REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved ... code) (661)275-5015 ......

40
REPORT DOCUMENTATION PAGE Form Approved 0MB No. 0704-0188 Publio reporting burden for this collection of infomiation is estimated to average 1 hour per response, including the time for reviewing Instructions, searching existing data sources gathering and maintaining the data needed, mH compieting and reviewing this coilectlon of Information. Send comments regarding this burden estimate or any other aspect of this eoileotlon of Information, including suggestions tor reducina this burden to Department of IJefense, Washington Headquarters Services, Directorate for intoranation Operations and Reports (0704-0188), 1215 Jefferson Davis Highway Suite 1204 Arilngton VA 22202- "•^Pf r,Sf''°"f^f^ *K "' * SJJi'Sl?^?? !' SrS^ °*" provision of iaw, no person shall be suljject to any penalty for falling to comply with a collection of information If It dies not display a currently valid 0MB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. uiuraprayouuiioimy 1. REPORT DATE (DD-MM-YYYY) 04-06-2003 4. TITLE AND SUBTITLE 2. REPORT TYPE Technical Presentation Usage of Fiber Grating Strain Sensors for Diagnostics of Composite Pressure Vessels 6. AUTHOR(S) E. Udd, M. Kunzler, S. Calvert, S. Kreger (Blue Road Research); M. Johnson, K. Mildenhall (ATK Thiokol Propulsion) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS{ES) Blue Road Research 376 NE 219* Avenue Gresham OR 97030 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS{ES) Air Force Research Laboratory (AFMC) AFRL/FRS 5 Pollux Drive Edwards AFB CA 93524-7048 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 3. DATES COVERED (From - To) 5a. CONTRACT NUMBER F04611.02-C.0007 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 3005 5e. TASK NUMBER 02AG 5f. WORK UNIT NUMBER 8. PERFORMING ORGANIZATION REPORT NUMBER 10. SPONSOR/MONITOR'S ACRONYM(S) 11. SPONSORflWONITOR'S NUMBER(S) AFRL.PR-ED-VG-2003.148 13. SUPPLEMENTARY NOTES For presentation at the 16* International Conference on Optical Fiber Sensors in Nara. Japan, taking place 13-17 October 2003 14. ABSTRACT ' ~ '~ 20030812 207 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified b. ABSTRACT Unclassified C. THIS PAGE Unclassified 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 39 19a. NAME OF RESPONSIBLE PERSON Leilani Richardson 19b. TELEPHONE NUMBER (include area code) (661)275-5015 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

Transcript of REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved ... code) (661)275-5015 ......

REPORT DOCUMENTATION PAGE Form Approved 0MB No. 0704-0188

Publio reporting burden for this collection of infomiation is estimated to average 1 hour per response, including the time for reviewing Instructions, searching existing data sources gathering and maintaining the data needed, mH compieting and reviewing this coilectlon of Information. Send comments regarding this burden estimate or any other aspect of this eoileotlon of Information, including suggestions tor reducina this burden to Department of IJefense, Washington Headquarters Services, Directorate for intoranation Operations and Reports (0704-0188), 1215 Jefferson Davis Highway Suite 1204 Arilngton VA 22202- "•^Pf r,Sf''°"f ^f ^ *K "'■* ™ SJJi'Sl?^??™!'™ SrS^ °*" provision of iaw, no person shall be suljject to any penalty for falling to comply with a collection of information If It dies not display a currently valid 0MB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. uiuraprayouuiioimy

1. REPORT DATE (DD-MM-YYYY) 04-06-2003 4. TITLE AND SUBTITLE

2. REPORT TYPE Technical Presentation

Usage of Fiber Grating Strain Sensors for Diagnostics of Composite Pressure Vessels

6. AUTHOR(S)

E. Udd, M. Kunzler, S. Calvert, S. Kreger (Blue Road Research); M. Johnson, K. Mildenhall (ATK Thiokol Propulsion)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS{ES)

Blue Road Research 376 NE 219* Avenue Gresham OR 97030

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS{ES)

Air Force Research Laboratory (AFMC) AFRL/FRS 5 Pollux Drive Edwards AFB CA 93524-7048

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

3. DATES COVERED (From - To)

5a. CONTRACT NUMBER F04611.02-C.0007 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER 3005 5e. TASK NUMBER 02AG 5f. WORK UNIT NUMBER

