References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/5352/17/17_references.pdf · xxi...

28
REFERENCES Ahmed, Z.I., Anjum, M.S., and Abdul Rauf, C.H., 2006. Effect of Rhizobium inoculation on growth and nodule formation of green gram. Int. J. Agric. Biol., 8(2): 235-237. Ali, S.F., Rawat, L.S., Meghvansi, M.K., and Mahna, S.K., 2009. Selection of stress-tolerant rhizobial isolates of wild legumes growing in dry regions of Rajasthan, India. ARPN J. Agric. Biol. Sci., 4(1): 13-18. Allen, O.N., and Allen, E.K., 1981. The Leguminosae: A Source Book Characteristics, Uses and Nodulation. Wisconsin: University of Wisconsin Press. Anthraper, A., and Dubois, John D., 2003. The effect of NaCl on growth, N 2 fixation (acetylene reduction) and percentage of total nitrogen in Leucaena leucocephala (Leguminosae) Var. K-8. American J. Bot., 90: 683-692. Aurag, J., and Sasson, A., 1992. Tolerance of Rhizobium leguminosarum bv. phaseoli to acidify and drought. World J. Microbiol. Biotechnol., 8: 532-535. Azam, F., 2001. Legume-bacterium (Rhizobium) Association-symbiosis: A marriage of convenience, necessary evil or bacterium taken hostage by the legume. Pakistan J. Biol. Sci., 4: 757-761. Bakshi, D., Mukhopadhyay, A., Sinhababu, A., Pal, Sushil C., and Mandal, Narayan C., 2006. Survival, nodulation and N 2 fixation ability of root nodule bacteria under different nutritional regimes. Indian J. Exp. Biol., 44: 918-923.

Transcript of References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/5352/17/17_references.pdf · xxi...

REFERENCES

Ahmed, Z.I., Anjum, M.S., and Abdul Rauf, C.H., 2006. Effect of

Rhizobium inoculation on growth and nodule formation of green

gram. Int. J. Agric. Biol., 8(2): 235-237.

Ali, S.F., Rawat, L.S., Meghvansi, M.K., and Mahna, S.K., 2009.

Selection of stress-tolerant rhizobial isolates of wild legumes

growing in dry regions of Rajasthan, India. ARPN J. Agric. Biol.

Sci., 4(1): 13-18.

Allen, O.N., and Allen, E.K., 1981. The Leguminosae: A Source Book

Characteristics, Uses and Nodulation. Wisconsin: University of

Wisconsin Press.

Anthraper, A., and Dubois, John D., 2003. The effect of NaCl on growth,

N2 fixation (acetylene reduction) and percentage of total nitrogen in

Leucaena leucocephala (Leguminosae) Var. K-8. American J. Bot.,

90: 683-692.

Aurag, J., and Sasson, A., 1992. Tolerance of Rhizobium leguminosarum

bv. phaseoli to acidify and drought. World J. Microbiol.

Biotechnol., 8: 532-535.

Azam, F., 2001. Legume-bacterium (Rhizobium) Association-symbiosis:

A marriage of convenience, necessary evil or bacterium taken

hostage by the legume. Pakistan J. Biol. Sci., 4: 757-761.

Bakshi, D., Mukhopadhyay, A., Sinhababu, A., Pal, Sushil C., and

Mandal, Narayan C., 2006. Survival, nodulation and N2 fixation

ability of root nodule bacteria under different nutritional regimes.

Indian J. Exp. Biol., 44: 918-923.

xxi Bambara, S., and Patrick A., 2010. Phaseolus vulgaris response to

rhizobium inoculation, lime and molybdenum in selected low pH

soil in Western cape, South Africa. African J. Agric. Res., 5(14):

1804-1811.

Baoling, H., ChengQun, L., Bo, W., amd LiQin, F., 2007. Arhizobia strain

isolated from root nodule of gymnosperm Podocarpus

macrophyllus. Sci. Chin. Ser. C. Life Sci., 50: 1-6.

Basu, P.S., and Ghosh, A.C., 1999. Production of extracellular

polysaccharides by Rhizobium sp. of Roystonea regia, the only root

nodule forming monocotyledon. Indian J. Exp. Biol., 37: 487-490.

Bauer, A.W., Kirby, W.M.M., Truck, H. and Shreeies, J.C., 1996.

Antibiotic susceptibility testing by standardized single disc method.

Am. J. Clin. Pathol., 45: 493-496.

Becana, M., Aparicio-Tejo, P., and Sanchez-Diaze, M., 1986. Nitrogen

fixation and leghaemoglobin content during vegetative growth of

alfalfa. J. Plant Physiol., 123: 117-125.

Bimboim, H.C., and Doly, J., 1979. A rapid alkaline extraction procedure for

screening recombinant plasmid DNA. Nucleic Acid Res., 7: 1513-1523.

Boddey, R.M., People, M.B., Palmer, B., and Dart, P.J., 2000. Use of the

15N natural abundance technique to quantify biological nitrogen

fixation by woody perennials. Nut. Cycl. Agroecosys., 57: 235-270.

Bogino, P., Banchio, E., Rinaudi, L., Cerioni, G., Bonfiglio, C., and

Glordano, W., 2006. Peanut (Arachis hypogaea) response to

inoculation with Bradyrhizobium sp. in soils of Argentina. Annl.

Appl. Biol., 148(3): 207-212.

Bouhmouch, I., Souad-Mouhsine, B., Brhada, F., and Aurag, J., 2005.

Influence of cultivars and Rhizobium sp. on the growth and

symbiotic performance of Phaseolus vulgaris under salt stress.

