Research Article A Generalized Hermite-Hadamard Inequality ...

10
Research Article A Generalized Hermite-Hadamard Inequality for Coordinated Convex Function and Some Associated Mappings Atiq Ur Rehman, 1 Gulam Farid, 1 and Sidra Malik 2 1 COMSATS Institute of Information Technology, Attock Campus, Attock, Pakistan 2 Government Islamia High School, Attock, Pakistan Correspondence should be addressed to Atiq Ur Rehman; [email protected] Received 25 July 2016; Accepted 25 October 2016 Academic Editor: Nan-Jing Huang Copyright Β© 2016 Atiq Ur Rehman et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We have discussed the generalization of Hermite-Hadamard inequality introduced by Lupas ΒΈ for convex functions on coordinates defined in a rectangle from the plane. Also we define that mappings are related to it and their properties are discussed. 1. Introduction Convex functions have great importance in many areas of Mathematics. A real valued function :β†’ R, where is interval in R, is said to be convex if for , β‰₯ 0 with + = 1 ( + ) ≀ () + () . (1) In particular, if = = 1/2 we have that ( + 2 )≀ () + () 2 . (2) One of the most important inequalities that has attracted many mathematician in this field in the last few decades is the famous Hermite-Hadamard inequality, which establishes a refinement of (2) and it involves the notions of convexity. Let :β†’ R be a convex mapping defined on the interval of real numbers and , ∈ with <. e double inequality ( + 2 )≀ 1 βˆ’ ∫ () ≀ () + () 2 (3) is known as the Hermite-Hadamard inequality. is inequal- ity was published by Hermite in 1883 and was independently proved by Hadamard in 1893 (see MitrinoviΒ΄ c and LackoviΒ΄ c [1] for the whole history). It gives us an estimation of the mean value of a convex function and it is important to note that (3) provides a refinement to the Jensen inequality. Fink [2] has worked on a best possible Hermite-Hadamard inequality and has deduced this inequality with least restrictions. Dragomir in [3, 4] worked on Hermite-Hadamard inequality and a mapping in connection to it. Dragomir and MiloΒ΄ seviΒ΄ c [5] gave some refinements of Hadamard's inequalities and its applications (see also [6–8] for more results). Dragomir and Pearce [9] wrote a monograph on selected topics on Hermite- Hadamard inequalities. e aim of this paper is to discuss an analogue of the generalization of Hermite-Hadamard inequality introduced by Lupas ΒΈ for convex functions defined in a rectangle from the plane. Also some related mappings are defined and their properties are discussed. In [10] Dragomir has given the concept of convex func- tions on the coordinates in a rectangle from the plane and established the Hermite-Hadamard inequality for it. Definition 1. Let Ξ” 2 = [, ] Γ— [, ] βŠ‚ R with < and <. A function :Ξ” 2 β†’ R is called convex on coordinates if the partial mappings : [, ] β†’ R, () fl (, ) and : [, ] β†’ R, (V) fl (, V) are convex, defined for all ∈ [, ] and ∈ [, ]. Note that every convex mapping :Ξ” 2 β†’ R is convex on the coordinates but the converse is not generally true. Hindawi Publishing Corporation Journal of Mathematics Volume 2016, Article ID 1631269, 9 pages http://dx.doi.org/10.1155/2016/1631269

Transcript of Research Article A Generalized Hermite-Hadamard Inequality ...

Research ArticleA Generalized Hermite-Hadamard Inequality for CoordinatedConvex Function and Some Associated Mappings

Atiq Ur Rehman,1 Gulam Farid,1 and Sidra Malik2

1COMSATS Institute of Information Technology, Attock Campus, Attock, Pakistan2Government Islamia High School, Attock, Pakistan

Correspondence should be addressed to Atiq Ur Rehman; [email protected]

Received 25 July 2016; Accepted 25 October 2016

Academic Editor: Nan-Jing Huang

Copyright Β© 2016 Atiq Ur Rehman et al. This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properlycited.

We have discussed the generalization of Hermite-Hadamard inequality introduced by Lupas for convex functions on coordinatesdefined in a rectangle from the plane. Also we define that mappings are related to it and their properties are discussed.

1. Introduction

Convex functions have great importance in many areas ofMathematics. A real valued function 𝑓 : 𝐼 β†’ R, where 𝐼 isinterval inR, is said to be convex if for 𝛼, 𝛽 β‰₯ 0with 𝛼+𝛽 = 1

𝑓 (𝛼π‘₯ + 𝛽𝑦) ≀ 𝛼𝑓 (π‘₯) + 𝛽𝑓 (𝑦) . (1)

In particular, if 𝛼 = 𝛽 = 1/2 we have that𝑓(π‘₯ + 𝑦2 ) ≀ 𝑓 (π‘₯) + 𝑓 (𝑦)2 . (2)

One of the most important inequalities that has attractedmany mathematician in this field in the last few decades isthe famous Hermite-Hadamard inequality, which establishesa refinement of (2) and it involves the notions of convexity.

Let 𝑓 : 𝐼 β†’ R be a convex mapping defined on theinterval 𝐼 of real numbers and π‘Ž, 𝑏 ∈ 𝐼with π‘Ž < 𝑏. The doubleinequality

𝑓(π‘Ž + 𝑏2 ) ≀ 1𝑏 βˆ’ π‘Ž ∫

𝑏

π‘Žπ‘“ (π‘₯) 𝑑π‘₯ ≀ 𝑓 (π‘Ž) + 𝑓 (𝑏)2 (3)

is known as the Hermite-Hadamard inequality. This inequal-ity was published by Hermite in 1883 and was independentlyproved byHadamard in 1893 (seeMitrinovic and Lackovic [1]for the whole history). It gives us an estimation of the mean

value of a convex function 𝑓 and it is important to note that(3) provides a refinement to the Jensen inequality. Fink [2] hasworked on a best possible Hermite-Hadamard inequality andhas deduced this inequality with least restrictions. Dragomirin [3, 4] worked on Hermite-Hadamard inequality and amapping in connection to it. Dragomir and Milosevic [5]gave some refinements of Hadamard's inequalities and itsapplications (see also [6–8] for more results). Dragomir andPearce [9] wrote amonograph on selected topics onHermite-Hadamard inequalities.

The aim of this paper is to discuss an analogue of thegeneralization of Hermite-Hadamard inequality introducedby Lupas for convex functions defined in a rectangle fromthe plane. Also some related mappings are defined and theirproperties are discussed.

In [10] Dragomir has given the concept of convex func-tions on the coordinates in a rectangle from the plane andestablished the Hermite-Hadamard inequality for it.

Definition 1. Let Ξ”2 = [π‘Ž, 𝑏] Γ— [𝑐, 𝑑] βŠ‚ R with π‘Ž < 𝑏 and𝑐 < 𝑑. A function 𝑓 : Ξ”2 β†’ R is called convex on coordinatesif the partial mappings 𝑓𝑦 : [π‘Ž, 𝑏] β†’ R, 𝑓𝑦(𝑒) fl 𝑓(𝑒, 𝑦) and𝑓π‘₯ : [𝑐, 𝑑] β†’ R, 𝑓π‘₯(V) fl 𝑓(π‘₯, V) are convex, defined for all𝑦 ∈ [𝑐, 𝑑] and π‘₯ ∈ [π‘Ž, 𝑏].