8. PERFORMING ORGANIZATION REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORflWONITOR'S

NUMBER(S) AFRL.PR-ED-VG-2003.148

13. SUPPLEMENTARY NOTES

For presentation at the 16* International Conference on Optical Fiber Sensors in Nara. Japan, taking place 13-17 October 2003 14. ABSTRACT ' ~ '~

20030812 207 15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

C. THIS PAGE

Unclassified

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES

39

19a. NAME OF RESPONSIBLE PERSON Leilani Richardson

19b. TELEPHONE NUMBER (include area code) (661)275-5015 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. 239.18

USAGE OF RBER GRATING STRAIN SENM>RS

FOR DIAGNOSTICS OF COMPOSITE PRESSURE VEKELS

E. Udd, M, Kunzler, S. Calvert, and S. Kicger Blue Road Research

376 NE 219* Avenue, Gresham, Oregon 97030

M. Johnson and K. Mildenhall ATK TMokol Propubion

Brigham City, Utah 84302

ABSTRACT

Single and multi-dimensional fiber grating strain sensors have been embedded into a composite pressure vessel and i^ed to determine the presence of damage associated with a cut tow and a Teflon tape defect.

MULTl-AXlS ElBER GRATING STRAIN SENSO]^

Figure 1(a) illustrates a nralti-axis grating written onto polarization preserving fiber, which is subject to uniform transveree loading. In this case, the two spectral reflection peaks, corresponding to the effective fiber gratings along each birefringcnt (polarization) axis, will move apart or together uniformly providing a means to measure tiansveree strain.'"^ In the case where load along the transverse axis is not uniform, as shown in Figure 1 (b), the peak associated with the nonuniform transverse load will split. The transverse strain gradient can be measured quantitatively by the spectral separation between the peaks. The portion of the grating under a fixed liansverse load is reflected in the amplitude of the peak. For example, in Figure 1(a) the transverse load along the vertical axis is uniform. There are only two spectral peaks m a result, and their spectral separation defines the transverse load. In the case of Figure 1(b), the transverse load has two values along the vertical axis, each along approximately one half of the fiber grating length. In this case, the spectral peak corresponding to the vertical axis splits. The spectral shift between these subpeaks determines the transverse load gradient. As an example, a shift of 0.1 run would correspond to approximately 300 microstrain. The amplitudes of the two split peaks are approximately equal indicating that each of the two distinct transverse load regions are approximately equal (the amplitude of the fiber grating spectral peak indicates the fraction of the fiber grating under that load). The response of the fiber to transverse strain is approximately 1/3 of that

of axial strain along the length of the fiber. As a specific example at 1300 nm, a spectral shift of 0.01 nm along the fiber axis corresponds to 10 microstrain. A peak-to-peak separation of 0.01 nm due to nonuniform transverse strain corresponds to approximately 30 microstrain for 125 micron diameter bow-tie polarization preserving fiber. These properties may be used effectively to measure the extent and location of damage in a composite pressure vessel.

Figure 1. The EfTect of Strain on a Multi-Axis Fiber Grating (a) When a multi-axis fiber grating

sensor is subject to uniform transverse loadi ng two spectral reflections result whose spectral

separation Is a measure of transverse strain, (b) When transverse strain across the fiber is not

uniform along one of the birefringcnt (polarization) axes, the peak associated with that

axis splits, providmg a means to measure transverse strain gradients effectively and

quantitatively.

Approved for public release; distribution unlimited.

ISAGE OF MULTI-AXIS EUBER GRATING STRAIN SENSORS TO DETECT DAMAGE IN A COMPOSITE

PRESSURE VESSEL

A pressure vessel was fabricated and m\ilti-axis and single axis fiber grating strain sensors were placed to enable the detection of damage. The transverae strain axes of the multi-axis fiber grating smsoK were aligned in the plane and out of the plane of the cylinder. Damage was purposefully introduced into two locations prior to cure. In the first damage area, a section of prepreg tow was cut. In the second damage area, a piece of Teflon tape was introduced. The dual-axis fiber grating sensor in the area of the cut tow was able to clearly indicate that damage occurred in the plane ofthe cylinder after cure. In the case of the Teflon tape, the dual-axis sensor in the vicinity did not detect damage after cure, but it was able to pick up damage after the first pressure cycle. Impacts were made on the composite pressure vessel on both the cut tow and Teflon tape damage area with resulting changes in the miilti-axis strain fields that could be observed after each impact, and with additional changes induced by subsequent pressure cycling.

