References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite...

27
References Allen AR (1979) Mechanism of frictional fusion in fault zones. J Struct Geol 1:231–243. Allen JL (2005) A multi-kilometer pseudotachylyte system as an exhumed record of earthquake rupture geometry at hypocentral depths (Colorado, USA). Tectono- physics 402:37–54. Anderson JL, Osborne RH, Palmer DF (1983) Cataclastic rocks of the San Gabriel fault-An expression of deformation at deeper crustal levels in the San Andreas fault zone. Tectonophysics 98:209–251. Antonellini M, Aydin A (1995) Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution. AAPG Bull 79:642–671. Arita K, Ohta Y, Akiba C, Marno Y (1973) Kathmandu region. In: Hashimoto S, Ohta Y, Okiba C (eds) Geology of the Nepal Himalaya. Himalaya Committee of Hokkaido University, Sapporo, pp. 99–113. Arai T, Okusawa T, Tsukahara H (1998) Variation with depth in chemical com- position and carbon isotope radio of gas extracted from drilling cores. Monthly Earth 21:165–170. Austrheim H, Anderson TB (2004) Pseudotachylytes from Corsica: fossil earth- quakes from a subduction complex. Terra Nova 166:193–197. Austrheim H, Boundy TM (1994) Pseudotachylytes generated during seismic fault- ing and eclogitation of the deep crust. Science 265:82–83. Bailey DK (1976) Experimental methods and the uses of phase diagrams. In: Bailey DK and MacDonald R (eds) The Evolution of the Crystalline Rocks. Academic Press, New York pp.3–100. Barker Shaun LL (2005) Pseudotachylyte-generating faults in Central Otago, New Zealand. Tectonophysics 397:211–223. Barri` ere M (1976) Flowage differentiation: Limitation of the “Bagnold effect” to the narrow intrusions. Contrib Mineral Petrol 55:139–145. Bates RL, Jackson JA (1980) The Glossary of Geology. 2nd ed., American Geological Institute, Alexandria Virginia. Beckholmen M (1982) Mylonites and pseudotachylites associated with thrusting of the K¨ oli Nappes, T¨annforsf¨alted, central Swedish Caledonides. Geologiska oreningens I Stockholm F¨orhandlingar 104:23–32 Beeler NM, Tullis J, Blanpied ML, Weeks JD (1996) Frictional behavior of large displacement experimental faults. J Geophys Res 101:8697–8715.

Transcript of References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite...

Page 1: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

References

Allen AR (1979) Mechanism of frictional fusion in fault zones. J Struct Geol1:231–243.

Allen JL (2005) A multi-kilometer pseudotachylyte system as an exhumed record ofearthquake rupture geometry at hypocentral depths (Colorado, USA). Tectono-physics 402:37–54.

Anderson JL, Osborne RH, Palmer DF (1983) Cataclastic rocks of the San Gabrielfault-An expression of deformation at deeper crustal levels in the San Andreasfault zone. Tectonophysics 98:209–251.

Antonellini M, Aydin A (1995) Effect of faulting on fluid flow in porous sandstones:geometry and spatial distribution. AAPG Bull 79:642–671.

Arita K, Ohta Y, Akiba C, Marno Y (1973) Kathmandu region. In: Hashimoto S,Ohta Y, Okiba C (eds) Geology of the Nepal Himalaya. Himalaya Committee ofHokkaido University, Sapporo, pp. 99–113.

Arai T, Okusawa T, Tsukahara H (1998) Variation with depth in chemical com-position and carbon isotope radio of gas extracted from drilling cores. MonthlyEarth 21:165–170.

Austrheim H, Anderson TB (2004) Pseudotachylytes from Corsica: fossil earth-quakes from a subduction complex. Terra Nova 166:193–197.

Austrheim H, Boundy TM (1994) Pseudotachylytes generated during seismic fault-ing and eclogitation of the deep crust. Science 265:82–83.

Bailey DK (1976) Experimental methods and the uses of phase diagrams. In: BaileyDK and MacDonald R (eds) The Evolution of the Crystalline Rocks. AcademicPress, New York pp.3–100.

Barker Shaun LL (2005) Pseudotachylyte-generating faults in Central Otago, NewZealand. Tectonophysics 397:211–223.

Barriere M (1976) Flowage differentiation: Limitation of the “Bagnold effect” to thenarrow intrusions. Contrib Mineral Petrol 55:139–145.

Bates RL, Jackson JA (1980) The Glossary of Geology. 2nd ed., American GeologicalInstitute, Alexandria Virginia.

Beckholmen M (1982) Mylonites and pseudotachylites associated with thrustingof the Koli Nappes, Tannforsfalted, central Swedish Caledonides. GeologiskaForeningens I Stockholm Forhandlingar 104:23–32

Beeler NM, Tullis J, Blanpied ML, Weeks JD (1996) Frictional behavior of largedisplacement experimental faults. J Geophys Res 101:8697–8715.

Page 2: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

322 References

Bell TH (1978) Progressive deformation and reorientation of fold axes in a ductilemylonite zone: the Woodroffe Thrust. Tectonophysics 44:285–320.

Bell, TH, Etheridge MA (1973) Microstructures of mylonites and their descriptiveterminology. Lithos 6:337–348.

Berlenbach JW, Roering C (1992) Sheath-fold-like structures in pseudotachylytes.J Struct Geol 14:847–56.

Berthe D, Choukroune P, Jegouzo P (1979) Orthogneiss, mylonite and non coax-ial deformation of granites: the example of the South Armorican Shear Zone.J Struct Geol 1:31–42.

Biegel RL, Sammis CG (1989) The fractional properties of a simulated gouge havinga fractal particle distribution. J Struct Geol 11:827–846.

Bischff AA (1962) The pseudotachylyte of the Vredfort Dome. Trans Geol Soc SouthAfrica 65:207–225.

Bjørnerud M, Magloughlin JF (2004) Pressure-related feedback processes in thegeneration of pseudotachylytes. J Struct Geol 26:2317–2323.

Bossiere G (1991) Petrology of pseudotachylytes from the Alpine Fault of NewZealand. Tectonophysics 196:173–193.

Bowen NL, Aurousseau M (1923) Fusion of sedimentary rocks in drill-holes. BullGeol Soc Am 34:431–448.

Brandl G, Reimond WU (1990) The structural setting and deformation associatedwith pseudotachylite occurrences in the Palala Shear Belt and Sand River gneiss,Northern Transvaal. Tectonophysics 171:201–220.

Bryan WB (1972) Morphology of quench crystals in submarine basalts. J GeophysRes 29:5812–5819.

Byerlee JD (1978) Friction of rocks. Pure Appl Geophys 116, 615–626.Byerlee JD (1993) Model for episodic flow of high-pressure water in fault zones

before earthquakes. Geology 21:303–306.Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability

structure, Geology 24:1025–1028.Camacho A, Compoton W, McCulloch M, McDougall I (1997) Timing and exhuma-

tion of ecologite facies shear zone, Musgrave Block, Australia. J Metam Geol15:735–751.

Camacho A, McDougall I, Armstrong R, Braun J (2001) Evidence for shear heating,Musgrave Block, central Australia. J Struct Geol 23:1007–1013.

Camacho A, Vernon RH, Fitz Gerald JD (1995) Large volumes of anhydrouspseudotachylyte in the Woodroffe Thrust, eastern Musgrave Ranges, Australia.J Struct Geol 17:371–383.

Cardwell R.K, Chinn DS, Moore GF, Turcotte DL (1978) Frictional heating on afault zone of finite thickness. J R Astro Soc 52:525–530.

Carter NL, Christie JM, Griggs DT (1964) Experimental deformation and recrys-tallization of quartz. J Geol 72:687–733.

Carter NL, Tsenn MC (1987) Flow properties of continental lithosphere. Tectono-physics 136:27–93.

Central Geological Survey of Taiwan (1985) Geological map of Taiwan, 1:500,000,Taipei.

Chao ECT (1968) Pressure and temperature histories of impact metamorphosedrocks. In: French NM and Short NM (eds) Shock metamorphism of NaturalMaterials. Mono Book Corp. Baltimore, Md, pp.135–158.

Page 3: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

References 323

Chester FM, Chester JS (1998) Ultracataclasite structure and friction processesof the Punchbowl fault, San Andreas system, California. Tectonophysics295:199–221.

Chester FM, Logan JM (1986) Implication for mechanical properties of brittle faultsfrom observations of the Punchbowl fault zone, California. Pure Appl Geophys124:80–106.

Chester FM, Logan JM (1987) Composite planar fabric of gouge from the PunchbowlFault, California. J Struct Geol 9:621–634.

Chester FM, Evans JP, Biegel R (1993) Internal structure and weaking mechanismsof the San Andreas fault. J Geophys Res 98:771–786.

Chester FM, Friedman M, Logan JM (1985) Foliated cataclasites. Tectonophysics111:139–146.

Christie JM, Griggs DT, Carter NL (1964) Experimental evidence of basal slip onquartz. J Geol 72:734–756.

Christie JM, Grigs DT, Heuer AH, Nord Jr GL, Radcliffe SV, Lally JS, Fisher RM(1973) Electron petrography of Appolo 14 and 15 breccias and shock-producedanalogs. Geothim Cosmochin Acta 1 (suppl. 4): 365–382.

Clark GL, Norman AR (1993) Generation of pseudotachylyte under granulitefacies conditions, and its preservation during cooling. J Metam Geol 11:319–35.

Clough CT (1888) The geology of the Cheviot Hills. Mem Geol Surv England andWales. Sheet, 108, N.E. p.22.

Clough CT, Maufe HB, Bailey EB (1909) The cauldron-subsidence of Glen Coe, andthe associated igneous phenomena. J Geo Soc Lond 65, 611–678.

Cong B, Wang P (1995) Ultra-high-pressure metamorphic rocks in China. Episode18:91–94.

Cowan DS (1999) Do faults preserve a record of seismic slip? A field geologist’sopinion. J Struct Geol 21:995–1001.

Craddock JP. Magloughlin JF (2005) Calcite strains, kinematic indicators, and mag-netic flow fabric of a Proterozoic pseudotachylyte swarm, Minesota River valley,USA. Tectonophysics 402:153–168.

Curewitz D, Karson JA (1999) Ultracataclasis, sintering, and frictional melting inpseudotachylytes from East Greenland. J Struct Geol 21:1693–1713.7

Day R, Fuller MD, Schumidt VA (1977) Magnetic hysteresis properties of synthetictitanomagnetiteis. J Geophys Res 81:873–880.

Deer WA, Howie RA, Zussman J (1992) An introduction to rock forming minerals,2nd ed, Longman Group Ltd.

Di Toro G, Pennacchioni G (2004) Superheated friction-induced melts in zoned pseu-dotachylytes within the Adamello tonalities (Italian Southern Alps). J StructGeol 26:1783–1801.

Di Toro G, Pennacchioni G (2005) Fault plane processes and mesoscopic structure ofstrong-type seismogenic fault in tonalities (Adamello batholith, Southern Alps).Tectonophysics 402:55–80.

Di Toro G, Pennacchioni G, Teza G (2005) Can pseudotachylytes be used to inferearthquake source parameters? An example limitations in the study of exhumedfaults. Tectonophysics 402:3–20.

Di Toro G, Hirose T, Nielsen S, Pennacchioni G, Shimamoto T (2006) Naturalexperimental evidence of melt lubrication of faults during earthquakes. Science31:647–649.

Page 4: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

324 References

Doherty R (1980) Dentritic growth. In: Hargraves RB (ed) Physical Magmatic Pro-cess. Princeton University Press, Princeton pp 576–600.

