References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A....

51
References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover Publications Inc., New York, 1966. 2. M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. (2) 160 (2004), no. 2, 781–793. 3. Workshop website network of the American Institute of Mathematics, http: //www.aimath.org/WWN/rh/articles/html/18a/. 4. The Riemann Hypothesis, http://www.aimath.org/WWN/rh/rh.pdf. 5. J. Alc´ antara-Bode, An integral equation formulation of the Riemann Hypothe- sis, Integral Equations Operator Theory 17 (1993), no. 2, 151–168. 6. F. Amoroso, On the heights of a product of cyclotomic polynomials, Rend. Sem. Mat. Univ. Politec. Torino 53 (1995), no. 3, 183–191, Number theory, I (Rome, 1995). 7. , Algebraic numbers close to 1 and variants of Mahler’s measure, J. Number Theory 60 (1996), no. 1, 80–96. 8. E. Bach and J. Shallit, Factoring with cyclotomic polynomials, Math. Comp. 52 (1989), no. 185, 201–219. 9. , Algorithmic Number Theory. Vol. 1, Foundations of Computing Series, vol. 1, MIT Press, Cambridge, MA, 1996, Efficient algorithms. 10. R. Backlund, ¨ Uber die Nullstellen der Riemannschen Zetafunktion. (Swedish), Acta Math. 41 (1918), 345–375. 11. , ¨ Uber die Beziehung zwischen Anwachsen und Nullstellen der Zetafunk- tion. (Finnish), ¨ Ofversigt Finska Vetensk. Soc. 61 (1918–1919), no. 9. 12. R. Balasubramanian and K. Ramachandra, Proof of some conjectures on the mean-value of Titchmarsh series. I, Hardy-Ramanujan J. 13 (1990), 1–20. 13. M. Balazard and E. Saias, The Nyman-Beurling equivalent form for the Rie- mann Hypothesis, Expo. Math. 18 (2000), no. 2, 131–138. 14. M. Balazard, E. Saias, and M. Yor, Notes sur la fonction ζ de Riemann. II, Adv. Math. 143 (1999), no. 2, 284–287. 15. W. Barratt, R. W. Forcade, and A. D. Pollington, On the spectral radius of a (0, 1) matrix related to Mertens’ function, Linear Algebra Appl. 107 (1988), 151–159. 16. C. Bays and R. H. Hudson, A new bound for the smallest x with π(x) > li(x), Math. Comp. (2000), no. 69, 1285–1296.

Transcript of References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A....

Page 1: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

References

1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions,with Formulas, Graphs, and Mathematical Tables, Dover Publications Inc.,New York, 1966.

2. M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. (2)160 (2004), no. 2, 781–793.

3. Workshop website network of the American Institute of Mathematics, http://www.aimath.org/WWN/rh/articles/html/18a/.

4. The Riemann Hypothesis, http://www.aimath.org/WWN/rh/rh.pdf.5. J. Alcantara-Bode, An integral equation formulation of the Riemann Hypothe-

sis, Integral Equations Operator Theory 17 (1993), no. 2, 151–168.6. F. Amoroso, On the heights of a product of cyclotomic polynomials, Rend. Sem.

Mat. Univ. Politec. Torino 53 (1995), no. 3, 183–191, Number theory, I (Rome,1995).

7. , Algebraic numbers close to 1 and variants of Mahler’s measure, J.Number Theory 60 (1996), no. 1, 80–96.

8. E. Bach and J. Shallit, Factoring with cyclotomic polynomials, Math. Comp.52 (1989), no. 185, 201–219.

9. , Algorithmic Number Theory. Vol. 1, Foundations of Computing Series,vol. 1, MIT Press, Cambridge, MA, 1996, Efficient algorithms.

10. R. Backlund, Uber die Nullstellen der Riemannschen Zetafunktion. (Swedish),Acta Math. 41 (1918), 345–375.

11. , Uber die Beziehung zwischen Anwachsen und Nullstellen der Zetafunk-tion. (Finnish), Ofversigt Finska Vetensk. Soc. 61 (1918–1919), no. 9.

12. R. Balasubramanian and K. Ramachandra, Proof of some conjectures on themean-value of Titchmarsh series. I, Hardy-Ramanujan J. 13 (1990), 1–20.

13. M. Balazard and E. Saias, The Nyman-Beurling equivalent form for the Rie-mann Hypothesis, Expo. Math. 18 (2000), no. 2, 131–138.

14. M. Balazard, E. Saias, and M. Yor, Notes sur la fonction ζ de Riemann. II,Adv. Math. 143 (1999), no. 2, 284–287.

15. W. Barratt, R. W. Forcade, and A. D. Pollington, On the spectral radius of a(0, 1) matrix related to Mertens’ function, Linear Algebra Appl. 107 (1988),151–159.