Figure 2(a) shows an overview of the part in the process of bemg fabricated. Figure 2(b) shows the placement and orientation of a single and dual-axis fiber grating stram sensor. Figure 2(c) shows the placement of a Teflon tape defect relative to the fiber grating strain sensore in this location.

Figure 2. Fabrication of Composite Pressure Vessel (a) Part, (b) placement of dual-axis fiber grating strain sensor in prepreg tow on the first

liellcal winding and a bare single axis fiber grating strain sensor orthogonal to it, (c) introduction of Teflon tope defect near the single and dual-axu

fiber grating strain sensor.

Figure 3 shows the spectral profile of the dual-axis fiber grating strain sensor placed near the area of the cut tow damage site in the pressure vessel. In this case, prepreg tow alignment elements were placed on either side of the fiber grating but not over it, so the dual-axis fiber grating was integrated directly into the composite part. Before cure and completion of the composite pressure vessel, the two spectral peaks corresponding to the two transverse axes of the dual- axis fiber grating strata sensor are undistorted by transverae strain gradients. The short wavelength peak is aligned in the plane of the cylinder while the long wavelength peak is orthogonal to it. After the cure, significant tiansverse stram gradients appear on the short wavelength peak corresponding to transverse strain gradients in the plane of the cylinder, in the direction of the cut tow. Of the sis dual-axis fiber grating strain sensors placed in the part this was the only one exhibitmg this type of behavior.

1ZW.B- Ta»5 IWJ.© 13

(b)

Figure 3. Aligned Dual-Axis Fiber Grating Strain Sensor Placed Bare into the Composite Pressure

Vessel Near the Area of the Cut Tow Damage Site (a) Before cure and (b) after cure.

Figure 4 shows a sequence illustrating transverse strain gradients on a single axis fiber grating strain sensor near the Teflon tape defect through the first pressure cycle.

i- m

^

' »46tu .. ., , i, m M,W

— -«er"~»»-"— «««.*^ **.^^- • 'J 1 ■V

CON 1*5 *! 1 :

Jsifi • f "FI iM

■ 24 19Qt& 130^ t3&4£

^^atw^^tst

Jumi

»*1 t

v*.|

if. i 1 .■

. ■ i'

tm.

m

Figure 4. Sequence of Spectral Profiles Sequence of spectral profiles from single axis

liber grating strain sensor placed bare into the part approximately 2.5 cm from the Teflon tape damage site during the first pressure cycle (a) 0 psi, (b) 666 psi, (c) 1000 psi, (d) 666 psi, (e) 333

psi, and (f) return to 0 psi

These transverse strain gradients are locked in after the cycle is complete. Because the fiber grating is single axis the direction of the damage is not known and information for both out of plane and in plane tramverse, strain gradients as well as possible axial strain gradients are intermixed. When the damage sites around the cut tow area of Figure 3 and the Teflon tape area of Figure 4 are impacted the resulting damage releases the transverse strain gradients and eventually the fiber grating spectral profiles move back to their unloaded state.

SUMMARY

The ability of single and multi-axis fiber grating strain sensors to detect cut tow and Teflon tape defects in a composite pressure vessel have been shown. The multi-axis fiber grating strain sensors have the ability to indicate the direction of damage. Additional work is beiag piusued to refine and extend the abflity of multi-axis fiber grating strain sensor arrays to accurately measure and localize damage in composite parts.

ACKNOWLEDGEMENTS

This work was supported under the Phase ISBIR contract to Blue Road Research, F04611-01-C-0038, granted by Edwards AFB. Dr. Gregory Ruderman is the Technical Program Monitor. Blue Road Research gratefully acknowledges the support of this SBIR and Dr. Ruderman.