Edgoose CJ, Camacho A, Wakelin-King GA, Simons BA (1993) Kulgera, NorthernTerritory: 250,000 Geological Series. Northern Territory Geological SurveyExplanatory Notes, SG 53-6, Darwin.

Engelder L, Logan JM, Handin J (1975) The sliding characteristics of sandstone onquartz fault gouge. Pure Appl Geophys 113:68–86.

Enomoto Y, Zheng Z (2001) Possible evidence of earthquake lighting accompanyingthe 1995 Kobe earthquake inferred from the Nojima fault gouge. Geophys ResLett 25:2721–2724.

Ermanovics IF, Helmstaedt H, Plant AG (1972) An occurrence of Archean pseudo-tachylite from Southeastern Manitoba. Can J Earth Sci 9:257–265.

Evans JP (1988) Deformation mechanisms in granitic rocks at shallow crustal levels.J Struct Geol 10:437–443.

Evans JP, Chester FM (1995) Fluid-rock interaction in faults of the San Andreas sys-tem: Inferences from San Gabriel fault rock geochemistry and microstructures.J Geophys Res 100:13007–13020.

Fabbri O, Lin A, Totsushige H (2000) Pseudotachylytes found in the Middle Miocenegranodiorite, Osumi Peninsula, southwest Japan. J Struct Geol 22:1015–1026.

Ferre EC, Zechmeister MS, Geissman JM, MathanaSekaran N, kocak K (2005)The origin of high magnetic remanence in fault pseudotachylites: Theoreticalconsiderations and implication for coseismic electrical currents. Tectonophysics402:125–139.

Francis PW (1972) The pseudotachylyte problem. Comments on Earth Sciences.Geophysics 3:35–53.

Francis PW, Sibson RH (1973) The Outer Hebrides thrust. In: Park RG and TameyJ (eds), The Early Prcambriam of Scotland and Related Rocks of Greenland.University of Keels, Keele, pp.95–104.

Friedman M, Logan JM, Rigert JA (1974) Glass-indurated quartz gouge in sliding-friction experiments on sandstone. Geol Soc Am Bull 85:937–942.

Fukuchi T (2003) Strong ferromagnetic resonace signal and magnetic susceptibil-ity of the Nojima pseudotachylyte in Japan and their implication for coseismicelectronmagnetic changes. J Geophys Res 108:2312.

Fukuchi T, Imai N (1998) Resetting experiment of E’ centres by natural faulting-The case of the Nojima Earthquake Fault in Japan. Quat Geochro17:1063–1068.

Garrels RM, Christ CL (1965) Solutions, Minerals, and Equilibrium. Harper & Row,New York pp.450.

Goode ADT (1979) Comments and reply on ‘Are pseudotachylytes products of frac-tion or fusion?’ Geology 7:162.

Goodwin LB, Reynolds S, Ferranti CJ (1998) Pseudotachylyte from a metamor-phic core complex. In: Snoke AW, Tullis J and Todd VR (eds) Fault-relatedrocks-A photographic atlas, Princeton University Press, Princeton, New Jersey,pp 122–123.

Grass BP (1990) Tektites and microtektites: key facts and inferences. Tectonophysics171:393–404.

Gray CM (1978) Geochronology of granulite facies gneisses in the western MusgraveBlock, Central Australia. J Geol Soc Austra 25:403–414.

Griggs D, Handin J (1960) Observations on fracture and a hypothesis of earthquakes,In: Rock Deformation (a symposium). Geol Soc Am Mem 79:347–373.

Page 5: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

References 325

Grocott J (1981) Fracture geometry of pseudotachylyte generation zones: a study ofshear fractures formed during seismic events. J Struct Geol 3:169–178.

Gupta LN (1967) Pseudotachylites from Central Gneisses, Dharmsala, Himalayas.Indian Mineral 8:75–77.

Hacker TM, Batschbacher L, Webb L, Dong SW (1995) What brought them up?Exhumation of the Dabieshan ultrahigh-pressure rocks. Geology 23:743–746.

Hamilton DL, Wayne Burnhrm C, Osborn EF (1964) The solubility of water andeffects of oxygen fugacity and water content on crystallization in mafic magmas.J Petrol 5:21–39.

Haines PW, Jenkins RJF, Kelley SP (2001) Pleistocene glass in the Australiandesert: The case for an impact origin. Geology 29:899–902.

Han R, Shimamoto T, Hirose T, Ree J, Ando J (2007) Ultralow friction of carbonatefaults caused by thermal decomposition. Science 316:878–881.

Handy M. R, 1990. The solid-state flow of polymineralic rocks. J Geophys Res95:8647–8661.

Hanmer S (1988) Great Slave Lake Shear Zone, Canadian Shield: reconstructuedvertical profile of a crustal-scale fault zone. Tectonophysics 149:245–264.

Harris DM (1981) The concentration of CO2 in submarine tholeiitic basalt. J Geol89:689–701.

Heilbronner R, Keulen N (2006) Grain size and grain shape analysis of fault rocks.Tectonophysics 427:199–216.

Henley RW, Ellis A (1983) Geothermal systems ansient and modern: a geochemicalreview. Earth Sci rev 19:1–50.

Hickman S, Sibson RH, Bruhn R (1995) Introduction to special section: Mechanicalinvolvement of fluids in faulting. J Geophys Res 100:12831–12840.

Higgins, MW (1971) Cataclastic rocks. USGS Professional Paper, 687, 70pp.Hill DP, Eaton JP, Jones LM (1990) Seismicity, 1980–86. In: The San Andreas Fault

system, California (edited by Wallace, R.E.), U.S. Geological Survey ProfessionalPaper 1515, United States Government Printing Office, Washington, pp115–152.

Hiraga H, Shimamoto T (1987) Textures of sheared halite and their implications forthe seismogenic slip of deep faults. Tectonophysics 144:69–86.

Hirose T, Shimamoto T (2003) Fractal dimension of molten surfaces as a possibleparameter to infer the slip-weakening distance of the faults from natural pseu-dotachylyte. J Struct Geol 25:1569–1574.

Hirose T, Shimamoto T (2005) Growth of molten zone as a mechanism of slip weak-ening of simulated faults in gabbro during frictional melting. J Geophys Res110:1–19.

Hobbs BE, Ord A, Teyssier C (1986) Earthquakes in the ductile regime? PAGEOPH,124:309–336.

Holland TH (1900) The Charnockite Series, A Group of Archean Hypersthenic Rocksin Peninsular India. Mem Geol Surv India 28:119–249.

Hsu KJ (1991) Exhumation of high-pressure metamorphic rocks. Geology19:108–110.

Hu JC, Angelier J, Yu SB (1997) An interpretation of the active deformation ofsouthern Taiwan based on numerical simulation and GPS studies. Tectono-physics 274:145–169.

Huang CY, Lin CW, Chen WS, Chen YG, Yu SB, Chia IP, Lu MD, Hou CS,Wang YS (1999) Seismic geology of the Chi-Chi earthquake. In: Huang et al.

Page 6: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

326 References

(Ed), Field trip guide to seismic geology. International Workshop on the TaiwanChi-Chi earthquake of September 21, Taipei, pp1–11.

Hung LJ, Lee CT, Lin ML, Jeng FS. Chen CH (2000) A flying mountain and dam-uplake (Tsao-ling rockslides). Sino-Geotech 77:5–18.

Ikesawa E, Sakaguchi A, Kimura G (2003) Pseudotachylyte from an ancient accre-tionary complex: evidence for melt generation during seismic slip along a masterdecollement? Geology 31:637–640.

Irouschek, A. and Huber, M (1982) Pseudotachylite zones in the Leventina Gneiss(Lepontine Alps, Ticino, Switzerland). Schweizerische Mineral Petrog Mitt(Schweiz. Minerl. Petrogr. Mitt.) 62:313–325.

Jackson JA (1997) Glossary of Geology. American Geological Institute. AlexandriaVirginia

Japan Society of Engineering Geology (JSEG) (1999) Groundwater fluctuationcaused by the earthquake. Engineer Geol Jpn Soc Engineer Geol 37:351–358.

Janssen C, Michel W, Bau M, Luders V, Muhle K (1997) The North Anatolian faultzone and the role of fluids in seismogenic deformation. J Geol 105:387–403.

Jehu TJ, Craig RM (1923) Geology of the Outer Hebrides. Part I-The Barra Isles.Trans Roy Soc Edin LIII, Part II, 419–441.

Jensen V (1971) Early Precambrian impact structure and associated hyalomylonitesnear Agto, West Greenland. Nature 233:188–190.

Kanamori H, Heaton TH (1999) Microscopic and macroscopic physics of earth-quakes. USGS Open-file Report 00-129, 1–42.

Kanamori H, Stewart DS (1976) Modes 0f strain release along the Gibbs FractureZone, Mid-Atlantic Ridge. Phys Earth Planet Interiors 11:312–332.

Kanamori H, Anderson DL, Heaton TH (1998) Frictional melting during the ruptureof the 1994 Bolivian earthquake. Science 279:839–842.

Kanaori Y (1982) Fracturing mode analysis and relative dating of faults by surfacetextures of quartz grains from fault gouges. Engineer Geol 19:261–281.

Kanaori Y, Kawakami S, Yairi K (1991) Microstructure of deformed biotite definingfoliation in cataclasite zones in granite, central Japan. J Struct Geol 13:777–785.

Kano K, Sato H (1988) Foliated fault gouges: examples from the shear zones of theSakai-toge and Narai faults, central Japan. J Geol Soc Jpn 94:453–456.

Kano K, Lin A, Fukui A, Tanaka H (2004) Pseudotachylytes of crushing originfrom the Shimotsuburai fault of the Itoigawa-Shizuoka Tectonic Line active faultsystem, central Japan. J Geol Soc Jpn 110:779–790.

Karson JA, Brooks CK, Storey M, Pringle MS (1998) Tertiary faulting and pseu-dotachylytes in the East Greenland volcanic rifted margin: Seismogenic faultingduring magmatic construction. Geology 26:39–42.

Kawamoto E (2004) Clast-size of impact-generated pseudotachylite from VredefortDome, South Africa. J Struct Geol 26:1419–1426.

Kennedy LA, Spray JG (1992) Frictional melting of sedimentary rock during high-speed diamond drilling: an analytical SEM and TEM investigation. Tectono-physics 204:323–337.

Kennedy BM, Kharaka YK, Evans WC, Elwood A, DePaolo D, Thordsen J, AmbatsG, Mariner RH (1997) Mantle fluids in the San Andreas fault system, California.Science 278:1278–1281.

Kennedy GC, Wasserburg GJ, Heard HC, Newton RC (1962) The upper three-phaseregion in the SiO-H2O. Am J Sci 260:501–521.

Page 7: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

References 327

Kerrich R, La Tour TE, Willmore L (1984) Fluid participation in deep fault zones:evidence from geological, geochemical, and 18O/16O relations. J Geophys Res89:4331–4343.

Kharaka, Y, Thordsen JJ, Evens, WC (1999) Geochemistry and hydromechanicalinteractions of fluids associated with the San Andreas Fault System, California.In: Haneberg W, Mozley PS, Moore JC, Goodwin LB (eds), Faults and surfacefluid flow in the shallow crust. Geophys Mono 113, American Geophysical Union,Washington, DC, pp129–145.

Kiefer SW, Phakey PP, Christie JM (1976) Shock process in porous quartzite:transmission electron microscope observation and theory. Contrib Mineral Petrol59:41–93.

Kikuchi M (1995) Source mechanism of the 1995 Kobe Earthquake inferred fromteleseismic data. Chisitsu News 486:12–15.

Kikuchi M (2003) Realtime seismology. University of Tokyo Press, TokyoKikuchi M, Kanamori H (1996) Rupture process of the Kobe, Japan, earthquake of

Jan. 17, 1995, determined from teleseismic body waves. J Phys Earth 44:429–436.Killick AM (1990) Pseudotachylite generated as a result of a drilling “burn in”.