J. Pl. Physiol., 162: 1103-1113.

xxii Brockwell, J., Bottomley, P.J., and Thies, J.E., 1995. Manipulation of

rhizobia microflora for improving legume productivity and soil

fertility: A critical assessment. Pl. Soil, 174: 143-180.

Bromfield, E.S.P., Barran, L.R., and Wheatcroft, R., 1995. Relative

genetic structure of a population of Rhizobium meliloti isolated

directly from soil and from nodules of alfalfa (Medicago sativa)

and sweet clover. Mol. Ecol., 4: 183-188.

Chapman, H.D., and Pratt, 1982. Methods of analysis for soils, plants and

waters. California: Division of Agricultural Sciences, University of

California.

Chaudhary, P., Khurana, A.L., and Dudeja, S.S., 2002. Heterogeneity of

rhizobia isolated from chickpea nodulation variants. Indian J.

Microbiol., 42: 195-199.

Cordovilla, M.D.P., Ligero, F., and Lluch, C., 1999. Effect of salinity on

growth, nodulation and nitrogen assimilation in nodules of faba

bean (Vicia faba L.). Appl. Soil Ecol., 11(1): 1-7.

Daniel, R.R., Santhaguru, K., and Gunasekaran, P., 2001. Effect of

supplementary UV-B radiation on growth, nodulation and nitrogen

fixation Vigna mungo L. and Vigna radiata (L.) Wilczek. Indian J.

Microbiol., 41: 157-161.

Dardanelli, M.S., Gonzalez, P.S., Medeot, D.B., Paulucci, N.S., Bueno,

M.A., and Garcia, M.B., 2009. Effects of peanut rhizobia on the

growth and symbiotic performance of Arachis hypogaea under

abiotic stress. Symbiosis, 47(3): 175-180.

Dash, N., and Panda, S.K., 2001. Salt stress induced changes in growth

and enzyme activities in germinating Phaseolus mungo seeds.

Biologia Plantarum, 44(4): 587-589.

xxiii De Oliveira, A.N., De Oliveira, L.A., Andrade, J.S., and Chargas, J.A.F.,

2007. Rhizobia amylase production using various starchy

substances as carbon substrates. Braz. J. Microbio., 38: 208-216.

De, P.S., and Basu, P.S., 1996. Extracellular polysaccharide production by

a Rhizobium sp. from root nodules of Derris scandens. Folia

Microbiol., 41(4): 368-372.

Delago, M.J., Ligero, F., and Lluch, C., 1994. Effect of salt stress and

nitrogen fixation by pea, faba bean, common bean and soybean

plants. Soil Biol. Biochem., 26: 371-376.

Delic, D., Ostajkovic, O., Kuzmanovic, D., Rasulic, N., Knezevic-

Vukcevic, J., and Milicic, B., 2009. The effects of Rhizobial

inoculation on growth and yield of Vigna mungo L. in Serbian

soils. Biotechnol. Animal Husbandry, 25(5-6): 1197-1202.

Denarie, J., Debelle, F., and Prome, J., 1996. Rhizobium lipo-

chitooligosaccharide nodulation factors: Signalling molecules

mediating recognition and morphogenesis. Ann. Rev. Biochem., 65:

503-535.

Denarie, J., Debelle, F., and Rosenberg, C., 1992. Signalling and host

range variation in nodulation. Ann. Rev. Microbiol., 46: 497-531.

Desire, T.V., Liliane, M.T., Le Prince, N.M., Jonas, P.L., and Akoa, A.,

2010. Mineral nutrient status, some quality and morphological

characteristics changes in peanut (Arachis hypogaea L.) cultivars

under salt stress. African J. Environ. Sci. Technol., 4(7): 471-479.

Diejemaoh, C., 1996. Germination studies and sidling establishment of

Leaucaea leucocephala (Lam.) de wit in saline and acidic soils. Pl.

Soil., 10: 12-32.

EL-Fiki, 2006. Genetic diversity in Rhizobium determined by Random

amplified polymorphic DNA analysis. J. Agric. Soc. Sci., 2(1): 1-4.

xxiv Elsheikh, A.E., 1992. Effect of salinity on growth and nitrogen yield of

inoculated and N fertilized Chickpea (Cicer aritinum). Arch.

Biotechnol., 1: 17-28.

Embalomatis, A., Papacosta, D.K., and Katinakis, P., 1994. Evaluation of

Rhizobium meliloti strains isolated from indigenous population

northern Greece. J. Agric. Crop Sci., 172: 73-80.

Fabiano, E., and Arias, A., 1990. Identification of inoculants strains and

naturalized populations of Rhizobium leguminosarum bv trifoli

using complementary methodologies. World J. Microbiol.

Biotechnol., 6(2): 121-126.

Figueiredo, M.V.B., Burity, H.A., De Franca, F.P., and Vilar, J.J., 1998.

Soil-water response in cowpea at different development stages of

N2 fixation. Agrochemica., XLII: 200-207.

Fujihara, S., 2009. Biogenic amines in rhizobia and legume root nodules.

Microbes Environ., 24(1): 1-13.

Gaballah, M.S., and Gomaa, A.M., 2005. Interactive effect of Rhizobium

inoculation, sodium benzoate and salinity on performance and

oxidative stress in two Fababean varieties. Intl. J. Agric. Biol., 3:

495-498.

Gaur, Y.D., and Sen, A.N., 1981. Cultural and biochemical characteristics

of root nodule bacteria of cheickpea (Cicer arietinum L.). Zbl.