16. C. Bays and R. H. Hudson, A new bound for the smallest x with π(x) > li(x),Math. Comp. (2000), no. 69, 1285–1296.

Page 2: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

484 References

17. M. V. Berry and J. P. Keating, The Riemann zeros and eigenvalue asymptotics,SIAM Rev. 41 (1999), no. 2, 236–266.

18. F. Beukers, A note on the irrationality of ζ(2) and ζ(3), Bull. London Math.Soc. 11 (1979), no. 3, 268–272. MR MR554391 (81j:10045).

19. E. Bombieri, Problems of the Millennium: The Riemann Hypothe-sis, http://www.claymath.org/millennium/Riemann_Hypothesis/Official_Problem_Description.pdf.

20. , Prime territory: Exploring the infinite landscape at the base of thenumber system, The Sciences (1992), 30–36.

21. E. Bombieri and J. C. Lagarias, Complements to Li’s criterion for the RiemannHypothesis, J. Number Theory 77 (1999), no. 2, 274–287.

22. J. Borwein and P. Borwein, Pi and the AGM, Canadian Mathematical SocietySeries of Monographs and Advanced Texts, John Wiley and Sons, New York,1987.

23. J. Borwein, D. Bradley, and R. Crandall, Computational strategies for the Rie-mann zeta function, J. Comput. Appl. Math. 121 (2000), no. 1–2, 247–296.

24. P. Borwein, An efficient algorithm for the Riemann zeta function, Construc-tive, Experimental, and Nonlinear Analysis (Limoges, 1999), CMS Conf. Proc.,vol. 27, Amer. Math. Soc., Providence, RI, 2000, pp. 29–34.

25. C. Boutin, Purdue mathematician claims proof for Riemann Hypothe-sis, http://news.uns.purdue.edu/UNS/html4ever/2004/040608.DeBranges.Riemann.html.

26. R. P. Brent, On the zeros of the Riemann zeta function in the critical strip,Math. Comp. 33 (1979), no. 148, 1361–1372.

27. R. P. Brent, J. van de Lune, H. J. J. te Riele, and D. T. Winter, On the zerosof the Riemann zeta function in the critical strip. II, Math. Comp. 39 (1982),no. 160, 681–688.

28. C. Calderon, Riemann’s zeta function, Rev. Acad. Cienc. Zaragoza (2) 57(2002), 67–87.

29. , The Riemann Hypothesis, Millennium Problems (Spanish), Monogr.Real Acad. Ci. Exact. Fıs.-Quım. Nat. Zaragoza, 26, Acad. Cienc. Exact. Fıs.Quım. Nat. Zaragoza, Zaragoza, 2004, pp. 1–30.

30. J. R. Chen, On the representation of a large even integer as the sum of a primeand the product of at most two primes, Sci. Sinica 16 (1973), 157–176.

31. S. Chowla, The Riemann Hypothesis and Hilbert’s Tenth Problem, Mathemat-ics and Its Applications, Vol. 4, Gordon and Breach Science Publishers, NewYork, 1965.

32. R. V. Churchill and J. W. Brown, Complex Variables and Applications, fourthed., McGraw-Hill Book Co., New York, 1984.

33. B. Cipra, A prime case of chaos, What’s Happening in the Mathematical Sci-ences, vol. 4, 1999, pp. 2–17.

34. G. L. Cohen, MathSciNet review of MR0602825, 2007, http://www.ams.org/mathscinet/.

35. J. B. Conrey, More than two-fifths of the zeros of the Riemann zeta functionare on the critical line, J. Reine Angew. Math. 399 (1989), 1–26.

36. , The Riemann Hypothesis, Notices Amer. Math. Soc. 50 (2003), no. 3,341–353.

37. J. B. Conrey and A. Ghosh, On mean values of the zeta-function, Mathematika31 (1984), no. 1, 159–161.

Page 3: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

References 485

38. J. B. Conrey, A. Ghosh, and S. M. Gonek, Simple zeros of the Riemann zeta-function, Proc. London Math. Soc. (3) 76 (1998), no. 3, 497–522.

39. J. B. Conrey and X.-J. Li, A note on some positivity conditions related to zetaand L-functions, Internat. Math. Res. Notices (2000), no. 18, 929–940.

40. G. Csordas, A. Odlyzko, W. Smith, and R. S. Varga, A new Lehmer pair ofzeros and a new lower bound for the de Bruijn-Newman constant Λ, Electron.Trans. Numer. Anal. 1 (1993), 104–111 (electronic only).

41. G. Csordas, W. Smith, and R. S. Varga, Lehmer pairs of zeros, the de Bruijn-Newman constant and the Riemann hypothesis, Constr. Approx. 10 (1994),107–109.

42. H. Davenport, Multiplicative Number Theory, third ed., Graduate Texts inMathematics, vol. 74, Springer-Verlag, New York, 2000, Revised and with apreface by Hugh L. Montgomery.

