Research Article Asymptotic Estimates of the Solution of a ...Asymptotic Estimates of the Solution...

12
Research Article Asymptotic Estimates of the Solution of a Restoration Problem with an Initial Jump Duisebek Nurgabyl Institute of Postgraduate Education and Staff Retraining, Zhetysu State University Named aο¬…er I. Zhansugurov, 187A Zhansugurov Street, Taldykorgan 040000, Kazakhstan Correspondence should be addressed to Duisebek Nurgabyl; [email protected] Received 18 September 2013; Accepted 20 January 2014; Published 27 April 2014 Academic Editor: Debasish Roy Copyright Β© 2014 Duisebek Nurgabyl. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e asymptotic behavior of the solution of the singularly perturbed boundary value problem = β„Ž () , + = ,= 1, + 1 is examined. e derivations prove that a unique pair ( (, () , ), ()) exists, in which components (, () , ) and () satisfy the equation = β„Ž() and boundary value conditions + = ,= 1, + 1. e issues of limit transfer of the perturbed problem solution to the unperturbed problem solution as a small parameter approaches zero and the existence of the initial jump phenomenon are studied. is research is conducted in two stages. In the first stage, the Cauchy function and boundary functions are introduced. en, on the basis of the introduced Cauchy function and boundary functions, the solution of the restoration problem = β„Ž () , + = ,= 1, + 1 is obtained from the position of the singularly perturbed problem with the initial jump. rough this process, the formula of the initial jump and the asymptotic estimates of the solution of the considered boundary value problem are identified. 1. Introduction One of the fundamental theorems of singular perturbations theories is Tikhonov’s theorem [1, 2] on the limit transition that establishes the limit equations, expressing the relations between the solutions of a degenerate problem and an orig- inal singularly perturbed initial problem, and this theorem allows us to obtain the leading member of asymptotics. For a wide class of the singularly perturbed problems, effective asymptotic methods were developed, allowing for the development of uniform approximations with any level of precision. e methods of ViΛ‡ sik and Lyusternik [3] and Vasilyeva [4] were the first methods to be developed, which are called methods of boundary functions. Butuzov [5] developed a method of angular boundary functions, which was a significant development for the boundary functions method. Each of these methods has a certain area of applicability; that is, they are successful in solving some problems and are invalid when solving other problems. For example, there were some fundamental difficulties in the realization of the boundary functions method in problems with initial jumps. e beginning of the mathematical solution of the initial jump phenomenon was considered in the studies of ViΛ‡ sik and Lyusternik [6] and Kasymov [7], in which the method of zone integration for nonlinear singularly per- turbed initial tasks with unbounded initial data when a small parameter approaches zero. e research efforts of ViΛ‡ sik, Lyusternik, and Kasymov were continued in [8, 9] and other studies. Simultaneously, there were problems in practice that extended beyond the scope of traditional research, in which ready-made asymptotic methods were inapplicable and required modification or generalization. For example, in the study of NeΛ‡ Δ±mark and Smirnova [10], a new rationale of the physical and mathematical nature of the Painleve paradox was introduced, which enriched the possible types of movements and dynamics of the system as a whole. At this point, we saw the races and contrasting structures. Butuzov and Vasiliyeva studied mathematical solutions of the question of contrast structures [11], and the phenomenon of the initial jump requires additional mathematical research. Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2014, Article ID 956402, 11 pages http://dx.doi.org/10.1155/2014/956402

Transcript of Research Article Asymptotic Estimates of the Solution of a ...Asymptotic Estimates of the Solution...

  • Research ArticleAsymptotic Estimates of the Solution of a RestorationProblem with an Initial Jump

    Duisebek Nurgabyl

    Institute of Postgraduate Education and Staff Retraining, Zhetysu State University Named after I. Zhansugurov,187A Zhansugurov Street, Taldykorgan 040000, Kazakhstan

    Correspondence should be addressed to Duisebek Nurgabyl; [email protected]

    Received 18 September 2013; Accepted 20 January 2014; Published 27 April 2014

    Academic Editor: Debasish Roy

    Copyright Β© 2014 Duisebek Nurgabyl. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    The asymptotic behavior of the solution of the singularly perturbed boundary value problemπΏπœ€π‘¦ = β„Ž (𝑑) πœ†, 𝐿

    𝑖𝑦+πœŽπ‘–πœ† = π‘Ž

    𝑖, 𝑖 = 1, 𝑛 + 1

    is examined.The derivations prove that a unique pair (𝑦 (𝑑, οΏ½ΜƒοΏ½ (πœ€) , πœ€) , οΏ½ΜƒοΏ½ (πœ€)) exists, in which components𝑦(𝑑, οΏ½ΜƒοΏ½ (πœ€) , πœ€) and οΏ½ΜƒοΏ½(πœ€) satisfythe equation 𝐿

    πœ€π‘¦ = β„Ž(𝑑)πœ† and boundary value conditions 𝐿

    𝑖𝑦 + 𝜎

    π‘–πœ† = π‘Ž

    𝑖, 𝑖 = 1, 𝑛 + 1. The issues of limit transfer of the perturbed

    problem solution to the unperturbed problem solution as a small parameter approaches zero and the existence of the initial jumpphenomenon are studied. This research is conducted in two stages. In the first stage, the Cauchy function and boundary functionsare introduced. Then, on the basis of the introduced Cauchy function and boundary functions, the solution of the restorationproblem 𝐿

    πœ€π‘¦ = β„Ž (𝑑) πœ†, 𝐿

    𝑖𝑦+ πœŽπ‘–πœ† = π‘Ž

    𝑖, 𝑖 = 1, 𝑛 + 1 is obtained from the position of the singularly perturbed problem with the initial

    jump.Through this process, the formula of the initial jump and the asymptotic estimates of the solution of the considered boundaryvalue problem are identified.

    1. Introduction

    One of the fundamental theorems of singular perturbationstheories is Tikhonov’s theorem [1, 2] on the limit transitionthat establishes the limit equations, expressing the relationsbetween the solutions of a degenerate problem and an orig-inal singularly perturbed initial problem, and this theoremallows us to obtain the leading member of asymptotics.

    For a wide class of the singularly perturbed problems,effective asymptotic methods were developed, allowing forthe development of uniform approximations with any levelof precision. The methods of Višik and Lyusternik [3] andVasilyeva [4] were the first methods to be developed, whichare called methods of boundary functions. Butuzov [5]developed a method of angular boundary functions, whichwas a significant development for the boundary functionsmethod.

    Each of these methods has a certain area of applicability;that is, they are successful in solving some problems andare invalid when solving other problems. For example, therewere some fundamental difficulties in the realization of

    the boundary functions method in problems with initialjumps. The beginning of the mathematical solution of theinitial jump phenomenon was considered in the studies ofVišik and Lyusternik [6] and Kasymov [7], in which themethod of zone integration for nonlinear singularly per-turbed initial tasks with unbounded initial data when a smallparameter approaches zero. The research efforts of Višik,Lyusternik, and Kasymov were continued in [8, 9] and otherstudies.

    Simultaneously, there were problems in practice thatextended beyond the scope of traditional research, inwhich ready-made asymptotic methods were inapplicableand required modification or generalization. For example,in the study of Něımark and Smirnova [10], a new rationaleof the physical and mathematical nature of the Painleveparadox was introduced, which enriched the possible typesof movements and dynamics of the system as a whole. At thispoint, we saw the races and contrasting structures. ButuzovandVasiliyeva studiedmathematical solutions of the questionof contrast structures [11], and the phenomenon of the initialjump requires additional mathematical research.

    Hindawi Publishing CorporationJournal of Applied MathematicsVolume 2014, Article ID 956402, 11 pageshttp://dx.doi.org/10.1155/2014/956402

  • 2 Journal of Applied Mathematics

    Boundary value problems for ordinary differential equa-tions containing parameters in the right-hand side and in theboundary conditions were examined [12, 13]. In these studies,a restoration problem of the right-hand side of the differentialequations and boundary conditions is solved with the well-known structure of the differential equation and additionalinformation.

    The following natural generalization in this direction is tostudy the solutions of singularly perturbed boundary valueproblems with an additional parameter having the initialjump phenomenon. Such a study has not yet been reported.This study considers such problems. It studies the problemsof solution building, restoring the right-hand side of theequation and boundary conditions of the perturbed problem,the limit solution passing of the perturbed problem solutionto the unperturbed problem solution.

    2. Statement of the Problem

    Let 𝑅 = (βˆ’βˆž, ∞), 𝑇 = [0, 1], where 𝑑 belongs to 𝑇 = [0, 1].We consider

    πΏπœ€π‘¦ ≑ πœ€π‘¦

    (𝑛)

    + 𝐴1(𝑑) 𝑦(π‘›βˆ’1)

    + β‹… β‹… β‹… + 𝐴𝑛(𝑑) 𝑦 = β„Ž (𝑑) πœ† (1)

    with nonseparated boundary conditions

    𝐿𝑖𝑦 + πœŽπ‘–πœ† = π‘Žπ‘–, 𝑖 = 1, 𝑛 + 1, (2)

    where

    𝐿𝑖𝑦 ≑

    π‘šπ‘–

    βˆ‘

    𝑗=0

    𝛼𝑖𝑗𝑦(𝑗)

    (0, πœ€) +

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    𝛽𝑖𝑗𝑦(𝑗)

    (1, πœ€) , (3)

    πœ€ > 0 is a small parameter, πœ† is an unknown parameter,𝛼𝑖𝑗, 𝛽𝑖𝑗, π‘Žπ‘–, πœŽπ‘–βˆˆ 𝑅 are known constants, and π‘š

    𝑖, π‘Ÿπ‘–= fix ∈

    {0, 1, . . . , 𝑛 βˆ’ 1}. Let the matrix

    𝑃 = (

    𝛼10

    𝛼11

    β‹… β‹… β‹… 𝛼1π‘š1

    𝛽10

    𝛽11

    . . . 𝛽1π‘Ÿ1

    𝛼20

    𝛼21

    . . . 𝛼2π‘š2

    𝛽20

    𝛽21

    . . . 𝛽2π‘Ÿ2

    . . . . . . β‹… β‹… β‹… . . . . . . . . .

