Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A...

25
- DRAFT - Report on Preliminary Study Concept EuPRAXIA (“European Plasma Research Accelerator with eXcellence In Applications”) - EuPRAXIA Deliverable 1.2 - 26. August 2016 - Version 0.1 Input, comments and feedback received from (status 26.8.2016): P.A.Walker, R.W.Assmann, B.Cros, A.Chance, E.Chiadroni, J.Clarke, M.E.Couprie, J.Dale, G.Dattoli, U.Dorda, K.Ertel, F.Falcoz, M.Ferrario, L.Gizzi, D.Jaroszynski, L.Labate, S.Laux, A.Lifschitz, A.R.Maier, B.Marchetti, A.Martinex de la Ossa, F.Mathieu, A.Mosnier, A.Mostacci, Z.Najmudin, J.Osterhoff, D.Papadopoulos, R.Pattathil, A.F.Pousa, G.Riboulet, S.Ricaud, L.Silva, C.Simon-Boisson, A.Specka, O.Svystun, G.Toci, J.Vieira, R.Walczak, M.Weikum

Transcript of Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A...

Page 1: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

- DRAFT -

Report on Preliminary Study Concept EuPRAXIA (“European Plasma Research Accelerator with

eXcellence In Applications”)

- EuPRAXIA Deliverable 1.2 -

26. August 2016 - Version 0.1

Input, comments and feedback received from (status 26.8.2016): P.A.Walker, R.W.Assmann, B.Cros, A.Chance, E.Chiadroni, J.Clarke, M.E.Couprie, J.Dale, G.Dattoli, U.Dorda, K.Ertel, F.Falcoz, M.Ferrario, L.Gizzi, D.Jaroszynski, L.Labate, S.Laux, A.Lifschitz, A.R.Maier, B.Marchetti, A.Martinex de la Ossa, F.Mathieu, A.Mosnier, A.Mostacci, Z.Najmudin, J.Osterhoff, D.Papadopoulos, R.Pattathil, A.F.Pousa, G.Riboulet, S.Ricaud, L.Silva, C.Simon-Boisson, A.Specka, O.Svystun, G.Toci, J.Vieira, R.Walczak, M.Weikum

Page 2: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.
Page 3: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

Content

1. Revision overview

2. Introduction

3. Overview graphs3.1 Complete flow diagram3.2 LWFA3.3 LWFA with 1 GeV beam staging3.4 PWFA and hybrid scheme

4. Parameter tables4.1 Case A: 1 GeV4.2 Case B: 3 GeV4.3 Case C: 5 GeV

1

2

4 4 5 6 7

8 8 15 20

1. Revision overview

Version Date Purpose Changes

0.1 26.8.2016 First version for WP discussions.

Creation of document. Nochanges.

0.2 10.10.2016 (estimated)

Second version with input from all WPs.

1 31.10.2016 Version released to EU office.

1

Page 4: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

2. Introduction EuPRAXIA aims at the conceptual design of a European plasma accelerator with superior beam quality and pilot applications. The first year of the design study has investigated and discussed several applications and the key technical components of such a facility. This report presents much of the outcome of these investigations, condensed into flow diagrams and technical tables. Major input was achieved in a science workshop in June 2016 at Pisa. At this meeting, more than 120 scientists gathered and discussed for three days the various technical approaches and requirements. All 14 work packages were present at this meeting and all work packages provided input to this study version of the EuPRAXIA project. Special work package meetings took place over the year, both as teleconferences or as in person meetings. The WP4 meeting on laser technology defined the 100cube laser challenge, which has become one of the baseline ingredients in the EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields. This report is of a quite technical nature. It defines in technical terms the preliminary study version of EuPRAXIA, as foreseen in the EuPRAXIA project plan. The next sections show graphical flow diagrams and tables of parameters for the key parts in this project:

1. The graphical flow diagrams show the concepts included, their interplay and their connections to applications. Boxes represent major technical sub projects and/or concepts. The lines indicate connections between parts and show the logical flow in production of electrons, their acceleration and delivery to applications. The complete EuPRAXIA flow diagram visualizes the present scope of the EuPRAXIA project.

2. The tables give the agreed baseline parameters, the parameter ranges to be explored and the technical goals for the next step of the EuPRAXIA conceptual design work. The parameter ranges documented in this report will ensure that work at premises of the various partners is focused on the same targets and assumptions. This common baseline for parameters and their study range will also ensure that results can be compared for beam quality, tolerances, footprints etc.