Bakt. II Abst., 136: 307-3126.

Gaur, Y.D., Rewari, R.B., Bhatnagar, R.S., Narayan, K.P., and Sen, A.N.,

2002. Sinorhizobium meliloti and Rhizobium leguminosarum bv.

trifolii in Indian soils and their inoculation response. Indian J.

Microbiol., 42: 23-28.

xxv Gayatri Devi, A., Ratna Prasad, P., Swaraj Yalakshmi, G., and Srinivasa

Rao, V., 2007. Effect of Rhizobium and PSB on growth and yield

of groundnut (Arachic hypogaea L.). Andhra Agric. J., 54(1-2): 51-

93.

Georgiev, G.J., and Atkins, C.A., 1993. Effect of salinity on N2 fixation,

nitrogen metabolism and export and diffusive conductance of

cowpea root nodules. Symbiosis, 15: 239-255.

Goormachtig, S., Capoen, W., James, Euan K., and Holsters, M., 2004.

Switch from intracellular to intercellular invasion during water

stress-tolerant legume nodulation. PNAS, 101(6): 6303-6308.

Graham, P.H., 1992. Stress tolerance in Rhizobium and Bradyrhizobium

and nodulation under adverse soil conditions. Can. J. Microbiol.,

38: 475-484.

Hajnaa, A., 1945. Triple-sugar Iron medium for the identification of the

intestinal group of bacteria. J. Bacteriol., 49: 516-517.

Hamida, M.A., and Shaddad, M.A.K., 2010. Salt tolerance of crop plants.

J. Stress Physiol. Biochem., 6(3): 64-90.

Hardy, R.W.F., Holsten, R.D., Jackson, E.K., and Burns, R.C., 1968. The

acetylene-ethylene assay for N2 fixation. Laboratory and Field

Evaluation, Plant Physiol., 43: 1185-1207.

Hegoo, A.M., and Barakah, F.N., 2004. Effects of inoculem densities of

Rhizobium meliloti and different rates of nitrogen fertilizers on

alfalfa plants grown in calcareous soil. J. King Saud Univ., 16(2):

161-170.

Helmish, F.A., E1-Mokadem, M.T., and Zekry, S.H.A., 1993. Nutritional

requirements and invertase activity of Rhizobium nodulating

Sesbania sesben roots. Zh. Fur. Microbio., 148: 582-587.

xxvi Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., and Williams, S.T.,

1994. Bergey’s Manual of Determinative Bacteriology, 9th edn.

Baltimore: Published by Williams and Wilkins, A. Wavely

Company, 787.

Howieson, J.G. Malden, J., Yates, R.J., and O’Hara, G.W., 2000.

Techniques for the selection and development of elite inoculant

strains of Rhizobium leguminosarum in Southern Australia.

Symbiosis, 28(1): 33-48.

Howieson, J.G., 1995. Characteristics of an ideotype acid tolerant pasture

legume symbiosis in Mediterranean agriculture. In Plant Soil

Interactions at Low pH [Date, R.A., et al. (eds.)]. Netherlands:

Academic Publishing.

Hung, M.H., Bhagwath, Arun A., Fo-Ting Shen, Devasya, Rekha R., and

Young, C.C., 2005. Indigenous rhizobia associated with native

shrubby legumes in Taiwan. Pedobiologia, 49: 577-584.

Hungria, M., and Vargas, M.A.T., 2000. Environmental factors affecting

nitrogen fixation in grain legumes in the Eropics with an emphasis

on Brazil. Field Crops Res., 65: 151-164.

Hunter, W.J., Kuykendall, L.D., and Manter, D.L., 2007. Rhizobium

Selenireducens sp. nov.: A selenite-reducing -Proteobacteria

isolated from a bioreactor. Curr. Microbiol., 55: 455-460.

Ilyas, N., Bana, A., and Iqbal, S., 2008. Variation in Rhizobium and

Azospirillum strains isolated from maize growing in arid and

semiarid areas. Int. J. Agric. Biol., 10: 612-618.

Irigoyen, J.J., Emerich, D.W., and Sanchez-Diaz, M., 1992. Phosphorol

pyruvate carboxylase, and alcohol dehydrogenase activities in

alfalfa nodules under water stress. Physiologica. Plantarum. 84:

61-66.

xxvii Issa, S., and Wood, M., 1995. Multiplication and survival of Chickpea and

bean rhizobia in dry soils: the influence of strains, inatric potential

and soil texture. Soil Biol. Biochem., 27(6): 785-792.

Johan, J., and Talukdar, N.C., 2005. Growth depression of two French

bean varieties due to inoculation with two Rhiozobium

leguminosearum (Biovar: Phaseoli) isolates. Legume Res., 28(1):

34-37.

John, K., Vasanthi, R.P., Venkateswarlu, O., and Haranath Naid, P., 2001.

Variability and correlation studies for qualitative traits in Spanish

bunch groundnut genotypes. Legume Res., 28(3): 189-193.

Johnson, A.C., and Wood, M., 1990. DNA a possible site of action of

aluminium in Rhizobium spp. Appl. Environ. Microbiol., 56: 3629-

3633.

Jones, K.M., Kobayashi, H., Davies, Bryan W., Taga, Michiko E., and

Walker, Graham C., 2007. How rhizobial symbionts invade plants:

the sinorhizobium (ndash) Medicago model. Nat. Rev. Microbiol.,

5: 619-633.

Keneni, A., Assefa, F., and Prabu, P.C., 2010. Characterization of acid

and salt tolerant rhizobial strains isolated from Faba Bean fields of

Wollo, Northern Ethiopia. J. Agr. Sci. Tech., 12: 365-376.