Note that every convex mapping 𝑓 : Ξ”2 β†’ R is convexon the coordinates but the converse is not generally true.

Hindawi Publishing CorporationJournal of MathematicsVolume 2016, Article ID 1631269, 9 pageshttp://dx.doi.org/10.1155/2016/1631269

2 Journal of Mathematics

Theorem 2. Suppose that 𝑓 : Ξ”2 β†’ R is convex on the coordi-nates on Ξ”2. Then we have

𝑓(π‘Ž + 𝑏2 , 𝑐 + 𝑑2 ) ≀ 12 [1

𝑏 βˆ’ π‘Ž βˆ«π‘

π‘Žπ‘“(π‘₯, 𝑐 + 𝑑2 )𝑑π‘₯

+ 1𝑑 βˆ’ 𝑐 ∫

𝑑

𝑐𝑓(π‘Ž + 𝑏2 , 𝑦) 𝑑𝑦] ≀ 1

(𝑏 βˆ’ π‘Ž) (𝑑 βˆ’ 𝑐)β‹… βˆ«π‘π‘Žβˆ«π‘‘π‘π‘“ (π‘₯, 𝑦) 𝑑𝑦 𝑑π‘₯ ≀ 14 [

1𝑏 βˆ’ π‘Ž ∫

𝑏

π‘Žπ‘“ (π‘₯, 𝑐) 𝑑π‘₯

+ 1𝑏 βˆ’ π‘Ž ∫

𝑏

π‘Žπ‘“ (π‘₯, 𝑑) 𝑑π‘₯ + 1

𝑑 βˆ’ 𝑐 βˆ«π‘‘

𝑐𝑓 (π‘Ž, 𝑦) 𝑑𝑦

+ 1𝑑 βˆ’ 𝑐 ∫

𝑑

𝑐𝑓 (𝑏, 𝑦) 𝑑𝑦]

≀ 𝑓 (π‘Ž, 𝑐) + 𝑓 (π‘Ž, 𝑑) + 𝑓 (𝑏, 𝑐) + 𝑓 (𝑏, 𝑑)4 .

(4)

In [10], Dragomir for 𝑓 : Ξ”2 β†’ R, defined a mapping𝐻 : [0, 1]2 β†’ R as

𝐻(𝑑, 𝑠) = 1(𝑏 βˆ’ π‘Ž) (𝑑 βˆ’ 𝑐) ∫

𝑏

π‘Žβˆ«π‘‘π‘π‘“(𝑑π‘₯

+ (1 βˆ’ 𝑑) π‘Ž + 𝑏2 , 𝑠𝑦 + (1 βˆ’ 𝑠) 𝑐 + 𝑑2 )𝑑𝑦𝑑π‘₯(5)

and proved the properties of this mapping in followingtheorem.

Theorem 3. Suppose that 𝑓 : Ξ”2 β†’ R is convex on thecoordinates on Ξ”2.

(i) Themapping𝐻 is convex on the coordinates on [0, 1]2.(ii) We have the bounds

sup(𝑠,𝑑)∈[0,1]2

𝐻(𝑠, 𝑑)

= 1(𝑏 βˆ’ π‘Ž) (𝑑 βˆ’ 𝑐) ∫

𝑏

π‘Žβˆ«π‘‘π‘π‘“ (π‘₯, 𝑦) 𝑑𝑦 𝑑π‘₯ = 𝐻 (1, 1) ,

inf(𝑠,𝑑)∈[0,1]2

𝐻(𝑠, 𝑑) = 𝑓(π‘Ž + 𝑏2 , 𝑐 + 𝑑2 ) = 𝐻 (0, 0) .(6)

(iii) The mapping 𝐻 is monotonic nondecreasing on thecoordinates.

Also, in [10] Dragomir gave the following mapping,which is closely connected with Hadamard's inequality, οΏ½οΏ½ :[0, 1]2 β†’ R defined as

οΏ½οΏ½ (𝑑, 𝑠) fl 1(𝑏 βˆ’ π‘Ž)2 (𝑑 βˆ’ 𝑐)2

β‹… βˆ«π‘π‘Žβˆ«π‘π‘Žβˆ«π‘‘π‘βˆ«π‘‘π‘π‘“ (𝑑π‘₯ + (1 βˆ’ 𝑑) 𝑦, 𝑠𝑧 + (1 βˆ’ 𝑠) 𝑒) 𝑑π‘₯ 𝑑𝑦 𝑑𝑧 𝑑𝑒.

(7)

and proved the following properties of this mapping.

Theorem 4. Suppose that 𝑓 : Ξ”2 β†’ R is convex on the coordi-nates on Ξ”2.

(i) We have the equalities

οΏ½οΏ½ (𝑑 + 12 , 𝑠) = οΏ½οΏ½ (12 βˆ’ 𝑑, 𝑠)βˆ€π‘‘ ∈ [0, 12] , 𝑠 ∈ [0, 1] ,

οΏ½οΏ½ (𝑑, 𝑠 + 12) = οΏ½οΏ½ (𝑑, 12 βˆ’ 𝑠)βˆ€π‘‘ ∈ [0, 1] , 𝑠 ∈ [0, 12] ,

οΏ½οΏ½ (1 βˆ’ 𝑑, 𝑠) = οΏ½οΏ½ (𝑑, 𝑠) ,οΏ½οΏ½ (𝑑, 1 βˆ’ 𝑠) = οΏ½οΏ½ (𝑑, 𝑠)

βˆ€ (𝑑, 𝑠) ∈ Ξ”2.

(8)

(ii) οΏ½οΏ½ is convex on the coordinates.(iii) We have the bounds

inf(𝑑,𝑠)∈[0,1]2

οΏ½οΏ½ (𝑑, 𝑠) = οΏ½οΏ½ (12 ,12) =

1(𝑏 βˆ’ π‘Ž)2 (𝑑 βˆ’ 𝑐)2

β‹… βˆ«π‘π‘Žβˆ«π‘π‘Žβˆ«π‘‘π‘βˆ«π‘‘π‘π‘“(π‘₯ + 𝑦2 , 𝑧 + 𝑒2 ) 𝑑π‘₯ 𝑑𝑦𝑑𝑧 𝑑𝑒,

sup(𝑑,𝑠)∈[0,1]2

οΏ½οΏ½ (𝑑, 𝑠) = οΏ½οΏ½ (0, 0) = οΏ½οΏ½ (1, 1) = 1(𝑏 βˆ’ π‘Ž) (𝑑 βˆ’ 𝑐)

β‹… βˆ«π‘π‘Žβˆ«π‘‘π‘π‘“ (π‘₯, 𝑧) 𝑑𝑧 𝑑π‘₯.

(9)

(iv) The mapping οΏ½οΏ½(β‹…, 𝑠) is monotonic nondecreasing on[0, 1/2) and nondecreasing on [1/2, 1] for all 𝑠 ∈ [0, 1].A similar property has the mapping οΏ½οΏ½(𝑑, β‹…) for all 𝑑 ∈[0, 1].

