References - Springer978-1-4614-7354-1/1.pdf · References Agbisit, R., Alavi, S., ... Ioannidis,...

7
References Agbisit, R., Alavi, S., Cheng, E., Herald, T., & Trater, A. (2007). Relationships between microstructure and mechanical properties of cellular cornstarch extrudates. Journal of Texture Studies, 38, 199–219. Aguilera, J. M., Michel, M., & Mayor, G. (2004). Fat migration in chocolate: Diffusion or capillary flow in a particulate solid?—a hypothesis paper. Journal of Food Science, 69, R167– R174. Ahrné, L., Andersson, C. G., Floberg, P., Rosén, J., & Lingnert, H. (2007). Effect of crust temperature and water content on acrylamide formation during baking of white bread: steam and falling temperature baking. LWT—Food Science and Technology, 40, 1708–1715. Altamirano-Fortoul, R., Le-Bail, A., Chevallier, S., & Rosell, C. M. (2012). Effect of the amount of steam during baking on bread crust features and water diffusion. Journal of Food Engineering, 108, 128–134. Autio, K., & Salmenkallio-Martilla, M. (2001). Light microscopic investigations of cereal grains, doughs and breads. Lebensmittel-Wissenschaft und Technologie, 34, 18–22. Babin, P., Della Valle, G., Chiron, H., Cloetens, P., Hoszowska, J., & Pernot, P. (2006). Fast X- ray tomography analysis of bubble growth and foam setting during breadmaking. Journal of Cereal Science, 43, 393–397. Bai, Y., Rahman, M. S., Perera, C. O., Smith, B. G., & Melton, L. D. (2002). Structural changes in apple rings during convection airdrying with controlled temperature and humidity. Journal of Agricultural and Food Chemistry, 50, 3179–3185. Baik, O. D., & Marcotte, M. (2002). Modeling the moisture diffusivity in a baking cake. Journal of Food Engineering, 56, 27–36. Brun, F., Mancini, L., Kasae, P., Favretto, S., Dreossi, D., & Tromba, G. (2010). Pore3D: A software library for quantitative analysis of porous media. Nuclear Instruments and Methods in Physics Research A, 615, 326–332. Bryant, S. L., Mellar, D. W., & Cade, C. A. (1993). Physically representative network models of transport in porous media. American Institute of Chemical Engineers Journal, 39(3), 387–396. Campbell, G. M., & Mougeot, E. (1999). Creation and characterization of aerated food products. Trends in Food Science & Technology, 10, 283–296. Carbonell, S., Hey, M. J., Mitchell, J. R., Roberts, C. J., Hipkiss, J., & Vercauteren, J. (2004). Capillary flow and rheology measurements on chocolate crum/sunflower oil mixtures. Journal of Food Science, 69, E465–E470. Carson, J. K., Lovatt, S. J., Tanner, D. J., & Cleland, A. C. (2004). Experimental measurements of the effective thermal conductivity of a pseudo-porous food analogue over a range of porosities and mean pore sizes. Journal of Food Engineering, 63, 87–95. Chan, D. Y. C., & Hughes, B. D. (1988). Simulating flow in porous media. Physics Review: Series A, 38(8), 4106–4120. A. Gueven and Z. Hicsasmaz, Pore Structure in Food, SpringerBriefs in Food, Health, and Nutrition, DOI: 10.1007/978-1-4614-7354-1, Ó Alper Gueven and Zeynep Hicsasmaz 2013 43

Transcript of References - Springer978-1-4614-7354-1/1.pdf · References Agbisit, R., Alavi, S., ... Ioannidis,...

Page 1: References - Springer978-1-4614-7354-1/1.pdf · References Agbisit, R., Alavi, S., ... Ioannidis, M. A., & Chatzis, I. (1993). Network modeling of pore structure and transport in

References

Agbisit, R., Alavi, S., Cheng, E., Herald, T., & Trater, A. (2007). Relationships betweenmicrostructure and mechanical properties of cellular cornstarch extrudates. Journal of TextureStudies, 38, 199–219.

Aguilera, J. M., Michel, M., & Mayor, G. (2004). Fat migration in chocolate: Diffusion orcapillary flow in a particulate solid?—a hypothesis paper. Journal of Food Science, 69, R167–R174.

Ahrné, L., Andersson, C. G., Floberg, P., Rosén, J., & Lingnert, H. (2007). Effect of crusttemperature and water content on acrylamide formation during baking of white bread: steamand falling temperature baking. LWT—Food Science and Technology, 40, 1708–1715.