43. L. de Branges, Homepage of Louis de Branges, http://www.math.purdue.edu/

~branges/.44. , Hilbert Spaces of Entire Functions, Prentice-Hall Inc, Englewood

Cliffs, N.J., 1968.45. , The Riemann Hypothesis for Hilbert spaces of entire functions, Bull.

Amer. Math. Soc. 15 (1986), 1–17.46. , The convergence of Euler products, J. Funct. Anal. 107 (1992), 122–

210.47. , A conjecture which implies the Riemann Hypothesis, J. Funct. Anal.

121 (1994), 117–184.48. J. Derbyshire, Prime Obsession, Joseph Henry Press, Washington, 2003.49. J. M. Deshouillers, G. Effinger, H. J. J. te Riele, and D. Zinoviev, A com-

plete Vinogradov 3-primes theorem under the Riemann Hypothesis, ElectronicResearch Announcements of the American Mathematical Society 3 (1997), 99–104.

50. H. G. Diamond, MathSciNet review of MR741085, 2007, http://www.ams.org/mathscinet/.

51. H. M. Edwards, Riemann’s Zeta Function, Academic Press (Reprinted byDover Publications, 2001), 1974.

52. A. Y. Fawaz, The explicit formula for L0(x), Proc. London Math. Soc. 1 (1951),86–103.

53. , On an unsolved problem in the analytic theory of numbers, Quart. J.Math., Oxford Ser. 3 (1952), 282–295.

54. J. Franel, Les suites de Farey et le probleme des nombres premiers, Gott. Nachr.(1924), 198–206.

55. L. J. Goldstein, A history of the prime number theorem, Amer. Math. Monthly80 (1973), 599–615.

56. D. Goldston and H. L. Montgomery, Pair correlation of zeros and primes inshort intervals, Analytic Number Theory and Diophantine Problems (Stillwa-ter, OK, 1984), Progr. Math., vol. 70, Birkhauser Boston, Boston, MA, 1987,pp. 183–203.

57. X. Gourdon, The 1013 first zeros of the Riemann zeta function, and ze-ros computation at very large height, http://numbers.computation.free.fr/Constants/Miscellaneouszetazeros1e13-1e24.pdf.

58. J. P. Gram, Note sur les zeros de la fonction de Riemann, Acta Math. 27(1903), 289–304.

Page 4: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

486 References

59. A. Granville and K. Soundararajan, Upper bounds for |L(1, χ)|, Q. J. Math. 3(2002), no. 3, 265–284.

60. Richard K. Guy, Unsolved Problems in Number Theory, second ed., ProblemBooks in Mathematics, Springer-Verlag, New York, 1994, Unsolved Problemsin Intuitive Mathematics, I. MR MR1299330 (96e:11002).

61. Petros Hadjicostas, Some generalizations of Beukers’ integrals, KyungpookMath. J. 42 (2002), no. 2, 399–416. MR MR1942200 (2003h:11098).

62. G. H. Hardy, Sur les zeros de la fonction ζ(s) de Riemann, C. R. Acad. Sci.Paris 158 (1914), 1012–1014.

63. , Ramanujan: Twelve Lectures on Subjects Suggested by His Life andWork., Chelsea Publishing Company, New York, 1959. MR MR0106147 (21#4881).

64. , A Mathematician’s Apology, Canto, Cambridge University Press, Cam-bridge, 1992.

65. G. H. Hardy and J. E. Littlewood, Contributions to the theory of the Riemannzeta-function and the theory of the distribution of the primes, Acta Math. 41(1918), no. 1, 119–196.

66. , Some problems of “Partitio Numerorum” (III): On the expression ofa number as a sum of primes, Acta Math. 44 (1922), 1–70.

67. , Some problems of “Partitio Numerorum” (V): A further contributionto the study of Goldbach’s problem, Proc. London Math. Soc. (2) 22 (1924),46–56.

68. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers,fifth ed., The Clarendon Press Oxford University Press, New York, 1979. MRMR568909 (81i:10002).

69. J. Havil, Gamma: Exploring Euler’s Constant, Princeton University Press,Princeton, NJ, 2003, with a foreword by Freeman Dyson. MR MR1968276(2004k:11195).

70. D. R. Heath-Brown, Artin’s conjecture for primitive roots, Quart. J. Math.Oxford Ser. (2) 37 (1986), no. 145, 27–38.

71. , Siegel zeros and the least prime in an arithmetic progression, Quart.J. Math. Oxford Ser. (2) 41 (1990), no. 164, 405–418.

72. , Fractional moments of the Riemann zeta-function. II, Quart. J. Math.Oxford Ser. (2) 44 (1993), no. 174, 185–197.

73. G. Hitchcock, Six things to do with a conjecture you can’t prove, Zimaths(2004), no. 8.2, http://www.uz.ac.zw/science/maths/zimaths/82/conject.html.