It is noted that we purposefully retain multiple paths for arriving at a multi GeV plasma accelerator at this stage. The parameters and design targets have been coordinated among various techniques and partners. The following concepts are included for the next phase of our conceptual design studies:

1. External injection of an electron bunch into a laser-driven plasma accelerator.

2. Beam generation and acceleration in a laser-driven plasma accelerator.

2

Page 5: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

3. External injection of an electron bunch into a beam-driven plasma accelerator.

4. Hybrid schemes including both laser-driven and beam-driven plasma acceleration.

These techniques will be investigated by the work packages of EuPRAXIA with the baseline parameters and goals defined in this report. It is clear that this is a present snapshot of the EuPRAXIA project and not the final proposal that will arrive in October 2019. In the final EuPRAXIA proposal, we foresee that an optimized project will emerge from our studies. The final project shall deliver the best value for a given investment. Optimization criteria will include: maximum achievable beam quality, maximum tolerances for operation, maximum added value for users, minimal size of installation and best cost-efficiency. In the upcoming project phase, the technical work shall use the agreed input from this report and provide the following outcomes:

1. More refined and fully coherent parameter tables for incoming and outgoing properties (each box in the flow diagram).

2. Realistic performance estimates and basic values for tolerances and stability requirements (each box in the flow diagram).

3. Basic layouts (footprints) of the technical components (each box in the flow diagram).

4. More detailed specifications for the science applications and use cases.

The future outcome from the work packages can then be used to rank the various solutions towards our final 2019 proposal. This ranking will define the optimal combination of technologies for the conceptual design of a EuPRAXIA facility.

3

Page 6: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

3.1 Complete flow diagram

4

Page 7: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

LWFA with internal injection and acceleration

to 1 or 5 GeV

LWFA with external injection (LWFA) and acceleration

to 1 or 5 GeV

LWFA with external injection (RF) and acceleration

to 1 or 5 GeV

3.2 LWFA

5

Page 8: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

LWFA with internal injection and acceleration

to 1 GeV and staging to 5 GeV

LWFA with external injection (LWFA) and acceleration

to 1 GeV and staging to 5 GeV

LWFA with external injection (RF) and acceleration

to 1 GeV and staging to 5 GeV

3.3 LWFA with 1 GeV beam staging

6

Page 9: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

PWFA with acceleration

to 1 or 5 GeV

Hybrid scheme: LWFA with internal injection and acceleration

to 1 GeV and staging to 3 GeV

3.4 PWFA and hybrid scheme

7

Page 10: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

4.1 Case A: 1 GeVFEL requirements and undulator

Lower limit Upper limit

Particle type ‐ e‐Energy E 1 GeVCharge Q 30 pC 15 pC 100 pCBunch length (FWHM) τ 10 fs 3 fs 30 fsPeak current I 3 kARepetition rate f 10 Hz 1 Hz 100 HzNumber of bunches N 1Total energy spread (RMS) σE/E 1%Slice energy spread (RMS) σE,S/E 0.1 %Transverse normalized emittance εN,x , εN,y  1 mm mradAlpha function αx, αy 0Beta function βx, βy 5 mTransverse beam size (RMS) σx , σy  50 μm Transverse divergence (RMS) σx' , σy'  10 μradPointing stability (RMS) σ<x'>, σ<y'>   100 μradEnergy stability (RMS) δE/E 5% 1% 10%Charge stability (RMS) δQ/Q 5% 1% 10%Bunch length stability (RMS) δτ/τ 5% 1% 10%Emittance stability (RMS) δεN/εN 5% 1% 10%Undulator type ‐ in vacuumRadiation wavelength λ ~ 4 nm 1 nm 10 nmPierce parameter ρ > σE/EUndulator period λu 15 mm 15 mm 25 mmUndulator parameter K 1 1 3Length of undulator section Lu 2 m 2 m 3 mNumber of undulator sections Nu 10 5 20Undulator gap g 2 ‐ 5 mm, variable

0.1 %1 mm mrad

0

10 μrad100 rad

Troom, cryo, supra cond.

