)

Equating the coefficients of like powers of 119905 in the aboveequation we find

119863119909

119901119860119899

(119909 119910) = 119899119901119860119899minus1

(119909 119910) (119899 ge 1) (44)

which in view of (7) yields assertion (36) ofTheorem 4

Theorem 5 The 2VgAP119901119860119899

(119909 119910) satisfy the following differ-ential equations

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

+1198601015840

(119863119909)

119860 (119863119909)

119863119909

minus 119899)119901119860119899

(119909 119910) = 0

(45a)

or equivalently

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

minus1198921015840

(119863119909)

119892 (119863119909)

119863119909

minus 119899)119901119860119899

(119909 119910) = 0

(45b)

Proof Using (35a) and (36) in (9) we get assertion (45a) Fur-ther using (35b) and (36) in (9) we get assertion (45b)

Note 1 With the help of the results derived above and bytaking 119860(119905) (or 119892(119905)) of the Appell polynomials listed inTable 1 we can derive the generating function and otherresults for the members belonging to 2VgAP family

3 Examples

We consider examples of certain members belonging to the2VgAP family

Taking 120601(119910 119905) = 119890119910119905119898

(that is when the 2VgP 119901119899(119909 119910)

reduces to the GHP 119867(119898)

119899(119909 119910)) in generating function

(33) we find that the Gould-Hopper-Appell polynomials(GHAP)

119867119860(119898)

119899(119909 119910) are defined by the following generating

function

119860 (119905) 119890(119909119905+119910119905

119898)

=

infin

sum119899=0

119867119860(119898)

119899(119909 119910)

119905119899

119899(46)

or equivalently

1

119892 (119905)119890(119909119905+119910119905

119898)

=

infin

sum119899=0

119867119860(119898)

119899(119909 119910)

119905119899

119899 (47)

Using (1) in (46) (or (3) in (47)) we get the followingseries definition for

119867119860(119898)

119899(119909 119910) in terms of the Appell

polynomials 119860119899(119909)

119867119860(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119860119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (48)

In view of (35a) (35b) and (36) we note that the GHAP119867

119860(119898)

119899(119909 119910) are quasimonomial under the action of the

following multiplicative and derivative operators

119867(119898)119860

= 119909 + 119898119910119863119898minus1

119909+

1198601015840

(119863119909)

119860 (119863119909)

(49a)

or equivalently

119867(119898)119860

= 119909 + 119898119910119863119898minus1

119909minus

1198921015840

(119863119909)

119892 (119863119909)

(49b)

119867(119898)119860

= 119863119909 (50)

respectively Also in view of (45a) and (45b) we find thatthe GHAP

119867119860(119898)

119899(119909 119910) satisfy the following differential

equation

(119909119863119909

+ 119898119910119863119898

119909+

1198601015840

(119863119909)

119860 (119863119909)

119863119909

minus 119899)119867

119860(119898)

119899(119909 119910) = 0

(51a)

or equivalently

(119909119863119909

+ 119898119910119863119898

119909minus

1198921015840

(119863119909)

119892 (119863119909)

119863119909

minus 119899)119867

119860(119898)

119899(119909 119910) = 0

(51b)

Remark 6 In view of (16) and (17) we note that for 119898 =

2 the GHAP119867

119860(119898)

119899(119909 119910) reduce to the Hermite-Appell

polynomials (HAP)119867

119860119899(119909 119910) Therefore taking 119898 = 2 in

(46) (47) (48) (49a) (49b) (50) (51a) and (51b) we get thecorresponding results for the HAP

119867119860119899(119909 119910)

International Journal of Analysis 9

Remark 7 In view of (16) we note that the 2VHKdFP119867119899(119909 119910) are related to the classical Hermite polynomials

119867119899(119909) [11] or 119867119890

119899(119909) as

119867119899

(2119909 minus1) = 119867119899

(119909)

119867119899

(119909 minus1

2) = 119867119890

119899(119909)

(52)

Therefore taking 119910 = minus1 and replacing 119909 by 2119909 (or taking119910 = minus12) in (46)ndash(51b) we get the corresponding resultsfor the classical Hermite-Appell polynomials

119867119860119899(119909) (or

119867119890119860119899(119909))

There are several members belonging to 2VgP familyThus the results for the corresponding 2VgAP can be obtainedby taking other examples We present the list of somemembers belonging to the GHAP family in Table 2

Note 2 Since for 119898 = 2 the GHAP119867

119860119898

119899(119909 119910) reduce to the

HAP119867

119860119899(119909 119910) therefore for 119898 = 2 Table 2 gives the list of

the corresponding HAP119867

119860119899(119909 119910)

The results established in this paper are general andinclude new families of special polynomials consequentlyintroducing many new special polynomials

Appendix

New classes of Bernoulli numbers and polynomials areintroduced which are used to evaluate partial sums involv-ing other special polynomials see for example [21 22]Here we consider the Gould-Hopper-Bernoulli polyno-mials (GHBP) Gould-Hopper-Euler polynomials (GHEP)Hermite-Bernoulli polynomials (HBP) Hermite-Euler poly-nomials (HEP) classical Hermite-Bernoulli polynomials(cHBP) and classical Hermite-Euler polynomials (cHEP)We give the surface plots of these polynomials for suitablevalues of the parameters and indices Also we give the graphsof the corresponding single-variable polynomials

The GHBP119867

119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) and HEP

119867119864119899(119909 119910) are defined by the following

series

119867119861(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119861119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A1)

119867119864(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119864119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A2)

119867119861119899

(119909 119910) = 119899

[1198992]

sum119903=0

119861119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A3)

119867119864119899

(119909 119910) = 119899

[1198992]

sum119903=0

119864119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A4)

respectively Taking 119910 = minus12 in (A3) and (A4) we get theseries definitions for the cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909)

as

119867119861119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119861119899minus2119903

(119909)

(119899 minus 2119903)119903 (A5)

119867119864119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119864119899minus2119903

(119909)

(119899 minus 2119903)119903 (A6)

respectivelyTo draw the surface plots of these polynomials we use

the values of the Bernoulli polynomials 119861119899(119909) and the Euler

polynomials 119864119899(119909) for 119899 = 0 1 2 3 4 and 5 We give the list

of the first fewBernoulli and the Euler polynomials in Table 3Now we consider the GHBP

119867119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) HEP

119867119864119899(119909 119910) cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909) for 119898 = 3 and 119899 = 5 so that

we have

119867119861(3)

5(119909 119910) = 119861

5(119909) + 60119861

2(119909) 119910 (A7)

119867119864(3)

5(119909 119910) = 119864

5(119909) + 60119864

2(119909) 119910 (A8)

1198671198615

(119909 119910) = 1198615

(119909) + 201198613

(119909) 119910 + 601198611

(119909) 1199102

(A9)

1198671198645

(119909 119910) = 1198645

(119909) + 201198643

(119909) 119910 + 601198641

(119909) 1199102

(A10)

1198671198901198615

(119909) = 1198615

(119909) minus 101198613

(119909) + 151198611

(119909) (A11)

1198671198901198645

(119909) = 1198645

(119909) minus 101198643

(119909) + 151198641

(119909) (A12)

respectively Using the particular values of 119861119899(119909) and 119864

119899(119909)

given in Table 3 we find

119867119861(3)

5(119909 119910)=119909

5

minus5

21199094

+5

31199093

+601199092

119910minus60119909119910minus1

6119909+

1

10119910

(A13)

119867119864(3)

5(119909 119910)=119909

5

minus5

21199094

+601199092

119910+5

31199092

minus60119909119910minus1

2+

1

10119910

(A14)

119867

1198615

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 +5

31199093

+ 601199091199102

minus 601199092

119910 + 10119909119910 minus 301199102

minus1

6119909

(A15)

1198671198645

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 + 601199091199102

minus 301199092

119910 +5

31199092

minus 301199102

+10

3119910 minus

1

2

(A16)

1198671198901198615

(119909) = 1199095

minus5

21199094

minus25

31199093

+ 151199092

+59

6119909 minus

15

2 (A17)

1198671198901198645

(119909) = 1199095

minus5

21199094

minus 101199093

+50

31199092

+ 15119909 minus29

3 (A18)

respectively

10 International Journal of Analysis

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(a)

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(b)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(c)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(d)

minus5 0 5minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(e)minus5 0 5

minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(f)

Figure 1

Table 3 List of the first few Bernoulli and the Euler polynomials

119899 0 1 2 3 4 5

119861119899(119909) 1 119909 minus

1

21199092

minus 119909 +1

61199093

minus3

21199092

+119909

21199094

minus 21199093

+ 1199092

minus1

301199095

minus5

21199094

+5

31199093

minus119909

6

119864119899(119909) 1 119909 minus

1

21199092

minus 119909 1199093

minus3

21199092

+1

61199094

minus 21199093

+2

3119909 119909

5

minus5

21199094

+5

31199092

minus1

2

International Journal of Analysis 11

In view of equations (A13)ndash(A18) we get Figure 1

Acknowledgments

The authors are thankful to the anonymous referee for usefulsuggestions towards the improvement of the paperThis workhas been done under the Senior Research Fellowship (OfficeMemo no AcadD-1562MR) sanctioned to the secondauthor by the University Grants Commission Governmentof India New Delhi

References

[1] P Appell ldquoSur une classe de polynomesrdquo Annales Scientifiquesde lrsquoEcole Normale Superieure vol 9 pp 119ndash144 1880

[2] S Roman The Umbral Calculus vol 111 of Pure and AppliedMathematics Academic Press New York NY USA 1984

[3] E D Rainville Special Functions Macmillan New York NYUSA 1960 reprinted by Chelsea Bronx NY USA 1971

[4] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol III McGraw-Hill NewYork NY USA 1955

[5] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol II McGraw-Hill NewYork NY USA 1953

[6] G Bretti P Natalini and P E Ricci ldquoGeneralizations ofthe Bernoulli and Appell polynomialsrdquo Abstract and AppliedAnalysis vol 2004 no 7 pp 613ndash623 2004

[7] Q-M Luo and H M Srivastava ldquoSome generalizations of theApostol-Bernoulli and Apostol-Euler polynomialsrdquo Journal ofMathematical Analysis and Applications vol 308 no 1 pp 290ndash302 2005

[8] T M Apostol ldquoOn the Lerch zeta functionrdquo Pacific Journal ofMathematics vol 1 pp 161ndash167 1951

[9] Q-M Luo ldquoApostol-Euler polynomials of higher order andGaussian hypergeometric functionsrdquo Taiwanese Journal ofMathematics vol 10 no 4 pp 917ndash925 2006

[10] K Douak ldquoThe relation of the 119889-orthogonal polynomials tothe Appell polynomialsrdquo Journal of Computational and AppliedMathematics vol 70 no 2 pp 279ndash295 1996

[11] L C Andrews Special Functions for Engineers and AppliedMathematicians Macmillan New York NY USA 1985

[12] G Dattoli S Lorenzutta and D Sacchetti ldquoIntegral represen-tations of new families of polynomialsrdquo Italian Journal of Pureand Applied Mathematics no 15 pp 19ndash28 2004

[13] W Magnus F Oberhettinger and R P Soni Formulas andTheorems for the Special Functions of Mathematical Physicsvol 52 of Die Grundlehren der mathematischen WissenschaftenSpringer New York NY USA 3rd edition 1966

[14] G Dattoli M Migliorati and H M Srivastava ldquoSheffer poly-nomials monomiality principle algebraic methods and thetheory of classical polynomialsrdquo Mathematical and ComputerModelling vol 45 no 9-10 pp 1033ndash1041 2007

[15] J F Steffensen ldquoThe poweroid an extension of the mathemat-ical notion of powerrdquo Acta Mathematica vol 73 pp 333ndash3661941

[16] G Dattoli ldquoHermite-Bessel and Laguerre-Bessel functions aby-product of the monomiality principlerdquo in Advanced SpecialFunctions and Applications (Melfi 1999) vol 1 of ProcMelfi SchAdv Top Math Phys pp 147ndash164 Aracne Rome Italy 2000

[17] G Bretti C Cesarano and P E Ricci ldquoLaguerre-type expo-nentials and generalized Appell polynomialsrdquo Computers ampMathematics with Applications vol 48 no 5-6 pp 833ndash8392004

[18] P Appell and J Kampe de Feriet Fonctions Hypergeometriqueset Hyperspheriques Polynomes drsquo Hermite Gauthier-VillarsParis France 1926

[19] H W Gould and A T Hopper ldquoOperational formulas con-nected with two generalizations of Hermite polynomialsrdquoDukeMathematical Journal vol 29 pp 51ndash63 1962

[20] S Khan G Yasmin R Khan and N A M Hassan ldquoHermite-based Appell polynomials properties and applicationsrdquo Journalof Mathematical Analysis and Applications vol 351 no 2 pp756ndash764 2009

[21] G Dattoli C Cesarano and S Lorenzutta ldquoBernoulli numbersand polynomials from amore general point of viewrdquo RendicontidiMatematica e delle sueApplicazioni vol 22 pp 193ndash202 2002

[22] G Dattoli S Lorenzutta and C Cesarano ldquoFinite sums andgeneralized forms of Bernoulli polynomialsrdquo Rendiconti diMatematica e delle sue Applicazioni vol 19 no 3 pp 385ndash3911999

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article General-Appell Polynomials within the ...downloads.hindawi.com/journals/ijanal/2013/328032.pdf · In order to introduce the -variable general-Appell polyno-mials

International Journal of Analysis 3

Table1Con

tinued

SNo

119892(119905

)119860

(119905)

Generatingfunctio

nsPo

lyno

mials

(VIII)

119892(119905

)=

(119905

120582119890119905

minus1

)minus120572

119860(119905

)=

(119905

120582119890119905

minus1

)120572

(119905

120582119890119905

minus1

)120572

119890119909119905

=infin sum119899=0

B(120572)

119899(119909

120582)

119905119899 119899

TheA

posto

l-Berno

ullipo

lyno

mialsof

order120572

[7]

(IX)

119892(119905

)=

120582119890119905

minus1

119905119860

(119905)

=119905

120582119890119905

minus1

119905

120582119890119905

minus1

119890119909119905

=infin sum119899=0

B119899

(119909120582

)119905119899 119899

TheA

posto

l-Berno

ullipo

lyno

mials[78]

(X)

119892(119905

)=

(2

120582119890119905

+1

)minus120572

119860(119905

)=

(2

120582119890119905

+1

)120572

(2

120582119890119905

+1

)120572

119890119909119905

=infin sum119899=0

E(120572)

119899(119909

120582)

119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

1120572

=1

TheA

posto

l-Euler

polyno

mialsof

order120572

[79]

(XI)

119892(119905

)=

120582119890119905

+1

2119860

(119905)

=2

120582119890119905

+1

2

120582119890119905

+1

119890119909119905

=infin sum119899=0

E119899

(119909120582

)119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

TheA

posto

l-Euler

polyno

mials[7ndash9

]

(XII)

119892(119905

)=

119890minus(120585∘+1205851119905+12058521199052+sdotsdotsdot+120585119903+1119905119903+1)

119860

(119905)

=119890(120585∘+1205851119905+12058521199052+sdotsdotsdot+120585119903+1119905119903+1)

120585 119903+1

=0

119890(120585∘+1205851119905+12058521199052+sdotsdotsdot+120585119903+1119905119903+1)

119890119909119905

=infin sum119899=0

119860119899

(119909)

119905119899 119899

Theg

eneralized

Gou

ld-H

opperp

olyn

omials[10]

(for

119903=

1the

Hermite

polyno

mials

119867119899(119909

)[11]andfor

119903=

2classical2-orthogon

alpo

lyno

mials)

(XIII)

119892(119905

)=

(1minus

119905 )119898+1

119860(119905

)=

1

(1minus

119905)119898+1

1

(1minus

119905)119898+1119890119909119905

=infin sum119899=0

119866(119898)

119899(119909

)119905119899

TheM

iller-Lee

polyno

mials[1112](for119898

=0the

trun

catedexpo

nentialp

olyn

omials

119890 119899(119909

)[11]andfor

119898=

120573minus

1the

mod

ified

Laguerre

polyno

mials

119891(120573)

119899(119909

)

[13])

(XIV

)119892

(119905)

=(119890119905

+1)

2119905

119860(119905

)=

2119905

(119890119905+

1)

2119905

(119890119905+

1)119890119909119905

=infin sum119899=0

119866119899

(119909)

119905119899 119899

TheG

enocchip

olyn

omials[14

]

4 International Journal of Analysis

The operators and also satisfy the commutationrelation

[ ] = minus = 1 (8)

and thus display the Weyl group structure If the consideredpolynomial set 119901

119899(119909)119899isinN is quasimonomial its properties

can easily be derived from those of the and operatorsIn fact

(i) Combining the recurrences (6) and (7) we have

119901119899

(119909) = 119899119901119899

(119909) (9)

which can be interpreted as the differential equationsatisfied by 119901

119899(119909) if and have a differential

realization(ii) Assuming here and in the sequel 119901

0(119909) = 1 then

119901119899(119909) can be explicitly constructed as

119901119899

(119909) = 119899

1199010

(119909) = 119899

1 (10)

which yields the series definition for 119901119899(119909)

(iii) Identity (10) implies that the exponential generatingfunction of 119901

119899(119909) can be given in the form

exp (119905) 1 =

infin

sum119899=0

119901119899

(119909)119905119899

119899(|119905| lt infin) (11)

We note that the Appell polynomials 119860119899(119909) are quasi-

monomial with respect to the following multiplicative andderivative operators

119860

= 119909 +1198601015840

(119863119909)

119860 (119863119909)

(12a)

or equivalently

119860

= 119909 minus1198921015840

(119863119909)

119892 (119863x) (12b)

119860

= 119863119909 (13)

respectivelyThe special polynomials of two variables are useful from

the point of view of applications in physics Also thesepolynomials allow the derivation of a number of useful iden-tities in a fairly straightforward way and help in introducingnew families of special polynomials For example Bretti etal [17] introduced general classes of two variables Appellpolynomials by using properties of an iterated isomorphismrelated to the Laguerre-type exponentials

We consider the 2-variable general polynomial (2VgP)family 119901

119899(119909 119910) defined by the generating function

119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899(1199010

(119909 119910) = 1) (14)

where 120601(119910 119905) has (at least the formal) series expansion

120601 (119910 119905) =

infin

sum119899=0

120601119899

(119910)119905119899

119899(1206010

(119910) = 0) (15)

We recall that the 2-variable Hermite Kampe de Ferietpolynomials (2VHKdFP) 119867

119899(119909 119910) [18] the Gould-Hopper

polynomials (GHP) 119867(119898)

119899(119909 119910) [19] and the Hermite-Appell

polynomials (HAP)119867

119860119899(119909 119910) [20] are defined by the

generating functions

119890119909119905+119910119905

2

=

infin

sum119899=0

119867119899

(119909 119910)119905119899

119899 (16)

119890119909119905+119910119905

119898

=

infin

sum119899=0

119867(119898)

119899(119909 119910)

119905119899

119899 (17)

119860 (119905) 119890119909119905+119910119905

2

=

infin

sum119899=0

119867119860119899

(119909 119910)119905119899

119899 (18)

respectively Thus in view of generating functions (14) (16)(17) and (18) we note that the 2VHKdFP 119867

119899(119909 119910) the GHP

119867(119898)

119899(119909 119910) and the HAP

119867119860119899(119909 119910) belong to 2VgP family

In this paper operational methods are used to introducecertain new families of special polynomials related to theAppell polynomials In Section 2 some results for the 2-variable general polynomials (2VgP) 119901

119899(119909 119910) are derived

Further the 2-variable general-Appell polynomials (2VgAP)119901119860119899(119909 119910) are introduced and framed within the context

of monomiality principle In Section 3 the Gould-Hopper-Appell polynomials (GHAP)

119867119860(119898)

119899(119909 119910) are considered

and their properties are established Some members belong-ing to theGould-Hopper-Appell polynomial family are given

2 2-Variable General-Appell Polynomials

In order to introduce the 2-variable general-Appell polyno-mials (2VgAP) we need to establish certain results for the2VgP 119901

119899(119909 119910) Therefore first we prove the following results

for the 2VgP 119901119899(119909 119910)

Lemma 1 The 2VgP 119901119899(119909 119910) defined by generating function

(14) where 120601(119910 119905) is given by (15) are quasimonomial underthe action of the following multiplicative and derivative opera-tors

119901

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

(1206011015840

(119909 119905) =120597

120597119905120601 (119909 119905)) (19)

119901

= 119863119909 (20)

respectively

Proof Differentiating (14) partially with respect to 119905 we have

(119909 +1206011015840

(119910 119905)

120601 (119910 119905)) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899 (21)

International Journal of Analysis 5

Table2Listof

someG

ould-H

opper-A

ppellp

olyn

omials119867

119860(119898)

119899(119909

119910)

SNo

119892(119905

)119860

(119905)

119872119867(119898)119860119875119867(119898)119860

Generatingfunctio

nsPo

lyno

mials

(I)

(119890119905

minus1)

119905

119905

(119890119905minus

1)

119909+

119898119910

119863119898minus1

119909+

((1

minus119863119909)

119890119863119909

minus1)

119863119909

(119890119863119909

minus1)

119863119909

119905

(119890119905minus

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-Be

rnou

llipo

lyno

mials

(II)

(119890119905

+1)

2

2

(119890119905+

1)

119909+

119898119910

119863119898minus1

119909minus

119890119863119909

(119890119863119909

+1)119863119909

2

(119890119905+

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119864(119898)

119899(119909

119910)

119905119899 119899

TheG

ould

Hop

per-Eu

ler

polyno

mials

(III)

(119890119905

minus1)120572

119905120572

119905120572

(119890119905minus

1)120572

119909+

119898119910

119863119898minus1

119909+

120572((1

minus119863119909)

119890119863119909

minus1)

119863119909

(119890119863119909

minus1)

119863119909

119905120572

(119890119905minus

1)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898120572)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-generalized

Bernou

llipo

lyno

mials

(IV)

