Research Article Estimation of Population Mean in Chain...

6
Research Article Estimation of Population Mean in Chain Ratio-Type Estimator under Systematic Sampling Mursala Khan 1 and Rajesh Singh 2 1 Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan 2 Department of Statistics, Banaras Hindu University, Varanasi 221005, India Correspondence should be addressed to Mursala Khan; [email protected] Received 7 September 2015; Accepted 11 October 2015 Academic Editor: Shein-chung Chow Copyright Β© 2015 M. Khan and R. Singh. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A chain ratio-type estimator is proposed for the estimation of finite population mean under systematic sampling scheme using two auxiliary variables. e mean square error of the proposed estimator is derived up to the first order of approximation and is compared with other relevant existing estimators. To illustrate the performances of the different estimators in comparison with the usual simple estimator, we have taken a real data set from the literature of survey sampling. 1. Introduction and Literature Review Incorporating the knowledge of the auxiliary variables is very important for the construction of efficient estimators for the estimation of population parameters and increasing the effi- ciency of the estimators in different sampling design. Using the knowledge of the auxiliary variables, several authors have proposed different estimation technique for the finite population mean of the study variable; Cochran [1], Tripathy [2], Kadilar and Cingi [3, 4], Singh et al. [5], Khan and Arunachalam [6], Lone and Tailor [7], Khan [8], Khan and Hussain [9], and Khan et al. [10] have worked on the estima- tion of population parameters using auxiliary information. In the present paper, we will work on the estimation of population mean using the knowledge of the auxiliary variables under systematic sampling. Various statisticians have worked on the estimation of population mean in systematic sampling: Cochran [11], Hansen et al. [12], Robson [13], Swain [14], Singh [15], Shukla [16], Kushwaha and Singh [17], Banarasi et al. [18], R. Singh and H. P. Singh [19], Singh et al. [20], Singh and Solanki [21], Singh and Jatwa [22], Singh et al. [23, 24], Tailor et al. [25], Verma and Singh [26], and Verma et al. [27], and so forth. Consider a finite population = { 1 , 2 ,..., } of size units, numbered from 1 to in some order. A sample of size units is taken at random from the first units and every th subsequent unit; then, = where and are positive integers; thus, there will be samples (clusters) each of size and observe the study variate and auxiliary variate for each and every unit selected in the sample. Let ( , ), for = 1, 2, . . . , and = 1, 2, . . . , : denote the value of th unit in the th sample. en, the systematic sample means are defined as follows: = 0 = (1/) βˆ‘ =1 and = (1/) βˆ‘ =1 are the unbiased estimators of the population means = (1/) βˆ‘ =1 and = (1/) βˆ‘ =1 of and , respec- tively. Let 2 = (1/( βˆ’ 1)) βˆ‘ =1 βˆ‘ =1 ( βˆ’ ) 2 , 2 = (1/( βˆ’ 1)) βˆ‘ =1 βˆ‘ =1 ( βˆ’ ) 2 , and 2 = (1/( βˆ’ 1)) βˆ‘ =1 βˆ‘ =1 ( βˆ’ ) 2 be the population variances of the study variable and the auxiliary variables, respectively, with the corresponding population covariance’s = (1/( βˆ’ 1)) βˆ‘ =1 βˆ‘ =1 ( βˆ’ )( βˆ’ ), = (1/( βˆ’ 1)) βˆ‘ =1 βˆ‘ =1 ( βˆ’ )( βˆ’ ), and = (1/( βˆ’ 1)) βˆ‘ =1 βˆ‘ =1 ( βˆ’ )( βˆ’ ) among the three variables , , and , respectively. Also 2 , 2 , and 2 are the known population coefficients of variation of the study variable and the auxiliary variables, respectively. To obtain the properties of the estimators up to first order of approximation, we use the following errors terms: Hindawi Publishing Corporation Journal of Probability and Statistics Volume 2015, Article ID 248374, 5 pages http://dx.doi.org/10.1155/2015/248374

Transcript of Research Article Estimation of Population Mean in Chain...

Page 1: Research Article Estimation of Population Mean in Chain ...downloads.hindawi.com/journals/jps/2015/248374.pdfResearch Article Estimation of Population Mean in Chain Ratio-Type Estimator

Research ArticleEstimation of Population Mean in Chain Ratio-TypeEstimator under Systematic Sampling

Mursala Khan1 and Rajesh Singh2

1Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan2Department of Statistics, Banaras Hindu University, Varanasi 221005, India

Correspondence should be addressed to Mursala Khan; [email protected]

Received 7 September 2015; Accepted 11 October 2015

Academic Editor: Shein-chung Chow

Copyright Β© 2015 M. Khan and R. Singh. This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properlycited.