Tectonophysics 171:221–227.Killick AM, Roering C (1998) An estimate of the physical conditions of pseudo-

tachylite formation in the West Rand Goldfield, Witwatersrand Basin, SouthAfrica. Tectonophysics 284:247–259.

Klug HP, Alexander LE (1954) X-ray diffraction procedures. Chapman and Hall,Ltd., London

Koch N, Masch L (1992) Formation of Alpine mylonites and pseudotachylytes atthe base of the Silvretta nappe, Eastern Alps. Tectonophysics 204:289–306.

Komar PD (1972) Flow differentiation in igneous dikes and sills: profiles of velocityand phenocryst concentration. Geol Soc Am Bull 83:3443–3448.

Krumbein WC (1941) Measurement and geologic significance of shape and roundnessof sedimentary particles. J Sedi Petrol 11:64–72.

Lachenbruch AH (1980) Frictional heating, fluid pressure, and the resistance to faultmotion. J Geophys Res 85:6097–6112.

Lin A (1989) ESR and TL dating of active faults in the Iida area of the southernIna valley. Active Fault Res 7:49–62.

Lin A (1991) Origin of fault-generated pseudotachylites. Ph. D. Thesis, The Univer-sity of Tokyo, Tokyo

Lin A (1992) Glassy and microlitic pseudotachylytes from the Fuyun Fault Zone,northwest China. 29th IGC, Kyoto, Abstract, 169.

Lin A (1994a) Glassy pseudotachylyte veins from the Fuyun fault zone, northwestChina. J Struct Geol 16:71–83.

Lin A (1994b) Microlite morphology and chemistry in pseudotachylite, from theFuyun fault zone, China. J Geol 102:317–29.

Lin A (1996) Injection veins of crushing-originated pseudotachylyte and fault gougeformed during seismic faulting. Engineer Geol 43:213–224.

Lin A (1997a) Fluidization and rapid injection of crushed fine-grained materials infault zones during episodes of seismic faulting. In: Zheng Y, Davis GA, Yin A(eds) Proceedings of the 30th International Geological Congress, VSP 14:27–40.

Lin A (1997b) Ductile deformation of biotite in foliated cataclasites, Iida-Matsukawafault, central Japan. J Asian Earth Sci 15:407–411.

Page 8: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

328 References

Lin A (1997c) Instantaneous-shaking liquefaction induced by the M7.2 1995Southern Hyogo Prefecture earthquake. Geology 25:435–438.

Lin A (1997d) Roundness of fragments in pseudotachylytes as an indicator of fric-tional melting. Struct Geol J Tectonic Res Group Jpn 42:69–76.

Lin A (1998) Glassy and microlitic pseudotachylytes. In: Snoke AW, Yullis J,Todd VR (eds) Fault-related Rocks-A Photographic Atlas. Princeton Univer-sity Press, Princeton, New Jersey, pp.112–121.

Lin A (1999a) S-C cataclasite in granitic rock. Tectonophysics 304, 257–273.Lin A (1999b) Roundness of fragments in pseudotachylytes as an indicator of fric-

tional melting. J Struct Geol 21:473–8.Lin A (2000) Cataclastic rocks and the rheology of seismogenic fault in the upper

crust. Monthly Earth 22:52–57.Lin A (2001) S-C fabrics developed in cataclastic rocks from the Nojima fault

zone, Japan and their implications for tectonic history. J Struct Geol 23:1167–1178D

Lin A (2006a) Recurrent large subduction zone earthquakes in the Nankai-Surugatrough: evidence from submarine liquefactions. Geophys Res Lett 33: L20314,doi:10.1029/2006GL027952.

Lin A (2006b) Interactive comment on “Earthquake fault rock indicating a coupledlubrication mechanism” by S. Okamoto et al. eEarth Discuss 1:S70–S7.

Lin A (2007) Seismic slipping in the lower crust, inferred from granulite-relatedpseudotachylyte in the Woodroffe thrust, central Australia. Pure Appl Geophys(in press).

Lin A, Ge S (1994) Fault-related glassy pseudotachylyte from the Fuyun fault zone,Northwest China . Struct Geol J Tectonic Res Group Jpn 39:9–33.

Lin A, Lin, S (1998) Tree damage and the surface displacement: 1931 Ms Fuyunearthquake. J Geol 106:749–755.

Lin A, Nishikawa M (2007) Coseismic lateral offsets of surface rupture zone producedby the 2001 Mw 7.8 Kunlun earthquake, Tibet from the IKONOS and QuickBirdimagery. Intern’l J Remote Sens 28:2431–2445.

Lin A, Shimamoto T (1994) Chemical composition of experimentally-generatedpseudotachylytes. Struct Geol J Tectonic Res Group Jpn 39:84–101.

Lin A, Shimamoto T (1998) Selective melting processes as inferred fromexperimentally-generated pseudotachylytes. J Asian Ear Sci 16:533–545.

Lin A, Uda S (1995) Segmentation and rupture propagation of the Nojima earth-quake fault. Zisin, J Seism Soc Jpn 48:375–86.

Lin A, Uda S (1996a) Morphological characteristics of the earthquake surface rup-tures which occurred on Awaji Island, associated with the 1995 Southern HyogoPrefecture Earthquake. Island Arc 5:1–15.

Lin A, Uda S (1996b) Tectonic history of the Akashi strait and the fault modelassociated with 1995 the Southern Hyogo Prefecture Earthquake. Engineer GeolJ. Jpn Soc 37:160–171.

Lin A, Chen A, Ouchi T, Liau C, Lin C, Lin P, Lee T (2001a) Frictional melting dueto coseismic landsliding during the 1999 Chi-Chi (Taiwan) ML 7.3 earthquake.Geophys Res Lett 28:4011–4014.

Lin A, Fu B, Guo J, Zeng Q, Dang G, He W, Zhao, Y (2002a) Co-seismic strike-slipand rupture length produced by the 2001 Ms 8.1 Central Kunlun earthquake,Science 296:2015–2017.

Page 9: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

References 329

Lin A, Guo J, Fu B (2004) Co-seismic mole-track structures produced by the 2001Ms 8.1 Central Kunlun earthquake, China. J Struct Geol 26:1511–1519.

Lin, A, Kikuchi M, Fu B (2003a) Rupture segmentation and process of the2002 Mw 7.8 Central Kunlun earthquake, China. Bull Seism Soc Am 93:2477–2492.

Lin A, Lee C, Maruyama T, Chen A (2005a) Meso- and micro-structures of seismicshear zone related with the 1999 Mw 7.6 Chi-Chi earthquake, Taiwan. Bull SeismSoc Am 95:486–501.

Lin A, Maruyama T, Kobayashi K (2007) Tectonic implications of damage zone-related fault-fracture networks revealed in drill core through the Nojima fault,Japan. Tectonophysics 403 (in press).

Lin A, Maruyama T, Stallard A, Michibayashi K, Camacho A, Kano K (2005b).Propagation of seismic slip from brittle to ductile regimes: evidence fromthe pseudotachylyte of Woodroffe thrust, central Australia. Tectonophysics402:21–35.

Lin A, Matsuda T, Shimamoto T (1994) Pseudotachylyte from the Iida-Matsukawafault, Nagano Prefecture: Pseudotachylyte of crush origin? Struct Geol J Tec-tonic Res Group Jpn 39:51–64.

Lin A, Miyata T, Wan T (1998a) Tectonic characteristics of the central segment ofthe Tancheng-Lujiang fault zone, Shandong Peninsula, eastern China. Tectono-physics 293:85–104.

Lin A, Ouch T, Chen A, Maruyama T (2001b) Nature of the fault jog inferred froma deformed well in the Northern Chelungpu surface rupture zone, related to the1999 Chi-Chi, Taiwan, ML 7.3 earthquake. Bull Seism Soc Am 91:959–965.

Lin A, Ouch T, Chen A, Maruyama T (2001c) Co-seismic displacements, foldingand shortening structures along the Chelungpu surface rupture zone occurredduring the 1999 Chi-Chi (Taiwan) earthquake. Tectonophysics 330:225–244.

Lin A, Shigetomi M, Shimamoto T, Miyata T, Takemura K, Tanaka H, Uda S,Murata A (1998b) Tectonic history of the Nojima fault zone inferred from thefault rocks in Awaji Island, Japan. Monthly Earth 21:208–212.

Lin A, Shimamoto T, Iwamori H (1992) Experimentally-generated pseudotachylytes.29th IGC, Kyoto, Abstract, 167.

Lin A, Shimamoto T, Maruyama T, Shigetomi M, Miyata T, Takemur K, Tanaka H,Uda S, Murata H (2001d) Comparative study of cataclastic rocks from a drillcore and outcrops of the Nojima Fault zone on Awaji Island, Japan. IslandArc10:368–380.

Lin A, Sun Z, Yang Z (2002b) Pseudotachylytes generated in the Dahezhen brittle-ductile shear zone in the Tongbei-Dabie orogenic belt, China and their signifi-cance for seismo-tectonics. Acta Geol Sinica 76:373–378.

Lin A, Sun Z, Yang Z (2003b) Multiple generations of pseudotachylyte in the brittleto ductile regimes, Qinling-Dabie Shan ultrahigh-pressure metamorphic com-plex, central China. Island Arc 12:423–435.

Lin A, Tanaka N, Uda S, Satish-kumar M (2003c) Repeated coseismic infiltration ofmeteoric and sea water into deep fault zones: a case study of the Nojima faultzone, Japan. Chem Geol 202:139–153.

Lin A, Uda S, Miyata T, Otsuki K, Minagawa J (1996) A measurement and dis-cussion of the afterslip on the Nashimoto location along the Nojima EarthquakeFault. J Jpn Soc Engineer Geol 37:415–419.

Page 10: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

330 References

Lin CY, Fan FT (1984) Microstructural analysis of Fuyun Fault Zone. Xingjiang,China. J Seism 2:1–8.

Lister GS, Snoke, AW (1984) S-C Mylonites. J Struct Geol 6:617–638.Liu G, Zhang S, You Z, Suo S, Zhang Z (1993) Major metamorphic complexes in

Qinling orogenic belt and their metamorphic evolution. Geologic Publish HouseBeijing, Beijing

Lofgren G (1971a) Spherulitic textures in glassy and crystalline rocks. J GeophysRes 23:5635–5648.

Lofgren G (1971b) Experimentally produced devitrification textures in natural rhy-olitic glass. Geol Soc Am Bull 82:116–124.

Lofgren G (1974) An experimental study of plagioclase crystal morphology: isother-mal crystallization. Am J Sci 274:243–273.

Lofgren G (1980) Experimental studies on the dynamic crystallization of silica melts.In: Hargraves RB (ed) Physical Magmatic Process, Princeton University Press,Princeton, New Jersey, pp 487–551.

Logan JM, Friedman M, Higgs NG, Dengo C, Shimamoto T (1979) Experimentalstudies of si,ulated gouge and their application to studies of natural fault zones.USGS Open-file Report 79-1239: 305–343.

Logan JM, Higgs NG, Friedman M (1985) In: Carter NL, Friedman M, Logan JM,Sterns DW (eds) Mechanical Behavior of Crustal Rocks, The Handine Volume,AGU Geophys. Monogr 24, Am Geophys Union, Washington. D.C

Logan JM, Higgs NG, Friedman M (1981) Laboratory studies on natural gouge fromthe U.S.Geological Survey Dry Lake Valley No.1 Well, San Andreas fault zone.In Carter NL, Friedman M, Logan JM, Sterns DW (eds) Mechanical Behavior ofCrustal Rocks. The Handine Volume, AGU Geophys. Monogr 24, Am GeophysUnion, Washington. D.C pp.121–134.