(119890119905

+1)120572

2120572

2120572

(119890119905+

1)120572

119909+

119898119910

119863119898minus1

119909minus

120572119890119863119909

(119890119863119909

+1)119863119909

2120572

(119890119905+

1)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867119864(119898120572)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-generalized

Eulerp

olyn

omials

(V)

119904 prod ℎ=1

(119890120572ℎ119905

minus1)

120572ℎ119905119904

119909

+119898

119910119863119898minus1

119909+

119898119863minus1

119909minus119898 sum 119903=1

120572119903119890120572119903119863119909

(119890120572119903119863119909

minus1)119863119909

1205721

sdotsdotsdot120572119904119905119904

(1198901205721119905minus

1)sdotsdot

sdot (119890120572119904119905minus

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898119904)

119899(119909

119910|

1205721

120572119904)119905119899 119899

TheG

ould-H

opper-generalized

Bernou

llipo

lyno

mialsof

order119904

119904 prod ℎ=1

120572ℎ

(119890120572ℎ119905minus

1)119905119904

(VI)

119904 prod ℎ=1

(119890120572ℎ119905

+1)

2119904

119909

+119898

119910119863119898minus1

119909minus119898 sum 119903=1

120572119903119890120572119903119863119909119863119909

2119904

(1198901205721119905+

1)sdotsdot

sdot (119890120572119904119905+

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119864(119898119904)

119899(119909

119910|

1205721

120572119904)119905119899 119899

TheG

ould-H

opper-generalized

Eulerp

olyn

omialsof

order119904

119904 prod ℎ=1

2119904

(119890120572ℎ119905+

1)

(VII)

119890119905minus

sum119904minus1

ℎ=0

(119905ℎ

ℎ)

119905119904

119909+

119898119910

119863119898minus1

119909+

119898119863minus1

119909minus

1minus

119863119909

119898minus1

(119898

minus1)

(119890119863119909

minussum119898minus1

ℎ=0

119905ℎℎ

)119863119909

119905119904

119890119905minus

sum119904minus1

ℎ=0

(119905ℎℎ

)119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898[119904minus1])

119899(119909

119910)

119905119899 119899

TheG

ould-H

oppern

ewgeneralized

Bernou

llipo

lyno

mials

119905119904

119890119905minus

sum119904minus1

ℎ=0

(119905ℎℎ

)

6 International Journal of Analysis

Table2Con

tinued

SNo

119892(119905

)119860

(119905)

119872119867(119898)119860119875119867(119898)119860

Generatingfunctio

nsPo

lyno

mials

(VIII)

(119905

120582119890119905

minus1

)minus120572

(119905

120582119890119905

minus1

)120572

119909+

119898119910

119863119898minus1

119909+

120582119890119863119909

(120572minus

119863119909)

minus120572

119863119909

(120582119890119863119909

minus1)

119863119909

(119905

120582119890119905

minus1

)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867B(119898120572)

119899(119909

119910120582

)119905119899 119899

TheG

ould-H

opper-A

posto

l-Berno

ulli

polyno

mialsof

order120572

(IX)

120582119890119905

minus1

119905

119905

120582119890119905

minus1

119909+

119898119910

119863119898minus1

119909+

120582119890119863119909

(1minus

119863119909)

minus1

119863119909

(120582119890119863119909

minus1)

119863119909

119905

120582119890119905

minus1

119890119909119905+119910119905119898

=infin sum119899=0

119867B(119898)

119899(119909

119910120582

)119905119899 119899

TheG

ould-H

opper-A

posto

l-Berno

ulli

polyno

mials

(X)

(2

120582119890119905

+1

)minus120572

(2

120582119890119905

+1

)120572

119909+

119898119910

119863119898minus1

119909minus

120582120572

119890119863119909

(120582119890119863119909

+1)119863119909

(2

120582119890119905

+1

)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867E(119898120572)

119899(119909

119910120582

)119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

1120572

=1

TheG

ould-H

opper-A

posto

l-Euler

polyno

mialsof

order120572

(XI)

120582119890119905

+1

2

2

120582119890119905

+1

119909+

119898119910

119863119898minus1

119909minus

120582119890119863119909

(120582119890119863119909

+1)119863119909

2

120582119890119905

+1

119890119909119905+119910119905119898

=infin sum119899=0

119867E(119898)

119899(119909

119910120582

)119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

TheG

ould-H

opper-A

posto

l-Euler

polyno

mials

(XII)

119890minus(sum119903+1

ℎ=0120585ℎ119905ℎ)

119890(sum119903+1

ℎ=0120585ℎ119905ℎ)

120585 119903+1

=0

119909+

119898119910

119863119898minus1

119909+119903+1

sumℎ=1

ℎ120585 ℎ

119863ℎminus1

119909119863119909

119890(sum119903+1

ℎ=0120585ℎ119905ℎ+119909119905+119910119905119898)

=infin sum119899=0

119867119860(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-generalized

Gou

ld-H

opperp

olyn

omials(fo

r119903=

1

theG

ould-H

opper-Hermite

polyno

mials119867

119867(119898)

119899(119909

119910)andfor

119903=

2the

Gou

ld-H

opperc

lassical

2-orthogon

alpo

lyno

mials)

(XIII)

(1minus

119905 )119904+1

1

(1minus

119905 )119904+1

119909+

119898119910

119863119898minus1

119909minus

119898+

1

1minus

119863119909

119863119909

1

(1minus

119905 )119904+1119890119909119905+119910119905119898

=infin sum119899=0

119867119866(119898119904)

119899(119909

119910)

119905119899

TheG

ould-H

opper-Miller-Lee

polyno

mials(fo

r119904=

0the

Gou

ld-H

opper-trun

catedexpo

nential

polyno

mials119867

119890119898 119899(119909

119910)andfor

119904=

120573minus

1Gou

ld-H

opper-mod

ified

Laguerre

polyno

mials119867

119891(119898120573)

119899(119909

119910))

(XIV

)(119890119905

+1)

2119905

2119905

(119890119905+

1)

119909+

119898119910

119863119898minus1

119909+

119890119863119909

(1minus

119863119909)

+1

(119890119863119909

+1)

119863119909

2119905

(119890119905+

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119866(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-Genocchi

polyno

mials

International Journal of Analysis 7

If 120601(119910 119905) is an invertible series and 1206011015840

(119910 119905)120601(119910 119905) hasTaylorrsquos series expansion in powers of 119905 then in view of theidentity

119863119909

119890119909119905

120601 (119910 119905) = 119905 (119890119909119905

120601 (119910 119905)) (22)

we can write

1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119890119909119905

120601 (119910 119905) =1206011015840

(119910 119905)

120601 (119910 119905)(119890119909119905

120601 (119910 119905)) (23)

Now using (23) in the lhs of (21) we find

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899 (24)

Making use of generating function (14) in the lhs of theabove equation we have

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

)

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899

(25)

which on equating the coefficients of like powers of 119905 in bothsides gives

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

) 119901119899

(119909 119910) = 119901119899+1

(119909 119910) (26)

Thus in view of monomiality principle equation (6) theabove equation yields assertion (19) of Lemma 1 Again usingidentity (22) in (14) we have

119863119909

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 =

infin

sum119899=1

119901119899minus1

(119909 119910)119905119899

(119899 minus 1) (27)

Equating the coefficients of like powers of 119905 in both sidesof (27) we find

119863119909

119901119899

(119909 119910) = 119899119901119899minus1

(119909 119910) (119899 ge 1) (28)

which in view of monomiality principle equation (7) yieldsassertion (20) of Lemma 1

Remark 2 The operators given by (19) and (20) satisfycommutation relation (8) Also using expressions (19) and(20) in (9) we get the following differential equation satisfiedby 2VgP 119901

119899(119909 119910)

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

minus 119899) 119901119899

(119909 119910) = 0 (29)

Remark 3 Since 1199010(119909 119910) = 1 therefore in view of monomi-

ality principle equation (10) we have

119901119899

(119909 119910) = (119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

)

119899

1 (1199010

(119909 119910) = 1) (30)

Also in view of (11) (14) and (19) we have

exp (119901119905) 1 = 119890

119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 (31)

Now we proceed to introduce the 2-variable general-Appell polynomials (2VgAP) In order to derive the gener-ating functions for the 2VgAP we take the 2VgP 119901

119899(119909 119910) as

the base in the Appell polynomials generating function (1)Thus replacing 119909 by the multiplicative operator

119901of the

2VgP 119901119899(119909 119910) in the lhs of (1) and denoting the resultant

2VgAP by119901119860119899(119909 119910) we have

119860 (119905) 119890(119901119905)

=

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (32)

Now using (31) in the exponential term in the lhs of(32) we get the generating function for

119901119860119899(119909 119910) as

119860 (119905) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (33)

In view of (5) generating function (33) can be expressedequivalently as

1

119892 (119905)119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (34)

Now we frame the 2VgAP119901119860119899(119909 119910) within the context

of monomiality principle formalism We prove the followingresults

Theorem 4 The 2VgAP119901119860119899(119909 119910) are quasimonomial with

respect to the following multiplicative and derivative operators

119901119860

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

(35a)

or equivalently

119901119860

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

minus1198921015840

(119863119909)

119892 (119863119909)

(35b)

119901119860

= 119863119909 (36)

respectively

Proof Differentiating (33) partially with respect to 119905 we find

(119909 +1206011015840

(119910 119905)

120601 (119910 119905)+

1198601015840

(119905)

119860 (119905)) 119860 (119905) 119890

119909119905

120601 (119910 119905)

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(37)

Since 119860(119905) and 120601(119910 119905) are invertible series of 119905 therefore1198601015840

(119905)119860(119905) and 1206011015840

(119910 119905)120601(119910 119905) possess power series expan-sions of 119905 Thus in view of identity (22) we have

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119860 (119905) 119890119909119905

120601 (119910 119905)

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(38)

8 International Journal of Analysis

which on using generating function (33) becomes

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

)

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(39)

or equivalentlyinfin

sum119899=0

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119901119860119899

(119909 119910)119905119899

119899

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(40)

Now equating the coefficients of like powers of 119905 in theabove equation we find

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119901119860119899

(119909 119910) =119901119860119899+1

(119909 119910)

(41)

which in view of (6) yields assertion (35a) of Theorem 4Also in view of relation (5) assertion (35a) can be expressedequivalently as (35b)

Again in view of identity (22) we have

119863119909

119860 (119905) 119890119909119905

120601 (119910 119905) = 119905119860 (119905) 119890119909119905

120601 (119910 119905) (42)

which on using generating function (33) becomes

119863119909

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 =

infin

sum119899=1

119901119860119899minus1

(119909 119910)119905119899

(119899 minus 1) (43)

Equating the coefficients of like powers of 119905 in the aboveequation we find

119863119909

119901119860119899

(119909 119910) = 119899119901119860119899minus1

(119909 119910) (119899 ge 1) (44)

which in view of (7) yields assertion (36) ofTheorem 4

Theorem 5 The 2VgAP119901119860119899

(119909 119910) satisfy the following differ-ential equations

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

+1198601015840

(119863119909)

119860 (119863119909)

119863119909

minus 119899)119901119860119899

(119909 119910) = 0

(45a)

or equivalently

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

minus1198921015840

(119863119909)

119892 (119863119909)

119863119909

minus 119899)119901119860119899

(119909 119910) = 0

(45b)

Proof Using (35a) and (36) in (9) we get assertion (45a) Fur-ther using (35b) and (36) in (9) we get assertion (45b)

Note 1 With the help of the results derived above and bytaking 119860(119905) (or 119892(119905)) of the Appell polynomials listed inTable 1 we can derive the generating function and otherresults for the members belonging to 2VgAP family

3 Examples

We consider examples of certain members belonging to the2VgAP family

Taking 120601(119910 119905) = 119890119910119905119898

(that is when the 2VgP 119901119899(119909 119910)

reduces to the GHP 119867(119898)

119899(119909 119910)) in generating function

(33) we find that the Gould-Hopper-Appell polynomials(GHAP)

119867119860(119898)

119899(119909 119910) are defined by the following generating

function

119860 (119905) 119890(119909119905+119910119905

119898)

=

infin

sum119899=0

119867119860(119898)

119899(119909 119910)

119905119899

119899(46)

or equivalently

1

119892 (119905)119890(119909119905+119910119905

119898)

=

infin

sum119899=0

119867119860(119898)

119899(119909 119910)

119905119899

119899 (47)

Using (1) in (46) (or (3) in (47)) we get the followingseries definition for

119867119860(119898)

119899(119909 119910) in terms of the Appell

polynomials 119860119899(119909)

119867119860(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119860119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (48)

In view of (35a) (35b) and (36) we note that the GHAP119867

119860(119898)

119899(119909 119910) are quasimonomial under the action of the

following multiplicative and derivative operators

119867(119898)119860

= 119909 + 119898119910119863119898minus1

119909+

1198601015840

(119863119909)

119860 (119863119909)

(49a)

or equivalently

119867(119898)119860

= 119909 + 119898119910119863119898minus1

119909minus

1198921015840

(119863119909)

119892 (119863119909)

(49b)

119867(119898)119860

= 119863119909 (50)

respectively Also in view of (45a) and (45b) we find thatthe GHAP

119867119860(119898)

119899(119909 119910) satisfy the following differential

equation

(119909119863119909

+ 119898119910119863119898

119909+

1198601015840

(119863119909)

119860 (119863119909)

119863119909

minus 119899)119867

119860(119898)

119899(119909 119910) = 0

(51a)

or equivalently

(119909119863119909

+ 119898119910119863119898

119909minus

1198921015840

(119863119909)

119892 (119863119909)

119863119909

minus 119899)119867

119860(119898)

119899(119909 119910) = 0

(51b)

Remark 6 In view of (16) and (17) we note that for 119898 =

2 the GHAP119867

119860(119898)

119899(119909 119910) reduce to the Hermite-Appell

polynomials (HAP)119867

119860119899(119909 119910) Therefore taking 119898 = 2 in

(46) (47) (48) (49a) (49b) (50) (51a) and (51b) we get thecorresponding results for the HAP

119867119860119899(119909 119910)

International Journal of Analysis 9

Remark 7 In view of (16) we note that the 2VHKdFP119867119899(119909 119910) are related to the classical Hermite polynomials

119867119899(119909) [11] or 119867119890

119899(119909) as

119867119899

(2119909 minus1) = 119867119899

(119909)

119867119899

(119909 minus1

2) = 119867119890

119899(119909)

(52)

Therefore taking 119910 = minus1 and replacing 119909 by 2119909 (or taking119910 = minus12) in (46)ndash(51b) we get the corresponding resultsfor the classical Hermite-Appell polynomials

119867119860119899(119909) (or

119867119890119860119899(119909))

There are several members belonging to 2VgP familyThus the results for the corresponding 2VgAP can be obtainedby taking other examples We present the list of somemembers belonging to the GHAP family in Table 2

Note 2 Since for 119898 = 2 the GHAP119867

119860119898

119899(119909 119910) reduce to the

HAP119867

119860119899(119909 119910) therefore for 119898 = 2 Table 2 gives the list of

the corresponding HAP119867

119860119899(119909 119910)

The results established in this paper are general andinclude new families of special polynomials consequentlyintroducing many new special polynomials

Appendix

New classes of Bernoulli numbers and polynomials areintroduced which are used to evaluate partial sums involv-ing other special polynomials see for example [21 22]Here we consider the Gould-Hopper-Bernoulli polyno-mials (GHBP) Gould-Hopper-Euler polynomials (GHEP)Hermite-Bernoulli polynomials (HBP) Hermite-Euler poly-nomials (HEP) classical Hermite-Bernoulli polynomials(cHBP) and classical Hermite-Euler polynomials (cHEP)We give the surface plots of these polynomials for suitablevalues of the parameters and indices Also we give the graphsof the corresponding single-variable polynomials

The GHBP119867

119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) and HEP

119867119864119899(119909 119910) are defined by the following

series

119867119861(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119861119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A1)

119867119864(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119864119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A2)

119867119861119899

(119909 119910) = 119899

[1198992]

sum119903=0

119861119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A3)

119867119864119899

(119909 119910) = 119899

[1198992]

sum119903=0

119864119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A4)

respectively Taking 119910 = minus12 in (A3) and (A4) we get theseries definitions for the cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909)

as

119867119861119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119861119899minus2119903

(119909)

(119899 minus 2119903)119903 (A5)

119867119864119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119864119899minus2119903

(119909)

(119899 minus 2119903)119903 (A6)

respectivelyTo draw the surface plots of these polynomials we use

the values of the Bernoulli polynomials 119861119899(119909) and the Euler

polynomials 119864119899(119909) for 119899 = 0 1 2 3 4 and 5 We give the list

of the first fewBernoulli and the Euler polynomials in Table 3Now we consider the GHBP

119867119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) HEP

119867119864119899(119909 119910) cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909) for 119898 = 3 and 119899 = 5 so that

we have

119867119861(3)

5(119909 119910) = 119861

5(119909) + 60119861

2(119909) 119910 (A7)

119867119864(3)

5(119909 119910) = 119864

5(119909) + 60119864

2(119909) 119910 (A8)

1198671198615

(119909 119910) = 1198615

(119909) + 201198613

(119909) 119910 + 601198611

(119909) 1199102

(A9)

1198671198645

(119909 119910) = 1198645

(119909) + 201198643

(119909) 119910 + 601198641

(119909) 1199102

(A10)

1198671198901198615

(119909) = 1198615

(119909) minus 101198613

(119909) + 151198611

(119909) (A11)

1198671198901198645

(119909) = 1198645

(119909) minus 101198643

(119909) + 151198641

(119909) (A12)

respectively Using the particular values of 119861119899(119909) and 119864

119899(119909)

given in Table 3 we find

119867119861(3)

5(119909 119910)=119909

5

minus5

21199094

+5

31199093

+601199092

119910minus60119909119910minus1

6119909+

1

10119910

(A13)

119867119864(3)

5(119909 119910)=119909

5

minus5

21199094

+601199092

119910+5

31199092

minus60119909119910minus1

2+

1

10119910

(A14)

119867

1198615

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 +5

31199093

+ 601199091199102

minus 601199092

119910 + 10119909119910 minus 301199102

minus1

6119909

(A15)

1198671198645

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 + 601199091199102

minus 301199092

119910 +5

31199092

minus 301199102

+10

3119910 minus

1

2

(A16)

1198671198901198615

(119909) = 1199095

minus5

21199094

minus25

31199093

+ 151199092

+59

6119909 minus

15

2 (A17)

1198671198901198645

(119909) = 1199095

minus5

21199094

minus 101199093

+50

31199092

+ 15119909 minus29

3 (A18)

respectively

10 International Journal of Analysis

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(a)

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(b)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(c)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(d)

minus5 0 5minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(e)minus5 0 5

minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(f)

Figure 1

Table 3 List of the first few Bernoulli and the Euler polynomials

119899 0 1 2 3 4 5

119861119899(119909) 1 119909 minus

1

21199092

minus 119909 +1

61199093

minus3

21199092

+119909

21199094

minus 21199093

+ 1199092

minus1

301199095

minus5

21199094

+5

31199093

minus119909

6

119864119899(119909) 1 119909 minus

1

21199092

minus 119909 1199093

minus3

21199092

+1

61199094

minus 21199093

+2

3119909 119909

5

minus5

21199094

+5

31199092

minus1

2

International Journal of Analysis 11

In view of equations (A13)ndash(A18) we get Figure 1

Acknowledgments

The authors are thankful to the anonymous referee for usefulsuggestions towards the improvement of the paperThis workhas been done under the Senior Research Fellowship (OfficeMemo no AcadD-1562MR) sanctioned to the secondauthor by the University Grants Commission Governmentof India New Delhi

References

[1] P Appell ldquoSur une classe de polynomesrdquo Annales Scientifiquesde lrsquoEcole Normale Superieure vol 9 pp 119ndash144 1880

[2] S Roman The Umbral Calculus vol 111 of Pure and AppliedMathematics Academic Press New York NY USA 1984

[3] E D Rainville Special Functions Macmillan New York NYUSA 1960 reprinted by Chelsea Bronx NY USA 1971

[4] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol III McGraw-Hill NewYork NY USA 1955

[5] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol II McGraw-Hill NewYork NY USA 1953

[6] G Bretti P Natalini and P E Ricci ldquoGeneralizations ofthe Bernoulli and Appell polynomialsrdquo Abstract and AppliedAnalysis vol 2004 no 7 pp 613ndash623 2004

[7] Q-M Luo and H M Srivastava ldquoSome generalizations of theApostol-Bernoulli and Apostol-Euler polynomialsrdquo Journal ofMathematical Analysis and Applications vol 308 no 1 pp 290ndash302 2005

[8] T M Apostol ldquoOn the Lerch zeta functionrdquo Pacific Journal ofMathematics vol 1 pp 161ndash167 1951

[9] Q-M Luo ldquoApostol-Euler polynomials of higher order andGaussian hypergeometric functionsrdquo Taiwanese Journal ofMathematics vol 10 no 4 pp 917ndash925 2006

[10] K Douak ldquoThe relation of the 119889-orthogonal polynomials tothe Appell polynomialsrdquo Journal of Computational and AppliedMathematics vol 70 no 2 pp 279ndash295 1996

[11] L C Andrews Special Functions for Engineers and AppliedMathematicians Macmillan New York NY USA 1985

[12] G Dattoli S Lorenzutta and D Sacchetti ldquoIntegral represen-tations of new families of polynomialsrdquo Italian Journal of Pureand Applied Mathematics no 15 pp 19ndash28 2004

[13] W Magnus F Oberhettinger and R P Soni Formulas andTheorems for the Special Functions of Mathematical Physicsvol 52 of Die Grundlehren der mathematischen WissenschaftenSpringer New York NY USA 3rd edition 1966

[14] G Dattoli M Migliorati and H M Srivastava ldquoSheffer poly-nomials monomiality principle algebraic methods and thetheory of classical polynomialsrdquo Mathematical and ComputerModelling vol 45 no 9-10 pp 1033ndash1041 2007