74. C. Hooley, On Artin’s conjecture, J. Reine Angew. Math. 225 (1967), 209–220.75. J. Horgan, The death of proof, Scientific American 269 (1993), no. 4, 92–103.76. J. I. Hutchinson, On the roots of the Riemann zeta function, Trans. Amer.

Math. Soc. 27 (1925), no. 1, 49–60.77. A. E. Ingham, Mean-value theorems in the theory of the Riemann zeta-function,

Proc. Lond. Math. Soc. 27 (1926), 273–300.78. , On two conjectures in the theory of numbers, Amer. J. Math. 64

(1942), 313–319.79. A. Ivic, The Riemann Zeta-Function–The Theory of the Riemann Zeta-

Function with Applications, John Wiley & Sons Inc., New York, 1985.80. A. Ivic, On Some Results Concerning the Riemann Hypothesis, Analytic Num-

ber Theory (Kyoto, 1996), London Math. Soc. Lecture Note Ser., vol. 247,Cambridge Univ. Press, Cambridge, 1997, pp. 139–167.

Page 5: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

References 487

81. , MathSciNet review of MR1018376, 2007, http://www.ams.org/

mathscinet/.82. H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical

Society, Providence, Rhode Island, 2004.83. H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of L-functions,

Geom. Funct. Anal. (2000), 705–741, Special Volume, Part II, GAFA 2000 (TelAviv, 1999).

84. N. M. Katz and P. Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer.Math. Soc. (N.S.) 36 (1999), no. 1, 1–26.

85. J. P. Keating and N. C. Snaith, Random matrix theory and L-functions ats = 1/2, Comm. Math. Phys. 214 (2000), no. 1, 91–110.

86. E. Klarriech, Prime time, New Scientist (2000), no. 2264.87. N. M. Korobov, On zeros of the ζ(s) function, Dokl. Akad. Nauk SSSR (N.S.)

118 (1958), 431–432.88. J. C. Lagarias, On a positivity property of the Riemann ξ-function, Acta Arith.

89 (1999), no. 3, 217–234.89. , An elementary problem equivalent to the Riemann Hypothesis, Amer.

Math. Monthly (2002), no. 109, 534–543.90. R. S. Lehman, On Liouville’s function, Math. Comp. (1960), no. 14, 311–320.91. , On the difference π(x)− li(x), Acta Arith. 11 (1966), 397–410.92. , Separation of zeros of the Riemann zeta-function, Math. Comp. 20

(1966), 523–541.93. , On the distribution of zeros of the Riemann zeta-function, Proc. Lon-

don Math. Soc. (3) 20 (1970), 303–320.94. D. H. Lehmer, Extended computation of the Riemann zeta-function, Mathe-

matika 3 (1956), 102–108.95. , On the roots of the Riemann zeta-function, Acta Math. 95 (1956),

291–298.96. , MathSciNet review of MR0104638, 2007, http://www.ams.org/

mathscinet/.97. N. Levinson, More than one third of zeros of Riemann’s zeta-function are on

σ = 1/2, Advances in Math. 13 (1974), 383–436.98. X.-J. Li, The positivity of a sequence of numbers and the Riemann Hypothesis,

J. Number Theory 65 (1997), no. 2, 325–333.99. J. E. Littlewood, Quelques consequences de l’hypothese que la fonction ζ(s) de

Riemann n’a pas de zeros dans le demi-plan R(s) > 1/2, Comptes Rendus del’Acad. des Sciences (Paris) 154 (1912), 263–266.

100. , On the class number of the corpus P (√−k), Proc. London Math. Soc.

28 (1928), 358–372.101. , The Riemann Hypothesis, The Scientist Speculates: An Anthology of

Partly-Baked Ideas, Basic Books, New York, 1962.

102. J.-P. Massias, J.-L. Nicolas, and G. Robin, Evaluation asymptotique de l’ordremaximum d’un element du groupe symetrique, Acta Arith. 50 (1988), no. 3,221–242.

103. M. L. Mehta, Random Matrices and the Statistical Theory of Energy Levels,Academic Press, New York-London, 1967.

104. N. A. Meller, Computations connected with the check of Riemann’s Hypothesis.(Russian), Dokl. Akad. Nauk SSSR 123 (1958), 246–248.

105. F. Mertens, Uber eine Zahlentheoretische Funktion, Sitzungsber. Akad. Wiss.Wien IIa 106 (1897), 761–830.

Page 6: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

488 References

106. G. L. Miller, Riemann’s hypothesis and tests for primality, Seventh AnnualACM Symposium on the Theory of Computing (1975), 234–239.

107. H. L. Montgomery, The pair correlation of zeros of the zeta function, AnalyticNumber Theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St.Louis, MO., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 181–193.

108. , Zeros of approximations to the zeta function, Studies in Pure Mathe-matics, Birkhauser, Basel, 1983, pp. 497–506.