50 μm

> σE/E

2 ‐5 mm, variable

5 m

e‐

1%

FEL beam requirements: at entrance of undulator

Quantity Baseline valueRange of exploration

1

Symbol

1 GeV

3‐5 kA

8

Page 11: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

Transferline

Lower limit Upper limit

Collimation depth x σx,coll 10 σx

Collimation depth y σy,coll 10 σy

Collimation depth energy σE,coll tbdPhase advance ϕ ≥ πTransmission ‐ ≥ 30 %Bunch lengthing factor ‐ ≥ 2

tbd≥ π

≥ 30 %≥ 2

Range of exploration

10 σx10 σy

Transfer line: from plasma 2 exit to undulator entrance

Quantity

The transfer line must have diagnostics capabilities for specified parameters for 1, 3 and 5 GeV case.

Baseline valueSymbol

9

Page 12: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

1 GeV electron beam at exit of plasma 2 and plasma

Lower limit Upper limit

Energy E 1 GeVCharge Q 100 pC 30 pC 100 pCBunch length τ 5 fs 3 fs 20 fsPeak current per bunch I 20 kARepetition rate f 10 Hz 1 Hz 100 HzNumber of bunches N 1Total energy spread (RMS) σE/E 5% 1% 10%Transverse normalized emittance εN,x , εN,y  1 mm mrad 1 mm mrad 10 mm mradAlpha function αx, αy 0Beta function βx, βy 1 mmTransverse beam size (RMS) σx , σy  0.71 μm 0.71 μm 2.2 μmTransverse divergence (RMS) σx' , σy'  0.71 mrad 0.71 mrad 2.2 mradJitter, beam to global reference (RMS) σΔt 10 fs

Plasma density ne 2 1017 cm‐3 1 1016 cm‐3 1 1018 cm‐3

Plasma wavelength λp 75 μm 334 μm 33  μmPeak acceleration gradient Ez 50 GV/m ~ 10 GV/m ~ 100 GV/mGas type ‐ H2

Length L > cm cm < mTotal transverse aperture ‐ ‐   Option a: capillary/tube D 0.3 mm 0.1 mm 0.5 mm   Option b: cell d 0.5 mm 0.3 mm 1 mm

Accelerator plasma (plasma 2): used for LWFA or PWFA 

0

1 GeV  beam: at exit of plasma 2 accelerated via LWFA or PWFA

Quantity

1 GeV

1

10 fs

5 ‐ 20 kA

1mm

gas mixures

Baseline valueRange of exploration

Symbol

10

Page 13: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

Drivers used in plasma 2/3

Lower limit Upper limit

Wavelength λ2 800 nm 800 nm  1100 nmEnergy E2 100 J 100 J 500 JPulse length (FWHM) τ2 100 fs 100 fs 1000 fsPeak power P2,peak 1 PW 1 PW 5 PWAverage power P2,ave 1 kWContrast at 10 ps C2 1 1010 

Repetition rate f2 10 Hz 1 Hz 100 HzNumber of beams N2 2Transverse pulse shape on parabola ‐ "top hat"Pulse shape in focal plane ‐ GaussianStrehl ratio S2 0.9 0.7 1Pointing stability σ<x'>, σ<y'>   100 radRequired lab room space A2 500 m2

Energy E 500 MeV 300 MeV 500 MeVCharge Q 250 pC 100 pC 500 pCBunch length (FWHM) τ 100 fsPeak current per bunch I 2.5 kA 1 kA 5 kARepetition rate f ≥ 10 HzNumber of bunches N ≥ 1Total energy spread (RMS) σE/E 1%Transverse normalized emittance εN,x , εN,y  1 mm mradAlpha function αx, αy 0Beta function βx, βy 100 mm 60 mm 100 mmTransverse beam size (RMS) σx , σy  10 μm 10 μm 10 μmTransverse divergence (RMS) σx' , σy'  100 μrad 167 μrad 100 μradTransformer ratio R 1 1 2Jitter, beam to global reference (RMS) σΔt 10 fs

≥ 11%

0

500 m2

Gaussian

2

1 mm mrad

500 MeV ‐ RF driver: at entrance of plasma 2 for PWFA

1 1010 

Quantity Baseline valueRange of exploration

100 rad

10 fs

≥ 10 Hz

Symbol

Laser driver (laser 2): for LWFA with controlled or external injection within plasma 2/3

Gaussian, "top hat"