    𝛼𝑛+1,0

    𝛼𝑛+1,1

    . . . 𝛼𝑛+1,π‘šπ‘›+1,

    𝛽𝑛+1,0

    𝛽𝑛+1,1

    . . . 𝛽𝑛+1,π‘Ÿπ‘›+1,

    ) (4)

    have a rank equal to 𝑛, where 𝑛 is the maximum number oflinearly independent rows of matrix 𝑃. To the certainty, letthe first 𝑛 rows of the matrix be linearly independent. Then,the linear forms 𝐿

    𝑖𝑦, 𝑖 = 1, 𝑛, as the functions of 𝑦(𝑗)(0, πœ€), 𝑗 =

    0,π‘šπ‘–and 𝑦(𝑗)(1, πœ€), 𝑗 = 0, π‘Ÿ

    𝑖are linearly independent of each

    other.Consider that

    (a) 𝐴𝑖(𝑑) ∈ 𝐢

    𝑛

    (𝑇 ), 𝑖 = 1, 𝑛, β„Ž(𝑑) ∈ 𝐢1

    (𝑇),(b) a constant 𝛾 is independent of πœ€ and is

    𝐴1(𝑑) β‰₯ 𝛾 > 0, 0 ≀ 𝑑 ≀ 1, (5)

    (c) inequalities

    𝛼1π‘š1

    ΜΈ= 0, 𝑛 β‰₯ 3,

    𝑛 βˆ’ 1 > π‘š1> π‘š2β‰₯ β‹… β‹… β‹… β‰₯ π‘š

    𝑛,

    𝑛 βˆ’ 1 > π‘Ÿπ‘–, 𝑖 = 1, 𝑛, 𝐽

    01ΜΈ= 0

    (6)

    are valid, where 𝐽01is a determinant of (π‘›βˆ’1)th order, which is

    obtained from the rectangular matrix 𝐿𝑖𝑦𝑗0

    (𝑖 = 1, . . . , 𝑛, 𝑗 =

    1, . . . , 𝑛 βˆ’ 1) as follows:

    𝐽 = (

    𝐿1𝑦10

    β‹… β‹… β‹… 𝐿1π‘¦π‘›βˆ’1,0

    β‹… β‹… β‹… β‹… β‹… β‹… β‹… β‹… β‹…

    𝐿𝑛𝑦10

    β‹… β‹… β‹… πΏπ‘›π‘¦π‘›βˆ’1,0

    ) , (7)

    by deleting the first line, and 𝑦𝑖0(𝑑), 𝑖 = 1, 𝑛 βˆ’ 1 is the funda-

    mental system of the solutions of the following homogeneousunperturbed (degenerate) equation:

    𝐿0𝑦0≑ 𝐴1(𝑑) 𝑦(π‘›βˆ’1)

    0+ β‹… β‹… β‹… + 𝐴

    𝑛(𝑑) 𝑦0= 0. (8)

    Corresponding to (1),

    (d) 𝐷 = 𝐷𝑛+1

    βˆ’ βˆ‘π‘›

    𝑖=2𝐷𝑖𝐿𝑛+1

    π½π‘–βˆ’1,1

    (𝑑)/𝐽01

    ΜΈ= 0 is valid,

    where𝐷𝑖= πœŽπ‘–+βˆ‘π‘Ÿπ‘–

    𝑗=0π›½π‘–π‘—βˆ«1

    0

    (β„Ž(𝑠)π‘Š(π‘ž)

    𝑑(1, 𝑠)/𝐴

    1(𝑠)π‘Š(𝑠))𝑑𝑠 (𝑖 =

    1, 𝑛 + 1), π½π‘–βˆ’1,1

    (𝑑) is the (𝑛 βˆ’ 1)th-order determinantobtained from 𝐽

    01by replacing the (𝑖 βˆ’ 1)th row with the

    𝑦10(𝑑), 𝑦20(𝑑), . . . , 𝑦

    π‘›βˆ’1,0(𝑑) row, and π‘Š(𝑠) is the Wronskian

    of the solution system 𝑦𝑖0(𝑠), 𝑖 = 1, 𝑛 βˆ’ 1, π‘Š(π‘ž)

    𝑑(𝑑, 𝑠) and the

    (π‘›βˆ’1)th-order determinant obtained fromπ‘Š(𝑠) by replacingthe (𝑖 βˆ’ 1)th row with the 𝑦(π‘ž)

    10(𝑑), . . . , 𝑦

    (π‘ž)

    π‘›βˆ’1,0(𝑑) row.

    (e) Consider

    𝑛

    βˆ‘

    𝑖=1

    (βˆ’1)1+𝑖

    𝐽0𝑖

    Γ— (π‘Žπ‘–βˆ’ πœ†0πœŽπ‘–βˆ’ πœ†0

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    π›½π‘–π‘—βˆ«

    1

    0

    β„Ž (𝑠)

    𝐴1(𝑠)

    π‘Š(π‘ž)

    𝑑(1, 𝑠)

    π‘Š (𝑠)

    𝑑𝑠) ΜΈ= 0,

    (9)

  • Journal of Applied Mathematics 3

    where 𝐽0𝑖is the (π‘›βˆ’1)th-order determinant, which originates

    from 𝐽 by deleting the 𝑖th row, and πœ†0

    = (1/𝐷)(π‘Žπ‘›+1

    βˆ’

    βˆ‘π‘›

    𝑖=1π‘Žπ‘–πΏπ‘›+1

    π½π‘–βˆ’1,1

    (𝑑)/𝐽01).

    The problem lies in determining the pair(𝑦(𝑑, οΏ½ΜƒοΏ½(πœ€), πœ€), οΏ½ΜƒοΏ½(πœ€)), where 𝑦(𝑑, οΏ½ΜƒοΏ½(πœ€), πœ€) and οΏ½ΜƒοΏ½(πœ€) satisfy(1) and the boundary conditions in (2), in building theasymptotic estimates of (1) and (2) problem solutions and inthe study of the initial jump phenomenon.

    The following study is conducted according to a specificrule. In the first stage, we build the recovery problemsolutions (1) and (2) from the position of a singularlyperturbed problemwith the initial jump on the basis of initialand boundary functions. In the next stage, we study theasymptotic behavior of the boundary value problem solutions(1) and (2).

    3. Fundamental Solution System

    Along with (1), we consider the following correspondinghomogeneous perturbed equation:

    πΏπœ€π‘¦ = 0. (10)

    We seek a fundamental solution system of (10) in thefollowing form:

    𝑦𝑖(𝑑, πœ€) = 𝑦

    𝑖0+ πœ€π‘¦π‘–1+ πœ€2

    𝑦𝑖2+ β‹… β‹… β‹… , 𝑖 = 1, 𝑛 βˆ’ 1,

    𝑦𝑛(𝑑, πœ€) = exp(1

    πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯) (𝑦𝑛0+ πœ€π‘¦π‘›1+ πœ€2

    𝑦𝑛2+ β‹… β‹… β‹… ) ,

    (11)

    where 𝑦𝑖𝑗(𝑑) represents unknown functions to be found and

    πœ‡(𝑑) = βˆ’π΄1(𝑑).

    By substituting (11) into (10) and by matching the coef-ficients of like powers of πœ€ on both sides of the resultingrelation, we obtain a sequence of equations for all terms inexpansion (11). For our aim, however, it suffices to considerthe zero approximation. So, for the zero approximation (for𝑦𝑖0(𝑑), 𝑖 = 1, 𝑛 βˆ’ 1), we have the following problems:

    𝐿0𝑦𝑖0= 𝐴1(𝑑) 𝑦(π‘›βˆ’1)

    𝑖0+ β‹… β‹… β‹… + 𝐴

    𝑛(𝑑) 𝑦𝑖0= 0, 𝑖 = 1, 𝑛 βˆ’ 1,

    𝑦(𝑗)

    𝑖0(0) = 1, 𝑗 = 𝑖 βˆ’ 1, 𝑦

    (𝑗)

    𝑖0(0) = 0, 𝑗 ΜΈ= 𝑖 βˆ’ 1,

    𝑗 = 0, 𝑛 βˆ’ 2, 𝑖 = 1, 𝑛 βˆ’ 1,

    𝐴1(𝑑) 𝑦

    𝑛0(𝑑) + [(𝑛 βˆ’ 1)𝐴

    1(𝑑) βˆ’ 𝐴

    2(𝑑)] 𝑦𝑛0(𝑑) = 0,

    𝑦𝑛0(0) = 1.

    (12)

    Unique solutions exist for the problems (12) on theinterval 0 ≀ 𝑑 ≀ 1, and they form the fundamental solutionsystem 𝑦

    𝑖0(𝑑), 𝑖 = 1, 𝑛 βˆ’ 1 for the following homogeneous

    equation:

    𝐿0𝑦0≑ 𝐴1(𝑑) 𝑦(π‘›βˆ’1)

    0+ β‹… β‹… β‹… + 𝐴

    𝑛(𝑑) 𝑦0= 0, (13)

    where 𝑦𝑛0(𝑑) is presented in the following form:

    𝑦𝑛0(𝑑) = (

    𝐴1(0)

    𝐴1(𝑑)

    )

    π‘›βˆ’1

    exp(βˆ«π‘‘

    0

    (𝐴2(π‘₯)

    𝐴1(π‘₯)

    ) 𝑑π‘₯) . (14)

    Lemma 1. Let conditions (a) and (b) be satisfied. Then, thefundamental solution system 𝑦

    𝑖(𝑑, πœ€), 𝑖 = 1, 𝑛 of the singularly

    perturbed equation (10) permits the following asymptoticrepresentations:

    𝑦(π‘ž)

    𝑖(𝑑, πœ€) = 𝑦

    (π‘ž)

    𝑖0(𝑑) + 𝑂 (πœ€) , 𝑖 = 1, 𝑛 βˆ’ 1, π‘ž = 0, 𝑛 βˆ’ 1,

    𝑦(π‘ž)

    𝑛(𝑑, πœ€) =

    1

    πœ€π‘žexp(1

    πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯)

    β‹… 𝑦𝑛0(𝑑) πœ‡π‘ž

    (𝑑) (1 + 𝑂 (πœ€)) , π‘ž = 0, 𝑛 βˆ’ 1,

    (15)

    as πœ€ β†’ 0.

    The proof of the lemma is readily obtained from the well-known theorems of Schlesinger [14] and Birkhoff [15] (e.g.,see [16]).

    Let us introduce the Wronskian determinant π‘Š(𝑑, πœ€) forthe fundamental solution system 𝑦

    𝑖(𝑑, πœ€), 𝑖 = 1, 𝑛 of (9) and

    expand it in entries of the 𝑛th column:

    π‘Š(𝑑, πœ€) = (βˆ’1)1+𝑛

    𝑦𝑛(𝑑, πœ€)π‘Š

    1(𝑑, πœ€) + β‹… β‹… β‹…

    + (βˆ’1)2𝑛

    𝑦(π‘›βˆ’1)

    𝑛(𝑑, πœ€)π‘Š

    𝑛(𝑑, πœ€) ,

    (16)

    whereπ‘Šπ‘–(𝑑, πœ€), 𝑖 = 1, 𝑛 is (𝑛 βˆ’ 1)th order.