109. M. R. Murty, Artin’s Conjecture for primitive roots, Math. Intelligencer 10(1988), no. 4, 59–67.

110. M. R. Murty and R. Gupta, A remark on Artin’s conjecture, Invent. Math. 78(1984), no. 1, 127–130.

111. W ladys law Narkiewicz, The Development of Prime Number Theory, SpringerMonographs in Mathematics, Springer-Verlag, Berlin, 2000, From Euclid toHardy and Littlewood.

112. C. M. Newman, Fourier transforms with only real zeros, Proc. Amer. Math.Soc. 61 (1976), no. 2, 245–251.

113. J. J. O’Connor and E. F. Robertson, Andre Weil, http://www-history.mcs.st-andrews.ac.uk/Biographies/Weil.html.

114. , Bernhard Riemann, http://.../Riemann.html.115. , Charles de la Vallee Poussin, http://.../Vallee_Poussin.html.116. , Godfrey Harold Hardy, http://.../Hardy.html.117. , Jacques Hadamard, http://.../Hadamard.html.118. , John Edensor Littlewood, http://.../Littlewood.html.119. , Pafnuty Lvovich Chebyshev, http://.../Chebyshev.html.120. , Paul Erdos, http://.../Erdos.html.121. , Paul Turan, http://.../Turan.html.122. A. Odlyzko, Homepage of Andrew Odlyzko, http://www.dtc.umn.edu/

~odlyzko/.123. , On the distribution of spacings between zeros of the zeta function,

Math. Comp. 48 (1987), no. 177, 273–308.124. , Supercomputers and the Riemann zeta function, Supercomputing ’89:

Supercomputing Structures & Computations, Proc. 4-th Intern. Conf. on Su-percomputing (L. P. Kartashev and S. I. Kartashev, eds.), Intern. Supercom-puting Inst., 1989.

125. , An improved bound for the de Bruijn-Newman constant, Numer. Al-gorithms 25 (2000), no. 1-4, 293–303.

126. A. Odlyzko and A. Schonhage, Fast algorithms for multiple evaluations of theRiemann zeta function, Trans. Amer. Math. Soc. 309 (1988), no. 2, 797–809.

127. A. Odlyzko and H. J. J. te Riele, Disproof of the Mertens Conjecture, J. ReineAngew. Math. 357 (1985), 138–160.

128. C. Pomerance, MathSciNet review of MR2123939, 2007, http://www.ams.org/mathscinet/.

129. G. P. Pugh, The Riemann-Siegel formula and large scale computations of theRiemann zeta function, Master’s thesis, The University of British Columbia,Vancouver, BC, 1992.

130. L. D. Pustyl′nikov, On a property of the classical zeta function associated withthe Riemann conjecture on zeros. (Russian), Uspekhi Mat. Nauk 54 (1999),no. 1(325), 259–260.

131. H. Rademacher, Higher Mathematics from an Elementary Point of View,Birkhauser Boston, Mass., 1983.

Page 7: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

References 489

132. R. M. Redheffer, Eine explizit losbare Optimierungsaufgabe, Internat. Schriften-reihe Numer. Math. 142 (1977), 141–152.

133. B. Riemann, On the number of prime numbers less than a given quan-tity, Translated by David R. Wilkins. Available at http://www.claymath.

org/millenniumRiemann_Hypothesis/1859_manuscript/EZeta.pdf.134. , Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse,

Monatsberichte der Berliner Akademie (1859).135. , Gesammelte Werke, Teubner, Leipzig, 1892.136. G. Robin, Grandes valeurs de la fonction somme des diviseurs et Hypothese de

Riemann, J. Math. Pures Appl. (9) 63 (1984), no. 2, 187–213.137. J. B. Rosser, J. M. Yohe, and L. Schoenfeld, Rigorous computation and the

zeros of the Riemann zeta-function (with discussion), Information Processing68 (Proc. IFIP Congress, Edinburgh, 1968), Vol. 1: Mathematics, Software,North-Holland, Amsterdam, 1969, pp. 70–76.

138. K. Sabbagh, Dr. Riemann’s Zeros, Atlantic Books, London, 2002.139. , The Riemann Hypothesis, Farrar, Straus and Giroux, New York, 2002.140. R. Salem, Sur une proposition equivalente a l’hypothese de Riemann, C. R.

Acad. Sci. Paris 236 (1953), 1127–1128.141. P. Sarnak, Problems of the Millennium: The Riemann Hypothesis, (2004),

http://www.claymath.org/millennium/Riemann_Hypothesis/Sarnak_RH.

pdf.142. A. Selberg, On the zeros of Riemann’s zeta-function, Skr. Norske Vid. Akad.