100 fs

0.1 ‐ 1 kW

11

Page 14: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

Injector beams

Lower limit Upper limit

Energy E 150 MeV 100 MeV 200 MeVCharge Q 50 pC 10 pC 50 pCBunch length (FWHM) τ 5 fs 3 fs 30 fsPeak current per bunch I 10 kARepetition rate f ≥ 10 HzNumber of bunches N 1 1 20Shaped profile ‐ tbdTotal energy spread (RMS) σE/E 0.1 %Transverse normalized emittance εN,x , εN,y  0.5 mm mradAlpha function αx, αy 0Beta function βx, βy 30 mmTransverse beam size (RMS) σx , σy  7.1 μmTransverse divergence (RMS) σx' , σy'  0.24 mradJitter, beam to global reference (RMS) σΔt 10 fs

Energy E 150 MeV 100 MeV 200 MeVCharge Q 100 pC 30 pC 100 pCBunch length τ 5 fs 3 fs 20 fsPeak current per bunch I 20 kARepetition rate f 10 Hz 1 Hz 100 HzNumber of bunches N 1Total energy spread (RMS) σE/E 5 % 1% 5%Transverse normalized emittance εN,x , εN,y  1 mm mradAlpha function αx, αy 0Beta function βx, βy 100 μmTransverse beam size (RMS) σx , σy  0.58 μmTransverse divergence (RMS) σx' , σy'  5.8 mradJitter, beam to global reference (RMS) σΔt 10 fs

1 mm mrad

100 μm0

Baseline valueRange of exploration

≥ 10 Hz

0.5 ‐ 0.71 μm5 ‐ 7.1 mrad

5 ‐ 20 kA

0.5 mm mrad

10 fs

30 mm6.1 ‐ 8.6 μm

0.2 ‐ 0.29 mrad

1 ‐ 10 kA

150 MeV ‐ plasma injector beam: at entrance of plasma 2 for LWFA with external injection 

1

0.1 %

10 fs

150 MeV ‐ RF injector beam: at entrance of plasma 2 for LWFA with external injection

Quantity Symbol

0

tbd

12

Page 15: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

Plasma and laser for LWFA injector

Lower limit Upper limit

Plasma density ne 3 1018 cm‐3 1 1018 cm‐3 1 1019 cm‐3

Plasma wavelength λp 19 μm 33 μm 10.6 μmPeak acceleration gradient Ez ~ 100 GV/mGas type ‐ H2

Length L ≥ 5 mm 1 mm 10 mmTotal transverse aperture ‐ ‐   Option a: capillary/tube D 0.2 mm 0.1 mm 0.5 mm   Option b: cell d 0.5 mm 0.3 mm 1 mm   Option c: jet ‐ n/a

Wavelength λ1 800 nmEnergy E1 5 J 5 J 10 JPulse length (FWHM) τ1 30 fs 20 fs 40fsPeak power P1,peak 167 TWAverage power P1,ave 50 W 5 W 1 kWRepetition rate f1 10 Hz 1 Hz 100 HzNumber of beams N1 1Transverse pulse shape on parabola ‐ "top hat"Pulse shape in focal plane ‐ GaussianStrehl ratio S1 0.9 0.7 1Pointing stability σ<x'>, σ<y'>   100 radRequired lab room space A1 100 m2

Gaussian

800 nm

LWFA injector plasma (plasma 1)

150‐250 TW

Range of explorationQuantity

 50 ‐ 150 GV/m

n/a

Baseline value

100 m2

gas mixure

LWFA injector laser (laser 1): for LWFA with controlled injection within plasma 1

Gaussian, "top hat"

Symbol

1

100 rad

13

Page 16: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

14

Page 17: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

4.2 Case B: 3 GeVFEL requirements and undulator

Lower limit Upper limit

Particle type ‐ e‐Energy E 3 GeVCharge Q 30 pC 15 pC 100 pCBunch length (FWHM) τ 10 fs 3 fs 30 fsPeak current I 3 kARepetition rate f 10 Hz 1 Hz 100 HzNumber of bunches N 1Total energy spread (RMS) σE/E 1%Slice energy spread (RMS) σE,S/E 0.1 %Transverse normalized emittance εN,x , εN,y  1 mm mradAlpha function αx, αy 0Beta function βx, βy 5 mTransverse beam size (RMS) σx , σy  29 μm Transverse divergence (RMS) σx' , σy'  5.8 μradPointing stability (RMS) σ<x'>, σ<y'>   100 μradEnergy stability (RMS) δE/E 5% 1% 10%Charge stability (RMS) δQ/Q 5% 1% 10%Bunch length stability (RMS) δτ/τ 5% 1% 10%Emittance stability (RMS) δεN/εN 5% 1% 10%Undulator type ‐ in vacuumRadiation wavelength λ ~ 0.3 nmPierce parameter ρ > σE/EUndulator period λu 15 mm 15 mm 25 mmUndulator parameter K 1 1 3Length of undulator section Lu 2 m 2 m 3 mNumber of undulator sections Nu 10 5 20Undulator gap g 2 ‐5 mm variable