    With regard to (15), we obtain

    π‘Šπ‘–(𝑑, πœ€) = π‘Š

    𝑖0(𝑑) + 𝑂 (πœ€) , 𝑖 = 1, 𝑛, (17)

    for sufficiently small πœ€ for π‘Šπ‘–(𝑑, πœ€), where π‘Š

    𝑖0(𝑑) is obtained

    from the rectangular matrix (𝑦(π‘–βˆ’1)𝑗0

    (𝑑)) (𝑖 = 1, . . . , 𝑛, 𝑗 =

    1, . . . , 𝑛 βˆ’ 1) by deleting the 𝑖th row. In particular, thedeterminant π‘Š

    𝑛0(𝑑) ≑ π‘Š(𝑑) is the Wronskian of the

    fundamental solution system 𝑦10(𝑑), 𝑦20(𝑑), . . . , 𝑦

    π‘›βˆ’1,0(𝑑) of

    (13). With regard to (15) and (17), the expression (16) acquiresthe following form:

    π‘Š(𝑑, πœ€) = (βˆ’1)1+𝑛 exp(1

    πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯)

    Γ— 𝑦𝑛0(𝑑) (π‘Š

    10(𝑑) + 𝑂 (πœ€))

    +(βˆ’1)2+𝑛

    πœ€exp(1

    πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯)

    β‹… 𝑦𝑛0(𝑑) πœ‡ (𝑑) (π‘Š

    20(𝑑) + 𝑂 (πœ€)) + β‹… β‹… β‹…

    + (βˆ’1)2π‘›βˆ’1

    1

    πœ€π‘›βˆ’2exp(1

    πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯)

    β‹… 𝑦𝑛0(𝑑) πœ‡π‘›βˆ’2

    (𝑑) β‹… (π‘Šπ‘›βˆ’1,0

    (𝑑) + 𝑂 (πœ€))

    + (βˆ’1)2𝑛

    1

    πœ€π‘›βˆ’1exp(1

    πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯)

    β‹… 𝑦𝑛0(𝑑) πœ‡π‘›βˆ’1

    (𝑑) (π‘Š (𝑑) + 𝑂 (πœ€)) .

    (18)

  • 4 Journal of Applied Mathematics

    Hence, considering that the last summand is dominant, whenπœ€ β†’ 0 for the Wronskian determinant, it implies theasymptotic representation

    π‘Š(𝑑, πœ€) =π‘Š (𝑑)

    πœ€π‘›βˆ’1𝑦𝑛0(𝑑) πœ‡π‘›βˆ’1

    (𝑑) β‹… exp(1πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯)

    Γ— (1 + 𝑂 (πœ€)) ΜΈ= 0, 0 ≀ 𝑑 ≀ 1,

    (19)

    where 𝑦𝑛0(𝑑) is given by (14).

    4. Cauchy Function and Boundary Functions

    Following previous work [17], let us introduce the Cauchyfunction.

    Definition 2. Function 𝐾(𝑑, 𝑠, πœ€), defined at 0 ≀ 𝑠 ≀ 𝑑 ≀1, is called the Cauchy function of (10), if it satisfies thehomogeneous equation (10) according to 𝑑 and within 𝑑 = 𝑠initial conditions:

    𝐾(𝑗)

    (𝑠, 𝑠, πœ€) = 0, 𝑗 = 0, 𝑛 βˆ’ 2, 𝐾(π‘›βˆ’1)

    (𝑠, 𝑠, πœ€) = 1.

    (20)

    The following theorem is valid.

    Theorem 3. Let conditions (a) and (b) be satisfied. Then, forsufficiently small πœ€, the Cauchy function𝐾(𝑑, 𝑠, πœ€) with 0 ≀ 𝑠 ≀𝑑 ≀ 1 exists, is unique, and is expressed as follows:

    𝐾 (𝑑, 𝑠, πœ€) =π‘Š (𝑑, 𝑠, πœ€)

    π‘Š (𝑠, πœ€), (21)

    whereπ‘Š(𝑑, 𝑠, πœ€) is the 𝑛th order determinant obtained from theWronskianπ‘Š(𝑠, πœ€) by replacing the 𝑛th row of the fundamentalsolution system with 𝑦

    1(𝑑, πœ€), 𝑦

    2(𝑑, πœ€), . . . , 𝑦

    𝑛(𝑑, πœ€) of (10).

    Lemma 4. If conditions (a) and (b) are satisfied, then, forsufficiently small πœ€, the Cauchy function𝐾(𝑑, 𝑠, πœ€) with 0 ≀ 𝑠 ≀𝑑 ≀ 1 can be represented in the following form:

    𝐾(π‘ž)

    𝑑(𝑑, 𝑠, πœ€) =

    πœ€

    πœ‡ (𝑠)π‘Š (𝑠)

    β‹… (βˆ’π‘Š(π‘ž)

    π‘›βˆ’1,0(𝑑, 𝑠) + 𝑂 (πœ€)) ,

    π‘ž = 0, 𝑛 βˆ’ 3,

    𝐾(π‘›βˆ’2)

    𝑑(𝑑, 𝑠, πœ€) = πœ€ ( βˆ’

    π‘Š(π‘›βˆ’2)

    π‘›βˆ’1,0(𝑑, 𝑠)

    πœ‡ (𝑠)π‘Š (𝑠)

    +𝑦𝑛0(𝑑) πœ‡π‘›βˆ’2

    (𝑑)

    𝑦𝑛0(𝑠) πœ‡π‘›βˆ’1

    (𝑠)

    Γ— exp(1πœ€βˆ«

    𝑑

    𝑠

    πœ‡ (π‘₯) 𝑑π‘₯) + 𝑂 (πœ€)) ,

    𝐾(π‘›βˆ’1)

    𝑑(𝑑, 𝑠, πœ€) = βˆ’ πœ€

    π‘Š(π‘›βˆ’1)

    π‘›βˆ’1,0(𝑑, 𝑠)

    πœ‡ (𝑠)π‘Š (𝑠)

    +𝑦𝑛0(𝑑) πœ‡π‘›βˆ’1

    (𝑑)

    𝑦𝑛0(𝑠) πœ‡π‘›βˆ’1

    (𝑠)e(1/πœ€) ∫

    𝑑

    π‘ πœ‡(π‘₯)𝑑π‘₯

    + 𝑂(πœ€2

    + πœ€ exp(1πœ€βˆ«

    𝑑

    𝑠

    πœ‡ (π‘₯) 𝑑π‘₯)) ,

    (22)

    whereπ‘Šπ‘›βˆ’1,0

    (𝑑, 𝑠) is the determinant obtained from the Wron-skianπ‘Š(𝑠) by substituting the (π‘›βˆ’ 1)th row with the 𝑦

    𝑖0(𝑑), 𝑖 =

    1, 𝑛 βˆ’ 1 row.

    Proof. By expandingπ‘Š(π‘ž)𝑑

    (𝑑, 𝑠, πœ€), π‘ž = 0, 𝑛 βˆ’ 1 in entries of the𝑛th column, we obtain

    π‘Š(π‘ž)

    𝑑(𝑑, 𝑠, πœ€) =

    π‘›βˆ’1

    βˆ‘

    π‘˜=1

    (βˆ’1)𝑛+π‘˜

    𝑦(π‘˜βˆ’1)

    𝑛(𝑠, πœ€)

    Γ— οΏ½ΜƒοΏ½(π‘ž)

    π‘˜(𝑑, 𝑠, πœ€) + (βˆ’1)

    2𝑛

    𝑦(π‘ž)

    𝑛(𝑑, πœ€) οΏ½ΜƒοΏ½

    𝑛(𝑠, πœ€) .

    (23)

    From (15), theminors οΏ½ΜƒοΏ½(π‘ž)π‘˜

    (𝑑, 𝑠, πœ€), �̃�𝑛(𝑠, πœ€) for sufficiently

    small πœ€ > 0 can be represented in the following form:

    οΏ½ΜƒοΏ½(π‘ž)

    π‘˜(𝑑, 𝑠, πœ€) = π‘Š

    (π‘ž)

    π‘˜0(𝑑, 𝑠) + 𝑂 (πœ€) , π‘˜ = 1, 𝑛 βˆ’ 1,

    �̃�𝑛(𝑠, πœ€) = π‘Š

    𝑛0(𝑠) + 𝑂 (πœ€) ,

    (24)

    where π‘Šπ‘›0(𝑠) = π‘Š(𝑠) and π‘Š(π‘ž)

    π‘˜0(𝑑, 𝑠) is the determi-

    nant obtained from the rectangular matrix (𝑦(π‘–βˆ’1)𝑗0

    (𝑠)) (𝑖 =

    1, . . . , 𝑛, 𝑗 = 1, . . . , π‘›βˆ’1) by deleting the π‘˜th row and replacingthe (𝑛 βˆ’ 1)th row with the (𝑦(π‘ž)

    10(𝑠), . . . , 𝑦

    (π‘ž)

    π‘›βˆ’10(𝑠)) row.

    Then, from (23) and (15), relation (24) acquires thefollowing form:

    π‘Š(π‘ž)

    𝑑(𝑑, 𝑠, πœ€) =

    π‘›βˆ’1

    βˆ‘

    π‘˜=1

    (βˆ’1)𝑛+π‘˜

    1

    πœ€π‘˜βˆ’1exp(1

    πœ€βˆ«

    𝑠

    0

    πœ‡ (π‘₯) 𝑑π‘₯)

    Γ— 𝑦𝑛0(𝑠) πœ‡π‘˜βˆ’1

    (𝑠) (π‘Š(π‘ž)

    π‘˜0(𝑑, 𝑠) + 𝑂 (πœ€))

    + (βˆ’1)2𝑛

    1

    πœ€π‘žexp(1

    πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯)

    Γ— 𝑦𝑛0(𝑑) πœ‡π‘ž

    (𝑑) (π‘Š (𝑠) + 𝑂 (πœ€)) .

    (25)

    This readily implies that

    π‘Š(π‘ž)

    𝑑(𝑑, 𝑠, πœ€) =

    1

    πœ€π‘›βˆ’2𝑦𝑛0(𝑠) πœ‡π‘›βˆ’1

    (𝑠) exp(1πœ€βˆ«

    𝑠

    0

    πœ‡ (π‘₯) 𝑑π‘₯)

    Γ— [

    [

    βˆ’

    π‘Š(π‘ž)

    π‘›βˆ’1,0(𝑑, 𝑠)

    πœ‡ (𝑠)+πœ€π‘›βˆ’2

    πœ€π‘ž

    𝑦𝑛0(𝑑) πœ‡π‘ž

    (𝑑)

    𝑦𝑛0(𝑠) πœ‡π‘›βˆ’1

    (𝑠)

    Γ— π‘Š (𝑠) exp(1πœ€βˆ«

    𝑑

    𝑠

    πœ‡ (π‘₯) 𝑑π‘₯)

    +𝑂(πœ€ + πœ€π‘›βˆ’1βˆ’π‘ž exp(1

    πœ€βˆ«

    𝑑

    𝑠

    πœ‡ (π‘₯) 𝑑π‘₯))]

    ]

    .

    (26)

    From (26) with regard to (19) and (21), we obtain thedesired estimates (22).