A chain ratio-type estimator is proposed for the estimation of finite population mean under systematic sampling scheme usingtwo auxiliary variables. The mean square error of the proposed estimator is derived up to the first order of approximation and iscompared with other relevant existing estimators. To illustrate the performances of the different estimators in comparison with theusual simple estimator, we have taken a real data set from the literature of survey sampling.

1. Introduction and Literature Review

Incorporating the knowledge of the auxiliary variables is veryimportant for the construction of efficient estimators for theestimation of population parameters and increasing the effi-ciency of the estimators in different sampling design. Usingthe knowledge of the auxiliary variables, several authorshave proposed different estimation technique for the finitepopulation mean of the study variable; Cochran [1], Tripathy[2], Kadilar and Cingi [3, 4], Singh et al. [5], Khan andArunachalam [6], Lone and Tailor [7], Khan [8], Khan andHussain [9], and Khan et al. [10] have worked on the estima-tion of population parameters using auxiliary information.

In the present paper, we will work on the estimationof population mean using the knowledge of the auxiliaryvariables under systematic sampling. Various statisticianshave worked on the estimation of population mean insystematic sampling: Cochran [11], Hansen et al. [12], Robson[13], Swain [14], Singh [15], Shukla [16], Kushwaha and Singh[17], Banarasi et al. [18], R. Singh andH. P. Singh [19], Singh etal. [20], Singh and Solanki [21], Singh and Jatwa [22], Singhet al. [23, 24], Tailor et al. [25], Verma and Singh [26], andVerma et al. [27], and so forth.

Consider a finite population π‘ˆ = {π‘ˆ1, π‘ˆ2, . . . , π‘ˆ

𝑁} of size

𝑁 units, numbered from 1 to 𝑁 in some order. A sample of

size 𝑛 units is taken at random from the first π‘˜ units and everyπ‘˜th subsequent unit; then,𝑁 = π‘›π‘˜ where 𝑛 and π‘˜ are positiveintegers; thus, there will be π‘˜ samples (clusters) each of size𝑛 and observe the study variate 𝑦 and auxiliary variate π‘₯ foreach and every unit selected in the sample. Let (𝑦

𝑖𝑗, π‘₯𝑖𝑗), for 𝑖 =

1, 2, . . . , π‘˜ and 𝑗 = 1, 2, . . . , 𝑛: denote the value of 𝑗th unit inthe 𝑖th sample.Then, the systematic samplemeans are definedas follows: 𝑦

𝑠𝑦= 𝑑0= (1/𝑛)βˆ‘

𝑛

𝑗=1𝑦𝑖𝑗and π‘₯

𝑠𝑦= (1/𝑛)βˆ‘

𝑛

𝑗=1π‘₯𝑖𝑗

are the unbiased estimators of the population means π‘Œ =

(1/𝑁)βˆ‘π‘

𝑗=1𝑦𝑖𝑗and 𝑋 = (1/𝑁)βˆ‘

𝑁

𝑗=1π‘₯𝑖𝑗of 𝑦 and π‘₯, respec-

tively. Let 𝑆2𝑦= (1/(π‘βˆ’ 1))βˆ‘

π‘˜

𝑖=1βˆ‘π‘›

𝑗=1(π‘¦π‘–π‘—βˆ’π‘Œ)2, 𝑆2π‘₯= (1/(π‘βˆ’

1))βˆ‘π‘˜

𝑖=1βˆ‘π‘›

𝑗=1(π‘₯π‘–π‘—βˆ’ 𝑋)2, and 𝑆

2

𝑧= (1/(𝑁 βˆ’ 1))βˆ‘

π‘˜

𝑖=1βˆ‘π‘›

𝑗=1(π‘§π‘–π‘—βˆ’

𝑍)2 be the population variances of the study variable and

the auxiliary variables, respectively, with the correspondingpopulation covariance’s 𝑆

𝑦π‘₯= (1/(𝑁 βˆ’ 1))βˆ‘

π‘˜

𝑖=1βˆ‘π‘›

𝑗=1(π‘₯𝑖𝑗

βˆ’