Lund MG, Austrheim H (2003) High-pressure metamorphism and deep-crustal seis-micity: evidence from contemporaneous formation of pseudotachylytes and eclog-ite facies coronas. Tectonophyscs 372:59–83.

Macaudiere J, Brown W.L (1982) Transcrystalline shear fracturing and pseudo-tachylite generation in a meta-anorthosite (Harris, Scotland). J Struct Geol4:395–406.

Macaudiere J, Brown WL, Ohnenstetter D (1985) Microcrystalline textures result-ing from rapid crystallization in a pseudotachylite melt in a meta-anorthosite.Contrib Mineral Petrol 89:39–51.

Macpherson GJ (1984) A model for predicting the volumes of vesicles in submarinebasalts. J Geol 92:73–82.

Maddock RH (1983) Melt origin of fault-generated pseudotachylytes demonstratedby textures. Geology 11:105–108.

Maddock RH (1992) Effects of lithology, cataclasis and melting on the compositionof fault-generated pseudotachylytes in Lewisian gneiss, Scotland. Tectonophysics204:261–278.

Maddock RH, Grocott J, Van Nes M (1987) Vesicles, amygdales and similar struc-tures in fault-generated pseudotachylytes. Lithos 20:419–432.

Magloughlin JF (1989) The nature and significance of pseudotachylite fromthe Nason terrane, North Cascade Mountains, Washington. J Struct Geol11:907–917.

Page 11: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

References 331

Magloughlin JF (1992) Microstructural and chemical changes associated withcataclasis and frictional melting at shallow crust levels: the cataclasite- pseu-dotachylyte connection. Tectonophysics 204:243–260.

Magloughlin JF (2005) Immiscible sulfide droplets in pseudotachylyte: Evidence forhigh temperature (<1200˚C) melts. Tectonophysics 402:81–91.

Magloughlin JF, Spray JG (1992) Frictional melting process and products in geo-logical materials: introduction and discussion. Tectonophysics 204:197–206.

Magloughlin JF (2007) Bubble formation, collapse, and infilling in pseudotachylyte:formation of ‘escape structure’. J Geol (in press).

Mandelbrot BB (1983) Fractals geometry of nature, Freeman, San Francisco, Calif.,2nd ed.

Marone C, Kilgore B (1993) Scaling of the critical slip distance for seismic faultingwith shear strain in fault zones. Nature 362:628–621.

Marone C, Scholz C.H (1989) Particle-size distribution and microstructures withsimulated fault-gouge. J Struct Geol 11:199–814.

Maruyama S, Liou JG, Zhang RY (1994) Tectonic evolution of ultrahigh-pressure(UHP) and high-pressure (HP) metamorphic belts from central China. IslandArc 3:117-121.

Maruyama T, Lin A (2004) Shear sense inversion of the strike-slip active faults inthe southwestern Japan, inferred from offsets of topographic features and faultrock fabrics. Tectonophysics 383:45–70.

Masch L (1979) Deformation and fusion of two fault rocks in relation to their depth offormation: thee hyalomynolite of Langtang (Himalaya) and the pseudotachylyteof the Silvretta Nappe (Eastern Alps). Proc. Conf. VIII-analysis of Actual FaultZone in Bedrock. USGS Menlo Park, California, pp 528–533.

Masch L, Preuss E (1977) Das volkommen ded Hyalomylonites von Langtang,Himalaya (Nepal). N Jb Miner Abh 129, 292–311.

Masch L, Wenk HR, Preuss E (1985) Electron microscopy study of hyalomylonites-evidence for frictional melting in landslides. Tectonophysics 115:131–160.

Matsuo S (1997) Geochemistry. Koudansha Scientific Co. Ltd., Tokyo, 265 pp.McKenzie D, Brune JN (1972) Melting on fault planes during large earthquakes.

R Astro Soc Geophys J 29:65–78.McNulty BA (1995) Pseudotachylyte generated in semi-brittle and brittle regimes,

Bench Canyon shear zone, central Sierra Nevada. J Struct Geol 11:1507–1521.Means WD (1987) A newly recognized type of slickenside striation. J Struct Geol

9:585–590.Menendez B, Zhu W, Wong T (1996) Micromechanics of brittle faulting and cata-

clastic flow in Berea sandstone. J Struct Geol 18:1–16.Mitra G (1984) Brittle to ductile transition due to large strains along the White

Rock thrust, Wind River mountains, Wyoming. J Struct Geol 6:51–61.Mizuno K, Hatori H, Sangawa A, Takahashi Y (1990) Geology of Akashi district,

1:50,000 (12), No.83, pp.90, Quadrangle series, Okayama 9.Nakamura N, Hirose T, Borradaile G.J (2002) Laboratory verification of submicron

magnetite production in pseudotachylytes: relevance for paleointensity studies.Earth Planet Sci Lett 201:13–18.

Nie S, Yin A, Rowley DB, Jin Y (1994) Exhumation of the Dabie Shan ultra-high-pressure rocks and accumulation of the Songpan-Ganzi flisch sequence, centralChina. Geology 22:999–1002.

Page 12: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

332 References

Noda H, Shimamoto T (2005) Thermal pressurization and slip weakening distanceof a fault: an example of the Hanaore fault, Southwest Japan. Bull Seism SocAm 95:1224–1233.

Nyman MW, Law RD, Smelik EA (1992) Cataclastic deformation mechanism forthe development of core-mantle structures in amphibole. Geology 20:455–458.

Obata M, Karato S (1995) Ultramafic pseudotachylite from the Balmucca peridotite,Ivrea-Verbano zone, northern Italy. Tectonophysics 242:313–328.

O’Hara KD (1992) Major- and trace-element constraints on the petrogenesis ofa fault-related pseudotachylyte, western Blue Ridge province, North Carolina.Tectonophysics 204:279–288.

O’Hara KD (2001) A pseudotachylyte geothermometer. J Struct Geol 23:1345–1357.O’Hara KD, Sharp ZD (2001) Chemical and oxygen isotope composition of natural

and artificial pseudotachylyte: role of water during frictional fusion. Earth PlanetSci Lett 184:393–406.

O’Hara KD, Mizoguchi K, Shimamoto T, Hower J (2006) Experimental frictionalheating of coal guuge at seismic slip rates: Evidence for devolatilization andthermal pressurization of gouge fluids. Tectonophysics 424:109–118.

Ohtomo Y, Shimamoto T (1994) Significance of thermal fracturing in the generationof fault gouge during rapid fault motion: An experimental verification. StructGeol J Tectonic Res Group Jpn 39:135–144.

Okamoto Y, Kitamura M (1990) A mineralogical study of pseudotachylytes fromScotland (Abstract). Annual Meeting Mineral Soc Jpn, Tokyo, PB5:47.

OkamotoY, Kitamura M (1996) Melting process of pseudotachylite in granitic gneissfrom Northwest Scotland. Struct Geol J Tectonic Res Group Jpn 39:35–41.

Okamoto S, Kimura G, Yamaguchi H (2006) Earthquake fault rock including acoupled lubrication mechanism. eEarth Discuss 1:135–149.

Okay O, Sengor AMC (1992) Evidence for intracontinental thrust-related exhuma-tion of the ultra-high-pressure rocks in China. Geology 20:411–414.

Okay O, Su S, Sengor AMC (1989) Coesite from the Dabie Shan ecologites, centralChina. Euro J Mineral 1:595–558.

Okimura T, Yoshita N, Tori N (2000) Study of landslides. Report of the reconnais-sance team for 921 Chi-Chi (Taiwan) earthquake. Research Center for UrbanSafety and Security, Kobe University, Kobe, pp 73–81.

O’neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalentmetal carbonates. J Chem Phys 51:5547–5558.

Osada T, Tokugawa T, Ichibashi H, Kayaki T (1997) Groundwater fluctuationsin the northern part of Awaji Island after Hyogoken-Nanbu Earthquake. 1997Annual meeting Abstract, Jpn Soc Engineer Geol pp. 237–240.

Otsuki K, Monzawa N, Nagase T (2003) Fluidization and melting of fault gouge dur-ing seismic slip: Identification in the Nojima fault zone and implication for localearthquake mechanisms. J Geophys Res 108:2192 doi:10.1029/2001JB001711.

Ozawa K, Takizawa S (2007) Amorphous material formed by mechanochemical effectin naural pseudotachylyte of crushing origin: a case study of the Iida-Matsukawafault, Nagano Prefecture, central Japan. J Struct Geol (in press).

Park RGM (1961) The pseudotachylite of the Gairloch district, Ross-Shire, Scotland.Am J Sci 259:542–550.

Passchier CW (1982) Pseudotachylyte and the development of ultramylonite bandsin the Saint-Barthelemy Massif, French Pyrenees. J Struct Geol 4:69–79.

Page 13: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

References 333

Passchier CW (1984a) The generation of ductile and brittle shear bands in alow-angle mylonite zone. J Struct Geol 6:273–281.

Passchier CW (1984b) Fluid inclusions associated with the generation of pseudo-tachylyte and ultramylonite in the French Pyrenees. Bull Meneral 107:307–315.

Passchier CW, Trouw RAJ (1996) Microtectonics, Springer-Verlag, Berlin,pp.189.

Peterman ZE, Day W (1989) Early Proterozoic activity on Archan faults in the west-ern Superior province-Evidence from pseudotachylite. Geology 17:1089–1092.

Philpotts AR (1964) Origin of pseudotachylites. Am J Sci 262:1008–1035.Piper JDA, Poppleton TJ (1988) Paleomagnetic dating of pseudotachylyte formation

in the Lewissian complex. Scott J Geol 24:263–272.Platt JP (1986) Dynamics of orogenic wedges and the uplift of high-pressure

metamorphic rocks. Bull Geol Soc Am 97:1037–1053.Platt JP, Vissers RLM (1980) Extensional structures in anisotropic rocks. J Struct

Geol 2:397–410.Plyusnina SJ (1982) Geothermometry and geobarometry of plagio-hornblende

bearing assemblages. Contrib Mineral Petrol 80:130–136,Ray SK (1999) Transformation of cataclastically deformed rocks to pseudotachylyte

by pervasion of frictional melt: inference from clast-size analysis. Tectonophysics301:283–304.

Ray SK (2004) Melt-clast interaction and power-law size distribution of clasts inpseudotachylytes. J Struct Geol 26:1831–1834.

Ramsey JG (1980) Shear zone geometry: a review. J Struct Geol 2:83–89.Regional Geologic Survey Team of the Xingjiang Geologic Bureau (1978) Geological

map of the Fuyun area. Urumuqi, Geologcal Press, BeijingResearch Group for Active Faults of Japan (RGAFJ) (1991) Active faults in Japan:

sheet maps and inventories. The University of Tokyo Press, TokyoResearch Group of Sedimentary Rocks of Japan, 1983. Study method of sedimentary

rocks-conglomerate, sandstone, and mudstone. Research Group of Geoscience(Eds.), Chigakushoshyo, Tokyo

Reynolds DR (1954) Fluidization as a geologic process, and its bearing on the prob-lem of intrusive granites. American Journal of Sciences, 252, 577–614.

Reynolds SJ, Goodwin LB, Lister GS, Ellzey PD, Ferranti CJ (1998) Development ofuntramylonite from pseudotachylyte in a metamorphic core complex. in: Fault-related rocks-A photographic atlas (eds: Snoke,A.W., Tullis, J. and Todd, V.R.),Princeton University Press, Princeton, New Jersey, pp124–125.

Rice JR (2006) Heating and weakening of faults during earthquake slip. J GeophysRes 111:B05311, doi:10.1029/2005JB004006.

Richards PG (1976) Dynamic motions near an earthquake fault: A three dimensionalsolution. Bull Seism Soc Am 66:1–32.