[15] J F Steffensen ldquoThe poweroid an extension of the mathemat-ical notion of powerrdquo Acta Mathematica vol 73 pp 333ndash3661941

[16] G Dattoli ldquoHermite-Bessel and Laguerre-Bessel functions aby-product of the monomiality principlerdquo in Advanced SpecialFunctions and Applications (Melfi 1999) vol 1 of ProcMelfi SchAdv Top Math Phys pp 147ndash164 Aracne Rome Italy 2000

[17] G Bretti C Cesarano and P E Ricci ldquoLaguerre-type expo-nentials and generalized Appell polynomialsrdquo Computers ampMathematics with Applications vol 48 no 5-6 pp 833ndash8392004

[18] P Appell and J Kampe de Feriet Fonctions Hypergeometriqueset Hyperspheriques Polynomes drsquo Hermite Gauthier-VillarsParis France 1926

[19] H W Gould and A T Hopper ldquoOperational formulas con-nected with two generalizations of Hermite polynomialsrdquoDukeMathematical Journal vol 29 pp 51ndash63 1962

[20] S Khan G Yasmin R Khan and N A M Hassan ldquoHermite-based Appell polynomials properties and applicationsrdquo Journalof Mathematical Analysis and Applications vol 351 no 2 pp756ndash764 2009

[21] G Dattoli C Cesarano and S Lorenzutta ldquoBernoulli numbersand polynomials from amore general point of viewrdquo RendicontidiMatematica e delle sueApplicazioni vol 22 pp 193ndash202 2002

[22] G Dattoli S Lorenzutta and C Cesarano ldquoFinite sums andgeneralized forms of Bernoulli polynomialsrdquo Rendiconti diMatematica e delle sue Applicazioni vol 19 no 3 pp 385ndash3911999

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article General-Appell Polynomials within the ...downloads.hindawi.com/journals/ijanal/2013/328032.pdf · In order to introduce the -variable general-Appell polyno-mials

4 International Journal of Analysis

The operators and also satisfy the commutationrelation

[ ] = minus = 1 (8)

and thus display the Weyl group structure If the consideredpolynomial set 119901

119899(119909)119899isinN is quasimonomial its properties

can easily be derived from those of the and operatorsIn fact

(i) Combining the recurrences (6) and (7) we have

119901119899

(119909) = 119899119901119899

(119909) (9)

which can be interpreted as the differential equationsatisfied by 119901

119899(119909) if and have a differential

realization(ii) Assuming here and in the sequel 119901

0(119909) = 1 then

119901119899(119909) can be explicitly constructed as

119901119899

(119909) = 119899

1199010

(119909) = 119899

1 (10)

which yields the series definition for 119901119899(119909)

(iii) Identity (10) implies that the exponential generatingfunction of 119901

119899(119909) can be given in the form

exp (119905) 1 =

infin

sum119899=0

119901119899

(119909)119905119899

119899(|119905| lt infin) (11)

We note that the Appell polynomials 119860119899(119909) are quasi-

monomial with respect to the following multiplicative andderivative operators

119860

= 119909 +1198601015840

(119863119909)

119860 (119863119909)

(12a)

or equivalently

119860

= 119909 minus1198921015840

(119863119909)

119892 (119863x) (12b)

119860

= 119863119909 (13)

respectivelyThe special polynomials of two variables are useful from

the point of view of applications in physics Also thesepolynomials allow the derivation of a number of useful iden-tities in a fairly straightforward way and help in introducingnew families of special polynomials For example Bretti etal [17] introduced general classes of two variables Appellpolynomials by using properties of an iterated isomorphismrelated to the Laguerre-type exponentials

We consider the 2-variable general polynomial (2VgP)family 119901

119899(119909 119910) defined by the generating function

119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899(1199010

(119909 119910) = 1) (14)

where 120601(119910 119905) has (at least the formal) series expansion

120601 (119910 119905) =

infin

sum119899=0

120601119899

(119910)119905119899

119899(1206010

(119910) = 0) (15)

We recall that the 2-variable Hermite Kampe de Ferietpolynomials (2VHKdFP) 119867

119899(119909 119910) [18] the Gould-Hopper

polynomials (GHP) 119867(119898)

119899(119909 119910) [19] and the Hermite-Appell

polynomials (HAP)119867

119860119899(119909 119910) [20] are defined by the

generating functions

119890119909119905+119910119905

2

=

infin

sum119899=0

119867119899

(119909 119910)119905119899

119899 (16)

119890119909119905+119910119905

119898

=

infin

sum119899=0

119867(119898)

119899(119909 119910)

119905119899

119899 (17)

119860 (119905) 119890119909119905+119910119905

2

=

infin

sum119899=0

119867119860119899

(119909 119910)119905119899

119899 (18)

respectively Thus in view of generating functions (14) (16)(17) and (18) we note that the 2VHKdFP 119867

119899(119909 119910) the GHP

119867(119898)

119899(119909 119910) and the HAP

119867119860119899(119909 119910) belong to 2VgP family

In this paper operational methods are used to introducecertain new families of special polynomials related to theAppell polynomials In Section 2 some results for the 2-variable general polynomials (2VgP) 119901

119899(119909 119910) are derived

Further the 2-variable general-Appell polynomials (2VgAP)119901119860119899(119909 119910) are introduced and framed within the context

of monomiality principle In Section 3 the Gould-Hopper-Appell polynomials (GHAP)

119867119860(119898)

119899(119909 119910) are considered

and their properties are established Some members belong-ing to theGould-Hopper-Appell polynomial family are given

2 2-Variable General-Appell Polynomials

In order to introduce the 2-variable general-Appell polyno-mials (2VgAP) we need to establish certain results for the2VgP 119901

119899(119909 119910) Therefore first we prove the following results

for the 2VgP 119901119899(119909 119910)

Lemma 1 The 2VgP 119901119899(119909 119910) defined by generating function

(14) where 120601(119910 119905) is given by (15) are quasimonomial underthe action of the following multiplicative and derivative opera-tors

119901

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

(1206011015840

(119909 119905) =120597

120597119905120601 (119909 119905)) (19)

119901

= 119863119909 (20)

respectively

Proof Differentiating (14) partially with respect to 119905 we have

(119909 +1206011015840

(119910 119905)

120601 (119910 119905)) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899 (21)

International Journal of Analysis 5

Table2Listof

someG

ould-H

opper-A

ppellp

olyn

omials119867

119860(119898)

119899(119909

119910)

SNo

119892(119905

)119860

(119905)

119872119867(119898)119860119875119867(119898)119860

Generatingfunctio

nsPo

lyno

mials

(I)

(119890119905

minus1)

119905

119905

(119890119905minus

1)

119909+

119898119910

119863119898minus1

119909+

((1

minus119863119909)

119890119863119909

minus1)

119863119909

(119890119863119909

minus1)

119863119909

119905

(119890119905minus

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-Be

rnou

llipo

lyno

mials

(II)

(119890119905

+1)

2

2

(119890119905+

1)

119909+

119898119910

119863119898minus1

119909minus

119890119863119909

(119890119863119909

+1)119863119909

2

(119890119905+

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119864(119898)

119899(119909

119910)

119905119899 119899

TheG

ould

Hop

per-Eu

ler

polyno

mials

(III)

(119890119905

minus1)120572

119905120572

119905120572

(119890119905minus

1)120572

119909+

119898119910

119863119898minus1

119909+

120572((1

minus119863119909)

119890119863119909

minus1)

119863119909

(119890119863119909

minus1)

119863119909

119905120572

(119890119905minus

1)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898120572)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-generalized

Bernou

llipo

lyno

mials

(IV)

(119890119905

+1)120572

2120572

2120572

(119890119905+

1)120572

119909+

119898119910

119863119898minus1

119909minus

120572119890119863119909

(119890119863119909

+1)119863119909

2120572

(119890119905+

1)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867119864(119898120572)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-generalized

Eulerp

olyn

omials

(V)

119904 prod ℎ=1

(119890120572ℎ119905

minus1)

120572ℎ119905119904

119909

+119898

119910119863119898minus1

119909+

119898119863minus1

119909minus119898 sum 119903=1

120572119903119890120572119903119863119909

(119890120572119903119863119909

minus1)119863119909

1205721

sdotsdotsdot120572119904119905119904

(1198901205721119905minus

1)sdotsdot

sdot (119890120572119904119905minus

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898119904)

119899(119909

119910|

1205721

120572119904)119905119899 119899

TheG

ould-H

opper-generalized

Bernou

llipo

lyno

mialsof

order119904

119904 prod ℎ=1

120572ℎ

(119890120572ℎ119905minus

1)119905119904

(VI)

119904 prod ℎ=1

(119890120572ℎ119905

+1)

2119904

119909

+119898

119910119863119898minus1

119909minus119898 sum 119903=1

120572119903119890120572119903119863119909119863119909

2119904

(1198901205721119905+

1)sdotsdot

sdot (119890120572119904119905+

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119864(119898119904)

119899(119909

119910|

1205721

120572119904)119905119899 119899

TheG

ould-H

opper-generalized

Eulerp

olyn

omialsof

order119904

119904 prod ℎ=1

2119904

(119890120572ℎ119905+

1)

(VII)

119890119905minus

sum119904minus1

ℎ=0

(119905ℎ

ℎ)

119905119904

119909+

119898119910

119863119898minus1

119909+

119898119863minus1

119909minus

1minus

119863119909

119898minus1

(119898

minus1)

(119890119863119909

minussum119898minus1

ℎ=0

119905ℎℎ

)119863119909

119905119904

119890119905minus

sum119904minus1

ℎ=0

(119905ℎℎ

)119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898[119904minus1])

119899(119909

119910)

119905119899 119899

TheG

ould-H

oppern

ewgeneralized

Bernou

llipo

lyno

mials

119905119904

119890119905minus

sum119904minus1

ℎ=0

(119905ℎℎ

)

6 International Journal of Analysis

Table2Con

tinued

SNo

119892(119905

)119860

(119905)

119872119867(119898)119860119875119867(119898)119860

Generatingfunctio

nsPo

lyno

mials

(VIII)

(119905

120582119890119905

minus1

)minus120572

(119905

120582119890119905

minus1

)120572

119909+

119898119910

119863119898minus1

119909+

120582119890119863119909

(120572minus

119863119909)

minus120572

119863119909

(120582119890119863119909

minus1)

119863119909

(119905

120582119890119905

minus1

)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867B(119898120572)

119899(119909

119910120582

)119905119899 119899

TheG

ould-H

opper-A

posto

l-Berno

ulli

polyno

mialsof

order120572

(IX)

120582119890119905

minus1

119905

119905

120582119890119905

minus1

119909+

119898119910

119863119898minus1

119909+

120582119890119863119909

(1minus

119863119909)

minus1

119863119909

(120582119890119863119909

minus1)

119863119909

119905

120582119890119905

minus1

119890119909119905+119910119905119898

=infin sum119899=0

119867B(119898)

119899(119909

119910120582

)119905119899 119899

TheG

ould-H

opper-A

posto

l-Berno

ulli

polyno

mials

(X)

(2

120582119890119905

+1

)minus120572

(2

120582119890119905

+1

)120572

119909+

119898119910

119863119898minus1

119909minus

120582120572

119890119863119909

(120582119890119863119909

+1)119863119909

(2

120582119890119905

+1

)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867E(119898120572)

119899(119909

119910120582

)119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

1120572

=1

TheG

ould-H

opper-A

posto

l-Euler

polyno

mialsof

order120572

(XI)

120582119890119905

+1

2

2

120582119890119905

+1

119909+

119898119910

119863119898minus1

119909minus

120582119890119863119909

(120582119890119863119909

+1)119863119909

2

120582119890119905

+1

119890119909119905+119910119905119898

=infin sum119899=0

119867E(119898)

119899(119909

119910120582

)119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

TheG

ould-H

opper-A

posto

l-Euler

polyno

mials

(XII)

119890minus(sum119903+1

ℎ=0120585ℎ119905ℎ)

119890(sum119903+1

ℎ=0120585ℎ119905ℎ)

120585 119903+1

=0

119909+

119898119910

119863119898minus1

119909+119903+1

sumℎ=1

ℎ120585 ℎ

119863ℎminus1

119909119863119909

119890(sum119903+1

ℎ=0120585ℎ119905ℎ+119909119905+119910119905119898)

=infin sum119899=0

119867119860(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-generalized

Gou

ld-H

opperp

olyn

omials(fo

r119903=

1

theG

ould-H

opper-Hermite

polyno

mials119867

119867(119898)

119899(119909

119910)andfor

119903=

2the

Gou

ld-H

opperc

lassical

2-orthogon

alpo

lyno

mials)

(XIII)

(1minus

119905 )119904+1

1

(1minus

119905 )119904+1

119909+

119898119910

119863119898minus1

119909minus

119898+

1

1minus

119863119909

119863119909

1

(1minus

119905 )119904+1119890119909119905+119910119905119898

=infin sum119899=0

119867119866(119898119904)

119899(119909

119910)

119905119899

TheG

ould-H

opper-Miller-Lee

polyno

mials(fo

r119904=

0the

Gou

ld-H

opper-trun

catedexpo

nential

polyno

mials119867

119890119898 119899(119909

119910)andfor

119904=

120573minus

1Gou

ld-H

opper-mod

ified

Laguerre

polyno

mials119867

119891(119898120573)

119899(119909

119910))

(XIV

)(119890119905

+1)

2119905

2119905

(119890119905+

1)

119909+

119898119910

119863119898minus1

119909+

119890119863119909

(1minus

119863119909)

+1

(119890119863119909

+1)

119863119909

2119905

(119890119905+

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119866(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-Genocchi

polyno

mials

International Journal of Analysis 7

If 120601(119910 119905) is an invertible series and 1206011015840

(119910 119905)120601(119910 119905) hasTaylorrsquos series expansion in powers of 119905 then in view of theidentity

119863119909

119890119909119905

120601 (119910 119905) = 119905 (119890119909119905

120601 (119910 119905)) (22)

we can write

1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119890119909119905

120601 (119910 119905) =1206011015840

(119910 119905)

120601 (119910 119905)(119890119909119905

120601 (119910 119905)) (23)

Now using (23) in the lhs of (21) we find

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899 (24)

Making use of generating function (14) in the lhs of theabove equation we have

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

)

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899

(25)

which on equating the coefficients of like powers of 119905 in bothsides gives

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

) 119901119899

(119909 119910) = 119901119899+1

(119909 119910) (26)

Thus in view of monomiality principle equation (6) theabove equation yields assertion (19) of Lemma 1 Again usingidentity (22) in (14) we have

119863119909

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 =

infin

sum119899=1

119901119899minus1

(119909 119910)119905119899

(119899 minus 1) (27)

Equating the coefficients of like powers of 119905 in both sidesof (27) we find

119863119909

119901119899

(119909 119910) = 119899119901119899minus1

(119909 119910) (119899 ge 1) (28)

which in view of monomiality principle equation (7) yieldsassertion (20) of Lemma 1

Remark 2 The operators given by (19) and (20) satisfycommutation relation (8) Also using expressions (19) and(20) in (9) we get the following differential equation satisfiedby 2VgP 119901

119899(119909 119910)

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

minus 119899) 119901119899

(119909 119910) = 0 (29)

Remark 3 Since 1199010(119909 119910) = 1 therefore in view of monomi-

ality principle equation (10) we have

119901119899

(119909 119910) = (119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

)

119899

1 (1199010

(119909 119910) = 1) (30)

Also in view of (11) (14) and (19) we have

exp (119901119905) 1 = 119890

119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 (31)

Now we proceed to introduce the 2-variable general-Appell polynomials (2VgAP) In order to derive the gener-ating functions for the 2VgAP we take the 2VgP 119901

119899(119909 119910) as

the base in the Appell polynomials generating function (1)Thus replacing 119909 by the multiplicative operator

119901of the

2VgP 119901119899(119909 119910) in the lhs of (1) and denoting the resultant

2VgAP by119901119860119899(119909 119910) we have

119860 (119905) 119890(119901119905)

=

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (32)

Now using (31) in the exponential term in the lhs of(32) we get the generating function for

119901119860119899(119909 119910) as

119860 (119905) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (33)

In view of (5) generating function (33) can be expressedequivalently as

1

119892 (119905)119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (34)

Now we frame the 2VgAP119901119860119899(119909 119910) within the context

of monomiality principle formalism We prove the followingresults

Theorem 4 The 2VgAP119901119860119899(119909 119910) are quasimonomial with

respect to the following multiplicative and derivative operators

119901119860

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

(35a)

or equivalently

119901119860

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

minus1198921015840

(119863119909)

119892 (119863119909)

(35b)

119901119860

= 119863119909 (36)

respectively

Proof Differentiating (33) partially with respect to 119905 we find

(119909 +1206011015840

(119910 119905)

120601 (119910 119905)+

1198601015840

(119905)

119860 (119905)) 119860 (119905) 119890

119909119905

120601 (119910 119905)

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(37)

Since 119860(119905) and 120601(119910 119905) are invertible series of 119905 therefore1198601015840

(119905)119860(119905) and 1206011015840

(119910 119905)120601(119910 119905) possess power series expan-sions of 119905 Thus in view of identity (22) we have

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119860 (119905) 119890119909119905

120601 (119910 119905)

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(38)

8 International Journal of Analysis

which on using generating function (33) becomes

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

)

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(39)

or equivalentlyinfin

sum119899=0

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119901119860119899

(119909 119910)119905119899

119899

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(40)

Now equating the coefficients of like powers of 119905 in theabove equation we find

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119901119860119899

(119909 119910) =119901119860119899+1

(119909 119910)

(41)

which in view of (6) yields assertion (35a) of Theorem 4Also in view of relation (5) assertion (35a) can be expressedequivalently as (35b)

Again in view of identity (22) we have

119863119909

119860 (119905) 119890119909119905

120601 (119910 119905) = 119905119860 (119905) 119890119909119905

120601 (119910 119905) (42)

which on using generating function (33) becomes

119863119909

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 =

infin

sum119899=1

119901119860119899minus1

(119909 119910)119905119899

(119899 minus 1) (43)

Equating the coefficients of like powers of 119905 in the aboveequation we find

119863119909

119901119860119899

(119909 119910) = 119899119901119860119899minus1

(119909 119910) (119899 ge 1) (44)

which in view of (7) yields assertion (36) ofTheorem 4

Theorem 5 The 2VgAP119901119860119899

(119909 119910) satisfy the following differ-ential equations

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

+1198601015840

(119863119909)

119860 (119863119909)

119863119909

minus 119899)119901119860119899

(119909 119910) = 0

(45a)

or equivalently

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

minus1198921015840

(119863119909)

119892 (119863119909)

119863119909

minus 119899)119901119860119899

(119909 119910) = 0

(45b)

Proof Using (35a) and (36) in (9) we get assertion (45a) Fur-ther using (35b) and (36) in (9) we get assertion (45b)

Note 1 With the help of the results derived above and bytaking 119860(119905) (or 119892(119905)) of the Appell polynomials listed inTable 1 we can derive the generating function and otherresults for the members belonging to 2VgAP family

3 Examples

We consider examples of certain members belonging to the2VgAP family

Taking 120601(119910 119905) = 119890119910119905119898

(that is when the 2VgP 119901119899(119909 119910)

reduces to the GHP 119867(119898)

119899(119909 119910)) in generating function

(33) we find that the Gould-Hopper-Appell polynomials(GHAP)

119867119860(119898)

119899(119909 119910) are defined by the following generating

function

119860 (119905) 119890(119909119905+119910119905

119898)

=

infin

sum119899=0

119867119860(119898)

119899(119909 119910)

119905119899

119899(46)

or equivalently

1

119892 (119905)119890(119909119905+119910119905

119898)

=

infin

sum119899=0

119867119860(119898)

119899(119909 119910)

119905119899

119899 (47)

Using (1) in (46) (or (3) in (47)) we get the followingseries definition for

119867119860(119898)

119899(119909 119910) in terms of the Appell

polynomials 119860119899(119909)

119867119860(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119860119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (48)

In view of (35a) (35b) and (36) we note that the GHAP119867

119860(119898)

119899(119909 119910) are quasimonomial under the action of the

following multiplicative and derivative operators

119867(119898)119860

= 119909 + 119898119910119863119898minus1

119909+

1198601015840

(119863119909)

119860 (119863119909)

(49a)

or equivalently

119867(119898)119860

= 119909 + 119898119910119863119898minus1

119909minus

1198921015840

(119863119909)

119892 (119863119909)

(49b)

119867(119898)119860

= 119863119909 (50)

respectively Also in view of (45a) and (45b) we find thatthe GHAP

119867119860(119898)

119899(119909 119910) satisfy the following differential

equation

(119909119863119909

+ 119898119910119863119898

119909+

1198601015840

(119863119909)

119860 (119863119909)

119863119909

minus 119899)119867

119860(119898)

119899(119909 119910) = 0

(51a)

or equivalently

(119909119863119909

+ 119898119910119863119898

119909minus

1198921015840

(119863119909)

119892 (119863119909)

119863119909

minus 119899)119867

119860(119898)

119899(119909 119910) = 0

(51b)

Remark 6 In view of (16) and (17) we note that for 119898 =

2 the GHAP119867

119860(119898)

119899(119909 119910) reduce to the Hermite-Appell

polynomials (HAP)119867

119860119899(119909 119910) Therefore taking 119898 = 2 in

(46) (47) (48) (49a) (49b) (50) (51a) and (51b) we get thecorresponding results for the HAP

119867119860119899(119909 119910)

International Journal of Analysis 9

Remark 7 In view of (16) we note that the 2VHKdFP119867119899(119909 119910) are related to the classical Hermite polynomials

119867119899(119909) [11] or 119867119890

119899(119909) as

119867119899

(2119909 minus1) = 119867119899

(119909)

119867119899

(119909 minus1

2) = 119867119890

119899(119909)

(52)

Therefore taking 119910 = minus1 and replacing 119909 by 2119909 (or taking119910 = minus12) in (46)ndash(51b) we get the corresponding resultsfor the classical Hermite-Appell polynomials