𝑋)(𝑦𝑖𝑗

βˆ’ π‘Œ), 𝑆𝑦𝑧

= (1/(𝑁 βˆ’ 1))βˆ‘π‘˜

𝑖=1βˆ‘π‘›

𝑗=1(𝑦𝑖𝑗

βˆ’ π‘Œ)(𝑧𝑖𝑗

βˆ’ 𝑍),and 𝑆π‘₯𝑧

= (1/(𝑁 βˆ’ 1))βˆ‘π‘˜

𝑖=1βˆ‘π‘›

𝑗=1(π‘₯π‘–π‘—βˆ’ 𝑋)(𝑧

π‘–π‘—βˆ’ 𝑍) among the

three variables 𝑦, π‘₯, and 𝑧, respectively. Also 𝐢2

𝑦, 𝐢2π‘₯, and 𝐢

2

𝑧

are the knownpopulation coefficients of variation of the studyvariable and the auxiliary variables, respectively.

To obtain the properties of the estimators up to firstorder of approximation, we use the following errors terms:

Hindawi Publishing CorporationJournal of Probability and StatisticsVolume 2015, Article ID 248374, 5 pageshttp://dx.doi.org/10.1155/2015/248374

Page 2: Research Article Estimation of Population Mean in Chain ...downloads.hindawi.com/journals/jps/2015/248374.pdfResearch Article Estimation of Population Mean in Chain Ratio-Type Estimator

2 Journal of Probability and Statistics

𝑒0= (𝑦𝑠𝑦𝑠

βˆ’ π‘Œ)/π‘Œ, 𝑒1= (π‘₯𝑠𝑦𝑠

βˆ’ 𝑋)/𝑋, and 𝑒2= (𝑧𝑠𝑦𝑠

βˆ’ 𝑍)/𝑍,such that 𝐸(𝑒

𝑖) = 0, for 𝑖 = 0, 1, and 2.

The first order of approximation of the above errors termsis given by

𝐸 (𝑒2

0) = πœƒπœŒ

βˆ—

𝑦𝐢2

𝑦,

𝐸 (𝑒2

1) = πœƒπœŒ

βˆ—

π‘₯𝐢2

π‘₯,

𝐸 (𝑒2

2) = πœƒπœŒ

βˆ—

𝑧𝐢2

𝑧,

𝐸 (𝑒0𝑒1) = πœƒπ‘˜πΆ

2

π‘₯βˆšπœŒβˆ—π‘¦πœŒβˆ—π‘₯,

𝐸 (𝑒0𝑒2) = πœƒπ‘˜

βˆ—πΆ2

π‘§βˆšπœŒβˆ—π‘¦πœŒβˆ—π‘§,

𝐸 (𝑒1𝑒2) = πœƒπ‘˜

βˆ—βˆ—πΆ2

π‘§βˆšπœŒβˆ—π‘₯πœŒβˆ—π‘§,

(1)

where

πœ† = (𝑁 βˆ’ 1

𝑛𝑁) ,

πœŒπ‘¦π‘₯

=

𝑆𝑦π‘₯

𝑆𝑦𝑆π‘₯

,

πœŒπ‘¦π‘§

=

𝑆𝑦𝑧

𝑆𝑦𝑆𝑧

,

𝜌π‘₯𝑧

=𝑆π‘₯𝑧

𝑆π‘₯𝑆𝑧

,

π‘˜ =

πœŒπ‘¦π‘₯

𝐢𝑦

𝐢π‘₯

,

π‘˜βˆ—=

πœŒπ‘¦π‘§

𝐢𝑦

𝐢𝑧

,

πœŒβˆ—

𝑦= {1 + (𝑛 βˆ’ 1) 𝜌

𝑦} ,

πœŒβˆ—

π‘₯= {1 + (𝑛 βˆ’ 1) 𝜌

π‘₯} ,

πœŒβˆ—

𝑧= {1 + (𝑛 βˆ’ 1) 𝜌

𝑧} ,

πœŒβˆ—βˆ—

=

πœŒβˆ—

𝑦

πœŒβˆ—π‘₯

,

πœŒβˆ—βˆ—

2=

πœŒβˆ—

𝑦

πœŒβˆ—π‘§

,

πœŒβˆ—βˆ—

1=

πœŒβˆ—

π‘₯

πœŒβˆ—π‘§

,

(2)

where πœŒπ‘¦, 𝜌π‘₯, and 𝜌

𝑧are the intraclass correlation among the

pair of units for the variables 𝑦, π‘₯, and 𝑧, respectively.The variance of the usual unbiased estimator for popula-

tion mean is

Var (𝑑0) = πœ†π‘Œ

2

πœŒβˆ—

𝑦𝐢2

𝑦. (3)