Ross CS (1962) Microlites in glassy volcanic rocks. Am Mineral 47:723–740.Rowe CD, Moore JC, McKeiman AW (2005) Large-scale pseudotachylytes and

fluidized cataclasites from an ancient subduction thrust fault. Geology 33:937–940.

Rubie DC (1984) A thermal-tectonic model for high-pressure metamorphism anddeformation in the Sesia zone, Western Alps. J Geol 92:21036.

Rutter EH, Maddock RH, Hall SH, White SH (1986). Comparative microstructuresof natural and experimentally produced clay-bearing fault gouge. Pure ApplGeophys 124:3–30.

Page 14: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

334 References

Sammis CG, King G, Biegel RL (1987) The kinematics gouge deformation. PureAppl Geophys 125:777–812.

Sammis CG, Osborne RH, Anderson JL, Banerdt M, White P (1986) Self-similarcataclasis in the formation of fault gouge. Pure Appl Geophys 124:53–78.

Sato H (1975) Diffusion coronas around quartz xenocrysts in andesite and basaltfrom Tertiary volcanic region in northeastern Shikoku, Japan. Contrib MinearlPetrol 50:49–64.

Sato T, Takahashi M (1997) Geochemical changes in anomalously dischargedgroundwater in Awaji Island after the 1995 Kobe earthquake. Chikyukagaku(Geochemistry) 31:89–98.

Schmid SM, Handy MR (1991) Towards a genetic classification of fault rocks:Geological usage and tectonophysical implications. In “Controversies in mod-ern geology” (Misler, Q.W. et al., Eds), Acadamic Press, London, pp.339–361.

Scholz CH (1988a) The brittle-plastic transition and the depth of seismic faulting.Geol. Rundschau 77:319–328.

Scholz CH (1988b) Mechanisms of seismic quiescences. Pure Appl Geophys126: 701–18.

Scholz CH (1992) Weakness amiddt strength. Nature 359:677–678.Scholz CH (1998) Earthquake and friction law. Nature 391:37–42.Scholz CH (2002) The mechanics of earthquakes and faulting (2nd, ed). Cambridge

University Press, CambridgeScholz CH, Sykes LR, Aggarwal YP (1973) Earthquake prediction: a physical basis.

Science 181:803–811.Schwarzman EC, Meyer CE, Wilshire HG (1983) Pseudotachylite from the Vredefort

Rig, South Africa, and the origin of some lunar breccias. Geol Soc Am Bull94:926–935.

Scott JS, Drever HI (1953) Frictional fusion along a Himalayan thrust. ProceedR Soc Edin 65:121–142.

Sen SK (1959) Potassium content of natural plagioclases and origin of antiperthites.J Geol 67: 479–495.

Sengor AMC (1985) East Asian tectonic collage. Nature 218:16–17.Seward D, Sibson RH (1985) Fission-track age for a pseudotachylite from the Alpine

fault zone, New Zealand. J Geol Geophys 28:553–557.Shand SJ (1916) The pseudotachylyte of Parijs (Orange Free State), and its re-

lation to ‘trap-shotten gneiss’ and ‘flinty crush rock’. Quart J Soc Lond 72:198–221.

Shigetomi M, Lin A (1999) Seismic events inferred from the layering structures offault gouge and pseudotachylytes in the Nojima fault zone, Japan. Struct GeolJ Tectonic Group Jpn 43:33–42.

Shimada K, Kobari Y, Okamoto T, Takagi H, Saka Y (2001) Pseudotachylyte veinsassociated with granitic cataclasite along the Median Tectonic Line, eastern KiiPeninsula, Southwest Japan. J Geol Soc Jpn 107:117–128.

Shimamoto T (1986) Transition between frictional slip and ductile flow for haliteshear zones at room temperature. Science 231:711–714.

Shimamoto T (1988) The origin of mynolites and a new fault model. Monthly Earth10:131–132.

Shimamoto T (1989) The Origin of S-C mylonite and a new fault zone model.J Struct Geol 11:51–64.

Page 15: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

References 335

Shimamoto T, Arai T (1997) Field survey on the massive pseudotachylytes in theMusgrave Range, central Autralia and studies of earthquake generating process(A primary report). J Geogr106:419–426.

Shimamoto T, Lin A (1994) Is frictional melting equilibrium of non-equilibriummelting? Struct Geol J Tectonic Group Jpn 39:79–84.

Shimamoto T, Logan JM (1981) Effects of the simulated fault gouge on the slidingbehavior of Tennessee sandstone, nonclay gouge. J Geophys Res 86:2902–2914.

Shimamoto T, Logan JM (1986) Velocity-dependent behavior of simulated haliteshear zones: an analog for silicates. Geophys Monogr Ser 37:49–63.

Shimamoto T, Nagahama H (1992) An argument against the crush origin pseu-dotachylytes based on the analysis of clast-size distribution. J Struct Geol 14:999–1006.

Shimamoto T, Tsutsumi T (1994) A new rotary-shear high-speed frictional testingmachine: its basic design and scope of research. Struct Geol J Tectonic GroupJpn 39:65–78.

Shimamoto T, Tsutsumi T, Hirose T, Aizawa Y, Sone H, Uehara S, Tanikawa W,Noda H, Mizoguchi,K (2006) Friction, deformation and fluid-flow apparatusesat Kyoto University Struct Geol J Tectonic Group Jpn 49:49–71.

Sibson RH (1973) Interactions between temperature and pore-fluid pressure duringearthquake faulting and a mechanism for partial or total stress relief. Nature243:66–68.

Sibson RH (1975) Generation of pseudotachylite by ancient seismic faulting. Geo-phys J R Astro Soc 43:775–94.

Sibson RH (1977) Fault rocks and fault mechanisms. J Geol Soc London 133:191–213.

Sibson RH (1980a) Transient discontinuities in ductile shear zones. J Struct Geol2:165–174.

Sibson RH (1980b) Power dissipation and stress levels on faults in the upper crust.J Geophys Res 85:6239–6247.

Sibson RH (1982) Fault zone models, heat flow, and the depth distribution of earth-quakes in the continental crust of the United States. Bull Seism Soc Am 72:151–163.

Sibson RH (1983) Continental fault structure and the shallow earthquake source.J Geol Soc Lond 140:741–767.

Sibson RH (1986) Brecciation processes in fault zones: Inferecnes from earthquakerupturing. PAGEOPH, 124, 159–175.

Sibson RH (1990) Conditions for fault-valve behavior. In: Knipe RJ and Rutter EH(eds) Deformation Mechanisms, Rheology and Tectonics, Geol Soc Spec Pub54:15–28.

Sibson RH (2002) Geology of the crustal earthquake source. In International Hand-book of Earthquake and Engineering Seismology. Intern’l Asso Seism Phys In-terior Committee on Education 81A:455–473

Sibson RH, Mcore, JMcM, Rankin AH (1975) Seismic pumping-a hydrothermal fluidtransport mechanism. J Geol Soc London 131:653–659.

Sibson RH, White SH, Atkinson BK (1979) Fault rock distribution and structurewithin Alpine Fault Zone: A preliminary account. In: Walcott RI and CresswellMM (eds) The origin of the Southern Alps, Bull R Soc New Zealand 18:55–56.

Simpson C (1985) Deformation of granitic rocks across the brittle-ductile transition.J Struct Geol 7:503–511.

Page 16: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

336 References

Simpson C, Schmid SM (1983) An evaluation of criteria to deduce the sense ofmovement in sheared rocks. Geol Soc Am Bull 94:1281–1288.

Sinha-Roy S, Ravindra Kumar GR (1985) Pseudotachylytes of the Bavali fault zone,Cannanore district, North Kerala. J Geol Soc India 26:182–190.

Sleep NH, Blanpied ML (1992) Creep compaction and the weak rheology of majorfaults. Nature 359:687–692.

Snoke AW, Tullis J, Todd VR. (eds.) (1998) Fault-related rocks: A PhotographicAtlas, Princeton University Press, New Jersey pp.617.

Spear FK (1980) NaSi⇔CaAl exchange equilibrume between plagioclase and am-phibole. Contrib Mineral Petrol 72, 33–41.

Spray JG (1987) Artificial generation of pseudotachylyte using frictional weldingapparatus: simulation of melting on a fault plane. J Struct Geol 9:44–60.

Spray JG (1988) Generation and crystallization of an amphibolite shear melt: aninvestigation using radial friction welding apparatus. Contrib Mineral Petrol99:464–475.

Spray JG (1992) A physical basis for the frictional melting of some rock-formingminerals. Tectonophysics 204:205–221.

Spray JG (1993) Viscosity determinations of some frictionally generated silicatemelts: Implications for fault zone rheology at high strain rates. J Geophys Res98:8053–8068.

Spray JG (1995) Pseudotachylyte controversy: Fact or friction? Geology 23:1119–1122.

Spray, JG (2005) Evidence for melt lubrication during large earthquakes. GeophysRes Lett 32:doi:10.1029/2004GL022293.

Swanson MT (1988) Pseudotachylytes-bering strike-slip duplex structures in theFort Foster Brittle Zone, S. Maine. J Struct Geol 10:813–828.

Swanson MT (1992) Fault structure, wear mechanisms and rupture processes inpseudotachylytes generation. Tectonophysics 204:223–242.

Swanson MT (2005) Geometry and kinematics of adhesive wear in brittle strike-slipfault zones. J Struct Geol 27:871–887.

Tachikara M (2002) Tectonic landforms and Quaternary activity along the southernpart of the Itoigawa-Shiauoka tectonic line (Hakushu-Nirasaki district), centralJapan. Active Fault Res 21:33–50.

Takagi H (1985) Mylonitic rocks of the Ryoke belt in the Kayumi area, eastern partof the Kii Peninsula. J Geol Soc Jpn 91:637–651.

Takagi H (1986a) Formation of shear zone: Microstructures of mylonite. In: KaratoS and Toriumi M (eds) Rheology of solid and of the Earth. University of TokyoPress, Tokyo, pp 254–266.

Takagi H (1986b) Implication of mylonitic microstructures for geotectonic evolutionof the Median Tectonic Line, central Japan. J Struct Geol 8:3–14.

Takagi H, Goto K, Shigematsu N (2000) Ultramylonite bands derived from cat-aclasite and pseudotachylyte in granites, northeast Japan. J Struct Geol 22:1325–1339.

Tanaka H (1992) Cataclastic lineations. J Struct Geol 14:1239–1252.Tanaka H, Takagi H, Inoue M (1996) Mode of cataclastic deformation and hy-

drothermal alteration of the fault rocks and history of fault activity along theMedian Tectonic Line, central Japan. Struct Geol J Tectonic Res Group Jpn41:31–44.

Page 17: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

References 337

Techmer KS, Ahrendt H, Weber K (1992) The development of pseudotachylyte inthe Ivrea-Verbano zone of the Italian Alps. Tectonophysics 204:307–322.

Theunissen K, Smirnova L, Dehandschutter B (2002) Pseudotachylytes in the south-ern border fault of the Cenozoic intracontinental Teletsk basin (Altai, Russia).Tectonophysics 351:169–180.

Touda S, Niura D, Miyakoshi K, Inoue D (2000) Recent surface faulting events alongthe southern part of the Itoigawa-Shizuoka Tectonic Line-Trenching survey ofthe Hakushu fault, the Shimotsuburai fault and Ichinose fault group. Zisin J SeisSoc Jpn 52:445–468.

Touda S, Tanaka K, Chikira M, Miyakawa K, Hasegawa T (1995) Coseismic behaviorof groundwater by the 1995 Hyogo-ken Nanbu Earthquake. Zisin J Seis Soc Jpn48, 547–553.