119867119860119899(119909) (or

119867119890119860119899(119909))

There are several members belonging to 2VgP familyThus the results for the corresponding 2VgAP can be obtainedby taking other examples We present the list of somemembers belonging to the GHAP family in Table 2

Note 2 Since for 119898 = 2 the GHAP119867

119860119898

119899(119909 119910) reduce to the

HAP119867

119860119899(119909 119910) therefore for 119898 = 2 Table 2 gives the list of

the corresponding HAP119867

119860119899(119909 119910)

The results established in this paper are general andinclude new families of special polynomials consequentlyintroducing many new special polynomials

Appendix

New classes of Bernoulli numbers and polynomials areintroduced which are used to evaluate partial sums involv-ing other special polynomials see for example [21 22]Here we consider the Gould-Hopper-Bernoulli polyno-mials (GHBP) Gould-Hopper-Euler polynomials (GHEP)Hermite-Bernoulli polynomials (HBP) Hermite-Euler poly-nomials (HEP) classical Hermite-Bernoulli polynomials(cHBP) and classical Hermite-Euler polynomials (cHEP)We give the surface plots of these polynomials for suitablevalues of the parameters and indices Also we give the graphsof the corresponding single-variable polynomials

The GHBP119867

119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) and HEP

119867119864119899(119909 119910) are defined by the following

series

119867119861(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119861119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A1)

119867119864(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119864119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A2)

119867119861119899

(119909 119910) = 119899

[1198992]

sum119903=0

119861119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A3)

119867119864119899

(119909 119910) = 119899

[1198992]

sum119903=0

119864119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A4)

respectively Taking 119910 = minus12 in (A3) and (A4) we get theseries definitions for the cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909)

as

119867119861119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119861119899minus2119903

(119909)

(119899 minus 2119903)119903 (A5)

119867119864119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119864119899minus2119903

(119909)

(119899 minus 2119903)119903 (A6)

respectivelyTo draw the surface plots of these polynomials we use

the values of the Bernoulli polynomials 119861119899(119909) and the Euler

polynomials 119864119899(119909) for 119899 = 0 1 2 3 4 and 5 We give the list

of the first fewBernoulli and the Euler polynomials in Table 3Now we consider the GHBP

119867119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) HEP

119867119864119899(119909 119910) cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909) for 119898 = 3 and 119899 = 5 so that

we have

119867119861(3)

5(119909 119910) = 119861

5(119909) + 60119861

2(119909) 119910 (A7)

119867119864(3)

5(119909 119910) = 119864

5(119909) + 60119864

2(119909) 119910 (A8)

1198671198615

(119909 119910) = 1198615

(119909) + 201198613

(119909) 119910 + 601198611

(119909) 1199102

(A9)

1198671198645

(119909 119910) = 1198645

(119909) + 201198643

(119909) 119910 + 601198641

(119909) 1199102

(A10)

1198671198901198615

(119909) = 1198615

(119909) minus 101198613

(119909) + 151198611

(119909) (A11)

1198671198901198645

(119909) = 1198645

(119909) minus 101198643

(119909) + 151198641

(119909) (A12)

respectively Using the particular values of 119861119899(119909) and 119864

119899(119909)

given in Table 3 we find

119867119861(3)

5(119909 119910)=119909

5

minus5

21199094

+5

31199093

+601199092

119910minus60119909119910minus1

6119909+

1

10119910

(A13)

119867119864(3)

5(119909 119910)=119909

5

minus5

21199094

+601199092

119910+5

31199092

minus60119909119910minus1

2+

1

10119910

(A14)

119867

1198615

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 +5

31199093

+ 601199091199102

minus 601199092

119910 + 10119909119910 minus 301199102

minus1

6119909

(A15)

1198671198645

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 + 601199091199102

minus 301199092

119910 +5

31199092

minus 301199102

+10

3119910 minus

1

2

(A16)

1198671198901198615

(119909) = 1199095

minus5

21199094

minus25

31199093

+ 151199092

+59

6119909 minus

15

2 (A17)

1198671198901198645

(119909) = 1199095

minus5

21199094

minus 101199093

+50

31199092

+ 15119909 minus29

3 (A18)

respectively

10 International Journal of Analysis

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(a)

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(b)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(c)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(d)

minus5 0 5minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(e)minus5 0 5

minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(f)

Figure 1

Table 3 List of the first few Bernoulli and the Euler polynomials

119899 0 1 2 3 4 5

119861119899(119909) 1 119909 minus

1

21199092

minus 119909 +1

61199093

minus3

21199092

+119909

21199094

minus 21199093

+ 1199092

minus1

301199095

minus5

21199094

+5

31199093

minus119909

6

119864119899(119909) 1 119909 minus

1

21199092

minus 119909 1199093

minus3

21199092

+1

61199094

minus 21199093

+2

3119909 119909

5

minus5

21199094

+5

31199092

minus1

2

International Journal of Analysis 11

In view of equations (A13)ndash(A18) we get Figure 1

Acknowledgments

The authors are thankful to the anonymous referee for usefulsuggestions towards the improvement of the paperThis workhas been done under the Senior Research Fellowship (OfficeMemo no AcadD-1562MR) sanctioned to the secondauthor by the University Grants Commission Governmentof India New Delhi

References

[1] P Appell ldquoSur une classe de polynomesrdquo Annales Scientifiquesde lrsquoEcole Normale Superieure vol 9 pp 119ndash144 1880

[2] S Roman The Umbral Calculus vol 111 of Pure and AppliedMathematics Academic Press New York NY USA 1984

[3] E D Rainville Special Functions Macmillan New York NYUSA 1960 reprinted by Chelsea Bronx NY USA 1971

[4] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol III McGraw-Hill NewYork NY USA 1955

[5] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol II McGraw-Hill NewYork NY USA 1953

[6] G Bretti P Natalini and P E Ricci ldquoGeneralizations ofthe Bernoulli and Appell polynomialsrdquo Abstract and AppliedAnalysis vol 2004 no 7 pp 613ndash623 2004

[7] Q-M Luo and H M Srivastava ldquoSome generalizations of theApostol-Bernoulli and Apostol-Euler polynomialsrdquo Journal ofMathematical Analysis and Applications vol 308 no 1 pp 290ndash302 2005

[8] T M Apostol ldquoOn the Lerch zeta functionrdquo Pacific Journal ofMathematics vol 1 pp 161ndash167 1951

[9] Q-M Luo ldquoApostol-Euler polynomials of higher order andGaussian hypergeometric functionsrdquo Taiwanese Journal ofMathematics vol 10 no 4 pp 917ndash925 2006

[10] K Douak ldquoThe relation of the 119889-orthogonal polynomials tothe Appell polynomialsrdquo Journal of Computational and AppliedMathematics vol 70 no 2 pp 279ndash295 1996

[11] L C Andrews Special Functions for Engineers and AppliedMathematicians Macmillan New York NY USA 1985

[12] G Dattoli S Lorenzutta and D Sacchetti ldquoIntegral represen-tations of new families of polynomialsrdquo Italian Journal of Pureand Applied Mathematics no 15 pp 19ndash28 2004

[13] W Magnus F Oberhettinger and R P Soni Formulas andTheorems for the Special Functions of Mathematical Physicsvol 52 of Die Grundlehren der mathematischen WissenschaftenSpringer New York NY USA 3rd edition 1966

[14] G Dattoli M Migliorati and H M Srivastava ldquoSheffer poly-nomials monomiality principle algebraic methods and thetheory of classical polynomialsrdquo Mathematical and ComputerModelling vol 45 no 9-10 pp 1033ndash1041 2007

[15] J F Steffensen ldquoThe poweroid an extension of the mathemat-ical notion of powerrdquo Acta Mathematica vol 73 pp 333ndash3661941

[16] G Dattoli ldquoHermite-Bessel and Laguerre-Bessel functions aby-product of the monomiality principlerdquo in Advanced SpecialFunctions and Applications (Melfi 1999) vol 1 of ProcMelfi SchAdv Top Math Phys pp 147ndash164 Aracne Rome Italy 2000

[17] G Bretti C Cesarano and P E Ricci ldquoLaguerre-type expo-nentials and generalized Appell polynomialsrdquo Computers ampMathematics with Applications vol 48 no 5-6 pp 833ndash8392004

[18] P Appell and J Kampe de Feriet Fonctions Hypergeometriqueset Hyperspheriques Polynomes drsquo Hermite Gauthier-VillarsParis France 1926

[19] H W Gould and A T Hopper ldquoOperational formulas con-nected with two generalizations of Hermite polynomialsrdquoDukeMathematical Journal vol 29 pp 51ndash63 1962

[20] S Khan G Yasmin R Khan and N A M Hassan ldquoHermite-based Appell polynomials properties and applicationsrdquo Journalof Mathematical Analysis and Applications vol 351 no 2 pp756ndash764 2009

[21] G Dattoli C Cesarano and S Lorenzutta ldquoBernoulli numbersand polynomials from amore general point of viewrdquo RendicontidiMatematica e delle sueApplicazioni vol 22 pp 193ndash202 2002

[22] G Dattoli S Lorenzutta and C Cesarano ldquoFinite sums andgeneralized forms of Bernoulli polynomialsrdquo Rendiconti diMatematica e delle sue Applicazioni vol 19 no 3 pp 385ndash3911999

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article General-Appell Polynomials within the ...downloads.hindawi.com/journals/ijanal/2013/328032.pdf · In order to introduce the -variable general-Appell polyno-mials

International Journal of Analysis 5

Table2Listof

someG

ould-H

opper-A

ppellp

olyn

omials119867

119860(119898)

119899(119909

119910)

SNo

119892(119905

)119860

(119905)

119872119867(119898)119860119875119867(119898)119860

Generatingfunctio

nsPo

lyno

mials

(I)

(119890119905

minus1)

119905

119905

(119890119905minus

1)

119909+

119898119910

119863119898minus1

119909+

((1

minus119863119909)

119890119863119909

minus1)

119863119909

(119890119863119909

minus1)

119863119909

119905

(119890119905minus

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-Be

rnou

llipo

lyno

mials

(II)

(119890119905

+1)

2

2

(119890119905+

1)

119909+

119898119910

119863119898minus1

119909minus

119890119863119909

(119890119863119909

+1)119863119909

2

(119890119905+

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119864(119898)

119899(119909

119910)

119905119899 119899

TheG

ould

Hop

per-Eu

ler

polyno

mials

(III)

(119890119905

minus1)120572

119905120572

119905120572

(119890119905minus

1)120572

119909+

119898119910

119863119898minus1

119909+

120572((1

minus119863119909)

119890119863119909

minus1)

119863119909

(119890119863119909

minus1)

119863119909

119905120572

(119890119905minus

1)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898120572)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-generalized

Bernou

llipo

lyno

mials

(IV)

(119890119905

+1)120572

2120572

2120572

(119890119905+

1)120572

119909+

119898119910

119863119898minus1

119909minus

120572119890119863119909

(119890119863119909

+1)119863119909

2120572

(119890119905+

1)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867119864(119898120572)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-generalized

Eulerp

olyn

omials

(V)

119904 prod ℎ=1

(119890120572ℎ119905

minus1)

120572ℎ119905119904

119909

+119898

119910119863119898minus1

119909+

119898119863minus1

119909minus119898 sum 119903=1

120572119903119890120572119903119863119909

(119890120572119903119863119909

minus1)119863119909

1205721

sdotsdotsdot120572119904119905119904

(1198901205721119905minus

1)sdotsdot

sdot (119890120572119904119905minus

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898119904)

119899(119909

119910|

1205721

120572119904)119905119899 119899

TheG

ould-H

opper-generalized

Bernou

llipo

lyno

mialsof

order119904

119904 prod ℎ=1

120572ℎ

(119890120572ℎ119905minus

1)119905119904

(VI)

119904 prod ℎ=1

(119890120572ℎ119905

+1)

2119904

119909

+119898

119910119863119898minus1

119909minus119898 sum 119903=1

120572119903119890120572119903119863119909119863119909

2119904

(1198901205721119905+

1)sdotsdot

sdot (119890120572119904119905+

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119864(119898119904)

119899(119909

119910|

1205721

120572119904)119905119899 119899

TheG

ould-H

opper-generalized

Eulerp

olyn

omialsof

order119904

119904 prod ℎ=1

2119904

(119890120572ℎ119905+

1)

(VII)

119890119905minus

sum119904minus1

ℎ=0

(119905ℎ

ℎ)

119905119904

119909+

119898119910

119863119898minus1

119909+

119898119863minus1

119909minus

1minus

119863119909

119898minus1

(119898

minus1)

(119890119863119909

minussum119898minus1

ℎ=0

119905ℎℎ

)119863119909

119905119904

119890119905minus

sum119904minus1

ℎ=0

(119905ℎℎ

)119890119909119905+119910119905119898

=infin sum119899=0

119867119861(119898[119904minus1])

119899(119909

119910)

119905119899 119899

TheG

ould-H

oppern

ewgeneralized

Bernou

llipo

lyno

mials

119905119904

119890119905minus

sum119904minus1

ℎ=0

(119905ℎℎ

)

6 International Journal of Analysis

Table2Con

tinued

SNo

119892(119905

)119860

(119905)

119872119867(119898)119860119875119867(119898)119860

Generatingfunctio

nsPo

lyno

mials

(VIII)

(119905

120582119890119905

minus1

)minus120572

(119905

120582119890119905

minus1

)120572

119909+

119898119910

119863119898minus1

119909+

120582119890119863119909

(120572minus

119863119909)

minus120572

119863119909

(120582119890119863119909

minus1)

119863119909

(119905

120582119890119905

minus1

)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867B(119898120572)

119899(119909

119910120582

)119905119899 119899

TheG

ould-H

opper-A

posto

l-Berno

ulli

polyno

mialsof

order120572

(IX)

120582119890119905

minus1

119905

119905

120582119890119905

minus1

119909+

119898119910

119863119898minus1

119909+

120582119890119863119909

(1minus

119863119909)

minus1

119863119909

(120582119890119863119909

minus1)

119863119909

119905

120582119890119905

minus1

119890119909119905+119910119905119898

=infin sum119899=0

119867B(119898)

119899(119909

119910120582

)119905119899 119899

TheG

ould-H

opper-A

posto

l-Berno

ulli

polyno

mials

(X)

(2

120582119890119905

+1

)minus120572

(2

120582119890119905

+1

)120572

119909+

119898119910

119863119898minus1

119909minus

120582120572

119890119863119909

(120582119890119863119909

+1)119863119909

(2

120582119890119905

+1

)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867E(119898120572)

119899(119909

119910120582

)119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

1120572

=1

TheG

ould-H

opper-A

posto

l-Euler

polyno

mialsof

order120572

(XI)

120582119890119905

+1

2

2

120582119890119905

+1

119909+

119898119910

119863119898minus1

119909minus

120582119890119863119909

(120582119890119863119909

+1)119863119909

2

120582119890119905

+1

119890119909119905+119910119905119898

=infin sum119899=0

119867E(119898)

119899(119909

119910120582

)119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

TheG

ould-H

opper-A

posto

l-Euler

polyno

mials

(XII)

119890minus(sum119903+1

ℎ=0120585ℎ119905ℎ)

119890(sum119903+1

ℎ=0120585ℎ119905ℎ)

120585 119903+1

=0

119909+

119898119910

119863119898minus1

119909+119903+1

sumℎ=1

ℎ120585 ℎ

119863ℎminus1

119909119863119909

119890(sum119903+1

ℎ=0120585ℎ119905ℎ+119909119905+119910119905119898)

=infin sum119899=0

119867119860(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-generalized

Gou

ld-H

opperp

olyn

omials(fo

r119903=

1

theG

ould-H

opper-Hermite

polyno

mials119867

119867(119898)

119899(119909

119910)andfor

119903=

2the

Gou

ld-H

opperc

lassical

2-orthogon

alpo

lyno

mials)

(XIII)

(1minus

119905 )119904+1

1

(1minus

119905 )119904+1

119909+

119898119910

119863119898minus1

119909minus

119898+

1

1minus

119863119909

119863119909

1

(1minus

119905 )119904+1119890119909119905+119910119905119898

=infin sum119899=0

119867119866(119898119904)

119899(119909

119910)

119905119899

TheG

ould-H

opper-Miller-Lee

polyno

mials(fo

r119904=

0the

Gou

ld-H

opper-trun

catedexpo

nential

polyno

mials119867

119890119898 119899(119909

119910)andfor

119904=

120573minus

1Gou

ld-H

opper-mod

ified

Laguerre

polyno

mials119867

119891(119898120573)

119899(119909

119910))

(XIV

)(119890119905

+1)

2119905

2119905

(119890119905+

1)

119909+

119898119910

119863119898minus1

119909+

119890119863119909

(1minus

119863119909)

+1

(119890119863119909

+1)

119863119909

2119905

(119890119905+

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119866(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-Genocchi

polyno

mials

International Journal of Analysis 7

If 120601(119910 119905) is an invertible series and 1206011015840

(119910 119905)120601(119910 119905) hasTaylorrsquos series expansion in powers of 119905 then in view of theidentity

119863119909

119890119909119905

120601 (119910 119905) = 119905 (119890119909119905

120601 (119910 119905)) (22)

we can write

1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119890119909119905

120601 (119910 119905) =1206011015840

(119910 119905)

120601 (119910 119905)(119890119909119905

120601 (119910 119905)) (23)

Now using (23) in the lhs of (21) we find

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899 (24)

Making use of generating function (14) in the lhs of theabove equation we have

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

)

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899

(25)

which on equating the coefficients of like powers of 119905 in bothsides gives

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

) 119901119899

(119909 119910) = 119901119899+1

(119909 119910) (26)

Thus in view of monomiality principle equation (6) theabove equation yields assertion (19) of Lemma 1 Again usingidentity (22) in (14) we have

119863119909

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 =

infin

sum119899=1

119901119899minus1

(119909 119910)119905119899

(119899 minus 1) (27)

Equating the coefficients of like powers of 119905 in both sidesof (27) we find

119863119909

119901119899

(119909 119910) = 119899119901119899minus1

(119909 119910) (119899 ge 1) (28)

which in view of monomiality principle equation (7) yieldsassertion (20) of Lemma 1

Remark 2 The operators given by (19) and (20) satisfycommutation relation (8) Also using expressions (19) and(20) in (9) we get the following differential equation satisfiedby 2VgP 119901

119899(119909 119910)

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

minus 119899) 119901119899

(119909 119910) = 0 (29)

Remark 3 Since 1199010(119909 119910) = 1 therefore in view of monomi-

ality principle equation (10) we have

119901119899

(119909 119910) = (119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

)

119899

1 (1199010

(119909 119910) = 1) (30)

Also in view of (11) (14) and (19) we have

exp (119901119905) 1 = 119890

119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 (31)

Now we proceed to introduce the 2-variable general-Appell polynomials (2VgAP) In order to derive the gener-ating functions for the 2VgAP we take the 2VgP 119901

119899(119909 119910) as

the base in the Appell polynomials generating function (1)Thus replacing 119909 by the multiplicative operator

119901of the

2VgP 119901119899(119909 119910) in the lhs of (1) and denoting the resultant

2VgAP by119901119860119899(119909 119910) we have

119860 (119905) 119890(119901119905)

=

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (32)

Now using (31) in the exponential term in the lhs of(32) we get the generating function for

119901119860119899(119909 119910) as

119860 (119905) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (33)

In view of (5) generating function (33) can be expressedequivalently as

1

119892 (119905)119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (34)

Now we frame the 2VgAP119901119860119899(119909 119910) within the context

of monomiality principle formalism We prove the followingresults

Theorem 4 The 2VgAP119901119860119899(119909 119910) are quasimonomial with

respect to the following multiplicative and derivative operators

119901119860

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

(35a)

or equivalently

119901119860

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

minus1198921015840

(119863119909)

119892 (119863119909)

(35b)

119901119860

= 119863119909 (36)

respectively

Proof Differentiating (33) partially with respect to 119905 we find

(119909 +1206011015840

(119910 119905)

120601 (119910 119905)+

1198601015840

(119905)

119860 (119905)) 119860 (119905) 119890

119909119905

120601 (119910 119905)

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(37)

Since 119860(119905) and 120601(119910 119905) are invertible series of 119905 therefore1198601015840

(119905)119860(119905) and 1206011015840

(119910 119905)120601(119910 119905) possess power series expan-sions of 119905 Thus in view of identity (22) we have

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119860 (119905) 119890119909119905

120601 (119910 119905)

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(38)

8 International Journal of Analysis

which on using generating function (33) becomes

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

)

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(39)

or equivalentlyinfin

sum119899=0

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119901119860119899

(119909 119910)119905119899

119899

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(40)

Now equating the coefficients of like powers of 119905 in theabove equation we find

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119901119860119899

(119909 119910) =119901119860119899+1

(119909 119910)

(41)

which in view of (6) yields assertion (35a) of Theorem 4Also in view of relation (5) assertion (35a) can be expressedequivalently as (35b)

Again in view of identity (22) we have

119863119909

119860 (119905) 119890119909119905

120601 (119910 119905) = 119905119860 (119905) 119890119909119905

120601 (119910 119905) (42)

which on using generating function (33) becomes

119863119909

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 =

infin

sum119899=1

119901119860119899minus1

(119909 119910)119905119899

(119899 minus 1) (43)

Equating the coefficients of like powers of 119905 in the aboveequation we find

119863119909

119901119860119899

(119909 119910) = 119899119901119860119899minus1

(119909 119910) (119899 ge 1) (44)

which in view of (7) yields assertion (36) ofTheorem 4

Theorem 5 The 2VgAP119901119860119899

(119909 119910) satisfy the following differ-ential equations

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

+1198601015840

(119863119909)

119860 (119863119909)

119863119909

minus 119899)119901119860119899

(119909 119910) = 0

(45a)

or equivalently

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

minus1198921015840

(119863119909)

119892 (119863119909)

119863119909

minus 119899)119901119860119899

(119909 119910) = 0

(45b)

