Renggli C. lunar volcanic gas

13
A new model for volcanic gas compo sitions in lunar fire fountain eruptions C.J. Renggli, P.L. King, R.W. Henley Research School of Earth Science Funded by the Australian Research Council

description

Presentation Goldschmidt ConferenceLunar volcanic gasthermochemical modellingmetal transportsublimationZn, Pb, Ga, Ni, Cu

Transcript of Renggli C. lunar volcanic gas

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 1/13

A new model for volcanicgas compositions in lunarfire fountain eruptions

C.J. Renggli, P.L. King, R.W. Henley

Research School of Earth Science Funded by the

Australian ResearchCouncil

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 2/13

• Pyroclastic deposits on the moon (“dark mantle deposits”)extend up to 350 km from the vents

• Coatings on lunar glass beads are rich in “volatiles” andmetals

•Deposition from a gas phase

• Zn, Pb, Ga, Cu, Ni, Fe (primarily sulfides)

G.J. Taylor, Clanton et al. 1978, McKay et al. 1973 & 1992

1C.J. Renggli, P.L. King, R.W. Henley

How are the metals transported and deposited

5 μm

1 mmThin section SEM images of glass bead surfaces

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 3/13

• Gas + melt drops interact

Gas species sublimate ontobeads and form coatings

• 400-500 bar, ~10km below surface

• Exsolution and bubble nucleation

•   + 1    =  

2

McKay et al. 1973, 1992

Saal et al. 2008

Rutherford & Papale 2009

Fegley 1991C.J. Renggli, P.L. King, R.W. Henley

Gas species 

CO, CS2, CS,

COS, S2, HCl

Zn, PbS, Pb, GaCl,

CuCl, Cu, Ni, NiS…

 

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 4/13

• Degassing during eruption

• 2-5 °C/sec cooling rate

• 1450 °C initial melt temperature

• Species diffusing as H2O, Cl-, F- and S2-

Saal et al. 2008

3

Gas

species

Lost gas

(mol %)

H 9.9

O 78.6Cl 0.05

S 10.8

F 0.6

C ?C.J. Renggli, P.L. King, R.W. Henley

Calculation of volatile contents

following Saal et al. 2008

Composition of out-gased volatiles:

Apollo 17 glass beads

Diffusion profiles

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 5/13

IW-2 at 1450 °C: log(fO2) = -11.24 (O’Neill & Pownceby 1993)

-11.24

    l   o   g    (    k   m   o

    l    )

4C.J. Renggli, P.L. King, R.W. Henley

Calculation of C content in the C-O-H-S-Cl-F gas system

O2(g)

CO(g)

2

-15

-10

-5

0

0 20 40 60 80

C (kmol)

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 6/13

• Gibbs free energy minimisationof a 49 component system, 6

elements• Temperature 1500 – 500 °C

• Pressure 1 – 10-9 bar

• Ideal gas behaviour

Lunar gas

(mol %)

H 5.4

O 42.7

C 45.3

Cl 0.06

S 5.9

F 0.7

5C.J. Renggli, P.L. King, R.W. Henley

Model input conditions

400 bar

1450 °C

10-9 bar

T << 0 °C

0.1 bar

1450 °C

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 7/136C.J. Renggli, P.L. King, R.W. Henley

Results at 10-6 bar

gas speciation2()  → () + 2() 

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 8/13

• Gibbs free energy minimisation of 149 component system, 12chemical elements

• Zn, Pb, Ga, Cu, Ni, Fe

• Metals are unsaturated in the gas phase and have equalconcentrations for comparability (0.001 mol%)

• Sulfides, chlorides, oxides, fluorides and pure metals

Solids and gases7C.J. Renggli, P.L. King, R.W. Henley

Model input conditions

G.J. Taylor, Clanton et al. 1978, McKay et al. 1973 & 1992

5 μm

1 mmThin section SEM images of glass bead surfaces

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 9/138C.J. Renggli, P.L. King, R.W. Henley

Results at 10-6 bar

Zn speciation of gases and sublimates

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 10/139C.J. Renggli, P.L. King, R.W. Henley

Results at 10-6 bar

ratio of transported to sublimated metals

Gas dominant

Solids dominant

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 11/1310C.J. Renggli, P.L. King, R.W. Henley

ResultsP-T conditions of equal amounts of gasesand sublimates

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 12/13

• Efficient metal transport into near-vacuum

conditions

• Zn is enriched in the gas phase compared to Ni

and Cu by >104 and >102 respectively

• Formation of chloride (Ga, Cu, Ni) and sulfide

(Pb) gases can increase the metal transport by

several orders of magnitude

• Sublimates are predominantly sulfides (Zn, Pb,

Ga, Ni) and pure metals (Cu, Ni)

• Experiments and analytical re-investigation of

coatings on Apollo 17 & Apollo 15 samples

may shed light on eruption dynamics and

metal contents

11C.J. Renggli, P.L. King, R.W. Henley

Metal speciation

major findings

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 13/13