REFERENCES

The advantage of using multi-axis sensors is that the directions of the transverse strain gradients, as well as the magnitudes are known. In the case of the damage sequence involving the cut tow of Figure 3 the know orientation of the multi-axis fiber grating sensor allows the user to understand that damage is in the plane of the cylinder of the composite pressure vessel. In addition, from Figure 3 it is apparent that out of the plane of the cylinder the spectral peak associated with that direction shows no change indicating that m this direction damage did not occur. By using arrays of multtaxis fiber grating sensors the directional information may be used to localize and characterize the extent of damage. In the case of Figure 4, the single axis fiber grating sensor located near the Teflon tape defect severe transveree strain gradients arise and the evolution of damage throughout the pressure cycle is clearly evident.

1.Perez, I., H.L, Ciu, and E. Udd, "Acoustic Emissfan Detection using Fiber Bragg Gratings". Proceedings ofSPIE, Vol 4328,2001 pp. 209

2. Udd, Eric, W.L. Schulz, J.M. Seim, E. Haugse, A. Trego, P.E. Johnson, T.E. Bennett, D.V. Nelson, and A. Makino, "Multidimensional Strain Field Measurements using Fiber Optic Grating Sensors". Proceedings ofSPIE, Vol. 3986,2000 pp. 254

3. Schulz, Whitten, E. Udd, J.M. Seim, A. Trego, and I.M. Perez, "Progress on Monitoring of Adhesive Joints using Multiaxis Fiber Grating Sensors". Proceedings ofSPIE, Vol. 3991, 2000 pp. 52

vx oi ^ U o 3 —«

u a> ^\. &.

J/3 i^ CD JO m 3mmm

U-

CD

E •si^ 16 :^

str

posi

Opt

ic

CO ID

cc c

.S © 13 o (D

CO o o ^^ 1

cc-g

tf cc

CD o

3 c5U ! ox/)

CM ca

CD CD ^ o T3

E ^ c U- 1^ Q.

T3

3

o ® s>^ CD

CD g 1

CO m CL .2

3

iber

st

ies ^

C E * ^

CO ca O

W

O O

o c CD

CO

1^ CD c5 . o

o o CD

W CO 0) ED

of F

ag

no

15

o

O

O Kun

zl

Blu

e CO c o

I— O

3 3 Q.

O M—

CD

a> 'j ca ■ 8

dfQ c S ^

a. o. <

« ,^ fe n

»5 2 ^^ "O

-1—>

CD ■ Bijfcs M^/tj^M S T ^B^^ ■ VfflB^^^^H 1

■■fca'

o en <

LU

i'B 1 LU CO LU

IK. ^9H m DC

(/)

E -a

o

<

<D O

CD O O ^

o m

CD c C/D ■- O .E

>

CD

0) ID

0 CO

CO ca

> CO

> =

< <D Z H CO N Z) 2 O 0) ^ Q.

^^ cc m £=

-^^ CD tf CM O CM

^ 9 i 9 CO Oi

^ iO ^ CO

oS $ CO

cc ^■ 9 O Q

CO

CD CO

c/D 6

CO P

o

o

E CO

o c/) S c O Q-

CO . CO

CD 0) "E

CD J5 Q ^ E CD il CO I-

1 s ^ 5 ^ p CO 03 C

jj- O CD O k- T5 ±i o :3

a:

CO "E E D) E o O CD

o CO

o

o CL

CO

CD

c: CO E CD

CO T3 CD =5 D) a: CD

Q

c CO N CD

CD CL

B ^ CO Q

o -^ o CO

O)

o

CD

CD

CO

CD CO CD CO CO CD CD CO o: CD

f~ ■a -4-^

CO 0

CC

N

(A O Ui (0

(0 >

<

o

O a> n

m

>

O CD

O

(D 0) ^ >

.9^ cc

B CO CD

T3

ca JD

c cc

CO c CD CO

D) CL LJJ X

ca

0) o

0

CD

= ca

CO CO CD

u CD

CD E c o > c

LU

E o o 0) 0

ET CO CO o

CD O

D- CD

O o

5) o o

o

CO

o (/) c

CO

CD

CD a3

X

B c (D E E 13 (/) CC (D

E w

c

CD

0) >

c I.

N X

o

E

CO

b CO

C/D

CD 0)

X

C CD

eg .ii t^ >

c (D C/)

(D

(D E o

LJJ

O

o o O

c/) c/) CD

W _

(D

E 0)

(D >

CC

O Q.