Altamirano-Fortoul, R., Le-Bail, A., Chevallier, S., & Rosell, C. M. (2012). Effect of the amountof steam during baking on bread crust features and water diffusion. Journal of FoodEngineering, 108, 128–134.

Autio, K., & Salmenkallio-Martilla, M. (2001). Light microscopic investigations of cereal grains,doughs and breads. Lebensmittel-Wissenschaft und Technologie, 34, 18–22.

Babin, P., Della Valle, G., Chiron, H., Cloetens, P., Hoszowska, J., & Pernot, P. (2006). Fast X-ray tomography analysis of bubble growth and foam setting during breadmaking. Journal ofCereal Science, 43, 393–397.

Bai, Y., Rahman, M. S., Perera, C. O., Smith, B. G., & Melton, L. D. (2002). Structural changesin apple rings during convection airdrying with controlled temperature and humidity. Journalof Agricultural and Food Chemistry, 50, 3179–3185.

Baik, O. D., & Marcotte, M. (2002). Modeling the moisture diffusivity in a baking cake. Journalof Food Engineering, 56, 27–36.

Brun, F., Mancini, L., Kasae, P., Favretto, S., Dreossi, D., & Tromba, G. (2010). Pore3D: Asoftware library for quantitative analysis of porous media. Nuclear Instruments and Methodsin Physics Research A, 615, 326–332.

Bryant, S. L., Mellar, D. W., & Cade, C. A. (1993). Physically representative network models oftransport in porous media. American Institute of Chemical Engineers Journal, 39(3), 387–396.

Campbell, G. M., & Mougeot, E. (1999). Creation and characterization of aerated food products.Trends in Food Science & Technology, 10, 283–296.

Carbonell, S., Hey, M. J., Mitchell, J. R., Roberts, C. J., Hipkiss, J., & Vercauteren, J. (2004).Capillary flow and rheology measurements on chocolate crum/sunflower oil mixtures. Journalof Food Science, 69, E465–E470.

Carson, J. K., Lovatt, S. J., Tanner, D. J., & Cleland, A. C. (2004). Experimental measurements ofthe effective thermal conductivity of a pseudo-porous food analogue over a range of porositiesand mean pore sizes. Journal of Food Engineering, 63, 87–95.

Chan, D. Y. C., & Hughes, B. D. (1988). Simulating flow in porous media. Physics Review:Series A, 38(8), 4106–4120.

A. Gueven and Z. Hicsasmaz, Pore Structure in Food,SpringerBriefs in Food, Health, and Nutrition, DOI: 10.1007/978-1-4614-7354-1,� Alper Gueven and Zeynep Hicsasmaz 2013

43

Page 2: References - Springer978-1-4614-7354-1/1.pdf · References Agbisit, R., Alavi, S., ... Ioannidis, M. A., & Chatzis, I. (1993). Network modeling of pore structure and transport in

Chanvrier, H., Appelqvist, I. A. M., Bird, A. R., Gilbertt, E., Htoon, A., Li, Z., et al. (2007).Processing of novel elevated amylose wheats: Functional properties and starch digestibility ofextruded products. Journal of Agricultural and Food Chemistry, 55, 10248–10257.

Cheng, E. M., Alavi, S., Pearson, T., & Agbisit, R. (2007). Mechanical-acoustic and sensoryevaluations of cornstarch-whey protein isolate extrudates. Journal of Texture Studies, 38,473–498.

Cho, K. Y., & Rizvi, S. S. H. (2009). 3D Microstructure of supercritical fluid extrudates. II: Cellanisotropy and the mechanical properties. Food Research International, 42, 603–611.

Datta, A. K. (2007). Porous media approaches to studying simultaneous heat and mass transfer infood processes. I: Problem formulations. Journal of Food Engineering, 80, 80–95.

Datta, A. K., Sahin, S., Sumnu, G., & Keskin, S. Ö. (2007). Porous Media Characterization ofbreads baked using novel heating modes. Journal of Food Engineering, 79, 106–116.

Deepak, P. D., & Bhatia, S. K. (1994). Transport in capillary network models of porous media:theory and simulation. Chemical Engineering Science, 49(2), 245–257.

Dogan, H., Gueven, A., & Hicsasmaz, Z. (2013). Extrusion cooking of lentil flour (lens culinaris– red)—corn starch—corn oil mixtures. International Journal of Food Properties, 16,341–358.