(v) We have the inequality

οΏ½οΏ½ (𝑑, 𝑠) β‰₯ max {𝐻 (𝑑, 𝑠) ,𝐻 (1 βˆ’ 𝑑, 𝑠) ,𝐻 (𝑑, 1 βˆ’ 𝑠) ,𝐻 (1 βˆ’ 𝑑, 1 βˆ’ 𝑠)} . (10)

A generalized form of Hermite-Hadamard inequality isgiven by Lupas in [11] (see also [12, page 143]).

Theorem5. Let p, q be given positive numbers and π‘Ž < 𝑏.Thenthe inequality,

𝑓(π‘π‘Ž + π‘žπ‘π‘ + π‘ž ) ≀ 12𝑦 ∫𝐴+𝑦

π΄βˆ’π‘¦π‘“ (𝑑) 𝑑𝑑 ≀ 𝑝𝑓 (π‘Ž) + π‘žπ‘“ (𝑏)𝑝 + π‘ž , (11)

holds for𝐴 = (π‘π‘Ž+π‘žπ‘)/(𝑝+π‘ž),𝑦 > 0 and all continuous convexfunctions 𝑓 : [π‘Ž, 𝑏] β†’ R iff 𝑦 ≀ ((𝑏 βˆ’ π‘Ž)/(𝑝 + π‘ž))min (𝑝, π‘ž).

Journal of Mathematics 3

2. Main Results

The following results comprise generalization of Hermite-Hadamard inequality introduced by Lupas on coordinates ina rectangle from the plane.

Theorem 6. Let Ξ”2 = [π‘Ž1, 𝑏1] Γ— [π‘Ž2, 𝑏2] βŠ‚ R2 and 𝑝1, 𝑝2, π‘ž1,and π‘ž2 be positive real numbers and

𝐴 𝑖 = π‘π‘–π‘Žπ‘– + π‘žπ‘–π‘π‘–π‘π‘– + π‘žπ‘– ,𝑦𝑖 > 0,

where 𝑦𝑖 ≀ 𝑏𝑖 βˆ’ π‘Žπ‘–π‘π‘– + π‘žπ‘– min (𝑝𝑖, π‘žπ‘–) for 𝑖 = 1, 2.(12)

Also let 𝑓 : Ξ”2 β†’ R be convex on the coordinates on Ξ”2.𝑓 (𝐴1, 𝐴2) ≀ 12 [

12𝑦1 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

𝑓 (𝑠1, 𝐴2) 𝑑𝑠1

+ 12𝑦2 ∫

𝐴2+𝑦2

𝐴2βˆ’π‘¦2

𝑓 (𝐴1, 𝑠2) 𝑑𝑠2] ≀ 14𝑦1𝑦2

β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠1 𝑑𝑠2

≀ 1(𝑝1 + π‘ž1) [

𝑝12𝑦1 ∫𝐴1+𝑦1

𝐴1βˆ’π‘¦1

𝑓 (𝑠1, π‘Ž2) 𝑑𝑠1

+ π‘ž12𝑦1 ∫𝐴1+𝑦1

𝐴1βˆ’π‘¦1

𝑓 (𝑠1, 𝑏2) 𝑑𝑠1]

+ 1(𝑝2 + π‘ž2) [

𝑝22𝑦2 ∫𝐴2+𝑦2

𝐴2βˆ’π‘¦2

𝑓 (π‘Ž1, 𝑠2) 𝑑𝑠2

+ π‘ž22𝑦2 ∫𝐴2+𝑦2

𝐴2βˆ’π‘¦2

𝑓 (𝑏1, 𝑠2) 𝑑𝑠2] ≀ [𝑝1𝑝2𝑓 (π‘Ž1, π‘Ž2)+ 𝑝1π‘ž2𝑓 (π‘Ž1, 𝑏2) + π‘ž1𝑝2𝑓 (𝑏1, π‘Ž2) + π‘ž1π‘ž2𝑓 (𝑏1, 𝑏2)]Γ— [ 1

(𝑝1 + π‘ž1) +1

(𝑝2 + π‘ž2)] .

(13)

Proof. Since 𝑓 : Ξ”2 β†’ R is convex on coordinates, it followsthat the mapping 𝑓𝑠

1

: [π‘Ž2, 𝑏2] β†’ R, 𝑓𝑠1

(𝑠2) fl 𝑓(𝑠1, 𝑠2), isconvex on [π‘Ž2, 𝑏2] for all 𝑠1 ∈ [π‘Ž1, 𝑏1], so by inequality (11) onehas

𝑓𝑠1

(𝐴2) ≀ 12𝑦2 ∫

𝐴2+𝑦2

𝐴2βˆ’π‘¦2

𝑓𝑠1

(𝑠2) 𝑑𝑠2

≀ 𝑝2𝑓𝑠1 (π‘Ž2) + π‘ž2𝑓𝑠1 (𝑏2)𝑝2 + π‘ž2 ,(14)

that is

𝑓 (𝑠1, 𝐴2) ≀ 12𝑦2 ∫

𝐴2+𝑦2

𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠2

≀ 𝑝2𝑓 (𝑠1, π‘Ž2) + π‘ž2𝑓 (𝑠1, 𝑏2)𝑝2 + π‘ž2 .(15)

Observe that for 0 < 𝑦1 ≀ ((𝑏1 βˆ’ π‘Ž1)/(𝑝1 + π‘ž1))min (𝑝1, π‘ž1),by considering two cases (0 < 𝑝1 ≀ π‘ž1 and 0 < π‘ž1 < 𝑝1) wecan easily verify that π‘Ž1 ≀ 𝐴1 βˆ’π‘¦1 < 𝐴1 +𝑦1 ≀ 𝑏1, so that 𝑓 isdefined on [𝐴1βˆ’π‘¦1, 𝐴1+𝑦1]. Integrating the above inequalityon [𝐴1 βˆ’ 𝑦1, 𝐴1 + 𝑦1], we have

12𝑦1 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

𝑓 (𝑠1, 𝐴2) 𝑑𝑠1 ≀ 14𝑦1𝑦2

β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠1 𝑑𝑠2

≀ 1𝑝2 + π‘ž2 [

𝑝22𝑦1 ∫𝐴1+𝑦1

𝐴1βˆ’π‘¦1

𝑓 (𝑠1, π‘Ž2) 𝑑𝑠1

+ π‘ž22𝑦1 ∫𝐴1+𝑦1

𝐴1βˆ’π‘¦1

𝑓 (𝑠1, 𝑏2) 𝑑𝑠1] .

(16)

By a similar argument applied for themapping𝑓𝑠2

: [π‘Ž1, 𝑏1] β†’R, 𝑓𝑠

2

(𝑠1) fl 𝑓(𝑠1, 𝑠2), we get12𝑦2 ∫

𝐴2+𝑦2

𝐴2βˆ’π‘¦2

𝑓 (𝐴1, 𝑠2) 𝑑𝑠2 ≀ 14𝑦1𝑦2

β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠1 𝑑𝑠2

≀ 1𝑝1 + π‘ž1 [

𝑝12𝑦2 ∫𝐴2+𝑦2

𝐴2βˆ’π‘¦2

𝑓 (π‘Ž1, 𝑠2) 𝑑𝑠2

+ π‘ž12𝑦2 ∫𝐴2+𝑦2

𝐴2βˆ’π‘¦2

𝑓 (𝑏1, 𝑠2) 𝑑𝑠2] .