The classical ratio and product estimators for finite popula-tion mean suggested by Swain [14] and Shukla [16] are givenby

𝑑1= 𝑦𝑠𝑦

(𝑋

π‘₯𝑠𝑦

) ,

𝑑2= 𝑦𝑠𝑦exp(

𝑧𝑠𝑦

𝑍

) .

(4)

The mean square errors of the estimators, to the first order ofapproximation, are given as follows:

MSE (𝑑1) = πœ†π‘Œ

2

[πœŒβˆ—

𝑦𝐢2

𝑦+ πœŒβˆ—

π‘₯𝐢2

π‘₯(1 βˆ’ 2π‘˜βˆšπœŒβˆ—βˆ—)] , (5)

MSE (𝑑2) = πœ†π‘Œ

2

[πœŒβˆ—

𝑦𝐢2

𝑦+ πœŒβˆ—

𝑧𝐢2

𝑧(1 + 2π‘˜

βˆ—βˆšπœŒβˆ—βˆ—

2)] . (6)

The usual regression estimator, using single auxiliary variableand its variance, is given as follows:

𝑑3= 𝑦𝑠𝑦

+ 𝑏 (𝑋 βˆ’ π‘₯𝑠𝑦) , (7)

MSE (𝑑3) = πœ†πœŒ

βˆ—

𝑦𝑆2

𝑦[1 βˆ’ 𝜌

2

𝑦π‘₯] . (8)

Utilizing the known knowledge of the auxiliary variable,Singh et al. [20] suggested the following ratio and producttype exponential estimators:

𝑑4= 𝑦𝑠𝑦exp(

𝑋 βˆ’ π‘₯𝑠𝑦

𝑋 + π‘₯𝑠𝑦

) ,

𝑑5= 𝑦𝑠𝑦exp(

π‘₯𝑠𝑦

βˆ’ 𝑋

π‘₯𝑠𝑦

+ 𝑋) .

(9)

The mean square errors of the estimators up to first order ofapproximation are given by

MSE (𝑑4) = πœ†π‘Œ

2

[πœŒβˆ—

𝑦𝐢2

𝑦+

πœŒβˆ—

π‘₯𝐢2

π‘₯

4(1 βˆ’ 4π‘˜βˆšπœŒβˆ—βˆ—)] , (10)

MSE (𝑑5) = πœ†π‘Œ

2

[πœŒβˆ—

𝑦𝐢2

𝑦+

πœŒβˆ—

π‘₯𝐢2

π‘₯

4(1 + 4π‘˜βˆšπœŒβˆ—βˆ—)] . (11)

After that, Tailor et al. [25] define the following ratio-cum-product estimator for the population mean π‘Œ:

𝑑6= 𝑦𝑠𝑦

(𝑋

π‘₯𝑠𝑦

)(

𝑧𝑠𝑦

𝑍

) . (12)

The mean square error of the estimator 𝑑6, up to first order of

approximation, is given by

MSE (𝑑6) = πœ†π‘Œ

2

[πœŒβˆ—

𝑦𝐢2

𝑦+ πœŒβˆ—

π‘₯𝐢2

π‘₯(1 βˆ’ 2π‘˜βˆšπœŒβˆ—βˆ—)

+ πœŒβˆ—

𝑧𝐢2

𝑧(1 βˆ’ 2π‘˜

βˆ—βˆ—βˆšπœŒβˆ—βˆ—

1) + 2π‘˜

βˆ—πΆ2

π‘§βˆšπœŒβˆ—π‘¦πœŒβˆ—π‘§] .