Fang, Q., & Hanna, F. M. (2000). Mechanical properties of starch-based foams as affected byingredient formulations and foam physical characteristics. Transactions of the ASAE, 43,1715–1723.

Frisullo, P., Barnabà, M., Navarini, L., & Del Nobile, M. A. (2012). Coffea arabica beansmicrostructural changes induced by roasting: An X-ray microtomographic investigation.Journal of Food Engineering, 108, 232–237.

Gogoi, B. K., Alavi, S. H., & Rizvi, S. S. H. (2000). Mechanical properties of protein-stabilizedstarch-based supercritical fluid extrudates. International Journal of Food Properties, 3(1),37–58.

Gropper, M., Moraru, C., & Kokini, J. L. (2002). Effect of specific mechanical energy onproperties of extruded protein–starch mixtures. Cereal Chemistry, 79, 429–433.

Guessasma, S., Chaunier, L., Della Valle, G., & Lourdin, D. (2011). Mechanical modelling ofcereal solid foods. Trends in Food Science & Technology, 22, 142–153.

Gueven, A., & Hicsasmaz, Z. (2011). Geometric network simulation of high porosity foods.Applied Mathematical Modelling, 35, 4824–4840.

Haedelt, J., Pyle, D. L., Beckett, S. T., & Niranjan, K. (2005). Vacuum induced bubble formationin liquid-tempered chocolate. Journal of Food Science, 70, E159–E164.

Hamdami, N., Monteau, J. Y., & Le Bail, A. (2003). Effective thermal conductive evolution as afunction of temperature and humidity during freezing of high porosity model. Transactions ofthe Institution of Chemical Engineers, Part A, 81, 1123–1128.

Hicsasmaz, Z., & Clayton, J. T. (1992). Characterization of the pore structure of starch basedfood materials. Food Structure, 11(2), 115–132.

Hicsasmaz, Z., Yazgan, Y., Bozoglu, F., & Katnas, S. (2003). Effect of Polydextrose-substitutionon the cell structure of the high-ratio cake system. LWT-Lebensmittel Wissenschaft andTechnologie, 36, 441–450.

Horigane, A. K., Naito, S., Kurimoto, M., Irie, K., Yamada, M., & Motoi, H. (2006). MoistureDistribution and Difusion in Cooked Spaghetti Studied by NMR Imaging and DiffusionModel. Cereal Chemistry, 83, 235–242.

Hussain, M. A., Rahman, M. S., & Ng, C. W. (2002). Prediction of pores (porosity) in foodsduring drying: generic models by the use of hybrid neural network. Journal of FoodEngineering, 51, 239–248.

Ioannidis, M. A., & Chatzis, I. (1993). Network modeling of pore structure and transport inporous media. Chemical Engineering Science, 48(5), 951–972.

Ishida, N., Takano, H., Naito, S., Isobe, S., Uemura, K., Haishi, T., et al. (2001). Architecture ofbaked breads depicted by a magnetic resonance imaging. Magnetic Resonance Imaging, 19,867–874.

44 References

Page 3: References - Springer978-1-4614-7354-1/1.pdf · References Agbisit, R., Alavi, S., ... Ioannidis, M. A., & Chatzis, I. (1993). Network modeling of pore structure and transport in

James, B. (2009). Advances in ‘‘wet’’ electron microscopy techniques and their application to thestudy of food structure. Trends in Food Science & Technology, 20, 114–124.

Karkle, E. L., Alavi, S., & Dogan, H. (2012). Cellular architecture and its relationship withmechanical properties in expanded extrudates containing apple pomace. Food ResearchInternational, 46, 10–21.

Khalloufi, S., Rivera, C. A., & Bongers, P. (2009). A theoretical model and its experimentalvalidation to predict the porosity as a function of shrinkage and collapse phenomena duringdrying. Food Research International, 42, 1122–1130.

Khalloufi, S., Rivera, C. A., & Bongers, P. (2010). A fundamental approach and its experimentalvalidation to simulate density as a function of moisture content during drying processes.Journal of Food Engineering, 97, 177–187.

Kocer, D., Hicsasmaz, Z., Bayındirli, A., & Katnas, S. (2007). Cell structure of the high-ratiocake with polydextrose as a sugar- and fat-replacer. Journal of Food Engineering, 78,953–964.