(17)

Summing the inequalities (16) and (17), we get the secondand third inequality in (13). Since𝑓 is convex on coordinates,using convexity of 𝑓 on first coordinate and inequality (11),we have

𝑓 (𝐴1, 𝐴2) ≀ 12𝑦1 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

𝑓 (𝑠1, 𝐴2) 𝑑𝑠1 (18)

and, using convexity of 𝑓 on second coordinate, we have

𝑓 (𝐴1, 𝐴2) ≀ 12𝑦2 ∫

𝐴2+𝑦2

𝐴2βˆ’π‘¦2

𝑓 (𝐴1, 𝑠2) 𝑑𝑠2. (19)

Adding the inequalities (18) and (19)we get the first inequalityin (13). Finally, by the same Hermite-Hadamard inequalityintroduced by Lupas we can also state

12𝑦1 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

𝑓 (𝑠1, π‘Ž2) 𝑑𝑠1

≀ 𝑝1𝑓 (π‘Ž1, π‘Ž2) + π‘ž1𝑓 (𝑏1, π‘Ž2)𝑝1 + π‘ž1 ,(20)

12𝑦1 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

𝑓 (𝑠1, 𝑏2) 𝑑𝑠1

≀ 𝑝1𝑓 (π‘Ž1, 𝑏2) + π‘ž1𝑓 (𝑏1, 𝑏2)𝑝1 + π‘ž1 ,(21)

4 Journal of Mathematics

12𝑦2 ∫

𝐴2+𝑦2

𝐴2βˆ’π‘¦2

𝑓 (π‘Ž1, 𝑠2) 𝑑𝑠2

≀ 𝑝2𝑓 (π‘Ž1, π‘Ž2) + π‘ž2𝑓 (π‘Ž1, 𝑏2)𝑝2 + π‘ž2 ,(22)

12𝑦2 ∫

𝐴2+𝑦2

𝐴2βˆ’π‘¦2

𝑓 (𝑏1, 𝑠2) 𝑑𝑠2

≀ 𝑝2𝑓 (𝑏1, π‘Ž2) + π‘ž2𝑓 (𝑏1, 𝑏2)𝑝2 + π‘ž2 .(23)

Multiply (20) and (21) by 𝑝2 and multiply (22) and (23) by π‘ž2then on addition we get the last inequality in (13).

3. Some Associated Mappings

In this section we will discuss some mappings associatedwith generalized Hermite-Hadamard inequality introducedby Lupas for convex mappings on coordinates.

Let 𝑝1, 𝑝2, π‘ž1, and π‘ž2 be positive real numbers and 𝐴 𝑖 =(π‘π‘–π‘Žπ‘– + π‘žπ‘–π‘π‘–)/(𝑝𝑖 + π‘žπ‘–) and 𝑦𝑖 > 0 where 𝑦𝑖 ≀ ((𝑏𝑖 βˆ’ π‘Žπ‘–)/(𝑝𝑖 +π‘žπ‘–))min(𝑝𝑖, π‘žπ‘–) for 𝑖 = 1, 2. For mapping 𝑓 : Ξ”2 = [π‘Ž1, 𝑏1] Γ—[π‘Ž2, 𝑏2] β†’ R, we can define a mapping𝐻 : [0, 1]2 β†’ R,

𝐻(𝑒, V) fl 14𝑦1𝑦2 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑒𝑠1+ (1 βˆ’ 𝑒)𝐴1, V𝑠2 + (1 βˆ’ V) 𝐴2) 𝑑𝑠1𝑑𝑠2,

(24)

where π‘Ž1 ≀ 𝐴1 βˆ’ 𝑦1 < 𝐴1 + 𝑦1 ≀ 𝑏1 and π‘Ž2 ≀ 𝐴2 βˆ’ 𝑦2 <𝐴2+𝑦2 ≀ 𝑏2, so that𝑓 is defined on [𝐴1βˆ’π‘¦1, 𝐴1+𝑦1] and [𝐴2βˆ’π‘¦2, 𝐴2 + 𝑦2]. The properties of this mapping are embodied inthe following theorem.

Theorem 7. Suppose that 𝑝1, 𝑝2, π‘ž1, and π‘ž2 are positive realnumbers and

𝐴 𝑖 = π‘π‘–π‘Žπ‘– + π‘žπ‘–π‘π‘–π‘π‘– + π‘žπ‘– ,𝑦𝑖 > 0,

where 𝑦𝑖 ≀ 𝑏𝑖 βˆ’ π‘Žπ‘–π‘π‘– + π‘žπ‘– min (𝑝𝑖, π‘žπ‘–) for 𝑖 = 1, 2.(25)

Also let 𝑓 : Ξ”2 β†’ R be convex on the coordinates on Ξ”2.(i) Themapping𝐻 is convex on the coordinates on [0, 1]2.(ii) We have the bounds

sup(𝑒,V)∈[0,1]2

𝐻(𝑒, V)

= 14𝑦1𝑦2 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠1 𝑑𝑠2= 𝐻 (1, 1) ,inf(𝑒,V)∈[0,1]2

𝐻(𝑒, V) = 𝑓 (𝐴1, 𝐴2) = 𝐻 (0, 0) .

(26)

(iii) The mapping 𝐻 is monotonic nondecreasing on thecoordinates.

Proof. (i) Fix V ∈ [0, 1], for all 𝑒1, 𝑒2 ∈ [0, 1] and 𝛼, 𝛽 β‰₯ 0with 𝛼 + 𝛽 = 1; we have

𝐻(𝛼𝑒1 + 𝛽𝑒2, V) = 14𝑦1𝑦2

β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝛼 (𝑒1𝑠1 + (1 βˆ’ 𝑒1) 𝐴1)β‹… +𝛽 (𝑒2𝑠1 + (1 βˆ’ 𝑒2) 𝐴1) , V𝑠2+ (1 βˆ’ V) 𝐴2) 𝑑𝑠1 𝑑𝑠2 ≀ 𝛼

4𝑦1𝑦2β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑒1𝑠1 + (1 βˆ’ 𝑒1) 𝐴1, V𝑠2+ (1 βˆ’ V) 𝐴2) 𝑑𝑠1 𝑑𝑠2 + 𝛽

4𝑦1𝑦2β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑒2𝑠1 + (1 βˆ’ 𝑒2) 𝐴1, V𝑠2+ (1 βˆ’ V) 𝐴2) 𝑑𝑠1 𝑑𝑠2 = 𝛼𝐻 (𝑒1, V)+ 𝛽𝐻 (𝑒2, V) .

(27)

If 𝑒 ∈ [0, 1] is fixed then, for all V1, V2 ∈ [0, 1] and 𝛼, 𝛽 β‰₯ 0with 𝛼 + 𝛽 = 1, we also have𝐻(𝑒, 𝛼V1 + 𝛽V2) ≀ 𝛼𝐻(𝑒, V1) +𝛽𝐻(𝑒, V2) and the statement is proved.