  • Journal of Applied Mathematics 5

    Definition 5. Functions Ξ¦π‘˜(𝑑, πœ€), π‘˜ = 1, 𝑛 are referred to as

    boundary functions of the boundary value problems (1) and(2), if they satisfy the homogeneous equation (10) and theboundary conditions

    πΏπ‘–Ξ¦π‘˜= 𝛿𝑖𝑗, 𝑖, 𝑗 = 1, . . . , 𝑛. (27)

    Consider the determinant

    𝐽 (πœ€) = det (πΏπ‘˜π‘¦π‘™) , π‘˜, 𝑙 = 1, . . . , 𝑛, (28)

    where with (15), the entries πΏπ‘–π‘¦π‘˜

    = βˆ‘π‘šπ‘–

    𝑗=0𝛼𝑖𝑗𝑦(𝑗)

    π‘˜(0, πœ€) +

    βˆ‘π‘Ÿπ‘–

    𝑗=0𝛽𝑖𝑗𝑦(𝑗)

    π‘˜(1, πœ€) can be represented in the following form:

    πΏπ‘–π‘¦π‘˜=

    π‘šπ‘–

    βˆ‘

    𝑗=0

    𝛼𝑖𝑗𝑦(𝑗)

    π‘˜0(0) +

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    𝛽𝑖𝑗𝑦(𝑗)

    π‘˜0(1) + 𝑂 (πœ€) ,

    𝑖 = 1, 𝑛, π‘˜ = 1, 𝑛 βˆ’ 1,

    𝐿𝑖𝑦𝑛=

    π‘šπ‘–

    βˆ‘

    𝑗=0

    πœ‡π‘—

    (0)

    πœ€π‘—π›Όπ‘–π‘—(1 + 𝑂 (πœ€)) +

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    πœ‡π‘—

    (1)

    πœ€π‘—π›½π‘–π‘—π‘¦π‘›0(1)

    Γ— exp(1πœ€βˆ«

    1

    0

    πœ‡ (π‘₯) 𝑑π‘₯) (1 + 𝑂 (πœ€)) .

    (29)

    This, togetherwith the estimate exp((1/πœ€) ∫10

    πœ‡(π‘₯)𝑑π‘₯) = π‘œ(πœ€π‘

    )

    (where𝑁 is an arbitrary positive integer), implies that

    πΏπ‘–π‘¦π‘˜= πΏπ‘–π‘¦π‘˜0+ 𝑂 (πœ€) , 𝐿

    𝑖𝑦𝑛=πœ‡π‘šπ‘– (0)

    πœ€π‘šπ‘–(π›Όπ‘–π‘šπ‘–

    + 𝑂 (πœ€)) ,

    𝑖 = 1, 𝑛, π‘˜ = 1, 𝑛 βˆ’ 1,

    (30)

    where

    πΏπ‘–π‘¦π‘˜0

    =

    π‘šπ‘–

    βˆ‘

    𝑗=0

    𝛼𝑖𝑗𝑦(𝑗)

    π‘˜0(0) +

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    𝛽𝑖𝑗𝑦(𝑗)

    π‘˜0(1) , 𝑖 = 1, 𝑛,

    π‘˜ = 1, 𝑛 βˆ’ 1.

    (31)

    Now, let us expand 𝐽(πœ€) in the entries of the last column:

    𝐽 (πœ€) = (βˆ’1)1+𝑛

    𝐿1𝑦𝑛⋅ 𝐽1(πœ€) + β‹… β‹… β‹… + (βˆ’1)

    2𝑛

    𝐿𝑛𝑦𝑛⋅ 𝐽𝑛(πœ€) . (32)

    Here, from (15), the minors 𝐽𝑖(πœ€) can be expressed in the

    following form:

    𝐽𝑖(πœ€) = 𝐽

    0𝑖+ 𝑂 (πœ€) , 𝑖 = 1, 𝑛, (33)

    where 𝐽0𝑖is the (𝑛 βˆ’ 1)th-order determinant introduced in

    Section 1.By substituting (30) and (33) into (32), we obtain

    𝐽 (πœ€) = (βˆ’1)1+𝑛

    πœ‡π‘š1 (0)

    πœ€π‘š1(𝛼1π‘š1

    𝐽01+ 𝑂 (πœ€)) + β‹… β‹… β‹…

    + (βˆ’1)2π‘›πœ‡π‘šπ‘› (0)

    πœ€π‘šπ‘›(π›Όπ‘›π‘šπ‘›

    𝐽0𝑛+ 𝑂 (πœ€)) .

    (34)

    This, together with condition (c), implies that the determi-nant (28) permits the asymptotic representation:

    𝐽 (πœ€) = (βˆ’1)1+𝑛

    1

    πœ€π‘š1𝛼1π‘š1

    πœ‡π‘š1

    (0) 𝐽01(1 + 𝑂 (πœ€)) ΜΈ= 0. (35)

    The following theorem is valid.

    Theorem 6. Let conditions (a)–(c) be satisfied. Then, forsufficiently small πœ€ > 0, the boundary functions Ξ¦

    π‘˜(𝑑, πœ€), π‘˜ =

    1, 𝑛 exist on the interval [0, 1], are unique, and are given asfollows:

    Ξ¦π‘˜(𝑑, πœ€) =

    π½π‘˜(𝑑, πœ€)

    𝐽 (πœ€), π‘˜ = 1, 𝑛, (36)

    where π½π‘˜(𝑑, πœ€) is the determinant obtained from 𝐽(πœ€) by sub-

    stituting the π‘˜th row with the fundamental solution system𝑦𝑖(𝑑, πœ€), 𝑖 = 1, 𝑛 of (10).

    Lemma 7. If conditions (a)–(c) are satisfied, then the bound-ary functions Ξ¦

    π‘˜(𝑑, πœ€), π‘˜ = 1, 𝑛 permit the asymptotic

    representations:

    Ξ¦(π‘ž)

    1(𝑑, πœ€) =

    1

    𝐽01

    [βˆ’πœ€π‘š1βˆ’π‘š2

    𝛼2π‘š2

    πœ‡π‘š2 (0)

    𝛼1π‘š1

    πœ‡π‘š1 (0)𝐽(π‘ž)

    12(𝑑)

    + πœ€π‘š1βˆ’π‘ž

    𝑦𝑛0(𝑑)

    𝛼1π‘š1

    πœ‡π‘ž

    (𝑑)

    πœ‡π‘š1 (0)𝐽01

    Γ— exp(1πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯)

    + 𝑂(πœ€1+π‘š1βˆ’π‘š2 + πœ€

    π‘š1+1βˆ’π‘ž

    Γ— exp(1πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯))] ,

    (37)

    Ξ¦(π‘ž)

    π‘˜(𝑑, πœ€) =

    𝐽(π‘ž)

    π‘˜βˆ’1,1(𝑑)

    𝐽01

    + (βˆ’1)π‘˜βˆ’1

    πœ€π‘š1βˆ’π‘ž

    𝑦𝑛0(𝑑) πœ‡π‘ž

    (𝑑)

    𝛼1π‘š1

    πœ‡π‘š1 (0)

    ⋅𝐽0π‘˜

    𝐽01

    exp(1πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯)

    + 𝑂(πœ€ + πœ€π‘š1+1βˆ’π‘ž exp(1

    πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯)) ,

    π‘˜ = 2, . . . , 𝑛, π‘ž = 0, 𝑛 βˆ’ 1,

    (38)

    on the closed interval [0, 1] as πœ€ β†’ 0, where 𝐽01

    and 𝐽0π‘˜

    arethe determinants introduced in Section 1, 𝐽(π‘ž)

    12(𝑑) = 𝐽

    (π‘ž)

    21(𝑑), and

    𝐽(π‘ž)

    π‘˜βˆ’1,1(𝑑) is the (𝑛 βˆ’ 1)th-order determinant obtained from 𝐽

    01

    by replacing the (π‘˜βˆ’1)th row with the 𝑦(π‘ž)10(𝑑), . . . , 𝑦

    (π‘ž)

    π‘›βˆ’10(𝑑) row.

  • 6 Journal of Applied Mathematics

    Proof. From (36), we define the derivative 𝐽(π‘ž)1(𝑑, πœ€) of the

    function𝐽1(𝑑, πœ€). Let us expand 𝐽(π‘ž)

    1(𝑑, πœ€) in the entries of the

    𝑛th column:

    𝐽(π‘ž)

    1(𝑑, πœ€) = (βˆ’1)

    1+𝑛

    𝑦(π‘ž)

    𝑛(𝑑, πœ€) 𝐽

    01𝑛(πœ€)

    + (βˆ’1)2+𝑛

    𝐿2𝑦𝑛𝐽12𝑛

    (𝑑, πœ€) + β‹… β‹… β‹…

    + (βˆ’1)2𝑛

    𝐿𝑛𝑦𝑛𝐽1𝑛𝑛

    (𝑑, πœ€) .

    (39)

    Here in the minors 𝐽011

    (πœ€), 𝐽1𝑗𝑛

    (𝑑, πœ€), (𝑗 = 1, 𝑛), the firstsubscript represents the number of the row containing thesystem of functions 𝑦(π‘ž)

    1(𝑑, πœ€), . . . , 𝑦

    (π‘ž)

    π‘›βˆ’1(𝑑, πœ€). From (30), the

    determinants 𝐽011

    (πœ€), 𝐽1𝑗𝑛

    (𝑑, πœ€), (𝑗 = 1, 𝑛) can be presented inthe following form:

    𝐽011

    (πœ€) = 𝐽01+ 𝑂 (πœ€) , 𝐽

    1𝑗𝑛(𝑑, πœ€) = 𝐽

    (π‘ž)

    1𝑗(𝑑) + 𝑂 (πœ€) ,

    𝑗 = 2, 𝑛,

    (40)

    where the determinants 𝐽(π‘ž)1𝑗(𝑑) are obtained from 𝐽

    0𝑗by

    substituting the first row with the 𝑦(π‘ž)10(𝑑) β‹… β‹… β‹… 𝑦

    (π‘ž)

    π‘›βˆ’1,0(𝑑) row.

    With regard to (15), (30), and (40), the expression 𝐽(π‘ž)1(𝑑, πœ€)

    acquires the following form:

    𝐽(π‘ž)

    1(𝑑, πœ€) = (βˆ’1)

    1+𝑛1

    πœ€π‘žexp(1

    πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯)

    Γ— πœ‡π‘ž

    (𝑑) 𝑦𝑛0(𝑑) (𝐽01+ 𝑂 (πœ€)) + (βˆ’1)

    2+𝑛

    Γ—πœ‡π‘š2 (0)

    πœ€π‘š2(𝛼2π‘š2

    𝐽(π‘ž)

    12(𝑑) + 𝑂 (πœ€)) + β‹… β‹… β‹…

    + (βˆ’1)2π‘›πœ‡π‘šπ‘› (0)

    πœ€π‘šπ‘›(π›Όπ‘›π‘šπ‘›

    𝐽(π‘ž)

    1𝑛(𝑑) + 𝑂 (πœ€)) ,

    π‘ž = 0, 𝑛 βˆ’ 1.

    (41)

    This, together with the condition (c), gives the followingrepresentation:

    𝐽(π‘ž)

    1(𝑑, πœ€) =

    (βˆ’1)𝑛+1

    πœ€π‘š2

    Γ— [ βˆ’ 𝛼2π‘š2

    πœ‡π‘š2

    (0) 𝐽(π‘ž)

    12(𝑑)

    + πœ€π‘š2βˆ’π‘žπœ‡π‘ž

    (𝑑) 𝑦𝑛0(𝑑) 𝐽01exp(1

    πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯)

    + 𝑂(πœ€ + πœ€π‘š2+1βˆ’π‘ž exp(1

    πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯))] ,

    π‘ž = 0, 𝑛 βˆ’ 1.

    (42)

    Taking into account (35), (42), and (36), we obtainrelation (37) forΞ¦(π‘ž)

    1(𝑑, πœ€).