Khan, S., Mol, Zaidi, A., and Lakhchaura, B.D., 1999. Nodule occupancy

determination and Rhizobium strain quantification by immunoblot

assay. Indian J. Exp. Biol., 37: 813-817.

Khokhar, S.N., Khan, M.A., and Chaudhri, M.A., 2001. Some characters

of Chickpea – nodulating rhizobia native to Thal soil. Pak. J. Bio.

Sci., 4(8): 1016-1019.

Kucuk, C., Kivanc, M., and Kinaci, E., 2006. Characterization of

Rhizobium sp. isolated from Bean. Turk. J. Biol., 30: 127-132.

xxviii Kulkarni, S., Surange, S., and Nautiyal, C.S., 2000. Crossing the limits of

Rhizobium existence in extreme conditions. Curr. Microbiol.,

41(6): 402-409.

Kumari, B.S., Ram, M.R., and Mallaiah, K.V., 2010. Studies on

nodulation, biochemical anlaysis and protein profiles of rhizobium

isolated from Indigofera sp. Mal. J. Microbiol., 6(2): 133-139.

Laemmli, 1970. Cleavage of structural proteins during the assembly of the head

of bactriophage T4. Nature, 227: 680-685.

Lloret, J., Bolanos, L., Lucas, M.M., Peart, J.M., Brewin, Bonilla, I. and

Rivilla, R., 1995. Ionic stress and osmotic pressure induce different

alternations in the LPS at a Rhizobium meliloti strain. Appl.

Environ. Microbiol., 61: 3701-3705.

Lloret, J., Wulff, Brande B.H., Rubio, Jose M., Allan Downie, J., Bonilla,

I., and Rivilla, R., 1998. Exopolysaccharide II production is

regulated by salt in the halotolerant strain Rhizobium meliloti

EFB1. Appl. Environ. Microbiol., 64(3): 1024-1028.

Lowry, D.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., 1951. Protein

measurement with the folin-phenol reagents. J. Biol. Chem., 193: 265-

275.

Mahmood, A., andAthar, M., 2008. Cross inoculation studies: Response

of Vigna mungo to inoculation with rhizobia from tree legumes

growing under arid environment. Int. J. Environ. Sci. Tech., 5(1):

135-139.

Marino, D., Frendo, P., Ladrera, R., Zabalza, A., Puppo, A., Arrese-Igor,

C., and Gonzalez, Esther M., 2007. Nitrogen fixation control under

drought stress: Localized or Systemic?. Pl. Physiol., 143: 1968-

1974.

xxix Mensah, J.K., Esumeh, F., Iyamu, M., and Omoifo, C., 2006. Effects of

different salt concentrations and pH on growth of Rhizobium sp.

and a cowpea – Rhizobium association. American Eurasian J.

Agric. Environ. Sci., 1(3): 198-202.

Milicic, B., Delic, D., Kuzmanovic, D., Stajkovic, O., and Josic, D., 2006.

Intrinsci antibiotic resistance of different Bradyrhizobium

japonicum and Rhizobium galegae strains. Roam Biotechnol. Let.,

11(3): 2723-2731.

Mishra, J., and Mishra, K.N., 2008. Effect of different strains of

Rhizobium on nitrogen fixation and other growth characteristics of

two leguminous species. Pl. Arch., 8(1): 307-310.

Naeem, F., Malik, K.A., and Hafeez, F.Y., 2008. Pisum sativam –

Rhizobium interaction under different environmental stress.

Pakistan J. Bot., 40(6): 2601-2612.

Naz, I., Bano, A., and Hassan, T.U., 2009. Morphological, biochemical

and molecular characterization of Rhizobia from halophytes of

Khewra salt range and Attock. Pak. J. Bot., 41(6): 3159-3168.

Neeraj, Gaurav, S.S., Sachin, and Chandra, M., 2008. Selection and

evaluation of Rhizobial strains of Vigna radiata L. beneficial

nitrogen fixation. African J. Biotechnol., 7(20): 3680-3682.

Neeraj, S.S., Chatterjee, Gaurav S., Sachin, and Chandra, M., 2009.

Efficient nitrogen fixing Rhizobial isolate infecting Vigna radiate I.

Asian J. Agric. Sci., 1(2): 62-65.

Pathak, R.R., Ahmad, A., Lochab, S., and Rahuram, N., 2008. Molecular

physiology of plant nitrogen use efficiency and biotechnological

options for its enhancement. Curr. Sci., 94(11): 1394-1403.

xxx Peoples, M.B., and Herridge, D.F., 1990. Appropriate data needs for field

experiment on N2 fixation. Proceedings of an International

Workshop on Managing Legume Nitrogen Fixation in the Cropping

Systems of Asia 1997, pp.141-153. ????

Pepper, I.L., 1991. Physiological adaptation of rhizobia to improve

nitrogen fixation in desert environments. Adv. Desert and Arid

Land Technol. Develop., 5: 293-304.

Pepper, I.L., and Upchurch, R.P., 1991. Nitrogen fixation by desert

legumes associated with rhizobia. In Semiarid Lands and Deserts:

Soil Resource and Reclamation [Skujins, J. (ed.)]. New York:

Marcel Dekker Inc.

Pimratch, S., Jogloy, S., Vorasoot, N., Toomsan, B., Kesmala, Patanothai,

A., and Holbrook, C., 2008. Effect of drought peanut (Arachis

hypogaea L.) genotypes differing in degrees of resistance to

drought. Asian J. Pl. Sci., 1: 1-9.