(ii) Since 𝑓 is convex on coordinates, we have by Jensen'sinequality for integrals that

𝐻(𝑒, V) β‰₯ 12𝑦1 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

𝑓(𝑒𝑠1 + (1 βˆ’ 𝑒)𝐴1, 12𝑦2β‹… ∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

(V𝑠2 + (1 βˆ’ V) 𝐴2) 𝑑𝑠2)𝑑𝑠1 = 12𝑦1

β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

𝑓 (𝑒𝑠1 + (1 βˆ’ 𝑒)𝐴1, 𝐴2) 𝑑𝑠1

β‰₯ 𝑓( 12𝑦1 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

(𝑒𝑠 + (1 βˆ’ 𝑒)𝐴1) 𝑑𝑠1, 𝐴2)= 𝑓 (𝐴1, 𝐴2) .

(28)

By the convexity of𝐻 on the coordinates, we have

𝐻(𝑒, V) ≀ 12𝑦1 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

[V 12𝑦2

β‹… ∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑒𝑠1 + (1 βˆ’ 𝑒)𝐴1, 𝑠2) 𝑑𝑠2 + (1 βˆ’ V) 12𝑦2

β‹… ∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑒𝑠1 + (1 βˆ’ 𝑒)𝐴1, 𝐴2) 𝑑𝑠2] 𝑑𝑠1

≀ V12𝑦2 ∫

𝐴2+𝑦2

𝐴2βˆ’π‘¦2

[𝑒 12𝑦1

β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

𝑓 (𝑠1, 𝑠2) 𝑑𝑠1 + (1 βˆ’ 𝑒) 12𝑦1

Journal of Mathematics 5

β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

𝑓 (𝐴1, 𝑠2) 𝑑𝑠1] 𝑑𝑠2 + (1 βˆ’ V) 12𝑦2

β‹… ∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

[𝑒 12𝑦1 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

𝑓 (𝑠1, 𝐴2) 𝑑𝑠1 + (1 βˆ’ 𝑒)

β‹… 12𝑦1 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

𝑓 (𝐴1, 𝐴2) 𝑑𝑠1] 𝑑𝑠2 = 𝑒V 14𝑦1𝑦2

β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠1 𝑑𝑠2 + (1 βˆ’ 𝑒) V

β‹… 14𝑦1𝑦2 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝐴1, 𝑠2) 𝑑𝑠1 𝑑𝑠2+ 𝑒 (1 βˆ’ V) 1

4𝑦1𝑦2β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝐴2) 𝑑𝑠1 𝑑𝑠2 + (1 βˆ’ 𝑒)

β‹… (1 βˆ’ V) 14𝑦1𝑦2

β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝐴1, 𝐴2) 𝑑𝑠1 𝑑𝑠2 = 𝑒V 14𝑦1𝑦2

β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠1 𝑑𝑠2 + (1 βˆ’ 𝑒) V 12𝑦2

β‹… ∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝐴1, 𝑠2) 𝑑𝑠2 + 𝑒 (1 βˆ’ V) 12𝑦1

β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

𝑓 (𝑠1, 𝐴2) 𝑑𝑠1 + (1 βˆ’ 𝑒) (1 βˆ’ V) 𝑓 (𝐴1, 𝐴2) .(29)

By Hadamard’s inequality introduced by Lupas (11), wealso have

𝑓 (𝐴1, 𝑠2) ≀ 12𝑦1 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

𝑓 (𝑠1, 𝑠2) 𝑑𝑠1,

𝑓 (𝑠1, 𝐴2) ≀ 12𝑦2 ∫

𝐴2+𝑦2

𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠2.(30)

Thus by integration, we get that

12𝑦2 ∫

𝐴2+𝑦2

𝐴2βˆ’π‘¦2

𝑓 (𝐴1, 𝑠2) 𝑑𝑠2

≀ 14𝑦1𝑦2 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠1 𝑑𝑠2,12𝑦1 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

𝑓 (𝑠1, 𝐴2) 𝑑𝑠1

≀ 14𝑦1𝑦2 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠1 𝑑𝑠2.

(31)

Also using the result

𝑓 (𝐴1, 𝐴2) ≀ 14𝑦1𝑦2 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠1 𝑑𝑠2 (32)

we deduce the inequality

𝐻(𝑒, V)≀ [𝑒V + (1 βˆ’ 𝑒) V + 𝑒 (1 βˆ’ V) + (1 βˆ’ 𝑒) (1 βˆ’ V)]β‹… 14𝑦1𝑦2 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠1 𝑑𝑠2 = 14𝑦1𝑦2

β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠1 𝑑𝑠2,

(33)

for all (𝑒, V) ∈ [0, 1]2 and the second bound in (ii) is proved.(iii) Firstly, we show that𝐻(𝑒, V) β‰₯ 𝐻(0, V) for all [𝑒, V] ∈

[0, 1]2. By Jensen’s inequality for integrals, we have𝐻(𝑒, V) β‰₯ 1

2𝑦2 ∫𝐴2+𝑦2

𝐴2βˆ’π‘¦2

𝑓( 12𝑦1

β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

(𝑒𝑠1 + (1 βˆ’ 𝑒)𝐴1) 𝑑𝑠1, V𝑠2 + (1 βˆ’ V)

β‹… 𝐴2)𝑑𝑠2 = 12𝑦2 ∫

𝐴2+𝑦2

𝐴2βˆ’π‘¦2

𝑓 (𝐴1, V𝑠2+ (1 βˆ’ V) 𝐴2) 𝑑𝑠2 = 𝐻 (0, V)

(34)

for all [𝑒, V] ∈ [0, 1]2.Now let 0 ≀ 𝑒1 ≀ 𝑒2 ≀ 1. By the convexity of mapping

𝐻(β‹…, V) for all [𝑒, V] ∈ [0, 1]2, we have𝐻(𝑒2, V) βˆ’ 𝐻 (𝑒1, V)𝑒2 βˆ’ 𝑒1 β‰₯ 𝐻 (𝑒1, V) βˆ’ 𝐻 (0, V)

𝑒1 β‰₯ 0. (35)

The following theorem also holds.

Theorem 8. Suppose that 𝑝1, 𝑝2, π‘ž1, and π‘ž2 are positive realnumbers and

𝐴 𝑖 = π‘π‘–π‘Žπ‘– + π‘žπ‘–π‘π‘–π‘π‘– + π‘žπ‘– ,𝑦𝑖 > 0,

where 𝑦𝑖 ≀ 𝑏𝑖 βˆ’ π‘Žπ‘–π‘π‘– + π‘žπ‘– min (𝑝𝑖, π‘žπ‘–) for 𝑖 = 1, 2.(36)

Also let 𝑓 : Ξ”2 β†’ R be convex on the coordinates on Ξ”2.(i) The mapping𝐻 is convex on [0, 1]2.(ii) Define the mapping β„Ž : [0, 1] β†’ R, β„Ž(𝑒) fl 𝐻(𝑒, 𝑒).