    Now, we expand 𝐽(π‘ž)π‘˜(𝑑, πœ€) in the entries of the 𝑛th column:

    𝐽(π‘ž)

    π‘˜(𝑑, πœ€) = (βˆ’1)

    1+𝑛

    𝐿1π‘¦π‘›π½π‘˜βˆ’1,1

    (𝑑, πœ€) + β‹… β‹… β‹…

    + (βˆ’1)π‘˜βˆ’1+𝑛

    πΏπ‘˜βˆ’1

    π‘¦π‘›π½π‘˜βˆ’1,π‘˜βˆ’1

    (𝑑, πœ€)

    + (βˆ’1)π‘˜+𝑛

    𝑦(π‘ž)

    𝑛(𝑑, πœ€) 𝐽

    0π‘˜(πœ€)

    + (βˆ’1)π‘˜+1+𝑛

    πΏπ‘˜+1

    π‘¦π‘›π½π‘˜,π‘˜+1

    (𝑑, πœ€)

    + β‹… β‹… β‹… + (βˆ’1)2𝑛

    πΏπ‘›π‘¦π‘›π½π‘˜π‘›(𝑑, πœ€) .

    (43)

    Here the first subscript in the determinants 𝐽0π‘˜, 𝐽(π‘ž)

    π‘˜βˆ’1,𝑖(𝑖 =

    1, π‘˜ βˆ’ 1), 𝐽(π‘ž)

    π‘˜π‘–(𝑖 = π‘˜ + 1, 𝑛) indicates the row containing

    the system of the functions 𝑦(π‘ž)1(𝑑, πœ€) β‹… β‹… β‹… 𝑦

    (π‘ž)

    π‘›βˆ’1(𝑑, πœ€), and the

    second subscript shows that they are the minors of the entryof the determinant 𝐽(π‘ž)

    π‘˜(𝑑, πœ€) at the intersection of the 𝑖th

    row and 𝑛th column. From (30), the minors 𝐽0π‘˜, 𝐽(π‘ž)

    π‘˜βˆ’1,𝑖(𝑖 =

    1, π‘˜ βˆ’ 1), 𝐽(π‘ž)

    π‘˜π‘–(𝑖 = π‘˜ + 1, 𝑛) can be presented in the following

    form:

    𝐽0π‘˜(πœ€) = 𝐽

    0π‘˜+ 𝑂 (πœ€) , 𝐽

    (π‘ž)

    π‘˜βˆ’1,𝑖(𝑑, πœ€) = 𝐽

    (π‘ž)

    π‘˜βˆ’1,𝑖(𝑑) + 𝑂 (πœ€) ,

    𝑖 = 1, π‘˜ βˆ’ 1,

    𝐽(π‘ž)

    π‘˜π‘–(𝑑, πœ€) = 𝐽

    (π‘ž)

    π‘˜π‘–(𝑑) + 𝑂 (πœ€) , 𝑖 = π‘˜ + 1, 𝑛,

    (44)

    where 𝐽0π‘˜

    is as defined in Section 1, 𝐽(π‘ž)π‘˜βˆ’1,𝑖

    (𝑑) (𝑖 = 1, π‘˜ βˆ’ 1) isobtained from 𝐽

    0𝑖(𝑖 = 1, . . . , π‘˜ βˆ’ 1) by replacing the (π‘˜ βˆ’ 1)th

    row with the 𝑦(π‘ž)10(𝑑) β‹… β‹… β‹… 𝑦

    (π‘ž)

    π‘›βˆ’1,0(𝑑) row, and 𝐽(π‘ž)

    π‘˜π‘–(𝑑) (𝑖 = π‘˜ + 1, 𝑛)

    is obtained from 𝐽0𝑖(𝑖 = π‘˜ + 1, . . . , 𝑛) by replacing the π‘˜th

    with the 𝑦(π‘ž)10(𝑑) β‹… β‹… β‹… 𝑦

    (π‘ž)

    π‘›βˆ’1,0(𝑑) row.

    In view of (30) and (44) out of (43), the expression takesthe following form:

    𝐽(π‘ž)

    π‘˜(𝑑, πœ€) = (βˆ’1)

    1+π‘›πœ‡π‘š1 (0)

    πœ€π‘š1(𝛼1π‘š1

    𝐽(π‘ž)

    π‘˜βˆ’1,1(𝑑) + 𝑂 (πœ€)) + β‹… β‹… β‹…

    + (βˆ’1)π‘˜βˆ’1+𝑛

    πœ‡π‘šπ‘˜βˆ’1 (0)

    πœ€π‘šπ‘˜βˆ’1

    Γ— (π›Όπ‘˜βˆ’1,π‘šπ‘˜βˆ’1

    𝐽(π‘ž)

    π‘˜βˆ’1,π‘˜βˆ’1(𝑑) + 𝑂 (πœ€))

    + (βˆ’1)π‘˜+𝑛

    𝑦𝑛0(𝑑)

    πœ€π‘žπœ‡π‘ž

    (𝑑) exp(1πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯)

    Γ— (𝐽0π‘˜+ 𝑂 (πœ€)) + (βˆ’1)

    π‘˜+1+𝑛

    Γ—πœ‡π‘šπ‘˜+1 (0)

    πœ€π‘šπ‘˜+1(π›Όπ‘˜+1,π‘šπ‘˜+1

    𝐽(π‘ž)

    π‘˜,π‘˜+1(𝑑) + 𝑂 (πœ€)) + β‹… β‹… β‹…

    + (βˆ’1)2π‘›πœ‡π‘šπ‘› (0)

    πœ€π‘šπ‘›

    Γ— (π›Όπ‘›π‘šπ‘›

    𝐽(π‘ž)

    π‘˜π‘›(𝑑) + 𝑂 (πœ€)) , π‘ž = 0, 𝑛 βˆ’ 1.

    (45)

  • Journal of Applied Mathematics 7

    Here the expression (βˆ’1)1+𝑛(πœ‡π‘š1(0)/πœ€π‘š1)𝛼1π‘š1

    𝐽(π‘ž)

    π‘˜βˆ’1,1(𝑑) is

    dominant for small πœ€. Then, considering condition (c), we getthe following asymptotic representation for 𝐽(π‘ž)

    π‘˜(𝑑, πœ€):

    𝐽(π‘ž)

    π‘˜(𝑑, πœ€) =

    (βˆ’1)𝑛+1

    πœ€π‘š1

    Γ— [𝛼1π‘š1

    πœ‡π‘š1

    (0) 𝐽(π‘ž)

    π‘˜βˆ’1,1(𝑑)

    + (βˆ’1)π‘˜βˆ’1

    πœ€π‘š1βˆ’π‘žπœ‡π‘ž

    (𝑑) 𝑦𝑛0(𝑑) 𝐽0π‘˜

    Γ— exp(1πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯)

    + 𝑂(πœ€ + πœ€π‘š1+1βˆ’π‘ž exp(1

    πœ€βˆ«

    𝑑

    0

    πœ‡ (π‘₯) 𝑑π‘₯))] ,

    π‘˜ = 2, 𝑛, π‘ž = 0, 𝑛 βˆ’ 1.

    (46)

    Substituting (35) and (46) into formula (36), we obtain theasymptotic formula (38) for the boundary functionsΞ¦(π‘ž)

    π‘˜(𝑑, πœ€).

    The proof of the lemma is complete.

    5. Analytic Representation andEstimates of the Solution

    Consider the singularly perturbed boundary value problems(1) and (2). The unique solution of the problems (1) and (2) isfound in the following form:

    𝑦 (𝑑, πœ†, πœ€) = 𝑐1Ξ¦1(𝑑, πœ€) + β‹… β‹… β‹… + 𝑐

    𝑛Φ𝑛(𝑑, πœ€)

    +πœ†

    πœ€βˆ«

    𝑑

    0

    𝐾 (𝑑, 𝑠, πœ€) β„Ž (𝑠) 𝑑𝑠,

    (47)

    where Ξ¦π‘˜(𝑑, πœ€), π‘˜ = 1, 𝑛 are the boundary functions, 𝐾(𝑑, 𝑠, πœ€)

    is the Cauchy function, 𝑐1, 𝑐2, . . . , 𝑐

    𝑛are unknown consonants,

    and πœ† is the required parameter. By a straightforward ver-ification, one can show that the function 𝑦(𝑑, πœ†, πœ€), definedby formula (47), is identical to (1). For the determinationof 𝑐1, 𝑐2, . . . , 𝑐

    𝑛, πœ†, we substitute (47) into the boundary

    conditions (b). Then, with regard to the boundary (27), weobtain the following system of linear equations with respectto 𝑐1, 𝑐2, . . . , 𝑐

    𝑛, πœ† as follows:

    𝑐𝑖= π‘Žπ‘–βˆ’

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    𝛽𝑖𝑗

    πœ†

    πœ€βˆ«

    1

    0

    𝐾(𝑗)

    𝑑(1, 𝑠, πœ€) β„Ž (𝑠) 𝑑𝑠, 𝑖 = 1, . . . , 𝑛,

    (48)

    πœ†π· = π‘Žπ‘›+1

    βˆ’

    𝑛

    βˆ‘

    𝑖=1

    π‘Žπ‘–πΏπ‘›+1

    Φ𝑖(𝑑, πœ€) , (49)

    where

    𝐷 = 𝐷𝑛+1

    βˆ’

    𝑛

    βˆ‘

    𝑖=1

    𝐷𝑖𝐿𝑛+1

    Φ𝑖(𝑑, πœ€) ,

    𝐷𝑖= πœŽπ‘–+1

    πœ€

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    π›½π‘–π‘—βˆ«

    1

    0

    β„Ž (𝑠)𝐾(𝑗)

    𝑑(1, 𝑠, πœ€) 𝑑𝑠, 𝑖 = 1, 𝑛 + 1.

    (50)

    We study the coefficient in (49) for πœ† and the right-handside of this equation as a function of πœ€. Then, with regard to(27), (35), (37), and (38), we obtain

    𝐷 = 𝐷 + 𝑂 (πœ€) , (51)

    π‘Žπ‘›+1

    βˆ’

    𝑛

    βˆ‘

    𝑖=1

    π‘Žπ‘–πΏπ‘›+1

    Φ𝑖(𝑑, πœ€)

    = π‘Žπ‘›+1

    βˆ’

    𝑛

    βˆ‘

    𝑖=2

    π‘Žπ‘–πΏπ‘›+1

    π½π‘–βˆ’1

    (𝑑)

    𝐽01

    + 𝑂 (πœ€) .