Pimratch, S., Jogloy, S., Vorasoot, N., Toomsan, B., Patanothai, A., and

Holbrook, C.C., 2008. Relationship between biomass production

and N2 fixation under drought-stress conditions in peanut

genotypes with different levels of drought resistance. J. Agron.

Crop Sci., 194: 15-25.

Pinto, P.P., Paiva, E., Purcino, H., Passos, R.V.M., and Sa, N.M.H., 2004.

Characterization of rhizobia that nodulate Arachis pintoi by RAPD

analysis. Braz. J. Microbiol., 35(3): 1517-1520.

Prathap, S., Seshadri, S., Reddy and Narayana, G., Swamy, 2006. Effect

of water stress on germination and seedling growth of groundnut

genotypes. Crop Res., 31(1): 58-60.

xxxi Predeepa, R.J., and Ravindran, D.A., 2010. Nodule formation, distribution

and symbiotic efficacy of Vigna unguiculata L. under different soil

salinity regimes. Emir. J. Food Agric., 22(4): 275-284. ???

Prescott, L.M., Harley, J.P., and Klein, D.A., 1996. Microbiology. 3rd edn.

United States of America: Wm. C. Brown Publishers.

Provorov, N.A., Saimnazarov, U.B., Bhromov, I.U., Pulatova, D.Z.,

Kozhemyakov, A.P., and Kurbanov, C.A., 1998. Effect of rhizobia

inoculation on the seed (herbage) production of mungbean

(Phaseolus aureus Roxb.) grown at Uzbekistan. J. Arid Environ.,

39: 569-575.

Pryor, H.N., and Crush, J.R., 2006. Elevated populations of effective

rhizobia in the rhizoplane of white clover growing in pasture. Zew

Zealand J. Agric. Res., 48: 85-87.

Rafiq, S., 2007. Effects of different salt concentrations on the growth of

Rhizobium (Osmoadaptation). http://www.mtsu.edu/-scientia/

Journals., 1(2): 1-6.

Rajasekhar, A., Prasad Babu, G., and Reddy, T.K.K., 2002.

Characterization of Rhizobium of red sanders (Pterocarpus

santalinus L.), an endemic tropical tree legume. Legume Res.,

25(3): 154-159.

Ramesh, T., Devasenapthy, P., and Sabarinathan, R., 2006. Root growth

and nodulation characteristics of cowpea (Vigna unguiculata (L.)

Walp) as influenced by in situ soil moisture conservation and

nutrient management practices under rainfed Alfisols ecosystem.

Crop Res., 31(1): 37-42.

xxxii Ramos, M.L.G., Gordon, A.J., Minchin, F.R., Sprent, J.I. and Parsons, R.,

1999. Effect of water stress on nodule physiology and biochemistry

of a drought tolerant cultivar of common bean cultivar (P. vulgaris

L.). Annals of Botany, 83: 57-63.

Raven, P.H., Evert, R.F., and Eichhorn, S.E., 1992. Biology of Plant.

5th edn. New York: Worth Publishers.

Reddy, t.Y., Reddy, V.R., and Anbumozhi, V., 2003. Physiological

responses of groundnut (Arachis hypogaea L.) to drought stress

and its amelioration: a critical review. Pl. Growth Regul., 41: 75-

88.

Rendig, V.V., and Taylor, H.M., 1989. Principles of Soil-Plant

Interrelationships. USA: McGraw-Hill Inc.

Rohif, F.J., 1990. NTSYS-PC numerical taxonomy and multivariance analysis

system, Version 1.60, Exeter Software.

Rondon, M.A., Lehmann, J., Ramiraz, J., and Hurtado, M., 2007.

Biological nitrogen fixation by common bean (Phaseolus vulgaris

L.) increases with bio-char additions. Biol. Fertil. Soils, 43: 699-

708.

Salisbury, F.B., and Ross, C.W., 1992. Plant Physiology. 4th edn.

California: Wadsworth Publishing Company.

Sambrook, J., and Russell, D., 2001. Molecular Cloning: A Laboratory Manual,

3rd Cold Spring Laboratory, Cold Spring Horbour, New York.

Serraj, R., and Gyamfi, A., 2004. Role of symbiotic nitrogen fixation in

the improvement of legume productivity under stressed

environments. West African J. Appl. Ecol., 6: 95-109.

Serraj, R., Sinclair, Thomas R., and Purcell, Larry C., 1999. Symbiotic N2

fixation response to drought. J. Exp. Bot., 50(331): 143-155.

xxxiii Sinclair, T.R., and Ludlow, M.M., 2010. Influence of soil water supply on

the plant water balance of four tropical grain legumes. Australian J.

Pl. Physiol., 13(3): 329-341.

Singh, B., Kaur, R. and Singh, K., 2008. Characterization of Rhizobium

strain isolated from the roots of Trigonella foenum-graecum. Afr. J.

Biotechnol., 7(20): 3671-3676.

Singh, R., and Prasad, K., 2008. Effect of vermicompost, Rhizobium and

DAP on growth, yield and nutrient uptake by chickpea. J. Food.

Legumes, 21(2): 112-114.

Singh, R.P., Bisen, J.S., Yadav, P.K., Singh, S.N., Singh, R.K., and Singh,

J., 2008. Integrated use of sulphur and molybdenum on growth,

yield and quality of black gram (Vigna mungo L.). Legume Res.,

31(3): 214-217.

Slatery, J.F., Coventry, D.R., and Slattery, W.J., 2001. Rhizobial ecology

as affected by the soil environment. Aus. J. Exp. Agric., 41; 289-

298.