Then β„Ž is convex, monotonic nondecreasing on [0, 1]and one has the bounds

6 Journal of Mathematics

supπ‘’βˆˆ[0,1]

β„Ž (𝑒) = β„Ž (1)

= 14𝑦1𝑦2 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠1 𝑑𝑠2,infπ‘’βˆˆ[0,1]

β„Ž (𝑒) = β„Ž (0) = 𝑓 (𝐴1, 𝐴2) .(37)

Proof. (i) Let (𝑒1, 𝑒2), (V1, V2) ∈ [0, 1]2 and 𝛼, 𝛽 β‰₯ 0 with 𝛼 +𝛽 = 1. Since 𝑓 : Ξ”2 β†’ R is convex on Ξ”2, we have𝐻(𝛼 (𝑒1, 𝑒2) + 𝛽 (V1, V2)) = 𝐻 (𝛼𝑒1 + 𝛽V1, 𝛼𝑒2 + 𝛽V2) = 1

4𝑦1𝑦2β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝛼 (𝑒1𝑠1 + (1 βˆ’ 𝑒1) 𝐴1, 𝑒2𝑠2 + (1 βˆ’ 𝑒2) 𝐴2)β‹… +𝛽 (V1𝑠1 + (1 βˆ’ V1) 𝐴1, V2𝑠2 + (1 βˆ’ V2) 𝐴2)) 𝑑𝑠1 𝑑𝑠2≀ 𝛼 β‹… 1

4𝑦1𝑦2 ∫𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑒1𝑠1 + (1 βˆ’ 𝑒1) 𝐴1, 𝑒2𝑠2+ (1 βˆ’ 𝑒2) 𝐴2) 𝑑𝑠1 𝑑𝑠2 + 𝛽 β‹… 1

4𝑦1𝑦2β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (V1𝑠1 + (1 βˆ’ V1) 𝐴1, V2𝑠2 + (1 βˆ’ V2)β‹… 𝐴2) 𝑑𝑠1 𝑑𝑠2 = 𝛼𝐻 (𝑒1, 𝑒2) + 𝛽𝐻 (V1, V2) ,

(38)

which shows𝐻 is convex on [0, 1]2.(ii) Let 𝑒1, 𝑒2 ∈ [0, 1] and 𝛼, 𝛽 β‰₯ 0 with 𝛼 + 𝛽 = 1.

β„Ž (𝛼𝑒1 + 𝛽𝑒2) = 𝐻 (𝛼𝑒1 + 𝛽𝑒2, 𝛼𝑒1 + 𝛽𝑒2)= 𝐻 (𝛼 (𝑒1, 𝑒1) + 𝛽 (𝑒2, 𝑒2))

≀ 𝛼𝐻 (𝑒1, 𝑒1) + 𝛽𝐻 (𝑒2, 𝑒2)= π›Όβ„Ž (𝑒1) + π›½β„Ž (𝑒2) ,

(39)

which shows the convexity of β„Ž on [0, 1].We have, by the above theorem, that

β„Ž (𝑒) = 𝐻 (𝑒, 𝑒) β‰₯ 𝐻 (0, 0) = 𝑓 (𝐴1, 𝐴2) ,𝑒 ∈ [0, 1] ,

β„Ž (𝑒) = 𝐻 (𝑒, 𝑒) ≀ 𝐻 (1, 1)= 14𝑦1𝑦2 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠1 𝑑𝑠2,𝑒 ∈ [0, 1] ,

(40)

which proves the required bounds.

Now let 0 ≀ 𝑒1 ≀ 𝑒2 ≀ 1. By the convexity of mapping β„Ž,we have that

β„Ž (𝑒2) βˆ’ β„Ž (𝑒1)𝑒2 βˆ’ 𝑒1 β‰₯ β„Ž (𝑒1) βˆ’ β„Ž (0)𝑒1 β‰₯ 0, (41)

and the theorem is proved.

Next, for positive real numbers 𝑝1, 𝑝2, π‘ž1, π‘ž2 and 𝐴 𝑖 =(π‘π‘–π‘Žπ‘– + π‘žπ‘–π‘π‘–)/(𝑝𝑖 + π‘žπ‘–) and 𝑦𝑖 > 0 where 𝑦𝑖 ≀ ((𝑏𝑖 βˆ’ π‘Žπ‘–)/(𝑝𝑖 +π‘žπ‘–))min(𝑝𝑖, π‘žπ‘–) for 𝑖 = 1, 2, then for mapping 𝑓 : Ξ”2 =[π‘Ž1, 𝑏1] Γ— [π‘Ž2, 𝑏2] β†’ R we shall consider the mapping οΏ½οΏ½ :[0, 1]2 β†’ [0,∞), which is given as

οΏ½οΏ½ (𝑒, V) fl 116𝑦21𝑦22 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑒𝑠1 + (1 βˆ’ 𝑒) 𝑑1, V𝑠2 + (1 βˆ’ V) 𝑑2) 𝑑𝑑2 𝑑𝑠2 𝑑𝑑1 𝑑𝑠1, (42)

where π‘Ž1 ≀ 𝐴1 βˆ’ 𝑦1 < 𝐴1 + 𝑦1 ≀ 𝑏1 and π‘Ž2 ≀ 𝐴2 βˆ’ 𝑦2 <𝐴2 + 𝑦2 ≀ 𝑏2, so that 𝑓 is defined on [𝐴1 βˆ’ 𝑦1, 𝐴1 + 𝑦1] and[𝐴2 βˆ’ 𝑦2, 𝐴2 + 𝑦2].The next theorem contains the main properties of this

mapping.

Theorem 9. Suppose that 𝑝1, 𝑝2, π‘ž1, and π‘ž2 are positive realnumbers and

𝐴 𝑖 = π‘π‘–π‘Žπ‘– + π‘žπ‘–π‘π‘–π‘π‘– + π‘žπ‘– ,𝑦𝑖 > 0,

where 𝑦𝑖 ≀ 𝑏𝑖 βˆ’ π‘Žπ‘–π‘π‘– + π‘žπ‘– min (𝑝𝑖, π‘žπ‘–) for 𝑖 = 1, 2.(43)

Also let 𝑓 : Ξ”2 β†’ R be convex on the coordinates on Ξ”2.

(i) We have the equalities

οΏ½οΏ½ (𝑒 + 12 , V) = οΏ½οΏ½ (12 βˆ’ 𝑒, V) ,βˆ€π‘’ ∈ [0, 12] , V ∈ [0, 1] ,

οΏ½οΏ½ (𝑒, V + 12) = οΏ½οΏ½ (𝑒, 12 βˆ’ V) ,βˆ€π‘’ ∈ [0, 12] , V ∈ [0, 1] ,

οΏ½οΏ½ (1 βˆ’ 𝑒, V) = οΏ½οΏ½ (𝑒, V) ,οΏ½οΏ½ (𝑒, 1 βˆ’ V) = οΏ½οΏ½ (𝑒, V) ,

βˆ€ (𝑒, V) ∈ Ξ”2.