    (52)

    From condition (d), 𝐷 ΜΈ= 0. Therefore, for sufficiently small πœ€,

    𝐷 ̸= 0. (53)

    Consequently, for sufficiently small πœ€ > 0, (49) is uniquelysolvable and can be represented in the following form:

    πœ† = οΏ½ΜƒοΏ½ (πœ€) =1

    𝐷(π‘Žπ‘›+1

    βˆ’

    𝑛

    βˆ‘

    𝑖=1

    π‘Žπ‘–πΏπ‘›+1

    Φ𝑖(𝑑, πœ€)) , (54)

    and from (51) and (52), the fair estimate for it is

    οΏ½ΜƒοΏ½ (πœ€) = πœ†0+ 𝑂 (πœ€) , (55)

    where

    πœ†0=

    1

    𝐷

    (π‘Žπ‘›+1

    βˆ’

    𝑛

    βˆ‘

    𝑖=1

    π‘Žπ‘–πΏπ‘›+1

    π½π‘–βˆ’1

    (𝑑)

    𝐽01

    ) . (56)

    Now, substituting (54) into (48), we explicitly determine

    𝑐𝑖= π‘Žπ‘–βˆ’

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    𝛽𝑖𝑗

    οΏ½ΜƒοΏ½ (πœ€)

    πœ€βˆ«

    1

    0

    𝐾(𝑗)

    𝑑(1, 𝑠, πœ€) β„Ž (𝑠) 𝑑𝑠, 𝑖 = 1, . . . , 𝑛.

    (57)

    Using (54), (57), and (50) out of (47), we obtain therepresentation, and for the component 𝑦 of the problemsolutions (1) and (2),

    𝑦 (𝑑, οΏ½ΜƒοΏ½ (πœ€) , πœ€)

    =

    𝑛

    βˆ‘

    𝑖=1

    π‘Žπ‘–Ξ¦π‘–(𝑑, πœ€) βˆ’ οΏ½ΜƒοΏ½ (πœ€)

    Γ—

    𝑛

    βˆ‘

    𝑖=1

    (πœŽπ‘–+

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    𝛽𝑖𝑗

    πœ€βˆ«

    1

    0

    𝐾(𝑗)

    𝑑(1, 𝑠, πœ€) β„Ž (𝑠) 𝑑𝑠)

    Γ— Φ𝑖(𝑑 β‹… πœ€) +

    οΏ½ΜƒοΏ½ (πœ€)

    πœ€βˆ«

    𝑑

    0

    𝐾 (𝑑, 𝑠, πœ€) β„Ž (𝑠) 𝑑𝑠.

    (58)

    Thus, the following theorem is valid.

  • 8 Journal of Applied Mathematics

    Theorem 8. Let conditions (a)–(d) be satisfied. Then, forsufficiently small πœ€ > 0 in a sufficiently small neighborhood ofthe point πœ† = πœ†

    0, a unique value of πœ† = οΏ½ΜƒοΏ½(πœ€) can be determined

    such that the pair (𝑦(𝑑, οΏ½ΜƒοΏ½(πœ€), πœ€), οΏ½ΜƒοΏ½(πœ€)) is the unique solution forthe boundary value problems (1) and (2) on the interval [0, 1],where 𝑦(𝑑, οΏ½ΜƒοΏ½(πœ€), πœ€) is given by formula (58) and οΏ½ΜƒοΏ½(πœ€) is given byformula (54).

    Theorem 9. Let conditions (a)–(e) be satisfied. Then, forsufficiently small πœ€, the solution 𝑦(𝑑, πœ€) of the boundary valueproblems (1) and (2) and its derivatives on the interval 0 ≀ 𝑑 ≀1 can be estimated as follows:𝑦(π‘ž)

    (𝑑, οΏ½ΜƒοΏ½ (πœ€) , πœ€)

    ≀ 𝐢[π‘Ž1βˆ’ οΏ½ΜƒοΏ½πœŽ1

    β‹… (πœ€π‘š1βˆ’π‘š2 + πœ€

    π‘š1βˆ’π‘ž exp(βˆ’π›Ύπ‘‘

    πœ€))

    +

    𝑛

    βˆ‘

    𝑖=2

    π‘Žπ‘–βˆ’ οΏ½ΜƒοΏ½πœŽπ‘–

    +οΏ½ΜƒοΏ½max0≀𝑑≀1

    |β„Ž (𝑑)| + πœ€π‘š1βˆ’π‘ž

    Γ— exp(βˆ’π›Ύtπœ€)(

    𝑛

    βˆ‘

    𝑖=2

    π‘Žπ‘–βˆ’ οΏ½ΜƒοΏ½πœŽπ‘–

    +οΏ½ΜƒοΏ½max0≀𝑑≀1

    |β„Ž (𝑑)|)] ,

    π‘ž = 0, 𝑛 βˆ’ 1,

    (59)

    where 𝐢 > 0 and 𝛾 > 0 are the constants independent of πœ€.

    Proof. Formulae (22), (37), and (38) together with (5) implythe following estimates:

    𝐾(π‘ž)

    𝑑(𝑑, 𝑠, πœ€)

    ≀ πΆπœ€, π‘ž = 0, 𝑛 βˆ’ 2, 0 ≀ 𝑠 ≀ 𝑑 ≀ 1,

    𝐾(π‘›βˆ’1)

    𝑑(𝑑, 𝑠, πœ€)

    ≀ 𝐢(πœ€ + exp(βˆ’

    𝛾 (𝑑 βˆ’ 𝑠)

    πœ€)) ,

    0 ≀ 𝑠 ≀ 𝑑 ≀ 1,

    Ξ¦(π‘ž)

    𝑖(𝑑, πœ€)

    ≀ 𝐢 β‹… (1 + πœ€

    π‘š1βˆ’π‘ž β‹… exp(βˆ’π›Ύπ‘‘

    πœ€)) , 𝑖 = 2, 𝑛,

    π‘ž = 0, 𝑛 βˆ’ 1, 0 ≀ 𝑑 ≀ 1,

    Ξ¦(π‘ž)

    1(𝑑, πœ€)

    ≀ 𝐢 (πœ€

    π‘š1βˆ’π‘š2 + πœ€π‘š1βˆ’π‘ž β‹… exp(βˆ’

    𝛾𝑑

    πœ€)) ,

    π‘ž = 0, 𝑛 βˆ’ 1, 0 ≀ 𝑑 ≀ 1.

    (60)

    By estimating solution (58) and taking into account (60),we obtain (59), which completes the proof of the theorem.

    Now, let us formulate the boundary conditions for thefollowing unperturbed (degenerate) equation:

    𝐿0𝑦 = 𝐴

    1(𝑑) 𝑦(π‘›βˆ’1)

    + β‹… β‹… β‹… + 𝐴𝑛(𝑑) 𝑦 (𝑑) = β„Ž (𝑑) , (61)

    obtained from (1) within πœ€ = 0. On the basis ofTheorem 9, wemust conclude that in (58), the coefficient of π‘Ž

    1approaches

    zero when πœ€ β†’ 0 and the coefficients of π‘Žπ‘–, 𝑖 = 2, 𝑛 have

    the order 𝑂(1). Therefore, the boundary conditions for thesolution of the unperturbed (61) are defined with help of theboundary conditions (2), containing π‘Ž

    2, . . . , π‘Ž

    𝑛+1:

    𝐿2𝑦 + 𝜎2πœ† = π‘Ž2, . . . , 𝐿

    𝑛+1𝑦 + πœŽπ‘›+1

    πœ† = π‘Žπ‘›+1

    . (62)

    Next, we show that (61) and boundary conditions (62)actually define the degenerate problem.

    By analogy with (17) and (28) for the problems (51)and (52), we introduce the initial function and boundaryfunctions:

    𝐾 (𝑑, 𝑠) =π‘Š (𝑑, 𝑠)

    π‘Š (𝑠)

    , Ξ¦π‘˜βˆ’1

    (𝑑) =π½π‘˜βˆ’1

    (𝑑)

    𝐽01

    , π‘˜ = 2, 𝑛 (63)

    where 𝐽01

    is the determinant (6), π½π‘˜βˆ’1

    (𝑑) = 𝐽(0)

    π‘˜βˆ’1,1(𝑑) is the

    determinant from Lemma 7, π‘Š(𝑑, 𝑠) ≑ π‘Šπ‘›βˆ’1,0

    (𝑑, 𝑠) is thedeterminant from Lemma 4, and π‘Š(𝑠) ≑ π‘Š

    𝑛0(𝑠) is the

    Wronskian determinant of the fundamental solution system𝑦𝑖0(𝑠), 𝑖 = 1, 𝑛 βˆ’ 1 of homogeneous degenerate equation (13),

    which is obtained from π‘Š(𝑠) by replacing the (𝑛 βˆ’ 1)th rowwith the 𝑦

    𝑖0(𝑑), 𝑖 = 1, 𝑛 βˆ’ 1 row.

    Apparently, 𝐾(𝑑, 𝑠) is the Cauchy function satisfying thehomogeneous equation 𝐿

    0𝐾(𝑑, 𝑠) = 0 with respect to 𝑑 and

    initial conditions 𝐾(𝑗)𝑑(𝑠, 𝑠) = 0, 𝑗 = 0, 𝑛 βˆ’ 3, 𝐾

    (π‘›βˆ’2)

    𝑑(𝑠, 𝑠) =

    1, and Ξ¦π‘˜(𝑑), π‘˜ = 1, 𝑛 βˆ’ 1 as the boundary functions of the

    boundary value problems (61) and (62):

    𝐿0Ξ¦π‘˜(𝑑) = 0, 𝐿

    π‘–Ξ¦π‘˜= 1 within 𝑖 = π‘˜ + 1,

    πΏπ‘–Ξ¦π‘˜= 0 within 𝑖 ΜΈ= π‘˜ + 1, 𝑖 = 2, 𝑛.

    (64)

    Theorem 10. Let conditions (a)–(d) be satisfied.Then, the pair(𝑦(𝑑, πœ†

    0), πœ†0) is the unique solution of the nonhomogeneous

    boundary-value problems (61) and (62) on the interval [0, 1],where πœ†

    0is expressed by formula (56) and 𝑦(𝑑, πœ†

    0) is

    𝑦 (𝑑, πœ†0) =

    𝑛

    βˆ‘

    𝑖=2

    (π‘Žπ‘–βˆ’ πœ†0πœŽπ‘–)Ξ¦π‘–βˆ’1

    (𝑑)

    βˆ’ πœ†0

    𝑛

    βˆ‘

    𝑖=2

    Ξ¦π‘–βˆ’1

    (𝑑)

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    π›½π‘–π‘—βˆ«

    1

    0

    𝐾(𝑗)

    𝑑(1, 𝑠)

    𝐴1(𝑠)

    β„Ž (𝑠) 𝑑𝑠

    + πœ†0∫

    𝑑

    0

    𝐾 (𝑑, 𝑠)

    𝐴1(𝑠)

    β„Ž (𝑠) 𝑑𝑠.