Oslo I. 1942 (1942), no. 10, 59.143. , Collected Papers. Vol. I, Springer-Verlag, Berlin, 1989, With a fore-

word by K. Chandrasekharan.144. C. L. Siegel, Uber Riemann’s Nachlass zur Analytischen Zahlentheorie, Quellen

und Studien zur Geschichte der Math. Astr. Phys. 2 (1932), 275–310.145. S. Skewes, On the difference π(x) − li(x)., J. London Math. Soc. 8 (1933),

277–283.146. , On the difference π(x)− li(x). II., Proc. London Math. Soc. 5 (1955),

48–70.147. J. Snell et al., Chance in the primes: Part 3, http://www.dartmouth.edu/

~chance/chance_news/recent_news/primes_part2.pdf.148. K. Soundararajan, Mean-values of the Riemann zeta-function, Mathematika

42 (1995), no. 1, 158–174.149. A. Speiser, Geometrisches zur Riemannschen Zetafunktion, Math. Annalen 110

(1934), 514–521.150. M. Tanaka, A numerical investigation on cumulative sum of the Liouville func-

tion, Tokyo J. Math. 3 (1980), no. 1, 187–189.151. H. J. J. te Riele, On the sign of the difference π(x) − li(x), Math. Comp. 48

(1987), no. 177, 323–328.152. As you were, Time XLV (1945), no. 18.153. E. C. Titchmarsh, The zeros of the Riemann zeta-function, Proceedings of the

Royal Society of London, A - Mathematical and Physical Sciences, vol. 151,1935, pp. 234–255.

154. , Introduction to the Theory of Fourier Integrals, third ed., ChelseaPublishing Co., New York, 1986.

155. , The Theory of the Riemann Zeta-Function, second ed., The ClarendonPress Oxford University Press, New York, 1986, Edited and with a preface byD. R. Heath-Brown.

Page 8: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

490 References

156. P. Turan, On some approximative Dirichlet-polynomials in the theory of thezeta-function of Riemann, Danske Vid. Selsk. Mat.-Fys. Medd. 24 (1948),no. 17, 1–36.

157. A. M. Turing, A method for the calculation of the zeta-function, Proc. LondonMath. Soc. (2) 48 (1943), 180–197.

158. , Some calculations of the Riemann zeta-function, Proc. London Math.Soc. (3) 3 (1953), 99–117.

159. J. van de Lune and H. J. J. te Riele, On the zeros of the Riemann zeta functionin the critical strip. III, Math. Comp. 41 (1983), no. 164, 759–767.

160. J. van de Lune, H. J. J. te Riele, and D. T. Winter, On the zeros of the Riemannzeta function in the critical strip. IV, Math. Comp. 46 (1986), no. 174, 667–681.

161. A. Verjovsky, Arithmetic geometry and dynamics in the unit tangent bundle ofthe modular orbifold, Dynamical Systems (Santiago, 1990), Pitman Res. NotesMath. Ser., vol. 285, Longman Sci. Tech., Harlow, 1993, pp. 263–298.

162. , Discrete measures and the Riemann Hypothesis, Kodai Math. J. 17(1994), no. 3, 596–608, Workshop on Geometry and Topology (Hanoi, 1993).

163. I. M. Vinogradov, Representation of an odd number as a sum of three primes,Dokl. Akad. Nauk SSSR 15 (1937), 291–294.

164. , A new estimate of the function ζ(1 + it), Izv. Akad. Nauk SSSR. Ser.Mat. 22 (1958), 161–164.

165. V. V. Volchkov, On an equality equivalent to the Riemann hypothesis, Ukraın.Mat. Zh. 47 (1995), no. 3, 422–423.

166. H. von Koch, Sur la distribution des nombres premiers, Acta Math. 24 (1901),159–182.

167. H. von Mangoldt, Zur Verteilung der Nullstellen der Riemannschen Funktionξ(s), Math. Ann. 60 (1905), 1–19.

168. S. Wedeniwski, Zetagrid - computational verification of the Riemann hy-pothesis, In Conference in Number Theory in Honour of Professor H.C.Williams, Banff, Alberta, Canda, May 2003. http://www.zetagrid.net/zeta/ZetaGrid-Conference_in_honour_of_Hugh_Williams_2003.pdf.

169. A. Weil, Sur les fonctions algebriques a corps de constantes fini, C. R. Acad.Sci. Paris 210 (1940), 592–594.

170. , On the Riemann Hypothesis in function fields, Proc. Nat. Acad. Sci.U. S. A. 27 (1941), 345–347.

171. , Basic Number Theory, Springer, New York, 1973.172. E. T. Whittaker and G. N. Watson, A course of modern analysis. an introduc-

tion to the general theory of infinite processes and of analytic functions: withan account of the principal transcendental functions, fourth edition. Reprinted,Cambridge University Press, New York, 1990.

Page 9: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

References

Adleman, L. M. and Huang, M.-D., Primality Testing and Abelian Varieties overFinite Fields, Lecture Notes in Mathematics, vol. 1512, Springer-Verlag, Berlin,1992.