>< CD

13

E

ns rt

O

CO g

.2 ^ o 6

■o QQ c k. (0 0 c o U. ISSI

E o

E tf)

c 03

Q

as d o oa 00

W3

U o o

-a o a P4

D) C

'•B (0 o

>

(0

E o

o

o m c

CO m

€0 m O m

m o

15

CD m CO ra c» c» ra ra ra DJ D5 ra <£> <Q t^ r- h- r^ 00 « 00 «o a> OJ

o 00 5 Si 00

CO s in <D 00 00

h- 00 o> 00 00 00

o OJ

1 1 1 1 1 1 1 1 111 1 ^■1 1^^ ■■■ ■IH j^^H ̂ ^H ■IB I^Hi ■ mi ^^^ ̂ ^H ■^^1 ■■i ̂ ^H ■■■ ̂̂H ̂ ^^ I Bi ^^H ■^H ̂ ^H ̂ ^H ■■■ ̂̂H ■■■ ̂̂H ■ mi ^^H ■^l ■■1 ̂ ^H ■■■ ̂̂H ■■■ ̂̂ v 7. ■1 ^^H [^■1 j^HI ■■■ ■■1 I^H ̂ ■i gp^ K mil ^^^ l^^l l^^l ̂ ■1 ■^H ■■■ ̂̂H

&! ^^^M ■i^l §■■ ̂^H ■■■ mm Ijlj^l ^^H ■■ ̂̂H j^^H ■■i ̂ ^B mH H^H ■IH ■■■ ̂̂H ■H ̂ ^H ^g ^^H ̂ ^H ■^H ■■■

^§ B

,1^/1^ 1A ̂ Bl ^^^ jj^^H

^i, B H^J^ ̂ ^^i| ^^H W0!S^ f^^ ■^■1 ^^V w^tt^^

0 1^5^ yWtM ̂ ^■11

^^f^^ €^^^ V^M ̂ ^■1 ^H-'j (^^S; ^^■11 ^ r: ̂ 1^9 (■■ ̂̂H ■^■1 ■ft \'^^^ ^^H ■■i ̂ ■1 ̂ ^H ̂ ^■1 ^B > .^*^ii ̂ ^^1 ■■■ ̂̂H II^^H ■IB ̂ ^^ ̂ ^^11 ^B ^^ C>^N ̂ ^^ ■■n ̂ ^H jijj^m mHi ̂ ^^ ̂ ^^■1 ^^V t'l "^^^^

^ s ■■ ̂■i ̂ ^H ̂ ■i j^^H

■^B t\ i?;^

1 ^

^^H ̂ ^H ̂ ^^g

1^^^^ v>^5;

^ ^■l ̂ ^■1

^5*i>

S^^k-

S^^'l ̂ ^^11 ^^■1 :£?■ ■^■1 §■■1 i^^K

^

2?M ■l^ll ^^^1 ■i^H ̂ ^^B ^^^■Ij ■^H I^H I^H ■■i J^.^ ̂ ^IHI ■^H ̂ ^■1 ̂ ■B ̂ ^H ■^H ■■■ ^^^ ^■■1 ̂ ■1 ̂ ■H ̂ ^H H^H mHi imi ^^^1 l^Hli I^^H ■^H ■JIB mm m^m a^ ̂ !■ ^^H j^^H I^HII I^^H ̂ ^H mH mi! ^ ^^■1 ^HH I^^H ̂ ^^1 ■■■ ■■1 ̂ ^■1 1^^ nm^ ̂ mi ^^H ̂ ^H ̂ ^H ■■■ ■■ mHi ̂ ^H I^^H ̂ mi ^■H ■jj^l i^H ■^l ■■ ■■1 jij^m ̂ ^H I ■1 M^M II^H ̂ ■B ̂ ■i l^H 1^^ ■■ ■■ ■ ■1

ooogoei 086'90Et 096S0ei. 0fr6S0£t oz6"K)ei. ooesoei. OBSSoet 098S0ei. owsoei- ozssoet ooesoet oszsoet mrmzx owsoei. OSiSOEl OOZOTEI. 089S0ei. 09990ei. OWSOEI 029S0EI. 009S0E1- OSSSOEt 09SS0EI owsoet ozgsoEi. OOSSOEl oersoEi ogrsoEi. OH'SOEI. OZfrSOEI. OOfr-QOEl OBESOEI. 09ES0EI ofrEsoei. osEsoei. OOESOEI

8 s CM 9 s CM

9 s C3 9 9 o C3

lU a

UJ

8 111 o in

111

8 111 O in

111

8 UJ o in

o LU O o

li 2

■if ■* CO TO CM CM T- ^ in O

E

m c ®

> (0

(MUI) 3pn)i|clujv

o 0

0 >

(0

X3

o m sz

<

CO

O

m

>

10

PBOI

000" we I.

szeeoei.