Lagrain, B., Boeckx, L., Wilderjans, E., Delcour, J. A., & Lauriks, W. (2006). Non-contactUltrasound Characterization of Bread Crumb: Application of the Biot–Allard Model. FoodResearch International, 39, 1067–1075.

Le-Bail, A., Dessev, T., Leray, D., Lucas, T., Mariani, S., Mottollese, G., et al. (2011). Influenceof the amount of steaming during baking on the kinetics of heating and on selected qualityattributes of crispy rolls. Journal of Food Engineering, 105, 379–385.

Leonard, A., Blacher, S., Nimmol, C., & Devahastin, S. (2008). Effect of far-infrared radiationassisted drying on microstructure of banana slices: An illustrative use of X-ray microtomog-raphy in microstructural evaluation of a food product. Journal of Food Engineering, 85,154–162.

Li, K., Gao, X.-L., & Subhash, G. (2006). Effects of cell shape and strut cross-sectional areavariations on the elastic properties of three-dimensional open-cell foams. Journal of theMechanics and Physics of Solids, 54, 783–806.

Lim, K. S., & Barigou, M. (2004). X-ray micro-computed tomography of cellular food products.Food Research International, 37, 1001–1012.

Liu, Z., & Scanlon, M. G. (2003). Predicting mechanical properties of bread crumb. Transactionsof I Chem E, 81, 212–220.

Luyten, H., Plijter, J. J., & van Vliet, T. (2004). Crispy/crunchy crust of cellular solids food: aliterature review with discussion. Journal of Texture Studies, 35, 445–492.

Madioulia, J., Sghaiera, J., Lecomteb, D., & Sammoudaa, H. (2012). Determination of porositychange from shrinkage curves during drying of food material. Food and BioproductsProcessing, 90, 43–51.

Marabi, A., Livings, S., Jacobson, M., & Saguy, I. (2003). Normalized weibull distribution formodeling rehydration of food particulates. European Food Research and Technology, 217,311–318.

Mayor, L., & Sereno, A. M. (2004). Modelling shrinkage during convective drying of foodmaterial: a review. Journal of Food Engineering, 61, 373–386.

Mesa, N. J. E., Alavi, S., Singh, N., Shi, Y. C., Dogan, H., & Sang, Y. (2009). Soy protein-fortified expanded extrudates: Baseline study using normal corn starch. Journal of FoodEngineering, 90, 262–270.

Moraru, C. I., & Kokini, J. L. (2003). Nucleation and expansion during extrusion and microwaveheating of cereal foods. Comprehensive Reviews in Food Science and Food Safety, 2,120–138.

Olurin, O. B., Arnold, M., Korner, C., & Singer, R. F. (2002). The investigation of morphometricparameters of aluminum foams using micro-computed tomography. Materials Science andEngineering, 328, 334–343.

Pai, D. A., Blake, O. A., Hamaker, B. R., & Campanella, O. H. (2009). Importance of extensionalrheological properties of fiber-enriched corn extrudates. Journal of Cereal Science, 50,227–234.

References 45

Page 4: References - Springer978-1-4614-7354-1/1.pdf · References Agbisit, R., Alavi, S., ... Ioannidis, M. A., & Chatzis, I. (1993). Network modeling of pore structure and transport in

Parada, J., Aguilera, J. M., & Brennan, C. (2011). Effect of guar gum content on some physicaland nutritional properties of extruded products. Journal of Food Engineering, 103, 324–332.

Pontente, H., Ernst, W., & Oblotzki, J. (2006). Description of the foaming process during theextrusion of foams based on renewable resources. Journal of Cellular Plastics, 42, 241–253.

Prachayawarakorn, S., Prakotmak, P., & Sopornronnarit, S. (2008). Effect of pore sizedistribution and pore-architecture assembly on drying characteristics of pore networks.International Journal of Heat and Mass Transfer, 51, 344–352.

Prakotmak, P., Soponronnari, S., & Prachayawarakorn, S. (2010). Modelling of moisturediffusion in pores of banana foam mat using a 2-D stochastic pore network: Determination ofmoisture diffusion coefficient during adsorption process. Journal of Food Engineering, 96,119–126.

Primo-Martín, C., van Dalen, G., Meinders, M. B. J., Don, A., Hamer, R. H., & van Vliet, T.(2010). Bread crispness and morphology can be controlled by proving conditions. FoodResearch International, 43, 207–217.

Rahman, M. S. (2003). A theoretical model to predict the formation of pores in foods duringdrying. International Journal of Food Properties, 6, 61–72.