(13)

Page 3: Research Article Estimation of Population Mean in Chain ...downloads.hindawi.com/journals/jps/2015/248374.pdfResearch Article Estimation of Population Mean in Chain Ratio-Type Estimator

Journal of Probability and Statistics 3

2. Proposed Estimator

In this section, we have proposed the following regression inratio-cum-product type estimator for the unknown popula-tion mean under systematic sampling:

π‘‘π‘š

= 𝑦𝑠𝑦

(𝑋

𝑋 + 𝑏𝑦π‘₯

(π‘₯𝑠𝑦

βˆ’ 𝑋)

)

𝛿1

β‹… (

𝑍 + 𝑏𝑦𝑧

(𝑧𝑠𝑦

βˆ’ 𝑍)

𝑍

)

𝛿2

,

(14)

where 𝛿1and 𝛿2are the unknown constants, whose values are

to be found for the minimummean square error.The mean square error (MSE) of the estimator up to first

order of approximation is

MSE (π‘‘π‘š) = πœ†π‘Œ

2

[πœŒβˆ—

𝑦𝐢2

𝑦+ 𝛿2

1𝛽2

𝑦π‘₯πœŒβˆ—

π‘₯𝐢2

π‘₯+ 𝛿2

2𝛽2

π‘¦π‘§πœŒβˆ—

𝑧𝐢2

𝑧

βˆ’ 2𝛿1𝛽𝑦π‘₯

π‘˜πΆ2

π‘₯βˆšπœŒβˆ—π‘¦πœŒβˆ—π‘₯+ 2𝛿2𝛽𝑦𝑧

π‘˜βˆ—πΆ2

π‘§βˆšπœŒβˆ—π‘¦πœŒβˆ—π‘§

βˆ’ 2𝛿1𝛿2𝛽𝑦π‘₯

𝛽𝑦𝑧

π‘˜βˆ—βˆ—

𝐢2

π‘§βˆšπœŒβˆ—π‘₯πœŒβˆ—π‘§] .

(15)

On differentiating (15), with respect to 𝛿1and 𝛿

2, we obtain

the minimummean squared error of the estimator π‘‘π‘š, which

is given by

MSE (π‘‘π‘š)

= πœ†π‘Œ2

πœŒβˆ—

𝑦[

[

𝐢2

π‘¦βˆ’ π‘˜2βˆ—

π‘₯𝐢2

π‘§βˆ’

(π‘˜βˆ—π‘˜βˆ—βˆ—

𝐢2

π‘§βˆ’ π‘˜πΆ2

π‘₯)2

(𝐢2π‘₯βˆ’ π‘˜2βˆ—βˆ—πΆ2

𝑧)

]

]

,

(16)

where the optimum values are 𝛿1

= βˆšπœŒβˆ—π‘¦(π‘˜πΆ2

π‘₯βˆ’ π‘˜βˆ—π‘˜βˆ—βˆ—

𝐢2

𝑧)/

𝛽𝑦π‘₯βˆšπœŒβˆ—π‘₯(𝐢2

π‘₯βˆ’ π‘˜2βˆ—βˆ—

𝐢2

𝑧) and 𝛿

2= (βˆšπœŒβˆ—

𝑦/π›½π‘¦π‘§βˆšπœŒβˆ—π‘§){π‘˜βˆ—βˆ—

(π‘˜πΆ2

π‘₯βˆ’

π‘˜βˆ—π‘˜βˆ—βˆ—

𝐢2

𝑧)/(𝐢2

π‘₯βˆ’ π‘˜2βˆ—βˆ—

𝐢2

𝑧) βˆ’ π‘˜βˆ—}.

3. Comparison

In this section, we have compared the MSE of the proposedestimator with the MSEs of simple estimator, Swain [14]estimator, Shukla [16] estimator, Singh et al. [20] estimators,and Tailor et al. [25] estimator and found some theoreticalconditions under which the proposed estimator will alwaysperform better:

(i) By (16) and (3), MSE(π‘‘π‘š) ≀ MSE(𝑑

0) if

[

[

π‘˜2βˆ—

π‘₯𝐢2

𝑧+

(π‘˜βˆ—π‘˜βˆ—βˆ—

𝐢2

π‘§βˆ’ π‘˜πΆ2

π‘₯)2

(𝐢2π‘₯βˆ’ π‘˜2βˆ—βˆ—πΆ2

𝑧)

]

]

β‰₯ 0. (17)

(ii) By (16) and (5), MSE(π‘‘π‘š) ≀ MSE(𝑑

1) if

[

[

πœŒβˆ—

𝑦

{

{

{

π‘˜2βˆ—

π‘₯𝐢2

𝑧+

(π‘˜βˆ—π‘˜βˆ—βˆ—

𝐢2

π‘§βˆ’ π‘˜πΆ2

π‘₯)2

(𝐢2π‘₯βˆ’ π‘˜2βˆ—βˆ—πΆ2

𝑧)

}

}

}

+ πœŒβˆ—

π‘₯𝐢2

π‘₯(1 βˆ’ 2π‘˜βˆšπœŒβˆ—βˆ—)]

]

β‰₯ 0.

