Removal+of+long%lived+ Rn+daughters+by++ electropolishing ... ·...

1
Longlived alpha and beta emi2ers in the Rn222 decay chain on detector surfaces may be the limi;ng background in many experiments a2emp;ng to detect dark ma2er or neutrinoless double beta decay. Removal of tens of microns of material via electropolishing has been shown to be effec;ve at removing radon daughters implanted into material surfaces (Zuzel and Wó́jcik 2012). Some applica;ons, however, require the removal of uniform and significantly smaller thicknesses. Here, we demonstrate that electropolishing < 1 micron from stainless steel plates efficiently reduces surface contamina;on. Examina;on of electropolished wires with a scanning electron microscope confirms that the thickness removed is reproducible and reasonably uniform. Together, these tests demonstrate the effec;veness of removal of radon daughters for a proposed lowradia;on, mul;wire propor;onal chamber (the BetaCage), without compromising the screener's energy resolu;on. More generally, electropolishing thin layers of stainless steel may be an effec;ve means of removing radon daughters without compromising precisionmachined parts. Removal of longlived 222 Rn daughters by electropolishing thin layers of stainless steel Syracuse University: R.W. Schnee, M.A. Bowles, R. Bunker, K. McCabe, J. White Uniformity of Electropolished Wires Detec;on Systems University of Minesota: P. Cushman, M. Pepin University of South Dakota: V.E. Guiseppe Before Electropolish A[er Electropolish Electropolishing reduced diameter of SS fine wire by 2 microns per minute. Nonuniformity may be dominated by handling deforming wire to oval cross sec;on. Even for 2 microns removed, uniformity is sufficient to provide <10% gain varia;on, mee;ng BetaCage specifica;on for gain uniformity. 24 25 26 0 2 4 6 Wire Diameter (microns) Frequency 22 23 24 0 2 4 6 Wire Diameter (microns) σ=440 nm σ=600 nm UMinn GOPHER ntype HPGe 25% rela;ve detec;on efficiency samples directly on 1.6 mm aluminum window 36% efficiency for 210 Pb 46 keV xray emi2ed down ORTEC alpha counter for 210 Po 1.6 ± 0.2 background events / day in 210 Po energy region 14% efficiency for these samples (geometrical), confirmed by rate of calibrated source sample 5000 5200 5400 10 ï2 10 ï1 10 0 10 1 Energy (keV) Counts/(keV day) Before electropolish A[er 670 nm removed Sample Prepara;on Electropolishing Setup 4 unpolished (mill finish) 316 stainless steel samples, 2” x 2” x 0.1875” thick ~8.6 μm surface roughness (AFM) One 1.5” x 1.5” #2B finish in progress for dependence on surface roughness ~0.4 μm surface roughness Exposed to 5.42 x 10 6 Bq m 3 day 1 at University of South Dakota Electropolished in small bath (see figure to right) Thickness removed determined from precision scale (guarded against dri[s by massing standard immediately before and a[er samples) 4 nm/second on average Sample #1 counted in HPGe and alpha counter a[er electropolishing Sample #2 (control) counted in HPGe and alpha counter wo/electropolishing Other samples counted in alpha counter before and a[er every ~50 nm removed by electropolishing Results Removal of 1.1 microns from Sample #1 reduced 210 Pb rate from 13.5 ± 1.3 Bq/m 2 to <1.1 Bq/m 2 reduc;on factor of >12 210 Po rate from 11.5 ± 1.5 Bq/m 2 to 0.22 ± 0.05 Bq/m 2 reduc;on factor of ~50 (ini;al ac;vity from alpha coun;ng and calcula;ons) Removal of 160 nm from samples reduced alpha rate by factor ~20 Roughly exponen;al profile Rate of reduc;on with thickness removed shows some varia;on Reduc;on of 210 Po by > 100 (to level consistent with counter background) demonstrated by removing 660 nm Reduc;on stalled at level of 5 alphas/day un;l improved technique Rate of “unexposed” steel sample ~2x higher than background rate 0 200 400 600 800 1000 1200 10 0 10 1 10 2 10 3 Mean Thickness Removed (nm) Alphas/day Background level Suspect limited by 210 Po in rinse water Sample 1 #2b finish Uncertainty smaller than symbol if no error bar shown Preliminary (No correc6ons yet for dri8 of scale or energy range, growin of 210 Po) 40 42 44 46 48 50 52 Energy (keV) 700 600 500 400 300 200 100 0 Counts 40 42 44 46 48 50 52 Energy (keV) 600 500 400 300 200 100 0 Counts Sample #1 a[er EP: <1.1 Bq/m 2 Sample #2 (control): 14.6 ± 1.3 Bq/m 2 DC Power Supply + Plas2c Rods Stainless9Steel Vessel Level of Acid Solu2on (40% H 3 PO 4 40% H 2 SO 4 ) Copper Electrode (Cathode) Stainless9Steel Sample (Anode) A V