Proof Using (35a) and (36) in (9) we get assertion (45a) Fur-ther using (35b) and (36) in (9) we get assertion (45b)

Note 1 With the help of the results derived above and bytaking 119860(119905) (or 119892(119905)) of the Appell polynomials listed inTable 1 we can derive the generating function and otherresults for the members belonging to 2VgAP family

3 Examples

We consider examples of certain members belonging to the2VgAP family

Taking 120601(119910 119905) = 119890119910119905119898

(that is when the 2VgP 119901119899(119909 119910)

reduces to the GHP 119867(119898)

119899(119909 119910)) in generating function

(33) we find that the Gould-Hopper-Appell polynomials(GHAP)

119867119860(119898)

119899(119909 119910) are defined by the following generating

function

119860 (119905) 119890(119909119905+119910119905

119898)

=

infin

sum119899=0

119867119860(119898)

119899(119909 119910)

119905119899

119899(46)

or equivalently

1

119892 (119905)119890(119909119905+119910119905

119898)

=

infin

sum119899=0

119867119860(119898)

119899(119909 119910)

119905119899

119899 (47)

Using (1) in (46) (or (3) in (47)) we get the followingseries definition for

119867119860(119898)

119899(119909 119910) in terms of the Appell

polynomials 119860119899(119909)

119867119860(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119860119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (48)

In view of (35a) (35b) and (36) we note that the GHAP119867

119860(119898)

119899(119909 119910) are quasimonomial under the action of the

following multiplicative and derivative operators

119867(119898)119860

= 119909 + 119898119910119863119898minus1

119909+

1198601015840

(119863119909)

119860 (119863119909)

(49a)

or equivalently

119867(119898)119860

= 119909 + 119898119910119863119898minus1

119909minus

1198921015840

(119863119909)

119892 (119863119909)

(49b)

119867(119898)119860

= 119863119909 (50)

respectively Also in view of (45a) and (45b) we find thatthe GHAP

119867119860(119898)

119899(119909 119910) satisfy the following differential

equation

(119909119863119909

+ 119898119910119863119898

119909+

1198601015840

(119863119909)

119860 (119863119909)

119863119909

minus 119899)119867

119860(119898)

119899(119909 119910) = 0

(51a)

or equivalently

(119909119863119909

+ 119898119910119863119898

119909minus

1198921015840

(119863119909)

119892 (119863119909)

119863119909

minus 119899)119867

119860(119898)

119899(119909 119910) = 0

(51b)

Remark 6 In view of (16) and (17) we note that for 119898 =

2 the GHAP119867

119860(119898)

119899(119909 119910) reduce to the Hermite-Appell

polynomials (HAP)119867

119860119899(119909 119910) Therefore taking 119898 = 2 in

(46) (47) (48) (49a) (49b) (50) (51a) and (51b) we get thecorresponding results for the HAP

119867119860119899(119909 119910)

International Journal of Analysis 9

Remark 7 In view of (16) we note that the 2VHKdFP119867119899(119909 119910) are related to the classical Hermite polynomials

119867119899(119909) [11] or 119867119890

119899(119909) as

119867119899

(2119909 minus1) = 119867119899

(119909)

119867119899

(119909 minus1

2) = 119867119890

119899(119909)

(52)

Therefore taking 119910 = minus1 and replacing 119909 by 2119909 (or taking119910 = minus12) in (46)ndash(51b) we get the corresponding resultsfor the classical Hermite-Appell polynomials

119867119860119899(119909) (or

119867119890119860119899(119909))

There are several members belonging to 2VgP familyThus the results for the corresponding 2VgAP can be obtainedby taking other examples We present the list of somemembers belonging to the GHAP family in Table 2

Note 2 Since for 119898 = 2 the GHAP119867

119860119898

119899(119909 119910) reduce to the

HAP119867

119860119899(119909 119910) therefore for 119898 = 2 Table 2 gives the list of

the corresponding HAP119867

119860119899(119909 119910)

The results established in this paper are general andinclude new families of special polynomials consequentlyintroducing many new special polynomials

Appendix

New classes of Bernoulli numbers and polynomials areintroduced which are used to evaluate partial sums involv-ing other special polynomials see for example [21 22]Here we consider the Gould-Hopper-Bernoulli polyno-mials (GHBP) Gould-Hopper-Euler polynomials (GHEP)Hermite-Bernoulli polynomials (HBP) Hermite-Euler poly-nomials (HEP) classical Hermite-Bernoulli polynomials(cHBP) and classical Hermite-Euler polynomials (cHEP)We give the surface plots of these polynomials for suitablevalues of the parameters and indices Also we give the graphsof the corresponding single-variable polynomials

The GHBP119867

119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) and HEP

119867119864119899(119909 119910) are defined by the following

series

119867119861(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119861119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A1)

119867119864(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119864119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A2)

119867119861119899

(119909 119910) = 119899

[1198992]

sum119903=0

119861119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A3)

119867119864119899

(119909 119910) = 119899

[1198992]

sum119903=0

119864119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A4)

respectively Taking 119910 = minus12 in (A3) and (A4) we get theseries definitions for the cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909)

as

119867119861119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119861119899minus2119903

(119909)

(119899 minus 2119903)119903 (A5)

119867119864119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119864119899minus2119903

(119909)

(119899 minus 2119903)119903 (A6)

respectivelyTo draw the surface plots of these polynomials we use

the values of the Bernoulli polynomials 119861119899(119909) and the Euler

polynomials 119864119899(119909) for 119899 = 0 1 2 3 4 and 5 We give the list

of the first fewBernoulli and the Euler polynomials in Table 3Now we consider the GHBP

119867119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) HEP

119867119864119899(119909 119910) cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909) for 119898 = 3 and 119899 = 5 so that

we have

119867119861(3)

5(119909 119910) = 119861

5(119909) + 60119861

2(119909) 119910 (A7)

119867119864(3)

5(119909 119910) = 119864

5(119909) + 60119864

2(119909) 119910 (A8)

1198671198615

(119909 119910) = 1198615

(119909) + 201198613

(119909) 119910 + 601198611

(119909) 1199102

(A9)

1198671198645

(119909 119910) = 1198645

(119909) + 201198643

(119909) 119910 + 601198641

(119909) 1199102

(A10)

1198671198901198615

(119909) = 1198615

(119909) minus 101198613

(119909) + 151198611

(119909) (A11)

1198671198901198645

(119909) = 1198645

(119909) minus 101198643

(119909) + 151198641

(119909) (A12)

respectively Using the particular values of 119861119899(119909) and 119864

119899(119909)

given in Table 3 we find

119867119861(3)

5(119909 119910)=119909

5

minus5

21199094

+5

31199093

+601199092

119910minus60119909119910minus1

6119909+

1

10119910

(A13)

119867119864(3)

5(119909 119910)=119909

5

minus5

21199094

+601199092

119910+5

31199092

minus60119909119910minus1

2+

1

10119910

(A14)

119867

1198615

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 +5

31199093

+ 601199091199102

minus 601199092

119910 + 10119909119910 minus 301199102

minus1

6119909

(A15)

1198671198645

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 + 601199091199102

minus 301199092

119910 +5

31199092

minus 301199102

+10

3119910 minus

1

2

(A16)

1198671198901198615

(119909) = 1199095

minus5

21199094

minus25

31199093

+ 151199092

+59

6119909 minus

15

2 (A17)

1198671198901198645

(119909) = 1199095

minus5

21199094

minus 101199093

+50

31199092

+ 15119909 minus29

3 (A18)

respectively

10 International Journal of Analysis

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(a)

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(b)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(c)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(d)

minus5 0 5minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(e)minus5 0 5

minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(f)

Figure 1

Table 3 List of the first few Bernoulli and the Euler polynomials

119899 0 1 2 3 4 5

119861119899(119909) 1 119909 minus

1

21199092

minus 119909 +1

61199093

minus3

21199092

+119909

21199094

minus 21199093

+ 1199092

minus1

301199095

minus5

21199094

+5

31199093

minus119909

6

119864119899(119909) 1 119909 minus

1

21199092

minus 119909 1199093

minus3

21199092

+1

61199094

minus 21199093

+2

3119909 119909

5

minus5

21199094

+5

31199092

minus1

2

International Journal of Analysis 11

In view of equations (A13)ndash(A18) we get Figure 1

Acknowledgments

The authors are thankful to the anonymous referee for usefulsuggestions towards the improvement of the paperThis workhas been done under the Senior Research Fellowship (OfficeMemo no AcadD-1562MR) sanctioned to the secondauthor by the University Grants Commission Governmentof India New Delhi

References

[1] P Appell ldquoSur une classe de polynomesrdquo Annales Scientifiquesde lrsquoEcole Normale Superieure vol 9 pp 119ndash144 1880

[2] S Roman The Umbral Calculus vol 111 of Pure and AppliedMathematics Academic Press New York NY USA 1984

[3] E D Rainville Special Functions Macmillan New York NYUSA 1960 reprinted by Chelsea Bronx NY USA 1971

[4] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol III McGraw-Hill NewYork NY USA 1955

[5] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol II McGraw-Hill NewYork NY USA 1953

[6] G Bretti P Natalini and P E Ricci ldquoGeneralizations ofthe Bernoulli and Appell polynomialsrdquo Abstract and AppliedAnalysis vol 2004 no 7 pp 613ndash623 2004

[7] Q-M Luo and H M Srivastava ldquoSome generalizations of theApostol-Bernoulli and Apostol-Euler polynomialsrdquo Journal ofMathematical Analysis and Applications vol 308 no 1 pp 290ndash302 2005

[8] T M Apostol ldquoOn the Lerch zeta functionrdquo Pacific Journal ofMathematics vol 1 pp 161ndash167 1951

[9] Q-M Luo ldquoApostol-Euler polynomials of higher order andGaussian hypergeometric functionsrdquo Taiwanese Journal ofMathematics vol 10 no 4 pp 917ndash925 2006

[10] K Douak ldquoThe relation of the 119889-orthogonal polynomials tothe Appell polynomialsrdquo Journal of Computational and AppliedMathematics vol 70 no 2 pp 279ndash295 1996

[11] L C Andrews Special Functions for Engineers and AppliedMathematicians Macmillan New York NY USA 1985

[12] G Dattoli S Lorenzutta and D Sacchetti ldquoIntegral represen-tations of new families of polynomialsrdquo Italian Journal of Pureand Applied Mathematics no 15 pp 19ndash28 2004

[13] W Magnus F Oberhettinger and R P Soni Formulas andTheorems for the Special Functions of Mathematical Physicsvol 52 of Die Grundlehren der mathematischen WissenschaftenSpringer New York NY USA 3rd edition 1966

[14] G Dattoli M Migliorati and H M Srivastava ldquoSheffer poly-nomials monomiality principle algebraic methods and thetheory of classical polynomialsrdquo Mathematical and ComputerModelling vol 45 no 9-10 pp 1033ndash1041 2007

[15] J F Steffensen ldquoThe poweroid an extension of the mathemat-ical notion of powerrdquo Acta Mathematica vol 73 pp 333ndash3661941

[16] G Dattoli ldquoHermite-Bessel and Laguerre-Bessel functions aby-product of the monomiality principlerdquo in Advanced SpecialFunctions and Applications (Melfi 1999) vol 1 of ProcMelfi SchAdv Top Math Phys pp 147ndash164 Aracne Rome Italy 2000

[17] G Bretti C Cesarano and P E Ricci ldquoLaguerre-type expo-nentials and generalized Appell polynomialsrdquo Computers ampMathematics with Applications vol 48 no 5-6 pp 833ndash8392004

[18] P Appell and J Kampe de Feriet Fonctions Hypergeometriqueset Hyperspheriques Polynomes drsquo Hermite Gauthier-VillarsParis France 1926

[19] H W Gould and A T Hopper ldquoOperational formulas con-nected with two generalizations of Hermite polynomialsrdquoDukeMathematical Journal vol 29 pp 51ndash63 1962

[20] S Khan G Yasmin R Khan and N A M Hassan ldquoHermite-based Appell polynomials properties and applicationsrdquo Journalof Mathematical Analysis and Applications vol 351 no 2 pp756ndash764 2009

[21] G Dattoli C Cesarano and S Lorenzutta ldquoBernoulli numbersand polynomials from amore general point of viewrdquo RendicontidiMatematica e delle sueApplicazioni vol 22 pp 193ndash202 2002

[22] G Dattoli S Lorenzutta and C Cesarano ldquoFinite sums andgeneralized forms of Bernoulli polynomialsrdquo Rendiconti diMatematica e delle sue Applicazioni vol 19 no 3 pp 385ndash3911999

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article General-Appell Polynomials within the ...downloads.hindawi.com/journals/ijanal/2013/328032.pdf · In order to introduce the -variable general-Appell polyno-mials

6 International Journal of Analysis

Table2Con

tinued

SNo

119892(119905

)119860

(119905)

119872119867(119898)119860119875119867(119898)119860

Generatingfunctio

nsPo

lyno

mials

(VIII)

(119905

120582119890119905

minus1

)minus120572

(119905

120582119890119905

minus1

)120572

119909+

119898119910

119863119898minus1

119909+

120582119890119863119909

(120572minus

119863119909)

minus120572

119863119909

(120582119890119863119909

minus1)

119863119909

(119905

120582119890119905

minus1

)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867B(119898120572)

119899(119909

119910120582

)119905119899 119899

TheG

ould-H

opper-A

posto

l-Berno

ulli

polyno

mialsof

order120572

(IX)

120582119890119905

minus1

119905

119905

120582119890119905

minus1

119909+

119898119910

119863119898minus1

119909+

120582119890119863119909

(1minus

119863119909)

minus1

119863119909

(120582119890119863119909

minus1)

119863119909

119905

120582119890119905

minus1

119890119909119905+119910119905119898

=infin sum119899=0

119867B(119898)

119899(119909

119910120582

)119905119899 119899

TheG

ould-H

opper-A

posto

l-Berno

ulli

polyno

mials

(X)

(2

120582119890119905

+1

)minus120572

(2

120582119890119905

+1

)120572

119909+

119898119910

119863119898minus1

119909minus

120582120572

119890119863119909

(120582119890119863119909

+1)119863119909

(2

120582119890119905

+1

)120572

119890119909119905+119910119905119898

=infin sum119899=0

119867E(119898120572)

119899(119909

119910120582

)119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

1120572

=1

TheG

ould-H

opper-A

posto

l-Euler

polyno

mialsof

order120572

(XI)

120582119890119905

+1

2

2

120582119890119905

+1

119909+

119898119910

119863119898minus1

119909minus

120582119890119863119909

(120582119890119863119909

+1)119863119909

2

120582119890119905

+1

119890119909119905+119910119905119898

=infin sum119899=0

119867E(119898)

119899(119909

119910120582

)119905119899 1198991003816 1003816 1003816 1003816

119905+log

1205821003816 1003816 1003816 1003816

lt120587

TheG

ould-H

opper-A

posto

l-Euler

polyno

mials

(XII)

119890minus(sum119903+1

ℎ=0120585ℎ119905ℎ)

119890(sum119903+1

ℎ=0120585ℎ119905ℎ)

120585 119903+1

=0

119909+

119898119910

119863119898minus1

119909+119903+1

sumℎ=1

ℎ120585 ℎ

119863ℎminus1

119909119863119909

119890(sum119903+1

ℎ=0120585ℎ119905ℎ+119909119905+119910119905119898)

=infin sum119899=0

119867119860(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-generalized

Gou

ld-H

opperp

olyn

omials(fo

r119903=

1

theG

ould-H

opper-Hermite

polyno

mials119867

119867(119898)

119899(119909

119910)andfor

119903=

2the

Gou

ld-H

opperc

lassical

2-orthogon

alpo

lyno

mials)

(XIII)

(1minus

119905 )119904+1

1

(1minus

119905 )119904+1

119909+

119898119910

119863119898minus1

119909minus

119898+

1

1minus

119863119909

119863119909

1

(1minus

119905 )119904+1119890119909119905+119910119905119898

=infin sum119899=0

119867119866(119898119904)

119899(119909

119910)

119905119899

TheG

ould-H

opper-Miller-Lee

polyno

mials(fo

r119904=

0the

Gou

ld-H

opper-trun

catedexpo

nential

polyno

mials119867

119890119898 119899(119909

119910)andfor

119904=

120573minus

1Gou

ld-H

opper-mod

ified

Laguerre

polyno

mials119867

119891(119898120573)

119899(119909

119910))

(XIV

)(119890119905

+1)

2119905

2119905

(119890119905+

1)

119909+

119898119910

119863119898minus1

119909+

119890119863119909

(1minus

119863119909)

+1

(119890119863119909

+1)

119863119909

2119905

(119890119905+

1)119890119909119905+119910119905119898

=infin sum119899=0

119867119866(119898)

119899(119909

119910)

119905119899 119899

TheG

ould-H

opper-Genocchi

polyno

mials

International Journal of Analysis 7

If 120601(119910 119905) is an invertible series and 1206011015840

(119910 119905)120601(119910 119905) hasTaylorrsquos series expansion in powers of 119905 then in view of theidentity

119863119909

119890119909119905

120601 (119910 119905) = 119905 (119890119909119905

120601 (119910 119905)) (22)

we can write

1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119890119909119905

120601 (119910 119905) =1206011015840

(119910 119905)

120601 (119910 119905)(119890119909119905

120601 (119910 119905)) (23)

Now using (23) in the lhs of (21) we find

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899 (24)

Making use of generating function (14) in the lhs of theabove equation we have

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

)

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899

(25)

which on equating the coefficients of like powers of 119905 in bothsides gives

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

) 119901119899

(119909 119910) = 119901119899+1

(119909 119910) (26)

Thus in view of monomiality principle equation (6) theabove equation yields assertion (19) of Lemma 1 Again usingidentity (22) in (14) we have

119863119909

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 =

infin

sum119899=1

119901119899minus1

(119909 119910)119905119899

(119899 minus 1) (27)

Equating the coefficients of like powers of 119905 in both sidesof (27) we find

119863119909

119901119899

(119909 119910) = 119899119901119899minus1

(119909 119910) (119899 ge 1) (28)

which in view of monomiality principle equation (7) yieldsassertion (20) of Lemma 1

Remark 2 The operators given by (19) and (20) satisfycommutation relation (8) Also using expressions (19) and(20) in (9) we get the following differential equation satisfiedby 2VgP 119901

119899(119909 119910)

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

minus 119899) 119901119899

(119909 119910) = 0 (29)

Remark 3 Since 1199010(119909 119910) = 1 therefore in view of monomi-

ality principle equation (10) we have

119901119899

(119909 119910) = (119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

)

119899

1 (1199010

(119909 119910) = 1) (30)

Also in view of (11) (14) and (19) we have

exp (119901119905) 1 = 119890

119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 (31)

Now we proceed to introduce the 2-variable general-Appell polynomials (2VgAP) In order to derive the gener-ating functions for the 2VgAP we take the 2VgP 119901

119899(119909 119910) as

the base in the Appell polynomials generating function (1)Thus replacing 119909 by the multiplicative operator

119901of the

2VgP 119901119899(119909 119910) in the lhs of (1) and denoting the resultant

2VgAP by119901119860119899(119909 119910) we have

119860 (119905) 119890(119901119905)

=

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (32)

Now using (31) in the exponential term in the lhs of(32) we get the generating function for

119901119860119899(119909 119910) as

119860 (119905) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (33)

In view of (5) generating function (33) can be expressedequivalently as

1

119892 (119905)119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (34)

Now we frame the 2VgAP119901119860119899(119909 119910) within the context

of monomiality principle formalism We prove the followingresults

Theorem 4 The 2VgAP119901119860119899(119909 119910) are quasimonomial with

respect to the following multiplicative and derivative operators

119901119860

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

(35a)

or equivalently

119901119860

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

minus1198921015840

(119863119909)

119892 (119863119909)

(35b)

119901119860

= 119863119909 (36)

respectively

Proof Differentiating (33) partially with respect to 119905 we find

(119909 +1206011015840

(119910 119905)

120601 (119910 119905)+

1198601015840

(119905)

119860 (119905)) 119860 (119905) 119890

119909119905

120601 (119910 119905)

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(37)

Since 119860(119905) and 120601(119910 119905) are invertible series of 119905 therefore1198601015840

(119905)119860(119905) and 1206011015840

(119910 119905)120601(119910 119905) possess power series expan-sions of 119905 Thus in view of identity (22) we have

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119860 (119905) 119890119909119905

120601 (119910 119905)

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(38)

8 International Journal of Analysis

which on using generating function (33) becomes

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

)

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(39)

or equivalentlyinfin

sum119899=0

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119901119860119899

(119909 119910)119905119899

119899

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(40)

Now equating the coefficients of like powers of 119905 in theabove equation we find

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119901119860119899

(119909 119910) =119901119860119899+1

(119909 119910)

(41)

which in view of (6) yields assertion (35a) of Theorem 4Also in view of relation (5) assertion (35a) can be expressedequivalently as (35b)

Again in view of identity (22) we have

119863119909

119860 (119905) 119890119909119905

120601 (119910 119905) = 119905119860 (119905) 119890119909119905

120601 (119910 119905) (42)

which on using generating function (33) becomes

119863119909

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 =

infin

sum119899=1

119901119860119899minus1

(119909 119910)119905119899

(119899 minus 1) (43)

Equating the coefficients of like powers of 119905 in the aboveequation we find

119863119909

119901119860119899

(119909 119910) = 119899119901119860119899minus1

(119909 119910) (119899 ge 1) (44)

which in view of (7) yields assertion (36) ofTheorem 4

Theorem 5 The 2VgAP119901119860119899

(119909 119910) satisfy the following differ-ential equations

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

+1198601015840

(119863119909)

119860 (119863119909)

119863119909

minus 119899)119901119860119899

(119909 119910) = 0

(45a)

or equivalently

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

minus1198921015840

(119863119909)

119892 (119863119909)

119863119909

minus 119899)119901119860119899

(119909 119910) = 0

(45b)