099eoei.

sireoei.

ooseoei.

osezoe i-

(MUJ) epniiiduiv

c o

>

c

E o 0)

(0 D)

(0 0)

li^HI

o X/1

Q E

III^BI

o

c

E 3

o

m

IN

W)

CO d 0^ GC

CD d o > cd «3

1—1 ^ o

0)

I o 0 *i

c ^ (0 0)

.E w

E -

o c (0

r>

(0 13 o

o a

CO

111 tu

■a

i

(0 E E

CO

r>

o 0) >

<

Q

d ^ ^ Si

GO

<;

d

Q '^

o d CD

GO

B m

d

d

(D c« l-i CD >

u H

'!-H

CD

d

Q

O

d

• 1—1

O

d ^->

• 1—1

>< m o

d (D

o

E re

(0

>

XJ w X

(0 u

!i 'il 0

2 CO

CD CO CO Ll_

o o h-

*->

C ©

o CM

m SS

link

ed P

olye

thyl

ene

5.7

lbs.

x: to +-« Z) M— o cs

o

o o a:

X2

2" _o *->

c ID O

O O

m

to b

oss-

10 d

eg.

X

ck

one

ban

dwid

th -

16 d

eg.

p pl

ies

(0.0

823

in.

thic

k)

u CO

o w c CD *->

ID

O X o o o m X

o o

Q. 2 O

(D ■P

o "55 ^ 5 § o

< X CO Q.

CL m

X

■g.a o ■- "S u

L. m 0) 0) ♦J .. QL 3 0 Ui b. C W. |_ CT

£ (0

O

B

m (S 0) m

n o ?>» c a. Q .£ *3

Is 5=5 5

O

C

1—-(

l-i

I

©

—I

a

P.

— U

irst

01 u. OT 0^ ii^ x: o c 01 o

■ HB ii^ ■■^ <

o ■a Q. 0 0 m >

■■■■ Q. -^■j

m Q m Q

QE: ^

0

c o (0

<

0) 0)

o

(0 o

is ^ CO CO (/)

o CO

< a

I- »

11 § E

CO 3

-* <>»

OO ^

CS|

ON OS

<N ^

03

00 OS

Q

r" m-

*

*

OS

eq

on

r u

O- ,^;

CQ d

il 11

OS

1^ OO

l>

<N

(N

»n

OS

o 1—4

'a

OS

O ^

too e^

ffl

I

OO

5/1

'9 '3 d GO

i "B 00 pq OT 1—1

4^ ..

jy- f UlU 17

T

3s

3

0 O ^ 0

® E

I! .|i2 (0 o

(A 3

E O 0

0

(0

CM 4t:

tf)

O O O

O Ui in c

(0 o O 0

11 .'JH

o o O' o o o o o OJ o. CO

r- ^ ^

11 o o d'

O O d 'St

1 o o d tvi

o o d

8pnii|duj^

1

iro f- m V 1

^'' <, ;

_ _ ■ ...; _.■_;.__.:_■■ ■_ ;: _ : - ■ - _i V-fjni

___ _:x: . ,-.^ ^ w, ^ , Q

^ r——-— ■ • C?5

y I ' V .,.:.^ „ ____L 1

^^■^■'-^^I^ i - ~^~~'~'- —^ ^ ,- , Jl-fc- ^"-^

— - —— — • O 4-^ -■ Z^:^^! -^ r-

._i_::._...._,..: . c ,.\^ .^i , "--->.• <_>. ;^

'^•-,1— g / - # S i#^ ffi S «>.. "i /■ «^ S-

__ _ v^ o? • c c < c .1

j 1 1 1 ( 1 I 1 1 ' < 1 < ' > ' 1 ' < ' ' ' ' M ' ' > -1 ' I 1 I 1 1 1

B S 8 8 S i 1 .8 8 S

,.. 11'' 1 o o gCM d *"