Somasegaran, P., and Hoben, H.J., 1994. Handbook for Rhizobia:

Methods in Legume- Rhizobium Technology, New York: Springer-

Verlag.

Soussi, M., Santhamaria, M., Ocana, A., Lluch, C., 2001. Effects of

salinity on protein and lipopolysaccharide pattern in a salt-tolerant

strain of Mesorhizobium ciceri. J. Appl. Microbiol., 90: 476-481.

Srivastava, P.C., Khan, U., and Pant, L.M., 2006. Effect of N and Zn

interaction on nodulation, fields and nutrient concentration of

French bean inoculated with Rhizobium leguminosarum bv.

phaseoli (strain – 9R). Crop Res., 31(1): 43-51.

xxxiv Swaraj, K., Nandwal, A.S., Babber, S., Ahlawat, S., and Nainawati, H.S.,

1995. Effect of water stress on function and structure of Cicer

arietinum L. nodules. Biologia Plantarum, 37(4): 613-619.

Swaroop, K., 2006. Effect of phosphorus, Potash and Rhizobium on Pod

yield, nutrient uptake and residual available soil NPK of vegetable

cowpea. Ann. Agric. Res. New Series, 27(3): 250-256.

Taffouo, V.D., Meguekam, L., Kenne A. Magnitsop, Amougou Akoa, and

Ourry, A., 2009. Salt stress effects on germination, plant growth

and accumulation of metabolites in five leguminous plants. African

Crop Sci. Conf. Proc., 9: 157-161.

Talibart, R., Jebbar, M., Goviesbet, G., Kabbab, S.H., Wroblewski, H.,

Blanco, C., and Bernard, T., 1994. Osmoadaptation in Rhizobia:

ecotine induced salt tolerance. J. Bacteriol., 176: 5210-5217.

Teaumroog, N., and Boonkerd, N., 1998. Detection of Bradyrhizobium spp. and

B. japonicum by primer-based technology and direct DNA extraction. Pl.

Soil, 204: 127-134.

Tejera, Noel A., Campos, R., Sanjuan, J., and Lluch, C., 2004.

Nitrogenase and antioxidant enzyme activities in Phaseolus

vulgaris nodules formed by Rhizobium tropic isogenic strains with

varying tolerance to stress. J. Pl. Physiol., 161: 329-338.

Thies, Janice E., Singleton Paul W., and Bohlool, B., 1991. Influence of

the size of indigenous rhizobial populations on establishment and

symbiotic performance of introduced rhizobia on field-grown

legumes. Appl. Environ. Microbiol., 57(1): 19-28.

Urzua, H., 2005. Benefits of symbiotic nitrogen fixation in Chile. Clin.

Inv. Agric., 32(2): 109-124.

Vimala Gandhi, S., and Ahmed John, S., 2011. Nodulation ability of

Rhizobium in Arachis hypogaea and Vigna mungo plants.

(Communicated).

xxxv Vincent, J.M., 1970. A Manual for the Practical Study of Root-Nodule

Bacteria. IBP Hand Book, No.15, Oxford: Blackwell Scientific

Publication.

Wade, T.K., Dioul, O., Ndoye, I., Sall, C.E., Braconnier, S., and Neyra,

M., 2006. Water – condition effects on rhizobia competition for

cowpea nodule occupancy. African J. Biotechnol., 5(16): 1457-

1463.

Wahab, A.M., Shabeb, M.S.A., and Younis, M.A.M., 2002. Studies on the

effect of salinity, drought stress and soil type on nodule activities

of Lablab purpureus (L.) sweet (Kashrangeeg). J. Arid Environ.,

51: 587-602.

Weaver, R.W., 1990. Stability of plasmids in Rhizobium phaseoli during

culture. Soil Biol. Biochem., 22: 465-467.

Yadav, R.D., and Malik, C.V.S., 2005. Effect of Rhizobium inoculation

and various sources of nitrogen on growth and yield of cowpea

(Vigna unguiculata (L.) Walp). Legume Res., 28(1): 38-41.

Zahran, H.H., 1991. Conditions for successful Rhizobium-legume

symbiosis in saline environments. Biol. Fertil. Soils, 12(1): 73-80.

Zahran, H.H., 2001. Rhizobia from wild legumes: diversity, taxonomy,

ecology, nitrogen fixation and biotechnology. J. Biotechnol., 91:

143-153.

Zahran, H.H., 2001. Rhizobia from wild legumes: diversity, taxonomy,

ecology, nitrogen and biotechnology. J. Biotech., 91: 143-153.

Zahran, H.H., Rasanen, L.A., Karsisto, M., and Lindstrom, K., 1994.

Alteration of lipopolysaccharide and protein profiles in SDS-PAGE

and of rhizobia by osmotic and heat stress. World J. Microbiol.

Biotechnol., 10(1): 100-105.

Appendix – I

MEDIA COMPOSITION

Christensen’s urea agar

Peptone - 1 g

Dextrose - 1 g

NaCl - 5 g

Disodium PO4 - 1.2 g

Monopotassium PO4 - 0.8 g

Phenol red - 0.012 g

Agar - 20 gm

pH - 6.8 0.2

40% Urea – after sodification

950 ml Dis.H2O + 50 ml sterile 40% urea solution.

Congo red medium

Yeast extract - 1 g

Mannitol - 10 g

Dipotassium phosphate - 0.5 g

Magnesium sulphate - 0.2 g

Sodium chloride - 0.1 g

Calcium carbonate - 1 g

Agar - 20 g

pH - 6.8 0.2

Congored - 2.5 ml of 1% solution/l.