0

> σE/E~ 0.3 nm

0.1 %1 mm mrad

5 m29 μm5.8 μrad

Quantity Symbol Baseline valueRange of exploration

FEL beam requirements: at entrance of undulator

e‐3 GeV

1

3‐5 kA

1 %

100 rad

Troom, cryo, supra cond.

2 ‐5 mm variable

15

Page 18: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

Transferline

Lower limit Upper limit

Collimation depth x σx,coll 10 σx

Collimation depth y σy,coll 10 σy

Collimation depth energy σE,coll tbdPhase advance ϕ ≥ πTransmission ‐ ≥ 30 %Bunch lengthing factor ‐ ≥ 2

Quantity Symbol Baseline valueRange of exploration

The transfer line must have diagnostics capabilities for specified parameters for 1, 3 and 5 GeV case.

tbd

Transfer line: from plasma 3 exit to undulator entrance

10 σx10 σy

≥ π≥ 30 %≥ 2

16

Page 19: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

Lower limit Upper limit

Energy E 1 GeVCharge Q 100 pC 30 pC 400 pCBunch length τ 10 fs 3 fs  20 fsPeak current per bunch I 10 kARepetition rate f 10 Hz 1 Hz 10 HzNumber of bunches N 1Total energy spread (RMS) σE/E 5% 1% 10%Transverse normalized emittance εN,x , εN,y  1 mm mrad 1 mm mrad 10 mm mradAlpha function αx, αy 0Beta function βx, βy 1 mm 3 mm 0.5 mmTransverse beam size (RMS) σx , σy  0.71 μm 1.2 μm 1.6 μmTransverse divergence (RMS) σx' , σy'  0.71 mrad 0.41 mrad 3.2 mradJitter, beam to global reference (RMS) σΔt 10 fs

Energy E 3 GeVCharge Q 30 pC 3 pC 100 pCBunch length τ 3 fs 0.5 fs  5 fsPeak current per bunch I 10 kARepetition rate f 10 Hz 1 Hz 10 HzNumber of bunches N 1Total energy spread (RMS) σE/E 5% 1% 10%Transverse normalized emittance εN,x , εN,y  1 mm mrad 50 μm mrad 1 mm mradAlpha function αx, αy 0Beta function βx, βy 1 mmTransverse beam size (RMS) σx , σy  0.41 μm 0.091 μm 0.41 μmTransverse divergence (RMS) σx' , σy'  0.41 mrad 91 μrad 0.41 mradJitter, beam to global reference (RMS) σΔt 10 fs

0

0

Hybrid drive beam (from LWFA case) at entrance of plasma 3

1 GeV

10 fs

Hybrid witness beam after plasma 3

1

Hybrid drive and witness beams

Quantity Symbol Baseline valueRange of exploration

5 ‐ 20 kA

3 GeV

1

1 mm

10 fs

5 ‐ 20 kA

17

Page 20: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

Lower limit Upper limit

Plasma density ne 1 1019 cm‐3

Plasma wavelength λp 10.6 μmPeak acceleration gradient Ez 150 GV/mGas type ‐ H2/HeLength L ~ 3 cm 1 cm  6 cm