Tomeoka K, YamahanaY, Sekine T (1999) Experimental shock metamorphism of theMurchison CM carbonaceous chondrite. Geochem Cosmo Acta 63:3683–3703.

Toyoshima T (1990) Pseudotachylite from the main zone of the Hidaka metamorphicbelt, Hokkaido, northern Japan. J Metam Geol 8:507–23,

Tse ST, Rice JR (1986) Crustal earthquake instability in relation to the depthvariation of frictional slip properties. J Geophys Res 91:9452–9472.

Tsunogai U, Wakita H (1995) Precursory chemical changes in ground water: Kobeearthquake, Japan. Science 269:61–63.

Tsutsumi A (1994) An attempt to measure the temperature of frictional melts ofrocks produced during rapid fault motion. Struct Geol J Tectonic Res GroupJpn 39:103–114.

Tsutsumi, A (1999) Size distribution of clasts in experimentally produced pseudo-tachylytes. J Struct Geol 21:305–312.

Tsutsumi A, Shimamoto T (1996) Frictional properties of monzodiorite and gabbroduring seismogenic fault motion. J Geol Soc Jpn 102:240–248.

Tsutsumi A, Shimamoto T (1997a) High-velocity frictional properties of gabbro.Geophys Res Lett 24:699–702.

Tsutsumi A, Shimamoto T (1997b) Temperature measurements along simulatedfaults during seismogenic fault motion. Proceed 30th Intern’l Geol Cong Beijing5:223–232.

Tullis J, Yund RA (1985) Dynamic recrystallisation of feldspar: a mechanism forductile shear zone formation. Geology 13:238–241.

Tullis J, Christie JM,Griggs DT (1973) Microstructures and preferred orientationsof experimentally deformed quartzites. Bull Geol Soc Am 84:297–314.

Tullis J, Snoke AW, Todd VR (1982) Significance of petrogenesis of mylonitic rocks.Geology 10:227–230.

Turcotte DL (1986a) Fractal and fragmentation. J Geophys Res 91:1921–1926.Turcotte DL (1986b) Fractal and Chaos in Geology and Geophysics. Cambridge

University Press, New YorkUda S, Lin A, Takemura K (1999) Deep surface-water flow near the Nojima earth-

quake fault, In: Proceedings of the international workshop on the Nojima faultcore and borehole data analysis. Geol Surv Jpn Interim Report, no.EQ/00/1,pp193–202.

Uda S, Lin A, Takemura K (2001) Crack-filling clays and whethered cracks in DPRI1800 m core near the Nojima fault, Japan: evidence for deep surface-water cir-culation near an active fault. Island Arc 10:439–446.

Page 18: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

338 References

Ueda A, Kawabata A, Koichiro H, Tanaka H, Tomida N, Ohtani T, Ito H (1999)Isotopic study of carbonates in Nojima Fault cores. In: Proceedings of the in-ternational workshop on the Nojima fault core and borehole data analysis. GeolSurv Jpn Interim Report, no.EQ/00/1, pp.127–132.

Wadell HA (1932) Volume, shape, and roundness of rock particles. J Geol 40:1074–1106.

Wallace RC (1976) Partial fusion along the Alpine fault zone, New Zealand. GeolSoc Am Bull 87:1225–1228.

Wang CY (1984) On the constitution of the San Andreas fault zone in centralCalifornia. J Geophys Res 89:5858–5866.

Wang CY, Chang CH, Yen HY (2000) An interpretation of the 1999 Chi-Chi earth-quake in Taiwan based on the thin-skinned thrust model. TAO (Terrestrial,Atmospheric and Oceanic Sciences), 11: 609–630.

Wang J, Liou JG (1991) Regional untrahigh-pressure coesite-bearing ecologiteterrane in central China: evidence from country rocks, gneiss, marble, andmetapelite. Geology 19:933–936.

Warr LN, van der Pluijm BA (2005) Crystal fractionation in the friction melts ofseismic faults (Alpine Fault, New Zealand). Tectonophysics 402:111–124.

Warr LN, van der Pluijm BA, Peacor DR, Hall CM (2003) Frictional melt pulsesduring a ∼1.1 Ma earthquake along the Alpine Fault, New Zealand. Earth PlanetSci Lett 209:39–52.

Waters AC, Campbell CD (1935) Mylonites from the San Andress Fault Zone AmJ Sci 29:473–503.

Watts MJ, Williams GD (1979) Comments and reply on ‘Are pseudotachylytes prod-ucts of fraction or fusion?’ Geology 7:162.

Weiss LE, Wenk HR (1983) Experimentally produced pseudotachylites-like veins ingabbro. Tectonophysics 96:299–310.

Wenk HR (1978) Are pseudotachylites products of fracture or fusion? Geology6:507–511.

Wenk HR, Weiss LE (1982) Al-rich calcic pyroxene in pseudotachylite: an indicatorof high pressure and high temperature? Tectonophysics 84:329–341.

Wenk HR, Johnson LR, Ratschbacher L (2000) Pseudotachylites in the EasternPeninsula Ranges of California. Tectonophysics 321:253–277.

White JC (1996) Transient discontinuities revisited: pseudotachylite, plastic insta-bility and the influence of low pore fluid pressure on deformation processes inthe mid-crust. J Struct Geol 18:1471–1486.

White SH (1973) Syntectonic recrystallization and texture development in quartz.Nature 244:276–278.

Willemse J (1937) On the old Granite of the Vredefort region amd some of itsassociated rocks. Geol Soc South Africa Trans 40:43–119.

Wilson B, Dewers T, Reches Z, Brune J (2005) Particle size and energetics of gougefrom earthquake rupture zones. Nature 434:749–752.

Wise DU, Dunn DE, Engelder JT, Geiser PA, Hatcher RD, Kish SA, Odem AL,Schamel S (1984) Fault-related rocks: suggestions for terminology. Geology12:391–394.

Yamano M, Goto H (1998) Long-term temperature measurement inside the Nojimafault drilling hole. Monthly Earth 21:102–107.

Page 19: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

References 339

Yang Z (1986) Study on the model of ductile-brittle transformation - A geologicalprocess of propagation for shallow tectonic earthquake source. Ph.D. thesis, In-stitute of Geology, State Seismological Bureau of China, Beijing

Yang Z, Bruhn RL, Lin Z, Yonkee WA (1994a) The microstructural characteristicsof fault rocks from the Wasatch Fault zone in Utah (USA) under polarizingand electronic microscope and its seismogeologic significance. Earthq Res China8:283–294.

Yang Z, Hu B, Yang J (1985a) The characteristics of gouge from Honghe and Qujiangfault zones and their seismogeological implications. Seism Geol 7:25–32.

Yang Z, Lin Z, Cheng X (1985b) TEM microstructures of quarts in fault rocks ofdifferent genesis and their significance. Acta Petrol Sinica 1:59–65.

Yang Z, Zheng B, Fang Z, Wang L, Yu L, Jin Z (1994b) Study on some minorstructures and microstructures of main fault zones in northern North China.Seism Geol 16:305–318.

Yeats RS, Sieh K, Allen CR (1997) The geology of earthquakes. Oxford UniversityPress, New York

Yoshioka N (1994) Book review. Newslett Seism Soc Jpn 17:18.Yu T, Lin S, Huang C, Rao R, Cheng S, Tseng C (1999) Atlas of 921 Chichi

earthquake. In: Special report of Chi-Chi earthquake, Central Weather Bureau,Ministry of Transportation, Chinese Geophys Assoc Taiwan, Taipei, pp 91–96.

Yund RA, Blanpied ML, Tullis TE, Weeks JD (1990) Amorphous material in highstrain experimental fault gouges. J Geophys Res 95:1589–15602.

Zhao Z, Wang Y, Liu X (1990) Fractal analysis applied to cataclasic rocks. Tectono-physics 178:373–377,

Zoback MD, Zoback ML, Mount VS, Suppe J, Eaton JP, Healy JH, Oppenheimer D,Reasonberg P, Jones L, Raleigh CB, Wong IG, Scott O, Wentworth C (1987)New evidence on the state of stress of the San Andreas fault system. Science238:1105.

Page 20: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

Index

Abrasion, 1, 139, 157Acicular, 106, 110, 113–114, 118, 120,

122, 135, 187, 190, 196, 204,275–276

Active fault, 12, 17–18, 41–43, 48, 148,155, 226, 230

Advection, 174Albitite, 290–291, 293, 308, 312–314,

316–317Alpine Fault, 42, 47–48, 54, 67, 142,

170, 172Alteration, 7, 14, 75, 88, 90, 130, 136,

245, 254Amorphous material, 90, 225, 240–341,

253–254Amphibolite facies, 136, 178–179, 206,

219–221Amygdule, 12, 14, 84–89, 97–99, 102,

169, 171, 175, 225, 254, 283Amygdule structure, 12, 98Andesitic melt, 99, 101, 103Anorthite, 135, 219, 290, 308, 312Anorthoclase, 112, 119, 122–123, 133,

135, 137Anorthosite, 290–291, 293, 308,

312–314, 317Arima-Takatsuki Tectonic Line, 42, 230Aseismic deformation, 204, 210Aseismic regime, 224Assimilation, 65, 152

Bagnold effect, 83Biotite, 12, 33–36, 39–42, 80, 109,

111–112, 115, 118–121, 122–126,

128, 130, 133, 135–137, 151, 167,170, 174, 176, 196, 199, 203–206,211, 217, 219, 240–241, 245–246,249–250, 254, 269, 275, 290–291,298–299, 318

Bolivian Mw8.3 earthquake, 179Bow-tie, 111–112, 116Box-skeletal, 109Branching, 50, 109–110, 115, 296Breccia, 9, 12, 19–20, 23, 25–27, 29–30,

32, 35–37, 44, 48, 140–141, 148,150, 153, 156, 225–226, 230,232–234, 243, 255, 258, 266

Brittle–plastic transition zone, 45,178–179, 220, 224

Brittle regime, 18–19, 45–46, 188, 208,220

Bubble, 84–85, 89, 256, 266, 298Byerlee’s Law, 43, 46

Calcite, 88, 102, 225, 234–236, 238,243–245, 249–250, 252, 256, 258,260–261, 263

Carbon, 259–261Carbonate material, 244, 252, 258–261,

263, 275–276Carbonate vein, 253, 258–260Cataclasite, 19, 25–27, 30, 32–36,

39–40, 42, 44–45, 48, 62, 148, 150,153, 177–178, 181, 209, 211, 217,225–227, 232, 240–241, 245

Cataclasite-related pseudotachylyte(C-Pt), 177–178, 185, 187–189,204

Page 21: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

342 Index

Cataclastic rock, 25–27Cataclastic vein, 14, 72, 226, 245, 256Cataclastic veinlet material, 256C-foliation, 40Chain-skeletal, 109Chelungpu Fault Zone, 19Chi-Chi Mw7.6 (Taiwan) earthquake,

261Chiufener-Shan landslide, 266, 269–273,

280Chlorite, 43, 88, 102–103, 245–246Chlorite vein, 136Circular, 86, 89, 111–112, 115–116, 169,

277, 287–289, 293–294, 298Clast, 19, 21, 30–38, 40–42, 139, 162,

179, 235, 243, 245, 258, 277, 313Clastic-type pseudotachylyte, 225Clinopyroxene, 127, 137, 187Coesite, 197Cohesion, 23, 25–26Cohesive cataclasite, 19, 26–27, 30, 32,

39, 44Cohesiveness, 23, 30Collapse, 89, 98, 174–175, 234, 250, 272Collisional orogenic belt, 47, 178–179,

197, 206–207, 216, 219Collision zone, 47Comminution, 150, 225, 242, 254Compound spherulitic, 112, 120Concordant vein, 60Conglomerate, 9–10, 139–141Continental crust, 40–42, 44–46,