Transcript of Removal+of+long%lived+ Rn+daughters+by++ electropolishing ... ·...

Page 1: Removal+of+long%lived+ Rn+daughters+by++ electropolishing ... · Electropolishing+reduced+diameter+of+SS+fine+wire+by+2+microns+per+minute.+ Nonuniformity+may+be+dominated+by+handling+deforming+wire+to+oval+cross%

Long-­‐lived  alpha  and  beta  emi2ers   in   the  Rn-­‐222  decay  chain  on  detector  surfaces  may  be   the   limi;ng  background   in  many  experiments  a2emp;ng  to  detect  dark  ma2er  or  neutrinoless  double  beta  decay.    Removal  of  tens  of  microns  of  material  via  electropolishing  has  been  shown  to  be  effec;ve  at  removing  radon  daughters  implanted  into  material  surfaces  (Zuzel  and  Wó́jcik  2012).    Some  applica;ons,  however,  require  the  removal  of  uniform  and  significantly  smaller  thicknesses.    Here,  we  demonstrate   that   electropolishing   <   1   micron   from   stainless   steel   plates   efficiently   reduces   surface   contamina;on.     Examina;on   of   electropolished   wires   with   a  scanning  electron  microscope  confirms   that   the   thickness   removed   is   reproducible  and   reasonably  uniform.    Together,   these   tests  demonstrate   the  effec;veness  of  removal  of   radon  daughters   for  a  proposed   low-­‐radia;on,  mul;-­‐wire  propor;onal  chamber   (the  BetaCage),  without  compromising   the  screener's  energy   resolu;on.    More  generally,  electropolishing  thin  layers  of  stainless  steel  may  be  an  effec;ve  means  of  removing  radon  daughters  without  compromising  precision-­‐machined  parts.  

Removal  of  long-­‐lived  222Rn  daughters  by    electropolishing  thin  layers  of  stainless  steel  

Syracuse  University:    R.W.  Schnee,  M.A.  Bowles,  R.  Bunker,  K.  McCabe,  J.  White  

Uniformity  of  Electropolished  Wires  

Detec;on  Systems  

University  of  Minesota:    P.  Cushman,  M.  Pepin    University  of  South  Dakota:    V.E.  Guiseppe  

Before  Electropolish   A[er  Electropolish  

  Electropolishing  reduced  diameter  of  SS  fine  wire  by  2  microns  per  minute.    Nonuniformity  may  be  dominated  by  handling  deforming  wire  to  oval  cross-­‐

sec;on.    Even  for  2  microns  removed,  uniformity  is  sufficient  to  provide  <10%  gain  

varia;on,  mee;ng  BetaCage  specifica;on  for  gain  uniformity.  