Adleman, L. M., Pomerance, C., and Rumely, R. S., On distinguishing prime numbersfrom composite numbers, Ann. of Math. (2) 117 (1983), no. 1, 173–206.

Agrawal, M. and Biswas, S., Primality and identity testing via Chinese remaindering,J. ACM 50 (2003), no. 4, 429–443 (electronic).

Agrawal, M., Kayal, N., and Saxena, N., PRIMES is in P, Ann. of Math. (2) 160(2004), no. 2, 781–793.

Anderson, R. J. and Stark, H. M., Oscillation theorems, Analytic Number Theory(Philadelphia, PA., 1980), Lecture Notes in Math., vol. 899, Springer, Berlin, 1981,pp. 79–106.

Apostol, T. M., Introduction to Analytic Number Theory, Springer-Verlag, New York,1976, Undergraduate Texts in Mathematics.

Theorie des Topos et Cohomologie Etale des Schemas. Tome 1: Theorie des topos,Springer-Verlag, Berlin, 1972, Seminaire de Geometrie Algebrique du Bois-Marie1963–1964 (SGA 4), Dirige par M. Artin, A. Grothendieck, et J. L. Verdier. Avecla collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes inMathematics, Vol. 269.

Theorie des Topos et Cohomologie Etale des Schemas. Tome 2, Springer-Verlag,Berlin, 1972, Seminaire de Geometrie Algebrique du Bois-Marie 1963–1964 (SGA4), Dirige par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaborationde N. Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol.270.

Theorie des Topos et Cohomologie Etale des Schemas. Tome 3, Springer-Verlag,Berlin, 1973, Seminaire de Geometrie Algebrique du Bois-Marie 1963–1964 (SGA4), Dirige par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaborationde P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 305.

Atkinson, F. V., The mean-value of the Riemann zeta function, Acta Math. 81(1949), 353–376.

Backlund, R. J., Uber die Nullstellen der Riemannschen Zetafunktion, Acta. Math.41 (1918), 345–375.

Page 10: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

492 References

Baker, R. C. and Harman, G., The Brun-Titchmarsh theorem on average, Ana-lytic Number Theory, Vol. 1 (Allerton Park, IL., 1995), Progr. Math., vol. 138,Birkhauser Boston, Boston, MA, 1996, pp. 39–103.

Balasubramanian, R., On the frequency of Titchmarsh’s phenomenon for ζ(s). IV,Hardy-Ramanujan J. 9 (1986), 1–10.

Balasubramanian, R. and Ramachandra, K., On the frequency of Titchmarsh’s phe-nomenon for ζ(s). III, Proc. Indian Acad. Sci. Sect. A 86 (1977), no. 4, 341–351.

Bombieri, E., Problems of the Millennium: The Riemann Hypothesis,http://www.claymath.org/millennium/Riemann_Hypothesis/Official_

Problem_Description.pdf.Bombieri, E., On the large sieve, Mathematika 12 (1965), 201–225.Bombieri, E., A variational approach to the explicit formula, Comm. Pure Appl.

Math. 56 (2003), no. 8, 1151–1164, Dedicated to the memory of Jurgen K. Moser.Bombieri, E. and Hejhal, D. A., On the zeros of Epstein zeta functions, C. R. Acad.

Sci. Paris Ser. I Math. 304 (1987), no. 9, 213–217.Carmichael, R. D., Note on a number theory function, Bull. Amer. Math. Soc. 16

(1910), 232–238.Chandrasekharan, K., Introduction to analytic number theory, Die Grundlehren der

mathematischen Wissenschaften, Band 148, Springer-Verlag New York, Inc., NewYork, 1968.

Connes, A., Trace formula in noncommutative geometry and the zeros of the Riemannzeta function, Selecta Math. (N.S.) 5 (1999), no. 1, 29–106.

Conrey, J. B., More than two fifths of the zeros of the Riemann zeta function are onthe critical line, J. Reine Angew. Math. 399 (1989), 1–26.

Conrey, J. B., L-functions and random matrices, Mathematics Unlimited—2001 andBeyond, Springer, Berlin, 2001, pp. 331–352.

Conrey, J. B., The Riemann Hypothesis, Notices Amer. Math. Soc. 50 (2003), no. 3,341–353.

Conrey, J. B., Farmer, D. W., Keating, J. P., Rubinstein, M. O., and Snaith, N. C.,Integral moments of L-functions, Proc. London Math. Soc. (3) 91 (2005), no. 1,33–104.

Conrey, J. B. and Li, X.-J., A note on some positivity conditions related to zeta andL-functions, Internat. Math. Res. Notices (2000), no. 18, 929–940.

Corradi, K. A., A remark on the theory of multiplicative functions, Acta Sci. Math.(Szeged) 28 (1967), 83–92.

Daboussi, H., Sur le theoreme des nombres premiers, C. R. Acad. Sci. Paris Ser. IMath. 298 (1984), no. 8, 161–164.