(S

N

a>

ISI

S

- I 1- 1. 1 ■ I 1 I 1 r ] 1 1 1 1 1 I 1 I 1 I 1 1 1 .( 1 1 1 ■. I ■ 1 1 . 1 1

oooooooo ooo. ooooo 1 ' . . . T 0> o Q o o cy o o o olz

O-OOOOOOOOOOO

8prH!|dUJ\;^

f d

J' 7^ c,-. ^ .^ u

^- - ^- ^ ' ■ -^ ■■ ^ ■ ;

. ■-^■•. .;

__._..{._. .._ ... y- K ^ ^ . ^ . . ■

3.",

^S'"" •-- - ""^^^.^ ,

^—^ . J*"^' ■ ■'^ :■- K->^

.■:■■■ ^-^

' ■ ■ ■: . ^ ^'- - r-s •> ' V:', ■ ,..^—-^ r- f^

==—— CO -^ '■ - r ■ -- ' ' .■' ' ,,„■„ f- f

_.__._ ,:_ .. . f *"*" i _.._..._. ..: \ * —___—_ _—_;=..__, j- 1 - ■ ■ ^. ■ . ^. ^ -^ j'. , <j» . . -. -^^ < ". ^—l

■ -^ :- te C !' ^ '> :. -m S -- ij. *- ' ir<i cB < > MJ -iV { '- • -=>■ ^ fT* -^ / y.'

< c

1 •4

I . I, .. .| 1 , .j r 1 .. 1 1 ■■ ■' ,1 , 1, ,■ ■ :>ooooooooo DOOOOOOOOO 5odo.oodc5o d

gprnidujv

I 11 < 1

o o ';A:"A<-'' O O CSJ O Qi_: d d

e^

1L&

O <D

o o CVJ ^

9pn^i|clujv

N

^^^^^^W^P'?''^?^^^^s»!^'^«^!!^fr*??W!?^"^!>^M

5: <D 4'" a> 3-0 fe

1 1 1 ; r 1 ' 1 -1 M • ' ' ' 1,' o o o o O Q O O

M ' < I-' I > 1 II M ' i' I 1 1 111 1 1 J i I I ■ < 1 "I'r < r'f j

OO O O OO O Ofy

o o r- o o o o o

o o o d o - to in «*

o _ o) CO r^

o o o o dodo CO CM T-

8prn!|dujy

m

«>.

CM 0)

o = tn ^ c w o 9

</) Q.

it O) (0.E

o S*

O <D 0) & U CO cl-

CD Q

* N

;p 8 s a S 8 S S S 5 gw Q Sf <S^ d d <Cf fii

ipnpiyuy

8 S S gw Qi

;l^iTixtTrrfl:i : 19 9 O 43 O O i a{mii|duiy L

cr -o o

5?8

i s w i i^s^i

_ S 3 g 8® s* sS s* d d"^

0

CO

Q m a. E

-2

O

01

3= Q.

CM

O

o

o o

D) c

Q

01

(^

C o

*o5

^WP. 1PI8P

iS a S ^.^?t« ^ S g S a gS E^^

it

W»"JW«llHMf'>'-"'jW9«P!P!!!!.'»» MMpwi

E^

- « - ^^. -fc a

3g .^ I |-I f f I I ii

o o

a

■CO)

Q « " O) CM «

^ i

II < o

m o

iS s

= U O 01

Q. 3 ^

(0 (A 0^ ^♦■i

0 Q. Q. W «

i4iUiwiw§ii^pay^;^«iiUHJ,yui^

I: ¥ 1 t i w w i gi ^nnqilduiy

8 O O

J-tf^ t « * tf S » iS i^N

a

!

y'*mw'wj''<atSJi4Wj!»t!^*~ttMesaiWU4jji»giij^^

g » 8 ? ? S S» sf 4^ ef cl <r ei tf

y^^sjsgu ;.u-Hii«y?J»^w»iiig;!eR!»,'U.tfa au jj"waM 'J^^.y

1 rr» FTfrTT-(M,-v*v?T"r?tTrTmT*'*-T^rv"*y^l * IETTTT* TT-nrm^i'

m t/1

o o o

s 8 8 a a *• $ g g«

p g Q

o H

o (0

z 00

o c 0 (0

o o 0 3 in

o

QI

o a

CO

to

G) C

■ ■■■

3 a (0 0)