(44)

Journal of Mathematics 7

(ii) οΏ½οΏ½ is convex on the coordinates.(iii) We have the bounds

inf(𝑒,V)∈[0,1]2

οΏ½οΏ½ (𝑒, V) = οΏ½οΏ½ (12 ,12) =

116𝑦21𝑦22 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓(𝑠1 + 𝑑12 , 𝑠2 + 𝑑22 ) 𝑑𝑑2 𝑑𝑠2 𝑑𝑑1 𝑑𝑠1,

sup(𝑒,V)∈[0,1]2

οΏ½οΏ½ (𝑒, V) = οΏ½οΏ½ (0, 0) = οΏ½οΏ½ (1, 1) = 14𝑦1𝑦2 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠2 𝑑𝑠1.(45)

(iv) The mapping οΏ½οΏ½(β‹…, V) is monotonic nonincreasing on[0, 1/2) and nondecreasing on [1/2, 1] for all V ∈ [0, 1].A similar property has the mapping οΏ½οΏ½(𝑒, β‹…) for all 𝑒 ∈[0, 1].

(v) We have the inequality

οΏ½οΏ½ (𝑒, V) β‰₯ max {𝐻 (𝑠1, 𝑠2) ,𝐻 (1 βˆ’ 𝑠1, 𝑠2) ,𝐻 (𝑠1, 1 βˆ’ 𝑠2) ,𝐻 (1 βˆ’ 𝑠1, 1 βˆ’ 𝑠2)} .

(46)

Proof. (i) and (ii) are obvious.(iii) By the convexity of 𝑓 in the first variable, we get that

12 [𝑓 (𝑒𝑠1 + (1 βˆ’ 𝑒) 𝑑1, V𝑠2 + (1 βˆ’ V) 𝑑2)+ 𝑓 ((1 βˆ’ 𝑒) 𝑠1 + 𝑒𝑑1, V𝑠2 + (1 βˆ’ V) 𝑑2)]β‰₯ 𝑓(𝑠1 + 𝑑12 , V𝑠2 + (1 βˆ’ V) 𝑑2)

(47)

for all (𝑠1, 𝑑1) ∈ [π‘Ž1, 𝑏1]2, (𝑠2, 𝑑2) ∈ [π‘Ž2, 𝑏2]2, and (𝑒, V) ∈[0, 1]2. Integrating on [𝐴1 βˆ’ 𝑦1, 𝐴1 + 𝑦1]2, we get14𝑦21 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

𝑓 (𝑒𝑠1 + (1 βˆ’ 𝑒) 𝑑1, V𝑠2

+ (1 βˆ’ V) 𝑑2) 𝑑𝑠1 𝑑𝑑1 β‰₯ 14𝑦21

β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

𝑓(𝑠1 + 𝑑12 , V𝑠2+ (1 βˆ’ V) 𝑑2)𝑑𝑠1 𝑑𝑑1.

(48)

Similarly,

14𝑦22 ∫

𝐴2+𝑦2

𝐴2βˆ’π‘¦2

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓(𝑠1 + 𝑑12 , V𝑠2 + (1 βˆ’ V)

β‹… 𝑑2)𝑑𝑠2 𝑑𝑑2 β‰₯ 14𝑦22

β‹… ∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓(𝑠1 + 𝑑12 , 𝑠2 + 𝑑22 ) 𝑑𝑠2 𝑑𝑑2.

(49)

Now integrating this inequality on [𝐴1 βˆ’ 𝑦1, 𝐴1 + 𝑦1]2 andtaking into account the above inequality, we deduce

οΏ½οΏ½ (𝑒, V) β‰₯ 116𝑦21𝑦22 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓(𝑠1 + 𝑑12 , 𝑠2 + 𝑑22 ) 𝑑𝑑2 𝑑𝑠2 𝑑𝑑1 𝑑𝑠1 (50)

for (𝑒, V) ∈ [0, 1]2. The first bound in (iii) is proved and thesecond bound goes on likewise.(iv)Themonotonicity of οΏ½οΏ½(β‹…, 𝑠) follows by a similar argumentfrom (iii).

(v) By Jensen’s integral inequality, we have successively for all(𝑒, V) ∈ [0, 1]2 that

οΏ½οΏ½ (𝑒, V) β‰₯ 18𝑦1𝑦22 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓( 12𝑦1 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

(𝑒𝑠1 + (1 βˆ’ 𝑒) 𝑑1) 𝑑𝑑1, V𝑠2 + (1 βˆ’ V) 𝑑2)𝑑𝑑2 𝑑𝑠2 𝑑𝑠1

= 18𝑦1𝑦22 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑒𝑠1 + (1 βˆ’ 𝑒)𝐴1, V𝑠2 + (1 βˆ’ V) 𝑑2) 𝑑𝑑2 𝑑𝑠2 𝑑𝑠1

β‰₯ 14𝑦1𝑦2 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑒𝑠1 + (1 βˆ’ 𝑒)𝐴1, V𝑠2 + (1 βˆ’ V) 𝐴2) 𝑑𝑠2 𝑑𝑠1 = 𝐻 (𝑠1, 𝑠2) .

(51)

8 Journal of Mathematics

Similarly, we can easily show οΏ½οΏ½(1 βˆ’ 𝑒, V) β‰₯ 𝐻(1 βˆ’ 𝑠1, 𝑠2),οΏ½οΏ½(𝑒, 1βˆ’V) β‰₯ 𝐻(𝑠1, 1βˆ’π‘ 2), and οΏ½οΏ½(1βˆ’π‘’, 1βˆ’V) β‰₯ 𝐻(1βˆ’π‘ 1, 1βˆ’π‘ 2).In addition, as οΏ½οΏ½(𝑒, V) = οΏ½οΏ½(1 βˆ’ 𝑒, V) = οΏ½οΏ½(𝑒, 1 βˆ’ V) =οΏ½οΏ½(1 βˆ’ 𝑒, 1 βˆ’ V) for all (𝑒, V) ∈ [0, 1]2, so we deduce οΏ½οΏ½(𝑒, V) β‰₯

max{𝐻(𝑠1, 𝑠2),𝐻(1 βˆ’ 𝑠1, 𝑠2),𝐻(𝑠1, 1 βˆ’ 𝑠2),𝐻(1 βˆ’ 𝑠1, 1 βˆ’ 𝑠2)}.The theorem is thus proved.

Theorem 10. Suppose that 𝑝1, 𝑝2, π‘ž1, and π‘ž2 are positive realnumbers and

𝐴 𝑖 = π‘π‘–π‘Žπ‘– + π‘žπ‘–π‘π‘–π‘π‘– + π‘žπ‘– ,

𝑦𝑖 > 0,where 𝑦𝑖 ≀ 𝑏𝑖 βˆ’ π‘Žπ‘–π‘π‘– + π‘žπ‘– min (𝑝𝑖, π‘žπ‘–) for 𝑖 = 1, 2.

(52)

Also let 𝑓 : Ξ”2 β†’ R be convex on the coordinates on Ξ”2.(i) The mapping οΏ½οΏ½ is convex on Ξ”2.(ii) Define the mapping β„Ž : [0, 1] β†’ R, β„Ž(𝑒) fl οΏ½οΏ½(𝑒, 𝑒).