Proof Using (35a) and (36) in (9) we get assertion (45a) Fur-ther using (35b) and (36) in (9) we get assertion (45b)

Note 1 With the help of the results derived above and bytaking 119860(119905) (or 119892(119905)) of the Appell polynomials listed inTable 1 we can derive the generating function and otherresults for the members belonging to 2VgAP family

3 Examples

We consider examples of certain members belonging to the2VgAP family

Taking 120601(119910 119905) = 119890119910119905119898

(that is when the 2VgP 119901119899(119909 119910)

reduces to the GHP 119867(119898)

119899(119909 119910)) in generating function

(33) we find that the Gould-Hopper-Appell polynomials(GHAP)

119867119860(119898)

119899(119909 119910) are defined by the following generating

function

119860 (119905) 119890(119909119905+119910119905

119898)

=

infin

sum119899=0

119867119860(119898)

119899(119909 119910)

119905119899

119899(46)

or equivalently

1

119892 (119905)119890(119909119905+119910119905

119898)

=

infin

sum119899=0

119867119860(119898)

119899(119909 119910)

119905119899

119899 (47)

Using (1) in (46) (or (3) in (47)) we get the followingseries definition for

119867119860(119898)

119899(119909 119910) in terms of the Appell

polynomials 119860119899(119909)

119867119860(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119860119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (48)

In view of (35a) (35b) and (36) we note that the GHAP119867

119860(119898)

119899(119909 119910) are quasimonomial under the action of the

following multiplicative and derivative operators

119867(119898)119860

= 119909 + 119898119910119863119898minus1

119909+

1198601015840

(119863119909)

119860 (119863119909)

(49a)

or equivalently

119867(119898)119860

= 119909 + 119898119910119863119898minus1

119909minus

1198921015840

(119863119909)

119892 (119863119909)

(49b)

119867(119898)119860

= 119863119909 (50)

respectively Also in view of (45a) and (45b) we find thatthe GHAP

119867119860(119898)

119899(119909 119910) satisfy the following differential

equation

(119909119863119909

+ 119898119910119863119898

119909+

1198601015840

(119863119909)

119860 (119863119909)

119863119909

minus 119899)119867

119860(119898)

119899(119909 119910) = 0

(51a)

or equivalently

(119909119863119909

+ 119898119910119863119898

119909minus

1198921015840

(119863119909)

119892 (119863119909)

119863119909

minus 119899)119867

119860(119898)

119899(119909 119910) = 0

(51b)

Remark 6 In view of (16) and (17) we note that for 119898 =

2 the GHAP119867

119860(119898)

119899(119909 119910) reduce to the Hermite-Appell

polynomials (HAP)119867

119860119899(119909 119910) Therefore taking 119898 = 2 in

(46) (47) (48) (49a) (49b) (50) (51a) and (51b) we get thecorresponding results for the HAP

119867119860119899(119909 119910)

International Journal of Analysis 9

Remark 7 In view of (16) we note that the 2VHKdFP119867119899(119909 119910) are related to the classical Hermite polynomials

119867119899(119909) [11] or 119867119890

119899(119909) as

119867119899

(2119909 minus1) = 119867119899

(119909)

119867119899

(119909 minus1

2) = 119867119890

119899(119909)

(52)

Therefore taking 119910 = minus1 and replacing 119909 by 2119909 (or taking119910 = minus12) in (46)ndash(51b) we get the corresponding resultsfor the classical Hermite-Appell polynomials

119867119860119899(119909) (or

119867119890119860119899(119909))

There are several members belonging to 2VgP familyThus the results for the corresponding 2VgAP can be obtainedby taking other examples We present the list of somemembers belonging to the GHAP family in Table 2

Note 2 Since for 119898 = 2 the GHAP119867

119860119898

119899(119909 119910) reduce to the

HAP119867

119860119899(119909 119910) therefore for 119898 = 2 Table 2 gives the list of

the corresponding HAP119867

119860119899(119909 119910)

The results established in this paper are general andinclude new families of special polynomials consequentlyintroducing many new special polynomials

Appendix

New classes of Bernoulli numbers and polynomials areintroduced which are used to evaluate partial sums involv-ing other special polynomials see for example [21 22]Here we consider the Gould-Hopper-Bernoulli polyno-mials (GHBP) Gould-Hopper-Euler polynomials (GHEP)Hermite-Bernoulli polynomials (HBP) Hermite-Euler poly-nomials (HEP) classical Hermite-Bernoulli polynomials(cHBP) and classical Hermite-Euler polynomials (cHEP)We give the surface plots of these polynomials for suitablevalues of the parameters and indices Also we give the graphsof the corresponding single-variable polynomials

The GHBP119867

119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) and HEP

119867119864119899(119909 119910) are defined by the following

series

119867119861(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119861119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A1)

119867119864(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119864119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A2)

119867119861119899

(119909 119910) = 119899

[1198992]

sum119903=0

119861119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A3)

119867119864119899

(119909 119910) = 119899

[1198992]

sum119903=0

119864119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A4)

respectively Taking 119910 = minus12 in (A3) and (A4) we get theseries definitions for the cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909)

as

119867119861119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119861119899minus2119903

(119909)

(119899 minus 2119903)119903 (A5)

119867119864119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119864119899minus2119903

(119909)

(119899 minus 2119903)119903 (A6)

respectivelyTo draw the surface plots of these polynomials we use

the values of the Bernoulli polynomials 119861119899(119909) and the Euler

polynomials 119864119899(119909) for 119899 = 0 1 2 3 4 and 5 We give the list

of the first fewBernoulli and the Euler polynomials in Table 3Now we consider the GHBP

119867119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) HEP

119867119864119899(119909 119910) cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909) for 119898 = 3 and 119899 = 5 so that

we have

119867119861(3)

5(119909 119910) = 119861

5(119909) + 60119861

2(119909) 119910 (A7)

119867119864(3)

5(119909 119910) = 119864

5(119909) + 60119864

2(119909) 119910 (A8)

1198671198615

(119909 119910) = 1198615

(119909) + 201198613

(119909) 119910 + 601198611

(119909) 1199102

(A9)

1198671198645

(119909 119910) = 1198645

(119909) + 201198643

(119909) 119910 + 601198641

(119909) 1199102

(A10)

1198671198901198615

(119909) = 1198615

(119909) minus 101198613

(119909) + 151198611

(119909) (A11)

1198671198901198645

(119909) = 1198645

(119909) minus 101198643

(119909) + 151198641

(119909) (A12)

respectively Using the particular values of 119861119899(119909) and 119864

119899(119909)

given in Table 3 we find

119867119861(3)

5(119909 119910)=119909

5

minus5

21199094

+5

31199093

+601199092

119910minus60119909119910minus1

6119909+

1

10119910

(A13)

119867119864(3)

5(119909 119910)=119909

5

minus5

21199094

+601199092

119910+5

31199092

minus60119909119910minus1

2+

1

10119910

(A14)

119867

1198615

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 +5

31199093

+ 601199091199102

minus 601199092

119910 + 10119909119910 minus 301199102

minus1

6119909

(A15)

1198671198645

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 + 601199091199102

minus 301199092

119910 +5

31199092

minus 301199102

+10

3119910 minus

1

2

(A16)

1198671198901198615

(119909) = 1199095

minus5

21199094

minus25

31199093

+ 151199092

+59

6119909 minus

15

2 (A17)

1198671198901198645

(119909) = 1199095

minus5

21199094

minus 101199093

+50

31199092

+ 15119909 minus29

3 (A18)

respectively

10 International Journal of Analysis

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(a)

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(b)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(c)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(d)

minus5 0 5minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(e)minus5 0 5

minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(f)

Figure 1

Table 3 List of the first few Bernoulli and the Euler polynomials

119899 0 1 2 3 4 5

119861119899(119909) 1 119909 minus

1

21199092

minus 119909 +1

61199093

minus3

21199092

+119909

21199094

minus 21199093

+ 1199092

minus1

301199095

minus5

21199094

+5

31199093

minus119909

6

119864119899(119909) 1 119909 minus

1

21199092

minus 119909 1199093

minus3

21199092

+1

61199094

minus 21199093

+2

3119909 119909

5

minus5

21199094

+5

31199092

minus1

2

International Journal of Analysis 11

In view of equations (A13)ndash(A18) we get Figure 1

Acknowledgments

The authors are thankful to the anonymous referee for usefulsuggestions towards the improvement of the paperThis workhas been done under the Senior Research Fellowship (OfficeMemo no AcadD-1562MR) sanctioned to the secondauthor by the University Grants Commission Governmentof India New Delhi

References

[1] P Appell ldquoSur une classe de polynomesrdquo Annales Scientifiquesde lrsquoEcole Normale Superieure vol 9 pp 119ndash144 1880

[2] S Roman The Umbral Calculus vol 111 of Pure and AppliedMathematics Academic Press New York NY USA 1984

[3] E D Rainville Special Functions Macmillan New York NYUSA 1960 reprinted by Chelsea Bronx NY USA 1971

[4] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol III McGraw-Hill NewYork NY USA 1955

[5] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol II McGraw-Hill NewYork NY USA 1953

[6] G Bretti P Natalini and P E Ricci ldquoGeneralizations ofthe Bernoulli and Appell polynomialsrdquo Abstract and AppliedAnalysis vol 2004 no 7 pp 613ndash623 2004

[7] Q-M Luo and H M Srivastava ldquoSome generalizations of theApostol-Bernoulli and Apostol-Euler polynomialsrdquo Journal ofMathematical Analysis and Applications vol 308 no 1 pp 290ndash302 2005

[8] T M Apostol ldquoOn the Lerch zeta functionrdquo Pacific Journal ofMathematics vol 1 pp 161ndash167 1951

[9] Q-M Luo ldquoApostol-Euler polynomials of higher order andGaussian hypergeometric functionsrdquo Taiwanese Journal ofMathematics vol 10 no 4 pp 917ndash925 2006

[10] K Douak ldquoThe relation of the 119889-orthogonal polynomials tothe Appell polynomialsrdquo Journal of Computational and AppliedMathematics vol 70 no 2 pp 279ndash295 1996

[11] L C Andrews Special Functions for Engineers and AppliedMathematicians Macmillan New York NY USA 1985

[12] G Dattoli S Lorenzutta and D Sacchetti ldquoIntegral represen-tations of new families of polynomialsrdquo Italian Journal of Pureand Applied Mathematics no 15 pp 19ndash28 2004

[13] W Magnus F Oberhettinger and R P Soni Formulas andTheorems for the Special Functions of Mathematical Physicsvol 52 of Die Grundlehren der mathematischen WissenschaftenSpringer New York NY USA 3rd edition 1966

[14] G Dattoli M Migliorati and H M Srivastava ldquoSheffer poly-nomials monomiality principle algebraic methods and thetheory of classical polynomialsrdquo Mathematical and ComputerModelling vol 45 no 9-10 pp 1033ndash1041 2007

[15] J F Steffensen ldquoThe poweroid an extension of the mathemat-ical notion of powerrdquo Acta Mathematica vol 73 pp 333ndash3661941

[16] G Dattoli ldquoHermite-Bessel and Laguerre-Bessel functions aby-product of the monomiality principlerdquo in Advanced SpecialFunctions and Applications (Melfi 1999) vol 1 of ProcMelfi SchAdv Top Math Phys pp 147ndash164 Aracne Rome Italy 2000

[17] G Bretti C Cesarano and P E Ricci ldquoLaguerre-type expo-nentials and generalized Appell polynomialsrdquo Computers ampMathematics with Applications vol 48 no 5-6 pp 833ndash8392004

[18] P Appell and J Kampe de Feriet Fonctions Hypergeometriqueset Hyperspheriques Polynomes drsquo Hermite Gauthier-VillarsParis France 1926

[19] H W Gould and A T Hopper ldquoOperational formulas con-nected with two generalizations of Hermite polynomialsrdquoDukeMathematical Journal vol 29 pp 51ndash63 1962

[20] S Khan G Yasmin R Khan and N A M Hassan ldquoHermite-based Appell polynomials properties and applicationsrdquo Journalof Mathematical Analysis and Applications vol 351 no 2 pp756ndash764 2009

[21] G Dattoli C Cesarano and S Lorenzutta ldquoBernoulli numbersand polynomials from amore general point of viewrdquo RendicontidiMatematica e delle sueApplicazioni vol 22 pp 193ndash202 2002

[22] G Dattoli S Lorenzutta and C Cesarano ldquoFinite sums andgeneralized forms of Bernoulli polynomialsrdquo Rendiconti diMatematica e delle sue Applicazioni vol 19 no 3 pp 385ndash3911999

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article General-Appell Polynomials within the ...downloads.hindawi.com/journals/ijanal/2013/328032.pdf · In order to introduce the -variable general-Appell polyno-mials

International Journal of Analysis 7

If 120601(119910 119905) is an invertible series and 1206011015840

(119910 119905)120601(119910 119905) hasTaylorrsquos series expansion in powers of 119905 then in view of theidentity

119863119909

119890119909119905

120601 (119910 119905) = 119905 (119890119909119905

120601 (119910 119905)) (22)

we can write

1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119890119909119905

120601 (119910 119905) =1206011015840

(119910 119905)

120601 (119910 119905)(119890119909119905

120601 (119910 119905)) (23)

Now using (23) in the lhs of (21) we find

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899 (24)

Making use of generating function (14) in the lhs of theabove equation we have

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

)

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 =

infin

sum119899=0

119901119899+1

(119909 119910)119905119899

119899

(25)

which on equating the coefficients of like powers of 119905 in bothsides gives

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

) 119901119899

(119909 119910) = 119901119899+1

(119909 119910) (26)

Thus in view of monomiality principle equation (6) theabove equation yields assertion (19) of Lemma 1 Again usingidentity (22) in (14) we have

119863119909

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 =

infin

sum119899=1

119901119899minus1

(119909 119910)119905119899

(119899 minus 1) (27)

Equating the coefficients of like powers of 119905 in both sidesof (27) we find

119863119909

119901119899

(119909 119910) = 119899119901119899minus1

(119909 119910) (119899 ge 1) (28)

which in view of monomiality principle equation (7) yieldsassertion (20) of Lemma 1

Remark 2 The operators given by (19) and (20) satisfycommutation relation (8) Also using expressions (19) and(20) in (9) we get the following differential equation satisfiedby 2VgP 119901

119899(119909 119910)

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

minus 119899) 119901119899

(119909 119910) = 0 (29)

Remark 3 Since 1199010(119909 119910) = 1 therefore in view of monomi-

ality principle equation (10) we have

119901119899

(119909 119910) = (119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

)

119899

1 (1199010

(119909 119910) = 1) (30)

Also in view of (11) (14) and (19) we have

exp (119901119905) 1 = 119890

119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119899

(119909 119910)119905119899

119899 (31)

Now we proceed to introduce the 2-variable general-Appell polynomials (2VgAP) In order to derive the gener-ating functions for the 2VgAP we take the 2VgP 119901

119899(119909 119910) as

the base in the Appell polynomials generating function (1)Thus replacing 119909 by the multiplicative operator

119901of the

2VgP 119901119899(119909 119910) in the lhs of (1) and denoting the resultant

2VgAP by119901119860119899(119909 119910) we have

119860 (119905) 119890(119901119905)

=

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (32)

Now using (31) in the exponential term in the lhs of(32) we get the generating function for

119901119860119899(119909 119910) as

119860 (119905) 119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (33)

In view of (5) generating function (33) can be expressedequivalently as

1

119892 (119905)119890119909119905

120601 (119910 119905) =

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 (34)

Now we frame the 2VgAP119901119860119899(119909 119910) within the context

of monomiality principle formalism We prove the followingresults

Theorem 4 The 2VgAP119901119860119899(119909 119910) are quasimonomial with

respect to the following multiplicative and derivative operators

119901119860

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

(35a)

or equivalently

119901119860

= 119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

minus1198921015840

(119863119909)

119892 (119863119909)

(35b)

119901119860

= 119863119909 (36)

respectively

Proof Differentiating (33) partially with respect to 119905 we find

(119909 +1206011015840

(119910 119905)

120601 (119910 119905)+

1198601015840

(119905)

119860 (119905)) 119860 (119905) 119890

119909119905

120601 (119910 119905)

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(37)

Since 119860(119905) and 120601(119910 119905) are invertible series of 119905 therefore1198601015840

(119905)119860(119905) and 1206011015840

(119910 119905)120601(119910 119905) possess power series expan-sions of 119905 Thus in view of identity (22) we have

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119860 (119905) 119890119909119905

120601 (119910 119905)

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(38)

8 International Journal of Analysis

which on using generating function (33) becomes

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

)

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(39)

or equivalentlyinfin

sum119899=0

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119901119860119899

(119909 119910)119905119899

119899

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(40)

Now equating the coefficients of like powers of 119905 in theabove equation we find

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119901119860119899

(119909 119910) =119901119860119899+1

(119909 119910)

(41)

which in view of (6) yields assertion (35a) of Theorem 4Also in view of relation (5) assertion (35a) can be expressedequivalently as (35b)

Again in view of identity (22) we have

119863119909

119860 (119905) 119890119909119905

120601 (119910 119905) = 119905119860 (119905) 119890119909119905

120601 (119910 119905) (42)

which on using generating function (33) becomes

119863119909

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 =

infin

sum119899=1

119901119860119899minus1

(119909 119910)119905119899

(119899 minus 1) (43)

Equating the coefficients of like powers of 119905 in the aboveequation we find

119863119909

119901119860119899

(119909 119910) = 119899119901119860119899minus1

(119909 119910) (119899 ge 1) (44)

which in view of (7) yields assertion (36) ofTheorem 4

Theorem 5 The 2VgAP119901119860119899

(119909 119910) satisfy the following differ-ential equations

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

+1198601015840

(119863119909)

119860 (119863119909)

119863119909

minus 119899)119901119860119899

(119909 119910) = 0

(45a)

or equivalently

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

minus1198921015840

(119863119909)

119892 (119863119909)

119863119909

minus 119899)119901119860119899

(119909 119910) = 0

(45b)

Proof Using (35a) and (36) in (9) we get assertion (45a) Fur-ther using (35b) and (36) in (9) we get assertion (45b)

Note 1 With the help of the results derived above and bytaking 119860(119905) (or 119892(119905)) of the Appell polynomials listed inTable 1 we can derive the generating function and otherresults for the members belonging to 2VgAP family

3 Examples

We consider examples of certain members belonging to the2VgAP family

Taking 120601(119910 119905) = 119890119910119905119898

(that is when the 2VgP 119901119899(119909 119910)

reduces to the GHP 119867(119898)

119899(119909 119910)) in generating function

(33) we find that the Gould-Hopper-Appell polynomials(GHAP)

119867119860(119898)

119899(119909 119910) are defined by the following generating

function

119860 (119905) 119890(119909119905+119910119905

119898)

=

infin

sum119899=0

119867119860(119898)

119899(119909 119910)

119905119899

119899(46)

or equivalently

1

119892 (119905)119890(119909119905+119910119905

119898)

=

infin

sum119899=0

119867119860(119898)

119899(119909 119910)

119905119899

119899 (47)

Using (1) in (46) (or (3) in (47)) we get the followingseries definition for

119867119860(119898)

119899(119909 119910) in terms of the Appell

polynomials 119860119899(119909)

119867119860(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119860119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (48)

In view of (35a) (35b) and (36) we note that the GHAP119867

119860(119898)

119899(119909 119910) are quasimonomial under the action of the

following multiplicative and derivative operators

119867(119898)119860

= 119909 + 119898119910119863119898minus1

119909+

1198601015840

(119863119909)

119860 (119863119909)

(49a)

or equivalently

119867(119898)119860

= 119909 + 119898119910119863119898minus1

119909minus

1198921015840

(119863119909)

119892 (119863119909)

(49b)

119867(119898)119860

= 119863119909 (50)

respectively Also in view of (45a) and (45b) we find thatthe GHAP

119867119860(119898)

119899(119909 119910) satisfy the following differential

equation

(119909119863119909

+ 119898119910119863119898

119909+

1198601015840

(119863119909)

119860 (119863119909)

119863119909

minus 119899)119867

119860(119898)

119899(119909 119910) = 0

(51a)

or equivalently

(119909119863119909

+ 119898119910119863119898

119909minus

1198921015840

(119863119909)

119892 (119863119909)

119863119909

minus 119899)119867

119860(119898)

119899(119909 119910) = 0

(51b)

Remark 6 In view of (16) and (17) we note that for 119898 =

2 the GHAP119867

119860(119898)

119899(119909 119910) reduce to the Hermite-Appell

polynomials (HAP)119867

119860119899(119909 119910) Therefore taking 119898 = 2 in

(46) (47) (48) (49a) (49b) (50) (51a) and (51b) we get thecorresponding results for the HAP

119867119860119899(119909 119910)

International Journal of Analysis 9

Remark 7 In view of (16) we note that the 2VHKdFP119867119899(119909 119910) are related to the classical Hermite polynomials

119867119899(119909) [11] or 119867119890

119899(119909) as

119867119899

(2119909 minus1) = 119867119899

(119909)

119867119899

(119909 minus1

2) = 119867119890

119899(119909)

(52)

Therefore taking 119910 = minus1 and replacing 119909 by 2119909 (or taking119910 = minus12) in (46)ndash(51b) we get the corresponding resultsfor the classical Hermite-Appell polynomials

119867119860119899(119909) (or

119867119890119860119899(119909))

There are several members belonging to 2VgP familyThus the results for the corresponding 2VgAP can be obtainedby taking other examples We present the list of somemembers belonging to the GHAP family in Table 2

Note 2 Since for 119898 = 2 the GHAP119867

119860119898

119899(119909 119910) reduce to the

HAP119867

119860119899(119909 119910) therefore for 119898 = 2 Table 2 gives the list of

the corresponding HAP119867

119860119899(119909 119910)

The results established in this paper are general andinclude new families of special polynomials consequentlyintroducing many new special polynomials