 100 ‐ 150 GV/m

Accelerator plasma (plasma 3): used for hybrid case

1 1019 cm‐3

H2/He

Plasma fpr hybrid stage

Quantity Symbol Baseline valueRange of exploration

10.6 μm

18

Page 21: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

19

Page 22: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

4.3 Case C: 5 GeVFEL requirements and undulator

Lower limit Upper limit

Particle type ‐ e‐Energy E 5 GeVCharge Q 30 pC 15 pC 100 pCBunch length (FWHM) τ 10 fs 3 fs 30 fsPeak current I 3 kARepetition rate f 10 Hz 1 Hz 100 HzNumber of bunches N 1Total energy spread (RMS) σE/E 1%Slice energy spread (RMS) σE,S/E 0.1 %Transverse normalized emittance εN,x , εN,y  1 mm mradAlpha function αx, αy 0Beta function βx, βy 5 mTransverse beam size (RMS) σx , σy  22 μm Transverse divergence (RMS) σx' , σy'  4.5 μradPointing stability (RMS) σ<x'>, σ<y'>   100 μradEnergy stability (RMS) δE/E 5% 1% 10%Charge stability (RMS) δQ/Q 5% 1% 10%Bunch length stability (RMS) δτ/τ 5% 1% 10%Emittance stability (RMS) δεN/εN 5% 1% 10%Undulator type ‐ in vacuumRadiation wavelength λ ~ 0.1 nmPierce parameter ρ > σE/EUndulator period λu 15 mm 15 mm 25 mmUndulator parameter K 1 1 3Length of undulator section Lu 2 m 2 m 3 mNumber of undulator sections Nu 10 5 20Undulator gap g 2 ‐5 mm variable

Quantity Symbol Baseline valueRange of exploration

FEL beam requirements at entrance of undulator

1 mm mrad

5 m22 μm4.5 μrad

~ 0.1 nm

e‐5 GeV

100 rad

0

> σE/E

Troom, cryo, supra cond.

2 ‐5 mm variable

1

3‐5 kA

1 %0.1 %

20

Page 23: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

Transferline

Lower limit Upper limit

Collimation depth x σx,coll 10 σx

Collimation depth y σy,coll 10 σy

Collimation depth energy σE,coll tbdPhase advance ϕ ≥ πTransmission ‐ ≥ 30 %Bunch lengthing factor ‐ ≥ 2

Quantity Symbol Baseline valueRange of exploration

The transfer line must have diagnostics capabilities for specified parameters for 1, 3 and 5 GeV case.≥ 2

Transfer line: from plasma 2 or 3 exit to undulator entrance

10 σx10 σytbd≥ π

≥ 30 %

21

Page 24: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

Lower limit Upper limit

Energy E 5 GeVCharge Q 100 pC 30 pC 100 pCBunch length τ 5 fs 3 fs 20 fsPeak current per bunch I 20 kARepetition rate f 10 Hz 1 Hz 100 HzNumber of bunches N 1Total energy spread (RMS) σE/E 5% 1% 10%Transverse normalized emittance εN,x , εN,y  1 mm mrad 1 mm mrad 10 mm mradAlpha function αx, αy 0Beta function βx, βy 1 mmTransverse beam size (RMS) σx , σy  0.32 μm 0.32 μm 1 μmTransverse divergence (RMS) σx' , σy'  0.32 mrad 0.32 mrad 1 mradJitter, beam to global reference (RMS) σΔt 10 fs

5 GeV electron beam

Quantity Symbol Baseline valueRange of exploration

5 GeV  beam: at exit of plasma 2 or 3 accelerated via LWFA or PWFA

5 GeV

1

01mm

10 fs

5‐20 kA

22

Page 25: Report on Preliminary Study Concept EuPRAXIA (“European … · 2018-11-20 · EuPRAXIA project. A mini users workshop looked at applications in high energy physics and other fields.

Plasma density ne 2 1017 cm‐3 1 1016 cm‐3 1 1018 cm‐3

Plasma wavelength λp 75 μm 334 μm 33  μmPeak acceleration gradient Ez ~ 50 GV/m ~ 10 GV/m ~ 100 GV/mGas type ‐ H2

Length L > cm cm < mTotal transverse aperture ‐ ‐   Option a: capillary/tube D 0.3 mm 0.1 mm 0.5 mm   Option b: cell d 0.5 mm 0.3 mm 1 mm

Plasma density ne 2 1017 cm‐3 1 1016 cm‐3 1 1018 cm‐3

Plasma wavelength λp 75 μm 334 μm 33  μmPeak acceleration gradient Ez ~ 50 GV/m ~ 10 GV/m ~ 100 GV/mGas type ‐ H2

Length L > cm cm < mTotal transverse aperture ‐ ‐   Option a: capillary/tube D 0.3 mm 0.1 mm 0.5 mm   Option b: cell d 0.5 mm 0.3 mm 1 mm

 

gas mixure

Plasma 2 and 3

Accelerator plasma (plasma 3): used for LWFA in staging case

Accelerator plasma (plasma 2): used for LWFA or PWFA

gas mixures

23