24 25 260

2

4

6

Wire Diameter (microns)

Freq

uenc

y

22 23 240

2

4

6

Wire Diameter (microns)

σ=440  nm   σ=600  nm  

UMinn  GOPHER  n-­‐type  HPGe    25%  rela;ve  detec;on  efficiency    samples  directly  on  1.6  mm  aluminum  

window    36%  efficiency  for  210Pb  46  keV        

x-­‐ray  emi2ed  down  

ORTEC  alpha  counter  for  210Po    1.6  ±  0.2  background  events  /  day  

in  210Po  energy  region    14%  efficiency  for  these  samples  

(geometrical),  confirmed  by  rate  of  calibrated  source  

sample  

5000 5200 540010ï2

10ï1

100

101

Energy (keV)

Coun

ts/(k

eV d

ay)

Before  electropolish  

A[er          670  nm  removed  

Sample  Prepara;on   Electropolishing  Set-­‐up    4  unpolished  (mill  finish)  316  stainless  steel  samples,  2”  x  2”  x  0.1875”  thick  

  ~8.6  μm  surface  roughness  (AFM)    One    1.5”  x  1.5”  #2B  finish  in  progress  for  dependence  on  surface  roughness  

  ~0.4  μm  surface  roughness    Exposed  to    5.42  x  106  Bq  m-­‐3  day-­‐1  at  University  of  South  Dakota    

  Electropolished  in  small  bath  (see  figure  to  right)    Thickness  removed  determined  from  precision  scale  (guarded  against  

dri[s  by  massing  standard  immediately  before  and  a[er  samples)    4  nm/second  on  average  

  Sample  #1  counted  in  HPGe  and  alpha  counter  a[er  electropolishing    Sample  #2  (control)  counted  in  HPGe  and  alpha  counter  wo/electropolishing    Other  samples  counted  in  alpha  counter  before  and  a[er  every  ~50  nm  

removed  by  electropolishing  

Results  

   Removal  of  1.1  microns  from  Sample  #1  reduced    210Pb  rate  from  13.5  ±  1.3  Bq/m2  to  <1.1  Bq/m2      

  reduc;on  factor  of  >12      210Po  rate  from  11.5  ±  1.5  Bq/m2  to  0.22  ±  0.05  Bq/m2  

  reduc;on  factor  of  ~50  (ini;al  ac;vity  from  alpha  coun;ng  and  calcula;ons)  

  Removal  of  160  nm  from  samples  reduced  alpha  rate  by  factor  ~20    Roughly  exponen;al  profile    Rate  of  reduc;on  with  thickness  removed  shows  some  varia;on  

  Reduc;on  of  210Po  by  >  100  (to  level  consistent  with  counter  background)  demonstrated  by  removing  660  nm    Reduc;on  stalled  at  level  of  5  alphas/day  un;l  improved  technique  

  Rate  of  “unexposed”  steel  sample  ~2x  higher  than  background  rate  

0 200 400 600 800 1000 1200100

101

102

103

Mean Thickness Removed (nm)

Alp

has/

day

Background  level  

Suspect  limited  by  210Po  in  rinse  water   Sample  1  

#2b  finish  

Uncertainty  smaller  than  symbol  if  no  error  bar  shown  

Preliminary      (No  correc6ons  yet  for  dri8  of  scale  or  energy  range,  grow-­‐in  of  210Po)    

40     42          44        46          48          50        52  Energy  (keV)  

700  600  500  400  300  200  100  0  

Coun

ts  

40     42          44        46          48          50        52  Energy  (keV)  

600  

500  

400  

300  

200  

100  

0  

Coun

ts  

Sample  #1  a[er  EP:  <1.1  Bq/m2    

Sample  #2  (control):  14.6  ±  1.3  Bq/m2    

DC#Power#Supply#

+# –#–#

Plas2c#Rods#

Stainless9Steel#Vessel#

Level#of#Acid#Solu2on#(40%#H3PO4####40%#H2SO4)#

Copper#Electrode#(Cathode)#

Stainless9Steel#Sample#(Anode)#

A#

V#