Appendix

New classes of Bernoulli numbers and polynomials areintroduced which are used to evaluate partial sums involv-ing other special polynomials see for example [21 22]Here we consider the Gould-Hopper-Bernoulli polyno-mials (GHBP) Gould-Hopper-Euler polynomials (GHEP)Hermite-Bernoulli polynomials (HBP) Hermite-Euler poly-nomials (HEP) classical Hermite-Bernoulli polynomials(cHBP) and classical Hermite-Euler polynomials (cHEP)We give the surface plots of these polynomials for suitablevalues of the parameters and indices Also we give the graphsof the corresponding single-variable polynomials

The GHBP119867

119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) and HEP

119867119864119899(119909 119910) are defined by the following

series

119867119861(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119861119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A1)

119867119864(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119864119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A2)

119867119861119899

(119909 119910) = 119899

[1198992]

sum119903=0

119861119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A3)

119867119864119899

(119909 119910) = 119899

[1198992]

sum119903=0

119864119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A4)

respectively Taking 119910 = minus12 in (A3) and (A4) we get theseries definitions for the cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909)

as

119867119861119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119861119899minus2119903

(119909)

(119899 minus 2119903)119903 (A5)

119867119864119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119864119899minus2119903

(119909)

(119899 minus 2119903)119903 (A6)

respectivelyTo draw the surface plots of these polynomials we use

the values of the Bernoulli polynomials 119861119899(119909) and the Euler

polynomials 119864119899(119909) for 119899 = 0 1 2 3 4 and 5 We give the list

of the first fewBernoulli and the Euler polynomials in Table 3Now we consider the GHBP

119867119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) HEP

119867119864119899(119909 119910) cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909) for 119898 = 3 and 119899 = 5 so that

we have

119867119861(3)

5(119909 119910) = 119861

5(119909) + 60119861

2(119909) 119910 (A7)

119867119864(3)

5(119909 119910) = 119864

5(119909) + 60119864

2(119909) 119910 (A8)

1198671198615

(119909 119910) = 1198615

(119909) + 201198613

(119909) 119910 + 601198611

(119909) 1199102

(A9)

1198671198645

(119909 119910) = 1198645

(119909) + 201198643

(119909) 119910 + 601198641

(119909) 1199102

(A10)

1198671198901198615

(119909) = 1198615

(119909) minus 101198613

(119909) + 151198611

(119909) (A11)

1198671198901198645

(119909) = 1198645

(119909) minus 101198643

(119909) + 151198641

(119909) (A12)

respectively Using the particular values of 119861119899(119909) and 119864

119899(119909)

given in Table 3 we find

119867119861(3)

5(119909 119910)=119909

5

minus5

21199094

+5

31199093

+601199092

119910minus60119909119910minus1

6119909+

1

10119910

(A13)

119867119864(3)

5(119909 119910)=119909

5

minus5

21199094

+601199092

119910+5

31199092

minus60119909119910minus1

2+

1

10119910

(A14)

119867

1198615

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 +5

31199093

+ 601199091199102

minus 601199092

119910 + 10119909119910 minus 301199102

minus1

6119909

(A15)

1198671198645

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 + 601199091199102

minus 301199092

119910 +5

31199092

minus 301199102

+10

3119910 minus

1

2

(A16)

1198671198901198615

(119909) = 1199095

minus5

21199094

minus25

31199093

+ 151199092

+59

6119909 minus

15

2 (A17)

1198671198901198645

(119909) = 1199095

minus5

21199094

minus 101199093

+50

31199092

+ 15119909 minus29

3 (A18)

respectively

10 International Journal of Analysis

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(a)

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(b)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(c)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(d)

minus5 0 5minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(e)minus5 0 5

minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(f)

Figure 1

Table 3 List of the first few Bernoulli and the Euler polynomials

119899 0 1 2 3 4 5

119861119899(119909) 1 119909 minus

1

21199092

minus 119909 +1

61199093

minus3

21199092

+119909

21199094

minus 21199093

+ 1199092

minus1

301199095

minus5

21199094

+5

31199093

minus119909

6

119864119899(119909) 1 119909 minus

1

21199092

minus 119909 1199093

minus3

21199092

+1

61199094

minus 21199093

+2

3119909 119909

5

minus5

21199094

+5

31199092

minus1

2

International Journal of Analysis 11

In view of equations (A13)ndash(A18) we get Figure 1

Acknowledgments

The authors are thankful to the anonymous referee for usefulsuggestions towards the improvement of the paperThis workhas been done under the Senior Research Fellowship (OfficeMemo no AcadD-1562MR) sanctioned to the secondauthor by the University Grants Commission Governmentof India New Delhi

References

[1] P Appell ldquoSur une classe de polynomesrdquo Annales Scientifiquesde lrsquoEcole Normale Superieure vol 9 pp 119ndash144 1880

[2] S Roman The Umbral Calculus vol 111 of Pure and AppliedMathematics Academic Press New York NY USA 1984

[3] E D Rainville Special Functions Macmillan New York NYUSA 1960 reprinted by Chelsea Bronx NY USA 1971

[4] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol III McGraw-Hill NewYork NY USA 1955

[5] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol II McGraw-Hill NewYork NY USA 1953

[6] G Bretti P Natalini and P E Ricci ldquoGeneralizations ofthe Bernoulli and Appell polynomialsrdquo Abstract and AppliedAnalysis vol 2004 no 7 pp 613ndash623 2004

[7] Q-M Luo and H M Srivastava ldquoSome generalizations of theApostol-Bernoulli and Apostol-Euler polynomialsrdquo Journal ofMathematical Analysis and Applications vol 308 no 1 pp 290ndash302 2005

[8] T M Apostol ldquoOn the Lerch zeta functionrdquo Pacific Journal ofMathematics vol 1 pp 161ndash167 1951

[9] Q-M Luo ldquoApostol-Euler polynomials of higher order andGaussian hypergeometric functionsrdquo Taiwanese Journal ofMathematics vol 10 no 4 pp 917ndash925 2006

[10] K Douak ldquoThe relation of the 119889-orthogonal polynomials tothe Appell polynomialsrdquo Journal of Computational and AppliedMathematics vol 70 no 2 pp 279ndash295 1996

[11] L C Andrews Special Functions for Engineers and AppliedMathematicians Macmillan New York NY USA 1985

[12] G Dattoli S Lorenzutta and D Sacchetti ldquoIntegral represen-tations of new families of polynomialsrdquo Italian Journal of Pureand Applied Mathematics no 15 pp 19ndash28 2004

[13] W Magnus F Oberhettinger and R P Soni Formulas andTheorems for the Special Functions of Mathematical Physicsvol 52 of Die Grundlehren der mathematischen WissenschaftenSpringer New York NY USA 3rd edition 1966

[14] G Dattoli M Migliorati and H M Srivastava ldquoSheffer poly-nomials monomiality principle algebraic methods and thetheory of classical polynomialsrdquo Mathematical and ComputerModelling vol 45 no 9-10 pp 1033ndash1041 2007

[15] J F Steffensen ldquoThe poweroid an extension of the mathemat-ical notion of powerrdquo Acta Mathematica vol 73 pp 333ndash3661941

[16] G Dattoli ldquoHermite-Bessel and Laguerre-Bessel functions aby-product of the monomiality principlerdquo in Advanced SpecialFunctions and Applications (Melfi 1999) vol 1 of ProcMelfi SchAdv Top Math Phys pp 147ndash164 Aracne Rome Italy 2000

[17] G Bretti C Cesarano and P E Ricci ldquoLaguerre-type expo-nentials and generalized Appell polynomialsrdquo Computers ampMathematics with Applications vol 48 no 5-6 pp 833ndash8392004

[18] P Appell and J Kampe de Feriet Fonctions Hypergeometriqueset Hyperspheriques Polynomes drsquo Hermite Gauthier-VillarsParis France 1926

[19] H W Gould and A T Hopper ldquoOperational formulas con-nected with two generalizations of Hermite polynomialsrdquoDukeMathematical Journal vol 29 pp 51ndash63 1962

[20] S Khan G Yasmin R Khan and N A M Hassan ldquoHermite-based Appell polynomials properties and applicationsrdquo Journalof Mathematical Analysis and Applications vol 351 no 2 pp756ndash764 2009

[21] G Dattoli C Cesarano and S Lorenzutta ldquoBernoulli numbersand polynomials from amore general point of viewrdquo RendicontidiMatematica e delle sueApplicazioni vol 22 pp 193ndash202 2002

[22] G Dattoli S Lorenzutta and C Cesarano ldquoFinite sums andgeneralized forms of Bernoulli polynomialsrdquo Rendiconti diMatematica e delle sue Applicazioni vol 19 no 3 pp 385ndash3911999

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article General-Appell Polynomials within the ...downloads.hindawi.com/journals/ijanal/2013/328032.pdf · In order to introduce the -variable general-Appell polyno-mials

8 International Journal of Analysis

which on using generating function (33) becomes

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

)

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(39)

or equivalentlyinfin

sum119899=0

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119901119860119899

(119909 119910)119905119899

119899

=

infin

sum119899=0

119901119860119899+1

(119909 119910)119905119899

119899

(40)

Now equating the coefficients of like powers of 119905 in theabove equation we find

(119909 +1206011015840

(119910 119863119909)

120601 (119910 119863119909)

+1198601015840

(119863119909)

119860 (119863119909)

) 119901119860119899

(119909 119910) =119901119860119899+1

(119909 119910)

(41)

which in view of (6) yields assertion (35a) of Theorem 4Also in view of relation (5) assertion (35a) can be expressedequivalently as (35b)

Again in view of identity (22) we have

119863119909

119860 (119905) 119890119909119905

120601 (119910 119905) = 119905119860 (119905) 119890119909119905

120601 (119910 119905) (42)

which on using generating function (33) becomes

119863119909

infin

sum119899=0

119901119860119899

(119909 119910)119905119899

119899 =

infin

sum119899=1

119901119860119899minus1

(119909 119910)119905119899

(119899 minus 1) (43)

Equating the coefficients of like powers of 119905 in the aboveequation we find

119863119909

119901119860119899

(119909 119910) = 119899119901119860119899minus1

(119909 119910) (119899 ge 1) (44)

which in view of (7) yields assertion (36) ofTheorem 4

Theorem 5 The 2VgAP119901119860119899

(119909 119910) satisfy the following differ-ential equations

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

+1198601015840

(119863119909)

119860 (119863119909)

119863119909

minus 119899)119901119860119899

(119909 119910) = 0

(45a)

or equivalently

(119909119863119909

+1206011015840

(119910 119863119909)

120601 (119910 119863119909)

119863119909

minus1198921015840

(119863119909)

119892 (119863119909)

119863119909

minus 119899)119901119860119899

(119909 119910) = 0

(45b)

Proof Using (35a) and (36) in (9) we get assertion (45a) Fur-ther using (35b) and (36) in (9) we get assertion (45b)

Note 1 With the help of the results derived above and bytaking 119860(119905) (or 119892(119905)) of the Appell polynomials listed inTable 1 we can derive the generating function and otherresults for the members belonging to 2VgAP family

3 Examples

We consider examples of certain members belonging to the2VgAP family

Taking 120601(119910 119905) = 119890119910119905119898

(that is when the 2VgP 119901119899(119909 119910)

reduces to the GHP 119867(119898)

119899(119909 119910)) in generating function

(33) we find that the Gould-Hopper-Appell polynomials(GHAP)

119867119860(119898)

119899(119909 119910) are defined by the following generating

function

119860 (119905) 119890(119909119905+119910119905

119898)

=

infin

sum119899=0

119867119860(119898)

119899(119909 119910)

119905119899

119899(46)

or equivalently

1

119892 (119905)119890(119909119905+119910119905

119898)

=

infin

sum119899=0

119867119860(119898)

119899(119909 119910)

119905119899

119899 (47)

Using (1) in (46) (or (3) in (47)) we get the followingseries definition for

119867119860(119898)

119899(119909 119910) in terms of the Appell

polynomials 119860119899(119909)

119867119860(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119860119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (48)

In view of (35a) (35b) and (36) we note that the GHAP119867

119860(119898)

119899(119909 119910) are quasimonomial under the action of the

following multiplicative and derivative operators

119867(119898)119860

= 119909 + 119898119910119863119898minus1

119909+

1198601015840

(119863119909)

119860 (119863119909)

(49a)

or equivalently

119867(119898)119860

= 119909 + 119898119910119863119898minus1

119909minus

1198921015840

(119863119909)

119892 (119863119909)

(49b)

119867(119898)119860

= 119863119909 (50)

respectively Also in view of (45a) and (45b) we find thatthe GHAP

119867119860(119898)

119899(119909 119910) satisfy the following differential

equation

(119909119863119909

+ 119898119910119863119898

119909+

1198601015840

(119863119909)

119860 (119863119909)

119863119909

minus 119899)119867

119860(119898)

119899(119909 119910) = 0

(51a)

or equivalently

(119909119863119909

+ 119898119910119863119898

119909minus

1198921015840

(119863119909)

119892 (119863119909)

119863119909

minus 119899)119867

119860(119898)

119899(119909 119910) = 0

(51b)

Remark 6 In view of (16) and (17) we note that for 119898 =

2 the GHAP119867

119860(119898)

119899(119909 119910) reduce to the Hermite-Appell

polynomials (HAP)119867

119860119899(119909 119910) Therefore taking 119898 = 2 in

(46) (47) (48) (49a) (49b) (50) (51a) and (51b) we get thecorresponding results for the HAP

119867119860119899(119909 119910)

International Journal of Analysis 9

Remark 7 In view of (16) we note that the 2VHKdFP119867119899(119909 119910) are related to the classical Hermite polynomials

119867119899(119909) [11] or 119867119890

119899(119909) as

119867119899

(2119909 minus1) = 119867119899

(119909)

119867119899

(119909 minus1

2) = 119867119890

119899(119909)

(52)

Therefore taking 119910 = minus1 and replacing 119909 by 2119909 (or taking119910 = minus12) in (46)ndash(51b) we get the corresponding resultsfor the classical Hermite-Appell polynomials

119867119860119899(119909) (or

119867119890119860119899(119909))

There are several members belonging to 2VgP familyThus the results for the corresponding 2VgAP can be obtainedby taking other examples We present the list of somemembers belonging to the GHAP family in Table 2

Note 2 Since for 119898 = 2 the GHAP119867

119860119898

119899(119909 119910) reduce to the

HAP119867

119860119899(119909 119910) therefore for 119898 = 2 Table 2 gives the list of

the corresponding HAP119867

119860119899(119909 119910)

The results established in this paper are general andinclude new families of special polynomials consequentlyintroducing many new special polynomials

Appendix

New classes of Bernoulli numbers and polynomials areintroduced which are used to evaluate partial sums involv-ing other special polynomials see for example [21 22]Here we consider the Gould-Hopper-Bernoulli polyno-mials (GHBP) Gould-Hopper-Euler polynomials (GHEP)Hermite-Bernoulli polynomials (HBP) Hermite-Euler poly-nomials (HEP) classical Hermite-Bernoulli polynomials(cHBP) and classical Hermite-Euler polynomials (cHEP)We give the surface plots of these polynomials for suitablevalues of the parameters and indices Also we give the graphsof the corresponding single-variable polynomials

The GHBP119867

119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) and HEP

119867119864119899(119909 119910) are defined by the following

series

119867119861(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119861119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A1)

119867119864(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119864119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A2)

119867119861119899

(119909 119910) = 119899

[1198992]

sum119903=0

119861119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A3)

119867119864119899

(119909 119910) = 119899

[1198992]

sum119903=0

119864119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A4)

respectively Taking 119910 = minus12 in (A3) and (A4) we get theseries definitions for the cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909)

as

119867119861119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119861119899minus2119903

(119909)

(119899 minus 2119903)119903 (A5)

119867119864119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119864119899minus2119903

(119909)

(119899 minus 2119903)119903 (A6)

respectivelyTo draw the surface plots of these polynomials we use

the values of the Bernoulli polynomials 119861119899(119909) and the Euler

polynomials 119864119899(119909) for 119899 = 0 1 2 3 4 and 5 We give the list

of the first fewBernoulli and the Euler polynomials in Table 3Now we consider the GHBP

119867119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) HEP

119867119864119899(119909 119910) cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909) for 119898 = 3 and 119899 = 5 so that

we have

119867119861(3)

5(119909 119910) = 119861

5(119909) + 60119861

2(119909) 119910 (A7)

119867119864(3)

5(119909 119910) = 119864

5(119909) + 60119864

2(119909) 119910 (A8)

1198671198615

(119909 119910) = 1198615

(119909) + 201198613

(119909) 119910 + 601198611

(119909) 1199102

(A9)

1198671198645

(119909 119910) = 1198645

(119909) + 201198643

(119909) 119910 + 601198641

(119909) 1199102

(A10)

1198671198901198615

(119909) = 1198615

(119909) minus 101198613

(119909) + 151198611

(119909) (A11)

1198671198901198645

(119909) = 1198645

(119909) minus 101198643

(119909) + 151198641

(119909) (A12)

respectively Using the particular values of 119861119899(119909) and 119864

119899(119909)

given in Table 3 we find

119867119861(3)

5(119909 119910)=119909

5

minus5

21199094

+5

31199093

+601199092

119910minus60119909119910minus1

6119909+

1

10119910

(A13)

119867119864(3)

5(119909 119910)=119909

5

minus5

21199094

+601199092

119910+5

31199092

minus60119909119910minus1

2+

1

10119910

(A14)

119867

1198615

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 +5

31199093

+ 601199091199102

minus 601199092

119910 + 10119909119910 minus 301199102

minus1

6119909

(A15)

1198671198645

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 + 601199091199102

minus 301199092

119910 +5

31199092

minus 301199102

+10

3119910 minus

1

2

(A16)

1198671198901198615

(119909) = 1199095

minus5

21199094

minus25

31199093

+ 151199092

+59

6119909 minus

15

2 (A17)

1198671198901198645

(119909) = 1199095

minus5

21199094

minus 101199093

+50

31199092

+ 15119909 minus29

3 (A18)

respectively

10 International Journal of Analysis

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(a)

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(b)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(c)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(d)

minus5 0 5minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(e)minus5 0 5

minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(f)

Figure 1

Table 3 List of the first few Bernoulli and the Euler polynomials

119899 0 1 2 3 4 5

119861119899(119909) 1 119909 minus

1

21199092

minus 119909 +1

61199093

minus3

21199092

+119909

21199094

minus 21199093

+ 1199092

minus1

301199095

minus5

21199094

+5

31199093

minus119909

6

119864119899(119909) 1 119909 minus

1

21199092

minus 119909 1199093

minus3

21199092

+1

61199094

minus 21199093

+2

3119909 119909

5

minus5

21199094

+5

31199092

minus1

2

International Journal of Analysis 11

In view of equations (A13)ndash(A18) we get Figure 1

Acknowledgments

The authors are thankful to the anonymous referee for usefulsuggestions towards the improvement of the paperThis workhas been done under the Senior Research Fellowship (OfficeMemo no AcadD-1562MR) sanctioned to the secondauthor by the University Grants Commission Governmentof India New Delhi

References

[1] P Appell ldquoSur une classe de polynomesrdquo Annales Scientifiquesde lrsquoEcole Normale Superieure vol 9 pp 119ndash144 1880

[2] S Roman The Umbral Calculus vol 111 of Pure and AppliedMathematics Academic Press New York NY USA 1984

[3] E D Rainville Special Functions Macmillan New York NYUSA 1960 reprinted by Chelsea Bronx NY USA 1971

[4] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol III McGraw-Hill NewYork NY USA 1955

[5] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol II McGraw-Hill NewYork NY USA 1953

[6] G Bretti P Natalini and P E Ricci ldquoGeneralizations ofthe Bernoulli and Appell polynomialsrdquo Abstract and AppliedAnalysis vol 2004 no 7 pp 613ndash623 2004

[7] Q-M Luo and H M Srivastava ldquoSome generalizations of theApostol-Bernoulli and Apostol-Euler polynomialsrdquo Journal ofMathematical Analysis and Applications vol 308 no 1 pp 290ndash302 2005

[8] T M Apostol ldquoOn the Lerch zeta functionrdquo Pacific Journal ofMathematics vol 1 pp 161ndash167 1951

[9] Q-M Luo ldquoApostol-Euler polynomials of higher order andGaussian hypergeometric functionsrdquo Taiwanese Journal ofMathematics vol 10 no 4 pp 917ndash925 2006

[10] K Douak ldquoThe relation of the 119889-orthogonal polynomials tothe Appell polynomialsrdquo Journal of Computational and AppliedMathematics vol 70 no 2 pp 279ndash295 1996

[11] L C Andrews Special Functions for Engineers and AppliedMathematicians Macmillan New York NY USA 1985

[12] G Dattoli S Lorenzutta and D Sacchetti ldquoIntegral represen-tations of new families of polynomialsrdquo Italian Journal of Pureand Applied Mathematics no 15 pp 19ndash28 2004

[13] W Magnus F Oberhettinger and R P Soni Formulas andTheorems for the Special Functions of Mathematical Physicsvol 52 of Die Grundlehren der mathematischen WissenschaftenSpringer New York NY USA 3rd edition 1966

[14] G Dattoli M Migliorati and H M Srivastava ldquoSheffer poly-nomials monomiality principle algebraic methods and thetheory of classical polynomialsrdquo Mathematical and ComputerModelling vol 45 no 9-10 pp 1033ndash1041 2007

[15] J F Steffensen ldquoThe poweroid an extension of the mathemat-ical notion of powerrdquo Acta Mathematica vol 73 pp 333ndash3661941

[16] G Dattoli ldquoHermite-Bessel and Laguerre-Bessel functions aby-product of the monomiality principlerdquo in Advanced SpecialFunctions and Applications (Melfi 1999) vol 1 of ProcMelfi SchAdv Top Math Phys pp 147ndash164 Aracne Rome Italy 2000

[17] G Bretti C Cesarano and P E Ricci ldquoLaguerre-type expo-nentials and generalized Appell polynomialsrdquo Computers ampMathematics with Applications vol 48 no 5-6 pp 833ndash8392004