Robin, F., Engmann, J., Pineau, N., Chanvrier, H., Bovet, N., & Della Valle, G. (2010).Extrusion, structure and mechanical properties of complex starchy foams. Journal of FoodEngineering, 98, 19–27.

Roca, E., Guillard, V., Guilbert, S., & Gontard, N. (2006). Moisture migration in a cerealcomposite food at high water activity: Effects of initial porosity and fat content. Journal ofCereal Science, 43, 144–151.

Sablani, S. S., & Rahman, M. S. (2003). Using neural networks to predict thermal conductivity offood as afunction of moisture content, temperature and apparent porosity. Food ResearchInternational, 36, 617–623.

Saguy, _I. S., Marabi, A., & Wallach, R. (2005). Liquid imbibition during rehydration of dryporous foods. Innovative Food Science and Emerging Technologies, 6, 37–43.

Scanlon, M. G., & Zghal, M. C. (2001). Bread properties and crumstructure. Food ResearchInternational, 34, 841–864.

Segura, L. A. (2007). Modeling at pore-scale isothermal drying of porous materials: Liquid andvapor diffusivity. Drying Technology, 25, 1677–1686.

Segura, L. A., & Toledo, P. G. (2005). Pore-level modeling of isothermal drying of porenetworks: Effects of gravity and pore shape and size distributions on saturation and transportparameters. Chemical Engineering Journal, 111, 237–252.

Stasiak, M. W., & Jamroz, J. (2009). Specific surface area and porosity of starch extrudatesdetermined from nitrogen adsorption data. Journal of Food Engineering, 93, 379–385.

Steele, D. D., & Nieber, J. L. (1994). Network modeling of diffusion coefficients for porousmedia. I. Theory and model development. II. Simulations. Soil Science Society AmericanJournal, 58(5), 1337–1345.

Stokes, D. J., & Donald, A. M. (2000). In situ mechanical testing of dry and hydrated breadcrumbin the Environmental Scanning Electron Microscope (ESEM). Journal of Materials Science,35, 599–607.

Surasani, V. K., Metzger, T., & Tsotsas, E. (2009). A non-isothermal pore network drying modelwith gravity effect. Transport in Porous Media, 80, 431–439.

Trater, A. M., Alavi, S., & Rizvi, S. S. H. (2005). Use of non-invasive X-ray microtomographyfor characterizing microstructure of extruded biopolymer foams. Food Research Interna-tional, 38, 709–719.

Troutman, M. Y., Mastikhin, I. V., Balcom, B. J., Eads, T. M., & Ziegler, G. R. (2001). Moisturemigration in soft-panned confections during engrossing and aging as observed by magneticresonance imaging. Journal of Food Engineering, 48, 257–267.

Troygot, O., Saguy, I. S., & Wallach, R. (2011). Modeling rehydration of porous food materials:I. Determination of characteristic curve from water sorption isotherms. Journal of FoodEngineering, 105, 408–415.

46 References

Page 5: References - Springer978-1-4614-7354-1/1.pdf · References Agbisit, R., Alavi, S., ... Ioannidis, M. A., & Chatzis, I. (1993). Network modeling of pore structure and transport in

Tsetsekou, A., Androutsopoulos, G. P., & Mann, R. (1991). Mercury porosimetry hysteresis andentrapment predictions based on a corrugated random pore model. Chemical EngineeringCommunications, 110, 1–29.

van Dalen, G., Blonk, H., van Haalts, H., & Hendriks, C. L. (2003). 3-D imaging of foods usingX-ray microtomography. G.I.T. Imaging and Microscopy, 3, 18–21.

Wagner, M., Quellec, S., Trystram, G., & Lucas, T. (2008). MRI evaluation of local expansion inbread crumb during baking. Journal of Cereal Science, 48, 213–223.