(18)

(iii) By (16) and (6), MSE(π‘‘π‘š) ≀ MSE(𝑑

2) if

[

[

πœŒβˆ—

𝑦

{

{

{

π‘˜2βˆ—

π‘₯𝐢2

𝑧+

(π‘˜βˆ—π‘˜βˆ—βˆ—

𝐢2

π‘§βˆ’ π‘˜πΆ2

π‘₯)2

(𝐢2π‘₯βˆ’ π‘˜2βˆ—βˆ—πΆ2

𝑧)

}

}

}

+ πœŒβˆ—

𝑧𝐢2

𝑧(1 + 2π‘˜

βˆ—βˆšπœŒβˆ—βˆ—

2)]

]

β‰₯ 0.

(19)

(iv) By (16) and (8), MSE(π‘‘π‘š) ≀ MSE(𝑑

3) if

[

[

π‘˜2βˆ—

π‘₯𝐢2

π‘§βˆ’ 𝐢2

π‘¦πœŒ2

𝑦π‘₯+

(π‘˜βˆ—π‘˜βˆ—βˆ—

𝐢2

π‘§βˆ’ π‘˜πΆ2

π‘₯)2

(𝐢2π‘₯βˆ’ π‘˜2βˆ—βˆ—πΆ2

𝑧)

]

]

β‰₯ 0. (20)

(v) By (16) and (10), MSE(π‘‘π‘š) ≀ MSE(𝑑

4) if

[

[

πœŒβˆ—

𝑦

{

{

{

π‘˜2βˆ—

π‘₯𝐢2

𝑧+

(π‘˜βˆ—π‘˜βˆ—βˆ—

𝐢2

π‘§βˆ’ π‘˜πΆ2

π‘₯)2

(𝐢2π‘₯βˆ’ π‘˜2βˆ—βˆ—πΆ2

𝑧)

}

}

}

+πœŒβˆ—

π‘₯𝐢2

π‘₯

4(1 βˆ’ 4π‘˜βˆšπœŒβˆ—βˆ—)]

]

β‰₯ 0.

(21)

(vi) By (16) and (11), MSE(π‘‘π‘š) ≀ MSE(𝑑

5) if

[

[

πœŒβˆ—

π‘₯𝐢2

π‘₯

4(1 + 4π‘˜βˆšπœŒβˆ—βˆ—)

+ πœŒβˆ—

𝑦

{

{

{

π‘˜2βˆ—

π‘₯𝐢2

𝑧+

(π‘˜βˆ—π‘˜βˆ—βˆ—

𝐢2

π‘§βˆ’ π‘˜πΆ2

π‘₯)2

(𝐢2π‘₯βˆ’ π‘˜2βˆ—βˆ—πΆ2

𝑧)

}

}

}

]

]

β‰₯ 0.

(22)

(vii) By (16) and (13), MSE(π‘‘π‘š) ≀ MSE(𝑑

6) if

[

[

πœŒβˆ—

π‘₯𝐢2

π‘₯(1 βˆ’ 2π‘˜βˆšπœŒβˆ—βˆ—) + 𝜌

βˆ—

𝑧𝐢2

𝑧(1 βˆ’ 2π‘˜

βˆ—βˆ—βˆšπœŒβˆ—βˆ—

1)

+ 2π‘˜βˆ—πΆ2

π‘§βˆšπœŒβˆ—π‘¦πœŒβˆ—π‘§

+ πœŒβˆ—

𝑦

{

{

{

π‘˜2βˆ—

π‘₯𝐢2

𝑧+

(π‘˜βˆ—π‘˜βˆ—βˆ—

𝐢2

π‘§βˆ’ π‘˜πΆ2

π‘₯)2

(𝐢2π‘₯βˆ’ π‘˜2βˆ—βˆ—πΆ2

𝑧)

}

}

}

]

]

β‰₯ 0.