Then β„Ž is convex, monotonic nonincreasing on [0, 1/2]and nondecreasing on [1/2, 1] and one has the bounds

infπ‘’βˆˆ[0,1]

β„Ž (𝑒) = β„Ž (12) =1

16𝑦21𝑦22 ∫𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓(𝑠1 + 𝑑12 , 𝑠2 + 𝑑22 ) 𝑑𝑑2 𝑑𝑠2 𝑑𝑑1 𝑑𝑠1,

supπ‘’βˆˆ[0,1]

β„Ž (𝑒) = β„Ž (1) = β„Ž (0) = 14𝑦1𝑦2 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠2 𝑑𝑠1.(53)

(iii) One has the inequality

β„Ž (𝑒) β‰₯ max {β„Ž (𝑒) , β„Ž (1 βˆ’ 𝑒)} . (54)

Proof. (i) Let (𝑒1, 𝑒2), (V1, V2) ∈ [0, 1] and 𝛼, 𝛽 β‰₯ 0 with 𝛼 +𝛽 = 1. Since 𝑓 is convex on Ξ”2, we have

οΏ½οΏ½ (𝛼 (𝑒1, 𝑒2) + 𝛽 (V1, V2)) = οΏ½οΏ½ (𝛼𝑒1 + 𝛽V1, 𝛼𝑒2 + 𝛽V2) = 116𝑦21𝑦22

β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝛼 (𝑒1𝑠1 + (1 βˆ’ 𝑒1) 𝑑1, 𝑒2𝑠2 + (1 βˆ’ 𝑒2) 𝑑2) +𝛽 (V1𝑠1 + (1 βˆ’ V1) 𝑑1, V2𝑠2 + (1 βˆ’ V2) 𝑑2)) 𝑑𝑑2 𝑑𝑠2 𝑑𝑑1 𝑑𝑠1

≀ 𝛼 β‹… 116𝑦21𝑦22 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑒1𝑠1 + (1 βˆ’ 𝑒1) 𝑑1, 𝑒2𝑠2 + (1 βˆ’ 𝑒2) 𝑑2) 𝑑𝑑2 𝑑𝑠2 𝑑𝑑1 𝑑𝑠1 + 𝛽 β‹… 116𝑦21𝑦22

β‹… ∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (V1𝑠1 + (1 βˆ’ V1) 𝑑1, V2𝑠2 + (1 βˆ’ V2) 𝑑2) 𝑑𝑑2 𝑑𝑠2 𝑑𝑑1 𝑑𝑠1 = 𝛼�� (𝑒1, 𝑒2) + 𝛽�� (V1, V2) ,

(55)

which shows οΏ½οΏ½ is convex on Ξ”2.(ii) Let 𝑒1, 𝑒2, ∈ [0, 1] and 𝛼, 𝛽 β‰₯ 0 with 𝛼 + 𝛽 = 1.

β„Ž (𝛼𝑒1 + 𝛽𝑒2) = οΏ½οΏ½ (𝛼𝑒1 + 𝛽𝑒2, 𝛼𝑒1 + 𝛽𝑒2)= οΏ½οΏ½ (𝛼 (𝑒1, 𝑒1) + 𝛽 (𝑒2, 𝑒2))

≀ 𝛼�� (𝑒1, 𝑒1) + 𝛽�� (𝑒2, 𝑒2)= π›Όβ„Ž (𝑒1) + π›½β„Ž (𝑒2) ,

(56)

which shows the convexity of β„Ž on [0, 1].As

β„Ž (𝑒) = οΏ½οΏ½ (𝑒, 𝑒) β‰₯ οΏ½οΏ½ (12 ,12) = β„Ž (

12) =

116𝑦21𝑦22 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴1+𝑦1𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓(𝑠1 + 𝑑12 , 𝑠2 + 𝑑22 ) 𝑑𝑑2 𝑑𝑠2 𝑑𝑑1 𝑑𝑠1,

β„Ž (𝑒) = οΏ½οΏ½ (𝑒, 𝑒) ≀ οΏ½οΏ½ (0, 0) = οΏ½οΏ½ (0, 0) = 14𝑦1𝑦2 ∫

𝐴1+𝑦1

𝐴1βˆ’π‘¦1

∫𝐴2+𝑦2𝐴2βˆ’π‘¦2

𝑓 (𝑠1, 𝑠2) 𝑑𝑠2 𝑑𝑠1,(57)

which proves the required bounds.

Journal of Mathematics 9

It is obvious that β„Ž ismonotonic nonincreasing on [0, 1/2]and nondecreasing on [1/2, 1].

(iii) As we know

β„Ž (𝑒) = οΏ½οΏ½ (𝑒, 𝑒) β‰₯ max {𝐻 (𝑒, 𝑒) ,𝐻 (1 βˆ’ 𝑒, 1 βˆ’ 𝑒)}= max {β„Ž (𝑒) , β„Ž (1 βˆ’ 𝑒)} (58)

and the theorem is proved.

Competing Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper.

References

[1] D. S. Mitrinovic and I. B. Lackovic, β€œHermite and convexity,”Aequationes Mathematicae, vol. 28, no. 3, pp. 229–232, 1985.

[2] A. M. Fink, β€œA best possible Hadamard inequality,”Mathemati-cal Inequalities and Applications, vol. 1, no. 2, pp. 223–230, 1998.

[3] S. S. Dragomir, β€œA mapping in connection to Hadamard’sinequalities,” Osterreichische Akademie der Wissenschaften.Mathematisch-Naturwissenschaftliche, vol. 128, pp. 17–20, 1991.

[4] S. S. Dragomir, β€œOn Hadamard’s inequalities for convex func-tions,”Mathematica Balkanica. New Series, vol. 6, no. 3, pp. 215–222, 1992.

[5] S. S. Dragomir, D. S. Milosevic, and J. Sandor, β€œOn some refine-ments of Hadamard’s inequalities and applications,” PublikacijeElektrotehnickog Fakulteta. Serija Matematika, vol. 4, pp. 3–10,1993.

[6] G. Farid, M. Marwan, and A. U. Rehman, β€œFejer-hadamardinequality for convex functions on the coordinates in a rectanglefrom the plane,” International Journal of Analysis and Applica-tions, vol. 10, no. 1, pp. 40–47, 2016.

[7] G. Farid and A. Ur Rehman, β€œGeneralization of the Fejer-Hadamard’s Inequality for convex function on coordinates,”KoreanMathematical Society. Communications, vol. 31, no. 1, pp.53–64, 2016.

[8] G. Farid, M. Marwan, and A. U. Rehman, β€œNew mean valuetheorems and generalization of Hadamard inequality via coor-dinated m-convex functions,” Journal of Inequalities and Appli-cations, vol. 2015, article 283, pp. 1–11, 2015.

[9] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities, (RGMIAMonographs), VictoriaUniver-sity Press, 2000.

[10] S. S. Dragomir, β€œOn the Hadamards inequality for convexfunction on the co-ordinates in a rectangle from the plane,”Taiwanese Journal of Mathematics, vol. 5, no. 4, pp. 775–778,2001.

[11] A. Lupas, β€œA generalization of Hadamard inequalities forconvex functions,” Publikacije Elektrotehnickog Fakulteta. SerijaMatematika I Fizika, vol. 544–576, pp. 115–121, 1976.

[12] J. E. Pecaric, F. Proschan, and Y. Tong,Convex Functions, PartialOrderings, and Statistical Applications, vol. 187, Academic Press,New York, NY, USA, 1992.

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of