Gelatin agar medium

Gelatin - 30 g

Casein - 10 g

NaCl - 10 g

Agar - 20 g

pH - 7.2 0.2

xxxvii Hofer’s alkaline broth

Dipotassium phosphate - 0.5 g, Yeast extract - 1g

Magnesium sulfate - 0.2 g, Mannitol - 10 g

Calcium carbonate - 0.05 g, pH - 11

Jensen’s medium

Calcium PO4 - 1 g

Dipotassium hydrogen PO4 - 0.2 g

Magnesium sulphate - 0.2 g

NaCl - 0.2 g

Ferric chloride - 0.1 g

Agar - 15 g

pH - 6.8

Lactose agar

Beef extract - 3 g

Peptone - 5 gm

Lactose - 5 g pH – 6.0 0.2

Agar - 20 g

Litmus milk agar

Litmus milk - litre

Yeast extract - 3 g

D-glucose - 10 gm

Agar - 20 gm

Mac-Conkey agar

Peptone - 17 gm

Protease - 3 gm

Inositol - 10 gm

Bilesalt - 1.5 gm

NaCl - 5 gm

Cry-violet - 0.001 gm

Neutral red - 0.03 gm

xxxviii

Agar - 20 gm

pH - 7.1 0.2

Modified phenol red broth

Protease peptone - 10 gm

Beef extract - 1 gm

NaCl - 5 gm

Phenol red - 0.025 gm

pH - 7.4 0.2

MR-VP broth

Peptone - 7 g

Dextrose - 5 g

Dipotassium - 5 g

pH - 6.9 0.2

Nitrate broth

Peptone - 5 g

Beef extract - 3 g

Potassium nitrate - 1 g

pH - 7 0.2

Simmon’s citrate agar

Magnesium sulphate - 0.2 g

Ammonium dihydrogen PO4 - 1 g

Dipotassium PO4 - 1 g

Sodium citrate - 2 g

NaCl - 5 g

Bromothymol blue - 0.08 g

Agar - 20 g

pH - 6.8 0.2

xxxix SIM agar

Pancreatic digest of casein - 20 g

Peptic digest of animal tissue - 6.1 g

Ferrous ammonium sulfate - 0.2 g

Sodium thiosulfate - 0.2 g

Agar - 3.5 g

Starch agar

Peptone - 5 g

NaCl - 5 g

Yeast extract - 1.5 g

Beef extract - 1.5 g

Starch (Soluble) - 2 g

Agar - 20 gm

pH - 7.4 0.2

Tryptone broth

Casein enzymic hydrolysate - 10 g

Sodium chloride - 5 g

pH - 7.5 0.2

Trypticas soy agar

Tryptone - 15 g

Soytone - 5 g

NaCl - 5 g

Agar - 15 g

pH - 6.8 0.2

Triple sugar iron agar

Peptone - 10 g

Casein - 10 g

Yeast extract - 3 g

Beef extract - 3 g

Lactose - 10 g

xl

Sucrose - 10 g

Dextrose - 10 g

NaCl - 5 g

FeSO4 - 0.2 g

Sodium thioSO4 - 0.3 g

Phenol red - 0.024 g

Agar - 20 gm

pH - 7.4 0.2

Yeast extract mannitol agar 1000 ml

Yeast extract - 1 g

Mannitol - 10 g

Dipotassium phosphate - 0.5 g

Magnesium sulphate - 0.2 g

Sodium chloride - 0.1 g

Calcium carbonate - 1 g

Agar - 20 g

pH - 6.8 0.2

Yeast extract mannitol broth

Yeast extract - 1 g

Mannitol - 10 g

Dipotassium phosphate - 0.5 g

Magnesium sulphate - 0.2 g

Sodium chloride - 0.1 g

Calcium carbonate - 1 g

pH - 6.8 0.2

xli

Appendix – II

REAGENT PREPARATION

Crystal violet

Crystal violet - 2.0 g

Ethyl alcohol (95%) - 20 ml

Gram’s iodine

Iodine - 1 gm

Potassium iodide - 2 g

Alcohol

Iodine - 5 gm

Potassium iodide - 2 g

Dis.H2O - 300 ml

Alcohol (decolourizer)

Iodine - 5 gm

Potassium iodide - 0.3 g

Methanol - 4.5 ml

Acetone - 20 ml

Safranine

Safranino - 2.5 gm

Ethylacohol (95%) - 100 ml

Carbol fuschin

Carbolfuchsin - 1 ml

Dis H2O - 19 ml

Benedict’s reagent

Copper - 18 g

Sodium carbonate - 100 g

Sodium citrate - 200 g

xlii

Potassium thiocyanate - 125 g

Potassium Ferricyanide - 250 mg

dis.H2O - 1000 ml

Methyl red solution

Suspend – 1g copper sulfate in 40 ml concentrated ammonia and

add 690 ml of an approximately 10 per cent potassium hydroxide solution.

Kovac’s reagent

Paradimethyl amino benzaldehyde - 5 gm

Amyl alcohol - 75 ml

HCl - 25 ml

Sulphonilic acid – 0.8%

Sulphanilic - 8 gm

30% acetic acid - 1000 ml

Alphanapthalamine solution

napthalamine - 5 gm

Acetic acid 5N - 1000 ml

Iodine solution

Iodine - 1 gm

Potassium iodine - 2 gm

dis. H2O - 300 ml

Barrit’s reagent

Suspend 5 g naphthol in 100 ml absolute ethanol.