N

n'gyyntmtw i—y-^-^ d ci si fli., 5 d

-- J -a i

o o Q ;

2 SS S g 8 S -d d c> d o ci

spr{)|Ciiuv

P I i- I I i p i Q : O O 9 O O 9 Q ^

, -^r-- —

r-;

""-i-ti> s rr - -—^- - - - —::r-::-j':_^ ^- ^ QJ -

fi[ fir "A" tf' ii" iWA' g| A ^ ^^JQ os5S5i55Sd§§ S*-

m Q

#VI 0

VN u u >

ra O a. o E 3 ^ ^

Q C^ <l)

*^"

< O. 00 ■o

k. &■ C^ o m D) c C Q

■■■■

05 3 *- o O (0 m 0)

lie

< ii^

o ^

Q. o 1-

ral

3 u O Q a. w

30

* ^ * N O g S S* -51 S tf O S

afMndwv w 5 5 i 1-

a

^W^waJ"'liK'^WWW»J^'-"i^*»'■!yJJ^^-" '4iujMiii}i,i4n,yjji lui^B III

i"""!' 1 1 1 i '!« S o, d ^ - <* o 4^*" I

I a s s » s« . I 3 <* <s S o*"

apn^dui^ ; i

d

r 5^- ^ 1?. -, i- s ts fiS . -ei o « o «- o o

0) G)

E Q ■D

CO —

0)

Q. O Q

o i CO ^-^

■ tmmmi 3 ^

CM

E o 1.

CM Q CO j . CD 0) "^ c 0)

o C30 CL o a. T3

o CO

>. T3 I^ CO

-Q ■o CO P C ^ #^ u 3 o ^

0) o CO O

CD o CO

a E CD lO o

.1— m ■^^

N—

E a) E CO o o Q c LD

3 ■

O CM JD «

o

o

0) CO tf) O 0) O

Q. ^

O (0

>T5

.2 12

CO g (0(0

O o

O

c CO

03 0)

O

a E

m

j/ysA

(D

■g JO 'w (D

o E Q. (D o x: CD ^

CO ■ ■■■■■

CD

O

CD

O CO

CD CO

o CO

ii-

o CO c CD CO

CO CO

CO

o CO

(D CO

3 o o

= ? (0 0

(0 E

o m

a o

in

0

o d

•1—1

a

Q O

<—I

•1—1

o

M (D >. cd

^-<

P. O

^-^

Q

^ ^

O o CO

en d • 1—( (L> 1—1 c/3

^-^ 4-i

^ cd O p. (/I a CD •1—1

xn 41^

• 4-> \A

3 cd

1 ^ ^ (D O -B (U ^+H

• 1—1 o GQ <D <D ^

-1-^ • 1—( • 1-^ r/)

G^ O (U ON Fi S^ d o IZI

4=1 4:5 -i-j ^-*

d d o 0 J^^B Hn* ^H^H Sto 4,^^H §CC s^HKS<r wi^^EuJtti f^i^H sCA i^o^H Stti i^dH ^PT

(0

G) C

3 o ■S ©

c tn = 0) 0 0)

0

(0

E £ 13!

M

E m «

ft IB

IS «» (0

o

H

sr Co o I

i <D 1 Id

O d

O d

^ 1/3

r>

Q

cd

C/3

CD

s ^

^^

o 3

o S

CJ

<N m »n ^ l-H ^

^fl Xfl X/1

d d d <U (D Q

xfi xn xfi

(0 WSA

S 3 n «

re

o CO

0

>>

■o LU

(0 E E

CO

■1-4 o

Q <D

O c^

CD ^

s

?^ • 1—1 ?»■

_L ^-*

C/1

d •f—i

Q

d O

^ a

■ * d

iH

^^ ^ c/1 N^ 'I—I

d 3

d o

H

CD So 2P e^ d S 'I

O cd d S

Id

CD

O

o 2

^ d CD ^ a ^ "^ d 50 bp 2 ^ S

S g 13 •J-H IZJ

9^-§ i