    (65)

    Proof. We seek the solution (𝑦(𝑑, πœ†), πœ†) of the boundary valueproblems (61) and (62) in the following form:

    𝑦 (𝑑, πœ†) = 𝑐1Ξ¦1(𝑑) + β‹… β‹… β‹… + 𝑐

    π‘›βˆ’1Ξ¦π‘›βˆ’1

    (𝑑)

    + πœ†βˆ«

    𝑑

    0

    𝐾 (𝑑, 𝑠)

    𝐴1(𝑠)

    β„Ž (𝑠) 𝑑𝑠,

    (66)

    where Ξ¦π‘˜(𝑑), π‘˜ = 1, 𝑛 βˆ’ 1 are boundary functions, 𝐾(𝑑, 𝑠) is

    the Cauchy function, 𝑐1, 𝑐2, . . . , 𝑐

    π‘›βˆ’1are unknown constants,

  • Journal of Applied Mathematics 9

    and πœ† is the required parameter. It is easy to verify thatthe function 𝑦(𝑑, πœ†) identically satisfies (20). For the deter-mination of 𝑐

    1, 𝑐2, . . . , 𝑐

    π‘›βˆ’1, πœ†, let us substitute (51) into the

    boundary conditions (49).Then, with regard to the boundaryconditions (26), we obtain the following system of linearequations with respect to 𝑐

    1, 𝑐2, . . . , 𝑐

    π‘›βˆ’1, πœ†:

    𝑐1𝐿𝑖Φ1(𝑑) + β‹… β‹… β‹… + 𝑐

    π‘›βˆ’1πΏπ‘–Ξ¦π‘›βˆ’1

    (𝑑)

    + πœ† (πœŽπ‘–+

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    π›½π‘–π‘—βˆ«

    1

    0

    𝐾(𝑗)

    𝑑(1, 𝑠)

    𝐴1(𝑠)

    β„Ž (𝑠) 𝑑𝑠) = π‘Žπ‘–,

    𝑖 = 2, 𝑛,

    𝑐1𝐿𝑛+1

    Ξ¦1(𝑑) + β‹… β‹… β‹… + 𝑐

    π‘›βˆ’1𝐿𝑛+1

    Ξ¦π‘›βˆ’1

    (𝑑)

    + πœ† (πœŽπ‘›+1

    +

    π‘Ÿπ‘›+1

    βˆ‘

    𝑗=0

    𝛽𝑛+1𝑗

    ∫

    1

    0

    𝐾(𝑗)

    𝑑(1, 𝑠)

    𝐴1(𝑠)

    β„Ž (𝑠) 𝑑𝑠) = π‘Žπ‘›+1

    .

    (67)

    Hence, with regard to (64), we have

    π‘π‘–βˆ’1

    = π‘Žπ‘–βˆ’ πœ† (𝜎

    𝑖+

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    π›½π‘–π‘—βˆ«

    1

    0

    𝐾(𝑗)

    𝑑(1, 𝑠)

    𝐴1(𝑠)

    β„Ž (𝑠) 𝑑𝑠) , 𝑖 = 2, 𝑛,

    (68)𝑛

    βˆ‘

    𝑖=2

    π‘Žπ‘–πΏπ‘›+1

    Ξ¦π‘–βˆ’1

    (𝑑)

    + πœ† (πœŽπ‘›+1

    +

    π‘Ÿπ‘›+1

    βˆ‘

    𝑗=0

    𝛽𝑛+1𝑗

    ∫

    1

    0

    𝐾(𝑗)

    𝑑(1, 𝑠)

    𝐴1(𝑠)

    β„Ž (𝑠) 𝑑𝑠)

    βˆ’ πœ†(

    𝑛

    βˆ‘

    𝑖=2

    (πœŽπ‘–+

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    π›½π‘–π‘—βˆ«

    1

    0

    𝐾(𝑗)

    𝑑(1, 𝑠)

    𝐴1(𝑠)

    β„Ž (𝑠) 𝑑𝑠)

    Γ— 𝐿𝑛+1

    Ξ¦π‘–βˆ’1

    (𝑑)) = π‘Žπ‘›+1

    .

    (69)

    From (53), (58), and condition (d), we determine

    πœ† = πœ†0=

    1

    𝐷

    (π‘Žπ‘›+1

    βˆ’

    𝑛

    βˆ‘

    𝑖=1

    π‘Žπ‘–πΏπ‘›+1

    Ξ¦π‘–βˆ’1

    (𝑑)) , (70)

    where 𝐷 = 𝐷𝑛+1

    βˆ’ βˆ‘π‘›

    𝑖=2𝐷𝑖𝐿𝑛+1

    Ξ¦π‘–βˆ’1

    ΜΈ= 0, 𝐷𝑖

    = πœŽπ‘–+

    βˆ‘π‘Ÿπ‘–

    𝑗=0π›½π‘–π‘—βˆ«1

    0

    (β„Ž(𝑠)/𝐴1(𝑠))𝐾(𝑗)

    𝑑(1, 𝑠)𝑑𝑠 (𝑖 = 1, 𝑛 + 1), and the

    values of πœ†0are given in Section 2.

    Substituting (70) into (68), we definitely find

    π‘π‘–βˆ’1

    = π‘Žπ‘–βˆ’ πœ†0(πœŽπ‘–+

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    π›½π‘–π‘—βˆ«

    1

    0

    𝐾(𝑗)

    𝑑(1, 𝑠)

    𝐴1(𝑠)

    β„Ž (𝑠) 𝑑𝑠) ,

    𝑖 = 2, 𝑛.

    (71)

    Now, using (70) and (71) out of (66), we obtain thepresentation (65). The proof of Theorem 10 is complete.

    Theorem 11. Let conditions (a)–(e) be satisfied. Then, theestimates

    𝑦(π‘ž)

    (𝑑, οΏ½ΜƒοΏ½, πœ€) βˆ’ 𝑦(π‘ž)

    (𝑑, πœ†0)≀ 𝐢 (πœ€ + πœ€

    π‘š1βˆ’π‘ž exp(βˆ’π›Ύ 𝑑

    πœ€)) ,

    𝑑 ∈ [0, 1] , π‘ž = 0, 𝑛 βˆ’ 1

    (72)

    are valid for sufficiently small πœ€ > 0, where 𝑦(𝑑, οΏ½ΜƒοΏ½, πœ€) is thesolution to the problems (1) and (2), and 𝑦(𝑑, πœ†

    0) is the solution

    of the problems (61) and (62).

    Proof. Let 𝑒(𝑑, πœ€) = 𝑦(𝑑, οΏ½ΜƒοΏ½(πœ€), πœ€) βˆ’ 𝑦(𝑑, πœ†0), where 𝑦(𝑑, οΏ½ΜƒοΏ½(πœ€), πœ€)

    is the solution of the problems (1) and (2) and 𝑦(𝑑, πœ†0) is

    the solution of the problems (61) and (62). We substitute thevariable 𝑦(𝑑, οΏ½ΜƒοΏ½(πœ€), πœ€) = 𝑒(𝑑, πœ€) + 𝑦(𝑑, πœ†

    0), which represents

    the problems (1) and (2) together with (61) and (62) in thefollowing form:

    πΏπœ€π‘’ = βˆ’πœ€ β‹… 𝑦

    (𝑛)

    (𝑑) ,

    𝐿𝑖𝑒 =

    π‘šπ‘–

    βˆ‘

    𝑗=0

    𝛼𝑖𝑗𝑒(𝑗)

    (0, πœ€) +

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    𝛽𝑖𝑗𝑒(𝑗)

    (1, πœ€) = 𝑂 (πœ€) ,

    𝑖 = 2, . . . , 𝑛 + 1,

    𝐿1𝑒 =

    π‘š1

    βˆ‘

    𝑗=0

    𝛼1𝑗𝑒(𝑗)

    (0, πœ€) +

    π‘Ÿ1

    βˆ‘

    𝑗=0

    𝛽1𝑗𝑒(𝑗)

    (1, πœ€)

    = π‘Ž1βˆ’ 𝜎1οΏ½ΜƒοΏ½ (πœ€) βˆ’ 𝐿

    1𝑦.

    (73)

    By applyingTheorem 9 to this problem, we obtain

    𝑒(π‘ž)

    (𝑑, πœ€)≀ 𝐢 (πœ€ + πœ€

    π‘š1βˆ’π‘ž exp(βˆ’π›Ύπ‘‘

    πœ€)) ,

    𝑑 ∈ [0, 1] , π‘ž = 0, 𝑛 βˆ’ 1.

    (74)

    Now, we obtain the desired estimate (72).The proof of thetheorem is complete.

    Thus, from Theorem 11, it follows that the solution𝑦(𝑑, οΏ½ΜƒοΏ½, πœ€), οΏ½ΜƒοΏ½ of the boundary value problems (1) and (2)approaches the solution 𝑦(𝑑, πœ†

    0), πœ†0of the degenerate prob-

    lems (61) and (62) as the small parameter πœ€ approaches zero:

    limπœ€β†’0

    οΏ½ΜƒοΏ½ (πœ€) = πœ†0,

    limπœ€β†’0

    𝑦(π‘ž)

    (𝑑, οΏ½ΜƒοΏ½, πœ€) = 𝑦(π‘ž)

    (𝑑, πœ†0) , 0 ≀ 𝑑 ≀ 1, π‘ž = 0,π‘š

    1βˆ’ 1,

    limπœ€β†’0

    𝑦(π‘ž)

    (𝑑, οΏ½ΜƒοΏ½, πœ€) = 𝑦(π‘ž)

    (𝑑, πœ†0) , 0 < 𝑑 ≀ 1,

    π‘ž = π‘š1, π‘š1+ 1, . . . , 𝑛 βˆ’ 1.

    (75)

    Therefore, it follows that the problems (61) and (62) aredegenerate problems.

    Apparently, passages to the limit (75) are not even in theright neighborhood of the point 𝑑 = 0. If we specify the

  • 10 Journal of Applied Mathematics

    solution tendency of the original problems (1) and (2) to thesolution of degenerate problems (61) and (62), we learn thenature of the growth of derivatives of the (1) and (2) problemsolutions in the neighborhood of the point 𝑑 = 0 for πœ€ β†’ 0.For this purpose, we use the representations of (22), (37), and(38) and formulae (58) and (65).Then, for the solution 𝑦(𝑑, πœ€)and its derivatives,𝑦(π‘ž)(𝑑, πœ€), π‘ž = 0, 1, . . . , π‘›βˆ’1 of the problems(1) and (2) on the interval 0 ≀ 𝑑 ≀ 1, we obtain the followingasymptotic representation:

    𝑦(π‘ž)

    (𝑑, πœ€) =

    𝑛

    βˆ‘

    𝑖=2

    (π‘Žπ‘–βˆ’ πœ†0πœŽπ‘–)Ξ¦(π‘ž)

    π‘–βˆ’1(𝑑)

    βˆ’ πœ†0

    𝑛

    βˆ‘

    𝑖=2

    Ξ¦(π‘ž)

    π‘–βˆ’1(𝑑)

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    π›½π‘–π‘—βˆ«

    1

    0

    𝐾(𝑗)

    𝑑(1, 𝑠)

    𝐴1(𝑠)

    β„Ž (𝑠) 𝑑𝑠

    + πœ†0∫

    𝑑

    0

    𝐾(π‘ž)

    𝑑(𝑑, 𝑠)

    𝐴1(𝑠)

    β„Ž (𝑠) 𝑑𝑠 + πœ€π‘š1βˆ’π‘ž

    β‹… e(1/πœ€) βˆ«π‘‘

    0πœ‡(π‘₯)𝑑π‘₯

    ⋅𝑦𝑛0(𝑑)

    𝛼1π‘š1

    β‹…πœ‡π‘ž

    (𝑑)

    πœ‡π‘š1 (0)β‹… Ξ” (πœ†

    0)

    + πœ€π‘›βˆ’1βˆ’π‘ž

    β‹… πœ†0(βˆ’

    β„Ž (𝑑) β‹… πœ‡π‘ž

    (𝑑)

    πœ‡π‘› (𝑑)+ β„Ž (0)

    ⋅𝑒𝑛(𝑑) β‹… πœ‡

    π‘ž

    (𝑑)

    𝑒𝑛(0) πœ‡π‘›(0)

    β‹… e(1/πœ€) βˆ«π‘‘

    0πœ‡(π‘₯)𝑑π‘₯

    )

    + 𝑂(πœ€ + πœ€π‘š1+1βˆ’π‘že(1/πœ€) ∫

    𝑑

    0πœ‡(π‘₯)𝑑π‘₯

    ) .