218–220, 222–223Contractional duplexe, 65Contractional fault, 65Convection, 174Cooling joint, 57–58Coseismic displacement, 215, 226, 263Coseismic shear zone, 68Coseismic slip, 2, 45, 222, 257Coseismic surface rupture, 48, 50, 68,

70, 257, 269Coulomb friction law, 43Course-feathery, 109Course-scoplitic, 109Crack-fill vein, 226, 234–237, 243–244,

245–250, 252, 258Cross-shaped, 106, 110Crotch, 109–110

Crushing-origin pseudotachylyte, 8,13, 15, 32, 48, 148–149, 155–156,225–230, 237–242, 245, 250,253–255, 257, 315–316

Cryptocrystalline-type, 77Crystalline material, 93, 95, 245, 301,

303Crystal-plastic deformation, 13, 18,

21, 23–24, 33, 39, 40, 44–45, 183,186–187, 190, 192, 214, 217, 218,221, 223

C’-surface, 32–34, 37–38, 40–41, 206C-surfaces, 32–34, 36, 40, 42, 206Cylinder, 87, 288–289

Dabieshan collisional zone, 45Dahezhen Shear Zone, 45, 179, 184,

197–199, 204, 208–217, 219–221Dendritic group, 107, 109–112Dendritic-skeletal, 109, 128Dendritic-spherulite, 112, 115Devitrification, 7, 12–13, 90, 137Devolatilization, 98–99Diffusion model, 167, 263Dike-like rock, 5, 8Dilatancy, 41, 261, 263Dilatation, 237Dilational fracture, 62Discordant vein, 8, 60Disintegration, 139, 158Dissolution, 155, 255Distortional strain energy, 222–223Drill core, 17–19, 21, 28–29, 35, 37,

235–238, 243–246, 250–252Dynamical recrystallization, 221, 223

Eclogite band, 197Eclogite facies, 178, 197, 223Elastic-frictional (EF), 44Equilibrium, 172–173, 219, 258–259,

281, 283–284, 316–319Equivalent slip rate, 289–290Escape structure, 89Eutectic point, 313, 316Extensional reservoir, 65

Fan, 111–112, 116Fault-fracture network, 225, 234–236,

258

Page 22: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

Index 343

Fault-fracture zone, 30, 48, 50–51,63–64, 73, 226, 231

Fault gouge, 12, 19–20, 23, 30–31,35–39, 42–44, 48, 128, 130–131,135, 148–150, 153, 155–156,225–226, 230–234, 238–240, 242,244–246, 250, 254–257, 260, 266,315

Fault model, 17, 40, 43–45, 223Fault-parallel slip surface, 65Fault plane, 2, 8, 13, 15, 19, 29–33, 37,

50–52, 60, 64, 66, 70, 72, 96–97,157, 173, 175, 182, 199, 212,226–233, 254–257, 263, 265, 283

Fault-related pseudotachylyte, 1–2, 8,14–15, 47–48, 78, 91, 97, 105, 177,179, 280, 283, 291, 317

Fault-related rocks, 6, 8, 17–18Fault rocks, 3, 12–13, 15, 17, 18–40,

43–44, 98, 135, 139, 143, 148–149,151–152, 220, 223, 225, 265, 283,286

Fault vein, 60–65, 68, 70–73, 140–141,199–200, 226–228, 230–232, 242,245–246, 255, 296, 315–316

Fault zone, 1–3, 7–9, 12–13, 15, 17–19,21, 23, 25–27, 29–30, 32, 36,40–48, 50–51, 64–65, 68, 71–72,78, 97–98, 105, 122, 135–136,139–140, 149–150, 155, 157,159–160, 169, 172, 174–175, 177,181–182, 213, 215–218, 222–224,225–232, 234–235, 239–240,244–245, 254–258, 260–263, 284,287, 291, 317–318

Feldspar, 9, 32–33, 36, 39–41, 45–46,78, 80, 92–93, 95–96, 102, 106,109, 111, 115, 118–123, 126,128, 136–137, 147, 151, 153, 155,166–167, 171, 187, 190, 194, 196,199, 204–206, 209, 211, 216–220,222–223, 237, 245, 275–277, 281,291, 298–299, 301, 303, 307,317–319

Fine-feathery, 109–110, 115Fine-grained material, 12, 15, 23, 38,

48, 60, 62, 64–65, 75, 79, 84, 88,195, 204, 209, 234–237, 243–244,252, 254–256, 258

Fine-grained matrix, 6, 9, 13, 28, 30,33, 35, 41, 68, 75, 78, 98, 140, 145,148, 152, 159, 163–164, 167–168,187, 191, 202, 204, 208, 211, 225,240–241, 272

Fine-scoplitic, 109Fir-like, 110, 115Flinty crush-rocks, 6, 9Flow fold, 82Flow streak, 78, 81–87, 106, 275, 277Flow structure, 9, 14–15, 38–39, 78,

80–86, 90, 97, 135–136, 141, 151,188, 190, 196, 204, 214, 225, 266,269, 274–275, 277, 295, 300

Flow velocity, 82–84Fluid diffusion, 41, 261, 263Fluidization, 12, 15, 254–256, 315Foliated cataclastic rock, 19, 21, 27,

31–40Foliation, 19–24, 31, 33–35, 37–42,

44, 46, 57, 60, 85, 142, 179, 184,186–192, 194–196, 198–201, 204,207–210, 214–217, 219, 233, 235,238, 242

Fossil earthquake, 1, 225, 234, 266Fractal, 145, 148, 150Fractal dimension, 145, 148, 150–151Fracture-fill vein, 243, 250Fragment, 62, 72, 81–83, 109, 112–113,

115–116, 120, 126, 139–140,145–147, 149–150, 152–155, 157,167, 202–203, 217, 275, 297

Fragmentation, 65, 145, 254Fregon subdomain, 179, 181Frictional coefficient, 41, 43, 285, 289,

319Frictional fusion, 105, 170, 175, 178,

265–266, 269Frictional melt, 2, 13, 48, 60, 62, 64–66,

83–84, 86, 89, 92, 97–99, 105, 122,127, 130–131, 145, 157, 159, 165,170–171, 173, 175, 281, 283, 286,289, 292–295, 300, 313, 316

Frictional melting, 2, 7–8, 12–15, 23,26, 48, 92, 97–98, 105, 130–131,148, 157–159, 170–177, 179, 212,222, 254, 257, 265, 280, 283–287,289–295, 298, 304, 312, 315–319

Frictional milling, 294

Page 23: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

344 Index

Frictional regime (FR), 19, 44–45Fuyun Fault, 15, 47–48, 50–52, 55, 57,

76–86, 91–92, 105, 109, 112, 122,126, 128, 130, 135, 160, 169–172,269

Fuyun M, 8.0 earthquake, 50

Gabbro, 172, 175, 287–288, 290,292–295, 298, 300–302, 304–308,317, 319

Garnet, 39, 80, 111, 119, 121, 126, 128,131, 133, 137, 187, 194, 196–197,203–205, 219

Gasification, 97–98Gas pressurization, 174–175Gas–solid–liquid system, 255–256, 315Gas–solid system, 83, 255–256Generation zone, 51, 60, 62, 64–68,

70, 73, 100, 139–141, 147, 176,181–182, 214, 295–297

Geothermal gradient, 40, 46, 136, 178,212, 218–221, 258

Geothermometer, 171Glass, 12–15, 48, 72, 75, 78–81, 90–99,

103, 106, 113, 136–137, 151, 162,164–167, 169, 171–172, 175, 225,237, 254, 265–266, 269, 274–280,283, 300–303, 305–307, 310–314,317–318

Glass material, 48, 90, 92, 97, 254, 275Glass-type pseudotachylyte, 79–80, 93,

96, 97, 167Glassy matrix, 7, 57, 72, 75, 78, 84, 91,

93, 96, 113, 136, 141, 159, 171,277, 302, 304, 308–309

Globular, 111–112Gole Larghe Fault Zone, 71–72Granite, 9–10, 24, 28, 31–33, 35, 37–40,

93, 122, 126, 135–136, 141, 150,163–164, 166, 179, 227–228, 237,243–245, 269, 275, 287, 289–291,293, 298–304, 306–311, 317–319

Granular, 106, 110, 128, 277Granulite facies, 48, 178–179, 181,

185–186, 220, 223Granulite-related pseudotachylyte

(G-Pt), 178–179, 181, 183, 186,189, 192–197, 199–203, 205,219–220, 223

Greenschist facies, 46, 178, 212, 221Grossular, 111, 121, 128, 130–131, 133,

137Groundwater level, 41, 260–261, 263

Halo, 81, 89Hardness high-velocity frictional

experiment, 48, 97–98, 105, 172,174–175, 257, 280, 284–291, 295,319

Heterogeneous, 72, 75, 98–99, 159–160,170, 210, 245, 284, 293, 299, 304,317, 319

Hiddaka Metamorphic Zone, 172High-velocity frictional melting, 15,

130–131, 172, 175–176, 212,283–284, 289–290, 292–293, 298,304, 312, 315

Holloysite, 43Hornblende, 80, 109, 111–112, 114–115,

119, 121–122, 126–128, 130, 133,135–137, 176, 199, 204, 206,217–219, 249, 290, 298

Host rock, 6–8, 11, 13, 15, 23, 30, 62,72, 93, 96, 112, 122–127, 137, 150,153, 159–171, 175, 179, 181–184,186, 190–192, 196, 204, 214, 225,233, 235, 243, 245–246, 250, 255,258, 260, 266, 269, 272, 278–279,281, 283, 296, 298, 300–301,303–304, 307–308, 317

Hyalomylonite, 6, 265Hydration, 98, 174–175Hydraulic friction, 286Hydraulic pressure, 286–287Hydrofracturing, 41Hydrothermal fluid, 254, 263

Igneous dike, 57Iida-Matsukawa Fault, 8, 148–150,

152–153, 156, 226–227, 229–232,239–242, 245–246, 254

Illite, 43Ilmenite, 111, 119, 128, 130, 132, 196,

203, 205Incohesive cataclastic rocks, 19, 23India Mw7.6 earthquake, 222Infiltration of surface water, 257,

260–261, 263

Page 24: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

Index 345

Injection gouge vein, 245Injection mylonite, 6Injection vein, 9, 15, 29, 51, 60–64, 67,

73, 81, 99, 134, 141, 172, 175, 182,187, 189, 195, 199, 204, 207, 211,225–226, 228–232, 242, 245–246,250, 254–256, 277, 293, 295–297,315–316

Interlayered fault gouge, 232, 234, 238,246

Interlayered pseudotachylyte, 233,238–240, 246

Intracontinental earthquake, 41, 212,223

Intracontinental fault zone, 41, 47Isotherm, 157Isotopic data, 258Itoigawa–Shizuoka Tectonic Line Active

Fault Zone, 226–229Ivrea Verbano Fault Zone, 169

Kaolinite, 43Kobe Mw 7.2 earthquake, 17, 226Kofels landslide, 265–266Kunlun Mw 7.8 earthquake, 70, 222,

257

Landslide, 96, 265–267, 269, 271–273,277, 280–281

Landslide-generated pseudotachylyte,265–266, 280

Landslide-origin molten material, 265Langtang Himayala landslide, 102, 143,

266–269, 271, 280Lath-like, 106, 110, 114, 122, 187, 190,

196, 204, 276–277Laumontite, 245, 249–250Layered fault gouge, 232–234, 238, 246Lewisian gneiss, 10Liquid pressure, 99–100Lithic clast, 139Lithic fragment, 139Lithic porphyroclast, 139Lithoclast, 139Lithology, 43, 140–141, 181Lithostatic depth, 42Lithostatic pressure, 98–100, 103, 280Lubricant, 2, 98