Nutrient solution for plants in pot experiment

1. K2HPO4 - 0.2 g

2. (NH4)2 SO4 - 0.03 g

3. MgSO4 - 0.2 g

4. FeCl - 0.02 g

xliii 5. CaCl2 - 0.376 g

6. K2SO4 - 0.845 g

7. NH4NO3 - 0.1 g

8. H3PO3 - 1.855 mg

9. MnSO4 - 2.231 mg

10. ZnSO4 - 0.288 mg

11. CuSO4 - 0.25 mg

12. Na2M0O4 - 0.412 mg

Plasmid DNA isolation

Solution - I

Glucose 50 mM - 4.5 gm

Tris HCl 25 mM - 12.5 ml

EDTA 10 mM - 10 ml

pH - 8.0

Solution - II

NaOH 0.02 N

SDS 1%.

Solution - III

Potassium acetate - 5 m in 60 ml

Glacial acetic acid - 11.5 ml

Dis.H2O - 28.5 ml

pH - 4.8

TE buffer (pH 8.0)

Tris - 10 mM

EDTA - 10 Mm

ETBr

Dissolve 1 g of ETBr in 100 ml of dis.H2O, 8 stir with magnetic

bar for 1-2 hr.

xliv Electrophoresis buffer

Tris acetate buffer

Prepare 1 lit of 50X TAE, dissolve 242 g of trizma base, 57.1 ml of

glacial acetic acid and 100 ml of 0.5 M EDTA and adjust pH 8.

SDS-PAGE

1X SDS Gel loading buffer

Tris HCl (pH 6.8) - 1.2 ml

SDS - 1 gm

Glycerol - 3 ml

Bromophenol blue - 2 ml

Dis. H2O - 5 ml

Betamercaptoethanol - 200 ml

Add DTT from 1 M stock just before buffer usage.

1X Tris Glycine Electrophoresis buffer

Tris - 25 mM

Glycine (pH 8.3) - 250 mM

SDS - 0.1 %

Prepare 5X stock of electrophoresis buffer by dissolving 15.1 g Tris base,

94 g glycine in 900 ml of deionized H2O. Then add 50 ml of 10 per cent

(w/v) stock solution of electrophoresis grade SDS and adjust volume of 1

lit d.H2O.

Staining solution

B. Blue - 2.5 g

Methanol - 500 ml

Glacial acetic acid - 100 ml

Dis. H2O - 400 ml

Pilter it through whatman No:1 filter.

Destaining solution

Methanol - 500 ml

Glacial acetic acid - 100 ml

Dis. H2O - 400 ml

xlv Gel loading buffer

Bromo phenol blue - 0.25 %

Xylene Cyanol - 0.25%

Sucrose in H2O - 40%

TAE 1x

40 mM Tris acetate

1 mM EDTA.

TBE

45 mM Tris borate : 54 g Tris base

27.5 g boric acid

20 ml 0.5 M EDTA (pH 8.0)

SDS sample buffer : 2x

1 M Tris HCl (6.8) - 12.5 ml

SDS - 4 g

-mercaptoethanol - 10 ml

Glycerol - 20 ml

1% BPB - 4 ml

Add H2O to make final Vol to 100 ml.

Reservoir buffer

Tris 3 g

Glycine 14.4 g

SDS 1 g

adjust pH to 8.3 and make upto 1 l.

Reservoir gel

bis acrylamide - 12.5 gm

Resolving buffer - 3.75 (pH 8.8)

Stacking gel

2.5

5 (stacking buffer)

xlvi

10% SDS - 0.30 0.20

1.5% APS - 1.50 1.00

H2O - 11.95 11.30

TEMED - 0.015 0.015

30 ml 20 ml

Stackling gel buffer stock (Tris HCl, pH 6.8).

Staking gel buffer stock pH (6.8)

Tris 6.0 g

1 M HCl 48.0 ml

Adjust pH to 6.8 and make upto 100 ml H2O filter thro whatman Nol.1

filter.

Resolving gel buffer stock (pH 8.8)

Tris - 36.3 g

1 m HCl - 48 ml

pH - 8.8

make up to 100 ml filter whatman No.1 filter paper.

Protein Estimation Lowry Method

Reagent A

2% of Sodium carbonate in 0.1 N NaOH.

0.4 gm sodium hydroxide in 80 ml dis.H2O and then dissolve 2 gm

of sodium carbonate (anhydrous). Make up the volume to 100 ml dis.H2O

and stored at room temperature.

Reagent B

2% copper sulphate.

Dissolve 2 gm of copper sulfate to in 100 ml dis.H2O stored at

room temperature.

Reagent C

2% Sodium potassium tartarate or 2% trisodium citrate.

xlvii Dissolve 2 gm of sodium potassium tartarate or trisodium citrate in

100 ml dis.H2O stored at room temperature.

Alkaline copper sulfate (Reagent D)

Reagent A+B+C.

Mix 0.5 ml of reagent B and 0.5 ml of reagent C and then add 99 ml of

reagent A. If the reagent D becomes turbid do not use it (mix the reagent

is above order).

Folin’s phenol reagent

Diluted Folin’s phenol reagent 1:1 ratio with dis.H2O.

DNA estimation

Preparation of diphenyl amine reagent

Dissolve 1 gm of diphenyl amine in 97.5 ml of glacial acetic acid

and then add 2.5 ml con.H2SO4 mix well. Stored the reagent in brown

bottle of room temperature (Stable for 1 month).

DNA stock solution

Disolve standard DNA 2.2 mg/ml in 5 mM NaOH. Stored at 4°C

stable for atleast 6 month.