[18] P Appell and J Kampe de Feriet Fonctions Hypergeometriqueset Hyperspheriques Polynomes drsquo Hermite Gauthier-VillarsParis France 1926

[19] H W Gould and A T Hopper ldquoOperational formulas con-nected with two generalizations of Hermite polynomialsrdquoDukeMathematical Journal vol 29 pp 51ndash63 1962

[20] S Khan G Yasmin R Khan and N A M Hassan ldquoHermite-based Appell polynomials properties and applicationsrdquo Journalof Mathematical Analysis and Applications vol 351 no 2 pp756ndash764 2009

[21] G Dattoli C Cesarano and S Lorenzutta ldquoBernoulli numbersand polynomials from amore general point of viewrdquo RendicontidiMatematica e delle sueApplicazioni vol 22 pp 193ndash202 2002

[22] G Dattoli S Lorenzutta and C Cesarano ldquoFinite sums andgeneralized forms of Bernoulli polynomialsrdquo Rendiconti diMatematica e delle sue Applicazioni vol 19 no 3 pp 385ndash3911999

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article General-Appell Polynomials within the ...downloads.hindawi.com/journals/ijanal/2013/328032.pdf · In order to introduce the -variable general-Appell polyno-mials

International Journal of Analysis 9

Remark 7 In view of (16) we note that the 2VHKdFP119867119899(119909 119910) are related to the classical Hermite polynomials

119867119899(119909) [11] or 119867119890

119899(119909) as

119867119899

(2119909 minus1) = 119867119899

(119909)

119867119899

(119909 minus1

2) = 119867119890

119899(119909)

(52)

Therefore taking 119910 = minus1 and replacing 119909 by 2119909 (or taking119910 = minus12) in (46)ndash(51b) we get the corresponding resultsfor the classical Hermite-Appell polynomials

119867119860119899(119909) (or

119867119890119860119899(119909))

There are several members belonging to 2VgP familyThus the results for the corresponding 2VgAP can be obtainedby taking other examples We present the list of somemembers belonging to the GHAP family in Table 2

Note 2 Since for 119898 = 2 the GHAP119867

119860119898

119899(119909 119910) reduce to the

HAP119867

119860119899(119909 119910) therefore for 119898 = 2 Table 2 gives the list of

the corresponding HAP119867

119860119899(119909 119910)

The results established in this paper are general andinclude new families of special polynomials consequentlyintroducing many new special polynomials

Appendix

New classes of Bernoulli numbers and polynomials areintroduced which are used to evaluate partial sums involv-ing other special polynomials see for example [21 22]Here we consider the Gould-Hopper-Bernoulli polyno-mials (GHBP) Gould-Hopper-Euler polynomials (GHEP)Hermite-Bernoulli polynomials (HBP) Hermite-Euler poly-nomials (HEP) classical Hermite-Bernoulli polynomials(cHBP) and classical Hermite-Euler polynomials (cHEP)We give the surface plots of these polynomials for suitablevalues of the parameters and indices Also we give the graphsof the corresponding single-variable polynomials

The GHBP119867

119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) and HEP

119867119864119899(119909 119910) are defined by the following

series

119867119861(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119861119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A1)

119867119864(119898)

119899(119909 119910) = 119899

[119899119898]

sum119903=0

119864119899minus119898119903

(119909) 119910119903

(119899 minus 119898119903)119903 (A2)

119867119861119899

(119909 119910) = 119899

[1198992]

sum119903=0

119861119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A3)

119867119864119899

(119909 119910) = 119899

[1198992]

sum119903=0

119864119899minus2119903

(119909) 119910119903

(119899 minus 2119903)119903 (A4)

respectively Taking 119910 = minus12 in (A3) and (A4) we get theseries definitions for the cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909)

as

119867119861119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119861119899minus2119903

(119909)

(119899 minus 2119903)119903 (A5)

119867119864119899

(119909) = 119899

[1198992]

sum119903=0

(minus1

2)119903 119864119899minus2119903

(119909)

(119899 minus 2119903)119903 (A6)

respectivelyTo draw the surface plots of these polynomials we use

the values of the Bernoulli polynomials 119861119899(119909) and the Euler

polynomials 119864119899(119909) for 119899 = 0 1 2 3 4 and 5 We give the list

of the first fewBernoulli and the Euler polynomials in Table 3Now we consider the GHBP

119867119861119898

119899(119909 119910) GHEP

119867119864119898

119899(119909 119910) HBP

119867119861119899(119909 119910) HEP

119867119864119899(119909 119910) cHBP

119867119890119861119899(119909) and cHEP

119867119890119864119899(119909) for 119898 = 3 and 119899 = 5 so that

we have

119867119861(3)

5(119909 119910) = 119861

5(119909) + 60119861

2(119909) 119910 (A7)

119867119864(3)

5(119909 119910) = 119864

5(119909) + 60119864

2(119909) 119910 (A8)

1198671198615

(119909 119910) = 1198615

(119909) + 201198613

(119909) 119910 + 601198611

(119909) 1199102

(A9)

1198671198645

(119909 119910) = 1198645

(119909) + 201198643

(119909) 119910 + 601198641

(119909) 1199102

(A10)

1198671198901198615

(119909) = 1198615

(119909) minus 101198613

(119909) + 151198611

(119909) (A11)

1198671198901198645

(119909) = 1198645

(119909) minus 101198643

(119909) + 151198641

(119909) (A12)

respectively Using the particular values of 119861119899(119909) and 119864

119899(119909)

given in Table 3 we find

119867119861(3)

5(119909 119910)=119909

5

minus5

21199094

+5

31199093

+601199092

119910minus60119909119910minus1

6119909+

1

10119910

(A13)

119867119864(3)

5(119909 119910)=119909

5

minus5

21199094

+601199092

119910+5

31199092

minus60119909119910minus1

2+

1

10119910

(A14)

119867

1198615

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 +5

31199093

+ 601199091199102

minus 601199092

119910 + 10119909119910 minus 301199102

minus1

6119909

(A15)

1198671198645

(119909 119910) = 1199095

minus5

21199094

+ 201199093

119910 + 601199091199102

minus 301199092

119910 +5

31199092

minus 301199102

+10

3119910 minus

1

2

(A16)

1198671198901198615

(119909) = 1199095

minus5

21199094

minus25

31199093

+ 151199092

+59

6119909 minus

15

2 (A17)

1198671198901198645

(119909) = 1199095

minus5

21199094

minus 101199093

+50

31199092

+ 15119909 minus29

3 (A18)

respectively

10 International Journal of Analysis

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(a)

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(b)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(c)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(d)

minus5 0 5minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(e)minus5 0 5

minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(f)

Figure 1

Table 3 List of the first few Bernoulli and the Euler polynomials

119899 0 1 2 3 4 5

119861119899(119909) 1 119909 minus

1

21199092

minus 119909 +1

61199093

minus3

21199092

+119909

21199094

minus 21199093

+ 1199092

minus1

301199095

minus5

21199094

+5

31199093

minus119909

6

119864119899(119909) 1 119909 minus

1

21199092

minus 119909 1199093

minus3

21199092

+1

61199094

minus 21199093

+2

3119909 119909

5

minus5

21199094

+5

31199092

minus1

2

International Journal of Analysis 11

In view of equations (A13)ndash(A18) we get Figure 1

Acknowledgments

The authors are thankful to the anonymous referee for usefulsuggestions towards the improvement of the paperThis workhas been done under the Senior Research Fellowship (OfficeMemo no AcadD-1562MR) sanctioned to the secondauthor by the University Grants Commission Governmentof India New Delhi

References

[1] P Appell ldquoSur une classe de polynomesrdquo Annales Scientifiquesde lrsquoEcole Normale Superieure vol 9 pp 119ndash144 1880

[2] S Roman The Umbral Calculus vol 111 of Pure and AppliedMathematics Academic Press New York NY USA 1984

[3] E D Rainville Special Functions Macmillan New York NYUSA 1960 reprinted by Chelsea Bronx NY USA 1971

[4] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol III McGraw-Hill NewYork NY USA 1955

[5] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol II McGraw-Hill NewYork NY USA 1953

[6] G Bretti P Natalini and P E Ricci ldquoGeneralizations ofthe Bernoulli and Appell polynomialsrdquo Abstract and AppliedAnalysis vol 2004 no 7 pp 613ndash623 2004

[7] Q-M Luo and H M Srivastava ldquoSome generalizations of theApostol-Bernoulli and Apostol-Euler polynomialsrdquo Journal ofMathematical Analysis and Applications vol 308 no 1 pp 290ndash302 2005

[8] T M Apostol ldquoOn the Lerch zeta functionrdquo Pacific Journal ofMathematics vol 1 pp 161ndash167 1951

[9] Q-M Luo ldquoApostol-Euler polynomials of higher order andGaussian hypergeometric functionsrdquo Taiwanese Journal ofMathematics vol 10 no 4 pp 917ndash925 2006

[10] K Douak ldquoThe relation of the 119889-orthogonal polynomials tothe Appell polynomialsrdquo Journal of Computational and AppliedMathematics vol 70 no 2 pp 279ndash295 1996

[11] L C Andrews Special Functions for Engineers and AppliedMathematicians Macmillan New York NY USA 1985

[12] G Dattoli S Lorenzutta and D Sacchetti ldquoIntegral represen-tations of new families of polynomialsrdquo Italian Journal of Pureand Applied Mathematics no 15 pp 19ndash28 2004

[13] W Magnus F Oberhettinger and R P Soni Formulas andTheorems for the Special Functions of Mathematical Physicsvol 52 of Die Grundlehren der mathematischen WissenschaftenSpringer New York NY USA 3rd edition 1966

[14] G Dattoli M Migliorati and H M Srivastava ldquoSheffer poly-nomials monomiality principle algebraic methods and thetheory of classical polynomialsrdquo Mathematical and ComputerModelling vol 45 no 9-10 pp 1033ndash1041 2007

[15] J F Steffensen ldquoThe poweroid an extension of the mathemat-ical notion of powerrdquo Acta Mathematica vol 73 pp 333ndash3661941

[16] G Dattoli ldquoHermite-Bessel and Laguerre-Bessel functions aby-product of the monomiality principlerdquo in Advanced SpecialFunctions and Applications (Melfi 1999) vol 1 of ProcMelfi SchAdv Top Math Phys pp 147ndash164 Aracne Rome Italy 2000

[17] G Bretti C Cesarano and P E Ricci ldquoLaguerre-type expo-nentials and generalized Appell polynomialsrdquo Computers ampMathematics with Applications vol 48 no 5-6 pp 833ndash8392004

[18] P Appell and J Kampe de Feriet Fonctions Hypergeometriqueset Hyperspheriques Polynomes drsquo Hermite Gauthier-VillarsParis France 1926

[19] H W Gould and A T Hopper ldquoOperational formulas con-nected with two generalizations of Hermite polynomialsrdquoDukeMathematical Journal vol 29 pp 51ndash63 1962

[20] S Khan G Yasmin R Khan and N A M Hassan ldquoHermite-based Appell polynomials properties and applicationsrdquo Journalof Mathematical Analysis and Applications vol 351 no 2 pp756ndash764 2009

[21] G Dattoli C Cesarano and S Lorenzutta ldquoBernoulli numbersand polynomials from amore general point of viewrdquo RendicontidiMatematica e delle sueApplicazioni vol 22 pp 193ndash202 2002

[22] G Dattoli S Lorenzutta and C Cesarano ldquoFinite sums andgeneralized forms of Bernoulli polynomialsrdquo Rendiconti diMatematica e delle sue Applicazioni vol 19 no 3 pp 385ndash3911999

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article General-Appell Polynomials within the ...downloads.hindawi.com/journals/ijanal/2013/328032.pdf · In order to introduce the -variable general-Appell polyno-mials

10 International Journal of Analysis

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(a)

0

5

0

5

0

05

1

minus1

minus05

minus05

minus05

minus15

times104

(b)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(c)

0

5

0

5

0

1

2

minus3

minus2

minus1

minus5 minus5

times104

(d)

minus5 0 5minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(e)minus5 0 5

minus3500

minus3000

minus2500

minus2000

minus1500

minus1000

minus500

0

500

1000

(f)

Figure 1

Table 3 List of the first few Bernoulli and the Euler polynomials

119899 0 1 2 3 4 5

119861119899(119909) 1 119909 minus

1

21199092

minus 119909 +1

61199093

minus3

21199092

+119909

21199094

minus 21199093

+ 1199092

minus1

301199095

minus5

21199094

+5

31199093

minus119909

6

119864119899(119909) 1 119909 minus

1

21199092

minus 119909 1199093

minus3

21199092

+1

61199094

minus 21199093

+2

3119909 119909

5

minus5

21199094

+5

31199092

minus1

2

International Journal of Analysis 11

In view of equations (A13)ndash(A18) we get Figure 1

Acknowledgments

The authors are thankful to the anonymous referee for usefulsuggestions towards the improvement of the paperThis workhas been done under the Senior Research Fellowship (OfficeMemo no AcadD-1562MR) sanctioned to the secondauthor by the University Grants Commission Governmentof India New Delhi

References

[1] P Appell ldquoSur une classe de polynomesrdquo Annales Scientifiquesde lrsquoEcole Normale Superieure vol 9 pp 119ndash144 1880

[2] S Roman The Umbral Calculus vol 111 of Pure and AppliedMathematics Academic Press New York NY USA 1984

[3] E D Rainville Special Functions Macmillan New York NYUSA 1960 reprinted by Chelsea Bronx NY USA 1971

[4] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol III McGraw-Hill NewYork NY USA 1955

[5] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol II McGraw-Hill NewYork NY USA 1953

[6] G Bretti P Natalini and P E Ricci ldquoGeneralizations ofthe Bernoulli and Appell polynomialsrdquo Abstract and AppliedAnalysis vol 2004 no 7 pp 613ndash623 2004

[7] Q-M Luo and H M Srivastava ldquoSome generalizations of theApostol-Bernoulli and Apostol-Euler polynomialsrdquo Journal ofMathematical Analysis and Applications vol 308 no 1 pp 290ndash302 2005

[8] T M Apostol ldquoOn the Lerch zeta functionrdquo Pacific Journal ofMathematics vol 1 pp 161ndash167 1951

[9] Q-M Luo ldquoApostol-Euler polynomials of higher order andGaussian hypergeometric functionsrdquo Taiwanese Journal ofMathematics vol 10 no 4 pp 917ndash925 2006

[10] K Douak ldquoThe relation of the 119889-orthogonal polynomials tothe Appell polynomialsrdquo Journal of Computational and AppliedMathematics vol 70 no 2 pp 279ndash295 1996

[11] L C Andrews Special Functions for Engineers and AppliedMathematicians Macmillan New York NY USA 1985

[12] G Dattoli S Lorenzutta and D Sacchetti ldquoIntegral represen-tations of new families of polynomialsrdquo Italian Journal of Pureand Applied Mathematics no 15 pp 19ndash28 2004

[13] W Magnus F Oberhettinger and R P Soni Formulas andTheorems for the Special Functions of Mathematical Physicsvol 52 of Die Grundlehren der mathematischen WissenschaftenSpringer New York NY USA 3rd edition 1966

[14] G Dattoli M Migliorati and H M Srivastava ldquoSheffer poly-nomials monomiality principle algebraic methods and thetheory of classical polynomialsrdquo Mathematical and ComputerModelling vol 45 no 9-10 pp 1033ndash1041 2007

[15] J F Steffensen ldquoThe poweroid an extension of the mathemat-ical notion of powerrdquo Acta Mathematica vol 73 pp 333ndash3661941

[16] G Dattoli ldquoHermite-Bessel and Laguerre-Bessel functions aby-product of the monomiality principlerdquo in Advanced SpecialFunctions and Applications (Melfi 1999) vol 1 of ProcMelfi SchAdv Top Math Phys pp 147ndash164 Aracne Rome Italy 2000

[17] G Bretti C Cesarano and P E Ricci ldquoLaguerre-type expo-nentials and generalized Appell polynomialsrdquo Computers ampMathematics with Applications vol 48 no 5-6 pp 833ndash8392004

[18] P Appell and J Kampe de Feriet Fonctions Hypergeometriqueset Hyperspheriques Polynomes drsquo Hermite Gauthier-VillarsParis France 1926

[19] H W Gould and A T Hopper ldquoOperational formulas con-nected with two generalizations of Hermite polynomialsrdquoDukeMathematical Journal vol 29 pp 51ndash63 1962

[20] S Khan G Yasmin R Khan and N A M Hassan ldquoHermite-based Appell polynomials properties and applicationsrdquo Journalof Mathematical Analysis and Applications vol 351 no 2 pp756ndash764 2009

[21] G Dattoli C Cesarano and S Lorenzutta ldquoBernoulli numbersand polynomials from amore general point of viewrdquo RendicontidiMatematica e delle sueApplicazioni vol 22 pp 193ndash202 2002

[22] G Dattoli S Lorenzutta and C Cesarano ldquoFinite sums andgeneralized forms of Bernoulli polynomialsrdquo Rendiconti diMatematica e delle sue Applicazioni vol 19 no 3 pp 385ndash3911999

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 11: Research Article General-Appell Polynomials within the ...downloads.hindawi.com/journals/ijanal/2013/328032.pdf · In order to introduce the -variable general-Appell polyno-mials

International Journal of Analysis 11

In view of equations (A13)ndash(A18) we get Figure 1

Acknowledgments

The authors are thankful to the anonymous referee for usefulsuggestions towards the improvement of the paperThis workhas been done under the Senior Research Fellowship (OfficeMemo no AcadD-1562MR) sanctioned to the secondauthor by the University Grants Commission Governmentof India New Delhi

References

[1] P Appell ldquoSur une classe de polynomesrdquo Annales Scientifiquesde lrsquoEcole Normale Superieure vol 9 pp 119ndash144 1880

[2] S Roman The Umbral Calculus vol 111 of Pure and AppliedMathematics Academic Press New York NY USA 1984

[3] E D Rainville Special Functions Macmillan New York NYUSA 1960 reprinted by Chelsea Bronx NY USA 1971

[4] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol III McGraw-Hill NewYork NY USA 1955

[5] A Erdelyi W Magnus F Oberhettinger and F G TricomiHigher Transcendental Functions Vol II McGraw-Hill NewYork NY USA 1953

[6] G Bretti P Natalini and P E Ricci ldquoGeneralizations ofthe Bernoulli and Appell polynomialsrdquo Abstract and AppliedAnalysis vol 2004 no 7 pp 613ndash623 2004

[7] Q-M Luo and H M Srivastava ldquoSome generalizations of theApostol-Bernoulli and Apostol-Euler polynomialsrdquo Journal ofMathematical Analysis and Applications vol 308 no 1 pp 290ndash302 2005

[8] T M Apostol ldquoOn the Lerch zeta functionrdquo Pacific Journal ofMathematics vol 1 pp 161ndash167 1951

[9] Q-M Luo ldquoApostol-Euler polynomials of higher order andGaussian hypergeometric functionsrdquo Taiwanese Journal ofMathematics vol 10 no 4 pp 917ndash925 2006

[10] K Douak ldquoThe relation of the 119889-orthogonal polynomials tothe Appell polynomialsrdquo Journal of Computational and AppliedMathematics vol 70 no 2 pp 279ndash295 1996

[11] L C Andrews Special Functions for Engineers and AppliedMathematicians Macmillan New York NY USA 1985

[12] G Dattoli S Lorenzutta and D Sacchetti ldquoIntegral represen-tations of new families of polynomialsrdquo Italian Journal of Pureand Applied Mathematics no 15 pp 19ndash28 2004

[13] W Magnus F Oberhettinger and R P Soni Formulas andTheorems for the Special Functions of Mathematical Physicsvol 52 of Die Grundlehren der mathematischen WissenschaftenSpringer New York NY USA 3rd edition 1966

[14] G Dattoli M Migliorati and H M Srivastava ldquoSheffer poly-nomials monomiality principle algebraic methods and thetheory of classical polynomialsrdquo Mathematical and ComputerModelling vol 45 no 9-10 pp 1033ndash1041 2007

[15] J F Steffensen ldquoThe poweroid an extension of the mathemat-ical notion of powerrdquo Acta Mathematica vol 73 pp 333ndash3661941

[16] G Dattoli ldquoHermite-Bessel and Laguerre-Bessel functions aby-product of the monomiality principlerdquo in Advanced SpecialFunctions and Applications (Melfi 1999) vol 1 of ProcMelfi SchAdv Top Math Phys pp 147ndash164 Aracne Rome Italy 2000

[17] G Bretti C Cesarano and P E Ricci ldquoLaguerre-type expo-nentials and generalized Appell polynomialsrdquo Computers ampMathematics with Applications vol 48 no 5-6 pp 833ndash8392004

[18] P Appell and J Kampe de Feriet Fonctions Hypergeometriqueset Hyperspheriques Polynomes drsquo Hermite Gauthier-VillarsParis France 1926

[19] H W Gould and A T Hopper ldquoOperational formulas con-nected with two generalizations of Hermite polynomialsrdquoDukeMathematical Journal vol 29 pp 51ndash63 1962

[20] S Khan G Yasmin R Khan and N A M Hassan ldquoHermite-based Appell polynomials properties and applicationsrdquo Journalof Mathematical Analysis and Applications vol 351 no 2 pp756ndash764 2009

[21] G Dattoli C Cesarano and S Lorenzutta ldquoBernoulli numbersand polynomials from amore general point of viewrdquo RendicontidiMatematica e delle sueApplicazioni vol 22 pp 193ndash202 2002

[22] G Dattoli S Lorenzutta and C Cesarano ldquoFinite sums andgeneralized forms of Bernoulli polynomialsrdquo Rendiconti diMatematica e delle sue Applicazioni vol 19 no 3 pp 385ndash3911999

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 12: Research Article General-Appell Polynomials within the ...downloads.hindawi.com/journals/ijanal/2013/328032.pdf · In order to introduce the -variable general-Appell polyno-mials

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of