References 47

Page 6: References - Springer978-1-4614-7354-1/1.pdf · References Agbisit, R., Alavi, S., ... Ioannidis, M. A., & Chatzis, I. (1993). Network modeling of pore structure and transport in

Index

AAnisotropy, 4, 14, 20Average pore size, 1, 17, 21, 27, 36, 39

BBaking, 2, 3Brittleness, 18Bulk density, 14

CCapillary flow, 2, 7Capillary penetration, 2, 7, 8, 39Capillary pressure, 3, 7, 23, 26–28Capillary segment, 25, 27–29, 32–36Cell shape, 20Cell structure, 1, 3, 7Cell wall thickness, 1, 3, 5, 7, 8, 12, 14, 17, 20,

21, 27, 39Cellular foods, 17, 18, 20Composite foods, 1, 2Compression test, 17, 18Compressive strength, 1, 17, 21, 27, 39Continuum model, 21Convenience foods, 1, 2Corrugated pore, 26, 27, 32, 36Crispiness, 2, 3, 18

DDestructive imaging technique, 7, 8, 11Drying, 1- 3, 9, 13, 21, 39, 40

EEffective diffusivity, 8, 22, 24, 36Elastic recovery, 14

Empirical model, 21, 22Engineering strain, 17Engineering stress, 17Environmental scanning microscopy (ESEM),

7, 9

FFailure stress, 17Fick’s Second Law of Diffusion, 2, 39Flexural modulus, 19Flexure strength, 19Flexure test, 17, 18Fracture stress, 17Freezing, 2- 4Frying, 2Fundamental model, 21

GGibson & Ashby model, 4, 19, 20

IImage analysis, 7, 8, 10, 11, 13- 15, 41Interconnected pore volume, 36Interconnectivity, 1, 3, 5, 7, 12, 14, 17, 20, 21,

26, 27, 39

JJaggedness analysis, 18

LLaplace-Young equation, 7, 23, 27Light microscopy, 7- 9, 13Liquid extrusion porosimetry, 7, 8

A. Gueven and Z. Hicsasmaz, Pore Structure in Food,SpringerBriefs in Food, Health, and Nutrition, DOI: 10.1007/978-1-4614-7354-1,� Alper Gueven and Zeynep Hicsasmaz 2013

49

Page 7: References - Springer978-1-4614-7354-1/1.pdf · References Agbisit, R., Alavi, S., ... Ioannidis, M. A., & Chatzis, I. (1993). Network modeling of pore structure and transport in

Loss modulus, 4Lucas-Washburn equation, 23

MMacroscopic pore structure, 1, 17, 21, 27, 39Magnetic resonance imaging (MRI), 7, 10Mathematical model, 3, 7, 21, 41Mechanical properties, 2, 4, 17, 18, 20Mercury intrusion, 7, 27, 29, 36, 37, 41Mercury porosimetry, 7, 8, 27Microstructure, 3, 4, 7, 9, 10, 13, 14, 20, 26, 37Modulus of elasticity, 17, 19Moisture diffusion, 2, 3, 22, 23, 39, 40Moisture diffusivity, 1- 3, 17, 21, 27, 39Moisture migration, 2, 10

NNeck-and-bulge assemblies, 26Non-interconnected pore volume, 24, 26, 37Non-invasive imaging technique, 10Nuclear magnetic resonance (NMR), 10Number (population)-based pore size distri-

bution, 1, 17, 21, 27, 39

PPolydispersity index, 4, 7, 10, 12Pore network model, 2, 4, 5, 13, 20, 24, 39, 41Pore size distribution, 2, 7, 8, 10, 20, 24, 26,

31, 39Pore size histogram, 28, 29, 37, 41Pore structure, 1- 4, 7, 10, 11, 13, 17, 19- 24,

26, 27, 29, 31, 39, 41Porosity, 1- 5, 7, 12- 14, 17, 21, 27, 31, 33, 34,

36, 37, 39- 41Porous media, 2

QQuantitative image analysis, 10, 11, 14

RRehydration, 1, 7, 21

SScanning electron microscopy (SEM), 7, 8Semi-empirical model, 22Simulation, 7, 24, 26, 27, 29, 36, 39, 41Specific surface area, 1, 17, 21, 27, 39Steam extrusion, 14, 15Stiffness, 1, 4, 7, 21, 27, 39Stress–strain curve, 17- 19Supercritical Fluid Extrusion (SCFX), 13Surface area-based pore size distribution, 1,

17, 21, 27, 39

TTensile strength, 1, 17, 21, 27, 39Texture, 1, 4, 7, 17, 19- 21, 27, 39Thermal conductivity, 3, 4, 41Thermal diffusivity, 1, 3, 17, 21, 22, 27, 39Tortuosity, 22- 24Transmission electron microscopy (TEM), 7Transport properties, 1, 3, 17, 21, 24, 27, 39

VVapor-induced puffing, 2, 21Volume-based pore size distribution, 1, 17, 21,

27, 39

XX-ray microtomography, 7, 9, 10, 13, 14, 20

50 Index