(23)

Page 4: Research Article Estimation of Population Mean in Chain ...downloads.hindawi.com/journals/jps/2015/248374.pdfResearch Article Estimation of Population Mean in Chain Ratio-Type Estimator

4 Journal of Probability and Statistics

Table 1: The percent relative efficiency of different estimators withrespect to 𝑑

0.

PopulationEstimator MSE(𝑑

𝛼) PRE(𝑑

𝛼, 𝑑0)

𝑑0

1455.08 100.00𝑑1

373.32 389.62𝑑2

768.06 189.45𝑑3

45.52 3196.57𝑑4

820.09 177.43𝑑5

1044.42 139.32𝑑6

187.08 777.79π‘‘π‘š

22.74 6400.00

4. Numerical Comparison

For comparing the theoretical efficiency conditions of thedifferent estimators numerically, we have used the followingreal data set.

Population 1 (source: Tailor et al. [25]). Consider

𝑁 = 15,

𝑛 = 3,

𝑋 = 44.47,

π‘Œ = 80,

𝑍 = 48.40,

𝐢𝑦= 0.56,

𝐢π‘₯= 0.28,

𝐢𝑧= 0.43,

𝑆2

𝑦= 2000,

𝑆2

π‘₯= 149.55,

𝑆2

𝑧= 427.83,

𝑆𝑦π‘₯

= 538.57,

𝑆𝑦𝑧

= βˆ’902.86,

𝑆π‘₯𝑧

= βˆ’241.06,

πœŒπ‘¦π‘₯

= 0.9848,

πœŒπ‘¦π‘§

= βˆ’0.9760,

𝜌π‘₯𝑧

= βˆ’0.9530,

πœŒπ‘¦= 0.6652,

𝜌π‘₯= 0.707,

πœŒπ‘§= 0.5487.

(24)

For the percent relative efficiencies (PREs) of the estimator,we use the following formula and the results are shown inTable 1:

PRE(𝑑𝛼, 𝑑0) = MSE(𝑑

0)/MSE(𝑑

𝛼) Γ— 100, for 𝛼 = 0, 1, 2,

3, 4, 5, 6, and π‘š.

5. Conclusion

A chain ratio-type estimator is proposed under double sam-pling scheme using two auxiliary variables, and the propertiesof the proposed estimator are derived up to first order ofapproximations. Both theoretically and empirically, it hasbeen shown that the recommended estimator performedbetter than the other competing estimators in terms of higherpercent relative efficiency. Hence, looking on the dominancenature of the proposed estimator may be suggested for itspractical applications.

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper.

Acknowledgment

The authors are thankful to the anonymous learned refereesfor their valuable suggestions regarding the improvement ofthe paper.

References

[1] W. G. Cochran, Sampling Techniques, John Wiley & Sons, NewYork, NY, USA, 1977.

[2] T. P. Tripathy, β€œA general class of estimators of population ratio,”Sankhya Series C, vol. 42, pp. 45–63, 1980.

[3] C. Kadilar and H. Cingi, β€œRatio estimators in simple randomsampling,” Applied Mathematics and Computation, vol. 151, no.3, pp. 893–902, 2004.

[4] C. Kadilar andH. Cingi, β€œImprovement in estimating the popu-lation mean in simple random sampling,” Applied MathematicsLetters, vol. 19, no. 1, pp. 75–79, 2006.

[5] R. Singh, P. Chauhan, N. Sawan, and F. Smarandache,β€œImproved exponential estimator for population variance usingtwo auxiliary variables,” Italian Journal of Pure and AppliedMathematics, vol. 28, pp. 101–108, 2011.

[6] M. Khan and A. Arunachalam, β€œEstimation of populationvariance using the knowledge of kurtosis of an auxiliaryvariable under simple random sampling,” International Journalof Applied Science andMathematics, vol. 1, no. 2, pp. 63–67, 2014.

[7] H. A. Lone and R. Tailor, β€œDual to separate product typeexponential estimator in sample surveys,” Journal of StatisticsApplications & Probability Letters, vol. 2, no. 2, pp. 89–96, 2015.

[8] M. Khan, β€œImprovement in estimating the finite populationmean under maximum and minimum values in double sam-pling scheme,” Journal of Statistics Applications & ProbabilityLetters, vol. 2, no. 2, pp. 1–7, 2015.

[9] M. Khan and S. Hussain, β€œAn improved class of ratio-typeestimators for finite population mean under maximum andminimum values,” Science International, vol. 27, no. 2, pp. 1135–1138, 2015.