Macpherson model, 103

Magnetic susceptibility, 82, 129, 134,135

Magnetite, 88, 102, 111, 128–131, 205,291

Magnus effect, 83Marine-origin fluid, 260Matrix, 6–7, 9–10, 12–14, 24–25, 28,

30, 33, 35, 39, 41, 57, 65, 68,72, 75, 78–84, 86, 90–91, 93–94,96–98, 106, 113, 118–119, 128,136, 140–141, 145, 148, 151–152,159–160, 162–171, 175, 187–188,191, 195–196, 202, 204–206,208–211, 214, 225, 238, 240–241,254, 265, 272, 274–277, 280, 283,300, 302, 304, 307–313, 318

Melt, 1–2, 7–8, 13–15, 23, 48, 60, 62–66,68, 72–73, 78, 82–84, 86, 88–90,92, 95–103, 105–106, 122, 127–131,135–137, 141, 143–145, 151–152,155–157, 159–160, 162–165, 167,169–176, 179, 181, 187, 204,211–215, 225–227, 240, 253–256,265, 269, 272, 275, 277, 281,283–284, 286, 288–289, 292–295,298, 300, 303, 313, 315–319

Melting point, 153, 171, 173–174, 275,281, 316, 318–319

Melt-origin pseudotachylyte, 7–8, 48,72, 78, 83–84, 90, 98, 102, 105,128–130, 141, 143, 151–152,155–156, 159–160, 164, 171,204, 213–214, 225–227, 240, 253,255–256, 275, 283–284, 315–316

Metamorphism, 7, 14, 57, 75, 90, 95,130, 136, 186, 197, 220

Meteoric water, 258–263Meteorite impact, 1, 5–7, 9–10, 140–141Mica fish, 32–33, 35–36Microcrack, 28, 206, 256, 258, 291Microcrystalline-type, 81–82Microfault, 71, 191Microlite, 9, 12, 14–15, 57, 75, 78,

80–81, 83–84, 90, 92, 95, 97,105–137, 141, 144, 151, 154,167, 171, 187, 190, 193, 195–198,202–205, 211–212, 214, 217, 225,254, 266, 275–276, 280, 283–284,316, 318

Page 25: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

346 Index

Microlitic mylonite, 6Microlitic-type, 83Microshear, 32–34, 36–37, 40–42Mixed-type, 84, 91, 111Moine Thrust, 10Molten material, 7–8, 96, 129, 147,

170, 256, 265–266, 272, 284, 294,298–301, 304, 313, 316

Molten zone, 283–284, 319Montmorillonite, 43, 245–246Mulga Park subdomain, 179Mylonite, 10, 19, 23–24, 26, 33, 35–37,

39, 45–46, 60, 136, 178–179,181–184, 186–187, 190, 192–194,196, 198–200, 204, 206–207,209–211, 213–217, 219–221

Mylonite-related pseudotachylyte(M-Pt), 45, 177–179, 181–184,186–201, 204–212, 213–223

Mylonitic foliation, 21, 57, 85, 179, 184,189–190, 194–195, 199–200, 204,207, 214

Mylonitic rocks, 10, 19–25, 32, 40,44–46, 48, 82, 135, 151, 177, 190,209, 219–220, 223

Mylonitization, 5, 12–13, 39–40, 46,183, 186, 190, 200, 204, 208–210,218–220, 223, 265

Newtonian fluid, 83Newtonian suspension, 84, 87Nojima Fault, 17, 28–29, 33, 37–39,

47, 130, 153, 156, 226, 232–240,243–246, 250–253, 256–258,260–261, 263

Non-crystalline, 90–91, 93, 96–97, 241,245, 254, 275, 301

Non-equilibrium, 122, 127–128, 281,284, 316–318, 319

Non-foliated cataclastic rock, 28–31Normal stress, 41–43, 173–175, 212,

281, 287, 289–290, 292, 315–316,319

North Anatolian Fault Zone, 258, 260

Osumi Shear Zone, 156Outer Hebrides Thrust, 9, 13, 63, 65–66,

71, 86, 90, 93, 140, 142–143, 172,177, 221

Overgrowth, 111–112, 115, 118, 136

Paired generation zone, 64–66, 68Peru Mw8.2 earthquake, 222Pine-like, 109–110, 115Plagioclase, 80, 90–92, 109, 111–112,

115, 117–120, 122, 124, 133,135–137, 167, 187, 193–194,196, 200, 202–205, 209, 211–212,216–219, 246, 250, 279, 290–291,297, 300, 302–304, 307–308, 314,316–318

Plastic-dominated regime, 177, 179,188, 215, 217–221, 223

Plastic flow regime, 18, 46, 193, 218,223–224

Plastic instability, 177, 221–223Plastic-instability model, 221Plumose, 109–110, 115Pore fluid pressure, 41–42, 97, 175, 287Porphyroclast, 24, 32, 46, 102, 139, 206,

208–210, 216–217Pressurization, 62, 98–99, 174–175Primary cohesion, 23, 25–26Propagation model, 221ProtocataclasiteProtomylonite, 19, 24–25PseudotachylytePyroxene, 80, 111, 119, 121, 126,

127–129, 133, 136–137, 187, 194,202, 290–291, 297–298, 300–302,307–308, 317, 319

Qinling-Dabie Shan collisional orogenicbelt, 178–179, 197, 206–207, 216,219

Quartz, 32–33, 36, 40–41, 45–46,78–83, 88–96, 102–103, 106, 109,111–113, 115–116, 118, 120–121,136, 151, 153, 155, 165, 167,171–172, 176, 187, 190, 194, 196,198–200, 202, 204, 206, 209, 211,214, 216–217, 219–221, 223, 237,245–246, 249–250, 275, 277, 279,281, 289–291, 293, 299–303, 308,312, 314, 316–319

Quartz-feathery, 109–110Quartzite, 290–291, 293, 308, 312–314,

316–317

Page 26: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

Index 347

Quartzo-feldspathic continental crust,44–46

Quartz vein, 291Quasi-conglomerate, 140–141

Quasi-plastic (QP), 44–45Quenching, 13–14, 97, 105, 127,

136–137, 169, 187, 204

Recrystallization, 22–24, 46, 88, 139,214, 217, 221, 223

Redbank Shear Zone, 177

Reservoir zone, 60Rheology, 41, 43, 286Riedel shear, 32, 65, 68

Rock-forming mineral, 40–41, 46, 96,165, 167, 171–172, 174, 214, 245,250, 275, 298

Rotary-shear high-velocity frictiondevice, 287

Roundness, 153–155, 157–158, 209

Saint-Barthkemy Massif, 177–178San Andreas Fault, 10, 17, 40–42, 148,

150

Sandwich structure, 232–233San Gabriel Fault Zone, 150Sanidine, 84, 111, 113, 119, 122, 133,

135, 137Sanidinite facies, 135Santa Rose mylonite shear zone, 8, 15,

129, 133–134S-C cataclasite, 32, 40–43, 45–46S-C fabrics, 24, 32–34, 39, 42–44, 207,

213S-C mylonite, 36, 45–46Seawater, 258–263

Seismic faulting, 1, 12, 15, 17, 19, 48, 51,97–98, 105, 130–131, 139, 173–176,178, 192–193, 204, 214–215, 217,219–220, 223, 225–226, 229, 234,242, 245, 255–258, 261–263, 265,283–284, 292, 315

Seismic pumping model, 263Seismic slip, 13, 15, 18, 45–46, 72, 157,

177, 209, 212, 218, 220, 222–223,225–226, 254–257, 283, 319

Seismite, 8Seismogenic fault zone, 40–43, 159, 223

Seismogenic zone, 41, 45–46, 178, 212,218–219, 221–223, 283

Self-similar, 145, 150–151Serpentinite, 43S-foliation, 33, 40–42Sheaf, 111–112, 115, 117, 136Sheaf aggregate, 111–112, 115Shear band, 21, 24, 32–35, 37, 40–42,

206, 209, 234Shear resistance (τ ), 41, 97–98, 218,

222–223, 318Shear strain energy, 221, 223Shear strength, 41, 46, 97–98, 176, 318Shear stress, 9, 98, 174–175, 219, 283,

286, 289–290, 318Shear zone, 18–19, 22–23, 32, 38–39,

44–45, 48, 64–65, 67–69, 82, 99,156, 172, 177, 179, 181–184, 186,188, 192, 197–199, 214–215, 217,219–223, 258, 292, 295–296, 298,315

Sheath-fold-like structure, 82, 86Siderite, 245–246, 249–250, 260Sidewall ripout, 64–65, 68Similar-type fold, 82–83, 85–86Simple group, 106–109Single generation zone, 64–65, 67–68Skeletal group, 109–110Slab duplex, 65Slip weakening, 8, 319Solid-gas-fluid system, 15Solid-gas system, 12Solid solution, 290–291, 308, 316Spherulite, 9, 12, 14, 108, 112, 115–116,

118–119, 121–122, 167, 169, 187Spherulitic, 83, 102, 106, 111–120, 126,

128, 131, 135–137, 141, 144, 154,187, 190, 193, 196, 198, 203

Spherulitic group, 112–118Spider-like, 84, 106, 110, 113, 135–137Spinel, 111, 119, 128, 132S-surface, 32–34, 36, 40, 206, 213Stellate, 111–112, 115, 118Stress relaxation, 221Stretching lineation, 197–199Subduction zone, 47, 176Suction pumping model, 262–263Surface water, 30, 252, 257–258, 260,

261, 263

Page 27: References - Springer978-3-540-74236...References 323 Chester FM, Chester JS (1998) Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California.

348 Index

Tabular-skeletal, 109Tachylyte, 5Taiwan Mw 7.6 earthquake, 266Tectonic-generated pseudotachylyte, 1Tectonic-related pseudotachylyte, 47Tensile strength, 99–100Tensional fracture, 60, 65, 236, 258Thermal fluctuation, 221Thermal fracturing, 289, 291, 293Thermal pressurization, 62, 98–99,

174–175Three-layer fault model, 45Transition regime, 45Transportation, 83, 152Trap-shotten, 10Trap-shotten gneiss, 6Trichitic, 106, 113, 118, 120Tsaoling landslide, 271–272Two-layer fault model, 44–45

Ultracataclasite, 323Ultrahigh-pressure (UHP), 178–179,

216–217, 219Ultraman-daina, 1–2Ultramylonite, 19, 24–25, 27, 45, 177,

181–184, 188, 190, 192, 194–195,199, 207, 219–220

Ultramylonite-associated pseudotachy-lyte (Um-Pt), 177, 179, 181–184,186, 188–192, 195, 218–220, 223

U-shaped flow streak, 84

Veinlet, 7–9, 12, 15, 29, 60, 194, 234,244, 256, 258

Veinlet cataclastic rock, 12, 225–226,237, 244, 253, 257

Velocity-weakening, 319Vermiculite, 43Vesicle, 12–15, 84–89, 97–99, 101–103,

169, 171, 175, 225, 254, 269–270,275, 277, 283, 294, 297–298, 315

Vesiculation, 103Viscosity, 62, 173–175, 284, 318Vitreous luster, 79–80, 227Volcanic glass, 12, 91, 96, 137, 274, 277Vredefort Dome structure, 5

Wall effect, 83, 141Woodroffe Thrust, 45, 48, 50, 53–54,

56–60, 62–63, 65–66, 68, 70, 90, 93,156, 162, 172, 177–179, 181–183,185–203, 205, 208, 214–215,219–221, 223

Xenoclast, 139Xenolith, 139X-ray diffraction pattern, 78–80, 90–93,

96, 279, 315X-ray fluorescence, 159X–Z section, 19, 31, 33–34, 210

Yangtze continental block, 216

Zoning structure, 102, 116, 169