    (76)

    Here

    Ξ” (πœ†0) =

    Ξ”0(πœ†0)

    𝛼1π‘š1

    𝐽01

    ΜΈ= 0, (77)

    where Ξ”0(πœ†0) is the expression (9) from condition (d) as

    Ξ”0(πœ†0)

    =

    𝑛

    βˆ‘

    𝑖=1

    (βˆ’1)1+𝑖

    𝐽0𝑖

    Γ— (π‘Žπ‘–βˆ’ πœ†0πœŽπ‘–βˆ’ πœ†0

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    π›½π‘–π‘—βˆ«

    1

    0

    β„Ž (𝑠)

    𝐴1(𝑠)

    𝐾(𝑗)

    𝑑(1, 𝑠) 𝑑𝑠) .

    (78)

    It is easy to say that the representation (78) is expressed inthe following form:

    Ξ” (πœ†0) =

    Ξ”0(πœ†0)

    𝛼1π‘š1

    𝐽01

    =1

    𝛼1π‘š1

    (π‘Ž1βˆ’ πœ†0𝜎1βˆ’ 𝐿1𝑦0) ΜΈ= 0. (79)

    Now, from (79) and (76), it follows that the derivatives𝑦(π‘šβˆ’π‘—)

    (𝑑, πœ€), 𝑗 = 1, . . . , 𝑛 βˆ’ π‘š1βˆ’ 1 at point 𝑑 = 0 have poles

    for πœ€:

    𝑦(π‘š1+𝑗)

    (0, πœ€) =πœ‡π‘—

    (0)

    πœ€π‘—(Ξ” (πœ†0) + 𝑂 (πœ€)) ,

    𝑗 = 1, . . . , 𝑛 βˆ’ 1 βˆ’ π‘š1,

    (80)

    and 𝑦(π‘š1)(𝑑, πœ€) at the point 𝑑 = 0 has the phenomenon ofthe π‘š

    1th-order initial jump. Moreover, the magnitude of the

    jump is defined as

    limπœ€β†’0

    𝑦(π‘š1) (0, οΏ½ΜƒοΏ½, πœ€) βˆ’ 𝑦

    (π‘š1) (0, πœ†0)

    = Ξ” (πœ†0) =

    1

    π›Όπ‘š1

    (π‘Ž1βˆ’ πœ†0𝜎1βˆ’ 𝐿1𝑦) .

    (81)

    Thus, for the parameters π‘š1= fix ∈ {0, 1, . . . , 𝑛 βˆ’ 1}, a

    class exists for the restoration problem with an initial jumpfrom the position of a singularly perturbed problem.

    6. Example, Remarks, and Conclusions

    (1) Let us consider the example of the boundary valueproblem exemplifying the problems (1) and (2) as

    πœ€ β‹… 𝑦

    + 𝑦

    = πœ†,

    𝑦 (0, πœ€) = π‘Ž0+ πœ†, 𝑦 (1, πœ€) = π‘Ž

    1+ πœ†,

    𝛼 β‹… 𝑦 (1, πœ€) + 𝛽𝑦

    (1, πœ€) = 𝑏 + πœŽπœ†.

    (82)

    Obviously, the considered problems (82) satisfy all therequirements described in Section 2.Then, the solution of theproblems (82) can be represented in the following form:

    𝑦 (𝑑, πœ€) = πœ† β‹… 𝑑 + π‘Ž0+ πœ† +

    π‘Ž1βˆ’ π‘Ž0

    1 βˆ’ eβˆ’1/πœ€βˆ’

    π‘Ž1βˆ’ π‘Ž0

    1 βˆ’ eβˆ’1/πœ€β‹… eβˆ’t/πœ€. (83)

    According to (61) and (62), we formulate the degenerateproblem in the following form:

    𝑦

    = πœ†,

    𝑦 (1) = π‘Ž1+ πœ†, 𝛼 β‹… 𝑦 (1) + 𝛽 β‹… 𝑦

    (1) = 𝑏 + πœŽπœ†.

    (84)

    Then, the pair (𝑦(𝑑, πœ†0), πœ†0) is the unique solution for the non-

    homogeneous boundary value problem (84) on the interval[0, 1], where πœ†

    0, 𝑦(𝑑, πœ†

    0) are expressed as

    𝑦 = πœ†0𝑑 + π‘Ž1, πœ†

    0=

    𝑏 βˆ’ π›Όπ‘Ž1

    𝛼 + 𝛽 βˆ’ 𝜎. (85)

    From (83), it follows that the derivative𝑦(𝑑, πœ€) at the point𝑑 = 0 has the pole for πœ€:

    𝑦

    (0, πœ€) = 𝑂(1

    πœ€) . (86)

  • Journal of Applied Mathematics 11

    Hence, 𝑦(𝑑, πœ€) at the point 𝑑 = 0 has the phenomenon of afirst-order initial jump, and above all, the magnitude of theinitial jump is determined as

    Ξ” = limπœ€β†’0

    𝑦 (0, πœ€) βˆ’ 𝑦 (0) = π‘Ž0+ πœ†0βˆ’ π‘Ž1= π‘Ž0+ πœ†0βˆ’ 𝐿1𝑦.

    (87)

    (2) The cases of 𝑛 βˆ’ 1 = π‘š1> π‘š2β‰₯ β‹… β‹… β‹… β‰₯ π‘š

    𝑛, 𝑛 βˆ’ 1 =

    π‘Ÿ1> π‘Ÿπ‘–, and 𝑖 = 2, 𝑛 can be researched in accordance with the

    above-represented scheme.(3) We can use the same method for researching the

    asymptotics of the solution of the boundary value problemwith a moving boundary:

    πœ€π‘¦(𝑛)

    + 𝐴1(𝑑) 𝑦(π‘›βˆ’1)

    + β‹… β‹… β‹… + 𝐴𝑛(𝑑) 𝑦 = β„Ž (𝑑) ,

    π‘šπ‘–

    βˆ‘

    𝑗=0

    𝛼𝑖𝑗𝑦(𝑗)

    (0, πœ€) +

    π‘Ÿπ‘–

    βˆ‘

    𝑗=0

    𝛽𝑖𝑗𝑦(𝑗)

    (πœ†, πœ€) = π‘Žπ‘–, 𝑖 = 1, . . . , 𝑛 + 1,

    (88)

    where πœ† is an unknown function of πœ€.

    Conflict of Interests

    The author declares that there is no conflict of interestsregarding the publication of this paper.

    References

    [1] A.N. Tihonov, β€œOn independence of the solutions of differentialequations from a small parameter,” Matematicheskii Sbornik,vol. 22, no. 2, pp. 193–204, 1948.

    [2] A. N. Tihonov, β€œSystems of differential equations containingsmall parameters within derivatives,” Matematicheskii Sbornik,vol. 31, no. 3, pp. 575–586, 1952.

    [3] M. I. Višik and L. A. Lyusternik, β€œRegular degeneration andboundary layer for linear differential equations with a smallparameter,” Uspekhi Matematicheskikh Nauk, vol. 12, no. 5, pp.3–122, 1957.

    [4] A. B. Vasilyeva, β€œAsymptotics of the solutions of some boundaryvalue problems for quasilinear equations within a small param-eter and a senior derivative,”Doklady Akademii Nauk SSSR, vol.123, no. 4, pp. 583–586, 1958.

    [5] V. F. Butuzov, β€œAngular boundary layer in the mixed singularlyperturbed problems for hyperbolic equations of the secondorder,” Doklady Akademii Nauk SSSR, vol. 235, no. 5, pp. 997–1000, 1977.

    [6] M. I. Višik and L. A. Lyusternik, β€œOn initial jump for non-lineardifferential equations containing a small parameter,” DokladyAkademii Nauk SSSR, vol. 132, no. 6, pp. 1242–1245, 1960.

    [7] K. A. Kasymov, β€œOn asymptotics of the solutions of Cauchyproblem with boundary conditions for non-linear ordinarydifferential equations containing a small parameter,” UspekhiMatematicheskikh Nauk, vol. 17, no. 5, pp. 187–188, 1962.

    [8] Z. N. Zhakupov, β€œAsymptotic behavior of the solutions ofboundary value problem for some class of non-linear equationsystems containing a small parameter,” Izvestiya Akademii NaukKazakhskoΔ±Μ† SSR, no. 5, pp. 42–49, 1971.

    [9] D. N. Nurgabylov, β€œAsymptotic expansion of the solutionof a boundary value problem with internal initial jump fornonlinear systems of differential equations,” Izvestiya AkademiiNauk KazakhskoΔ±Μ† SSR, no. 3, pp. 62–65, 1984.

    [10] Yu. I. NeΜ†Δ±mark andV. N. Smirnova, β€œSingularly perturbed prob-lems and the Painlevé paradox,” Differentsial’niye Uravneniya,vol. 36, no. 11, pp. 1493–1500, 2000.

    [11] V. F. Butuzov and A. B. Vasiliyeva, β€œOn asymptotics of thesolution of a contrast structure type,”Matematicheskie Zametki,vol. 42, no. 6, pp. 881–841, 1987.

    [12] A. V. Kibenko and A. M. Perov, β€œOn a two-point boundary-value problem with a parameter,” Akademiya Nauk UkrainskoΔ±Μ†SSR, no. 10, pp. 1259–1265, 1961.

    [13] D. S. Dzhumabayev, β€œOn the unique solvability of the linearpoint-to-point problems with a parameter,” Izvestiya AkademiiNauk SSSR, no. 1, pp. 31–37, 1999.

    [14] L. Schlesinger, β€œÜber asymptotische darstellungen der lösungenlinearer differentialsysteme als funktionen eines parameters,”Mathematische Annalen, vol. 63, no. 3, pp. 277–300, 1907.

    [15] G. D. Birkhoff, β€œOn the asymptotic character of the solutionsof certain linear differential equations containing a parameter,”Transactions of the AmericanMathematical Society, vol. 9, no. 2,pp. 219–231, 1908.

    [16] S. A. Lomov, Introduction to the General Theory of SingularPerturbations, Nauka, Moscow, Russia, 1981.

    [17] K. A. Kasymov and D. N. Nurgabyl, β€œAsymptotic estimatesfor the solution of a singularly perturbed boundary valueproblem with an initial jump for linear differential equations,”Differential Equations, vol. 40, no. 5, pp. 641–651, 2004.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of