[10] M. Khan, S. Ullah, A. Y. Al-Hossain, and N. Bashir, β€œImprovedratio-type estimators using maximum and minimum valuesunder simple random sampling scheme,” Hacettepe Journal ofMathematics and Statistics, vol. 44, no. 4, pp. 923–931, 2015.

Page 5: Research Article Estimation of Population Mean in Chain ...downloads.hindawi.com/journals/jps/2015/248374.pdfResearch Article Estimation of Population Mean in Chain Ratio-Type Estimator

Journal of Probability and Statistics 5

[11] W. G. Cochran, β€œThe estimation of the yields of cereal experi-ments by sampling for the ratio of grain to total produce,” TheJournal of Agricultural Science, vol. 30, no. 2, pp. 262–275, 1940.

[12] M. H. Hansen, W. N. Hurwitz, and M. Gurney, β€œProblems andmethods of the sample survey of business,” The Journal of theAmerican Statistical Association, vol. 41, no. 234, pp. 173–189,1946.

[13] D. S. Robson, β€œApplication of multivariate polykays to thetheory of unbiased ratio-type estimation,” The Journal of theAmerican Statistical Association, vol. 59, pp. 1225–1226, 1957.

[14] A.K. P.C. Swain, β€œThe use of systematic sampling ratio estimate,”Journal of Indian Statistical Association, vol. 2, pp. 160–164, 1964.

[15] M. P. Singh, β€œRatio cum product method of estimation,”Metrika, vol. 12, no. 1, pp. 34–42, 1967.

[16] N. D. Shukla, β€œSystematic sampling and product method ofestimation,” in Proceeding of All India Seminar on Demographyand Statistics, BHU, Varanasi, India, 1971.

[17] K. S. Kushwaha and H. P. Singh, β€œClass of almost unbiased ratioand product estimators in systematic sampling,” Journal of theIndian Society of Agricultural Statistics, vol. 41, no. 2, pp. 193–205, 1989.

[18] Banarasi, S. N. S. Kushwaha, and K. S. Kushwaha, β€œA class ofratio, product and difference (RPD) estimators in systematicsampling,” Microelectronics Reliability, vol. 33, no. 4, pp. 455–457, 1993.

[19] R. Singh and H. P. Singh, β€œAlmost unbiased ratio and producttype estimators in systematic sampling,” Questiio, vol. 22, no. 3,pp. 403–416, 1998.

[20] H. P. Singh, R. Tailor, andN. K. Jatwa, β€œModified ratio and prod-uct estimators for population mean in systematic sampling,”Journal of Modern Applied Statistical Methods, vol. 10, no. 2, pp.424–435, 2011.

[21] H. P. Singh and R. S. Solanki, β€œAn efficient class of estimators forthe population mean using auxiliary information in systematicsampling,” Journal of Statistical Theory and Practice, vol. 6, no.2, pp. 274–285, 2012.

[22] H. P. Singh and N. K. Jatwa, β€œA class of exponential typeestimators in systematic sampling,” Economic Quality Control,vol. 27, no. 2, pp. 195–208, 2012.

[23] R. Singh, S. Malik, and V. K. Singh, β€œAn improved estimator insystematic sampling,” Journal of Scientific Research, vol. 56, pp.177–182, 2012.

[24] R. Singh, S. Malik, M. K. Chaudhary, H. Verma, and A. A. Ade-wara, β€œA general family of ratio-type estimators in systematicsampling,” Journal of Reliability and Statistical Studies, vol. 5, no.1, pp. 73–82, 2012.

[25] T. Tailor, N. K. Jatwa, and H. P. Singh, β€œA ratio-cum-productestimator of finite population mean in systematic sampling,”Statistics in Transition, vol. 14, no. 3, pp. 391–398, 2013.

[26] H. K. Verma and R. Singh, β€œA family of efficient estimator incircular systematic sampling,” Journal of Advanced Computing,vol. 3, no. 2, pp. 56–68, 2014.

[27] H. K. Verma, R. D. Singh, and R. Singh, β€œSome improved esti-mators in systematic sampling under non-response,” NationalAcademy Science Letters, vol. 37, no. 1, pp. 91–95, 2014.

Page 6: Research Article Estimation of Population Mean in Chain ...downloads.hindawi.com/journals/jps/2015/248374.pdfResearch Article Estimation of Population Mean in Chain Ratio-Type Estimator

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of