Davenport, H., Multiplicative Number Theory, second ed., Graduate Texts in Mathe-matics, vol. 74, Springer-Verlag, New York, 1980, Revised by Hugh L. Montgomery.

Davenport, H. and Heilbronn, H., On the zeros of certian Dirichlet series I, J. LondonMath. Soc. 11 (1936), 181–185.

Davenport, H. and Heilbronn, H., On the zeros of certian Dirichlet series II, J.London Math. Soc. 11 (1936), 307–312.

Deift, P. A., Orthogonal polynomials and random matrices: a Riemann-Hilbert ap-proach, Courant Lecture Notes in Mathematics, vol. 3, New York UniversityCourant Institute of Mathematical Sciences, New York, 1999.

Deligne, P., La conjecture de Weil. I, Inst. Hautes Etudes Sci. Publ. Math. (1974),no. 43, 273–307.

Deligne, P., La conjecture de Weil. II, Inst. Hautes Etudes Sci. Publ. Math. (1980),no. 52, 137–252.

Page 11: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

References 493

Deninger, C., Some analogies between number theory and dynamical systems on fo-liated spaces, Proceedings of the International Congress of Mathematicians, Vol. I(Berlin, 1998), no. Extra Vol. I, 1998, pp. 163–186.

Diaconu, A., Goldfeld, D., and Hoffstein, J., Multiple Dirichlet series and momentsof zeta and L-functions, Compositio Math. 139 (2003), no. 3, 297–360.

Diamond, H. G., Elementary methods in the study of the distribution of prime num-bers, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 553–589.

Doetsch, G., Theorie und Anwendung der Laplace-Transformation, Dover Publica-tion, N. Y., 1943.

Duke, W. and Schulze-Pillot, R., Representation of integers by positive ternaryquadratic forms and equidistribution of lattice points on ellipsoids, Invent. Math.99 (1990), no. 1, 49–57.

Edwards, H. M., Riemann’s Zeta Function, Academic Press, 1974, Pure and AppliedMathematics, Vol. 58.

Elliott, P. D. T. A., Probabilistic Number Theory, I, Grundlehren der Mathematis-chen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 239,Springer-Verlag, New York, 1979, Mean-value theorems.

Erdos, P., On a new method in elementary number theory which leads to an elemen-tary proof of the prime number theorem, Proc. Nat. Acad. Sci. U. S. A. 35 (1949),374–384.

Fouvry, E., Theoreme de Brun-Titchmarsh: application au theoreme de Fermat, In-vent. Math. 79 (1985), no. 2, 383–407.

Fujii, A., On the zeros of Dirichlet L-functions. I, Trans. Amer. Math. Soc. 196(1974), 225–235.

Fujii, A., On the distribution of the zeros of the Riemann zeta function in shortintervals, Bull. Amer. Math. Soc. 81 (1975), 139–142.

Gallagher, P. X., A large sieve density estimate near σ = 1, Invent. Math. 11 (1970),329–339.

Gallagher, P. X., On the distribution of primes in short intervals, Mathematika 23(1976), no. 1, 4–9.

Gallagher, P. X. and Mueller, J. H., Primes and zeros in short intervals, J. ReineAngew. Math. 303/304 (1978), 205–220.

Gelbart, S. S., Lapid, E. M., and Sarnak, P., A new method for lower bounds ofL-functions, C. R. Math. Acad. Sci. Paris 339 (2004), no. 2, 91–94.

Gel′fand, I. M. and Shilov, G. E., Generalized Functions. Vol. 2. Spaces of Fun-damental and Generalized Functions, Translated from the Russian by Morris D.Friedman, Amiel Feinstein, and Christian P. Peltzer, Academic Press, New York,1968.

Gel′fond, A. O., Ischislenie Konechnykh Raznostei, Third corrected edition, Izdat.“Nauka,” Moscow, 1967.

Goldfeld, M., On the number of primes p for which p + a has a large prime factor,Mathematika 16 (1969), 23–27.

Goldwasser, S. and Kilian, J., Almost all primes can be quickly certified, Proc. AnnualACM Symposium on the Theory of Computing, 1986, pp. 316–329.

Gupta, R. and Murty, M. R., A remark on Artin’s conjecture, Invent. Math. 78(1984), no. 1, 127–130.

Gupta, R., Murty, M. R., and Murty, V. K., The Euclidean algorithm for S-integers,Number Theory (Montreal, PQ, 1985), CMS Conf. Proc., vol. 7, Amer. Math.Soc., Providence, RI, 1987, pp. 189–201.

Page 12: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

494 References

Hafner, J. L. and Ivic, A., On some mean value results for the Riemann zeta-function,Theorie des Nombres (Quebec, PQ, 1987), de Gruyter, Berlin, 1989, pp. 348–358.

Hafner, J. L. and Ivic, A., On the mean-square of the Riemann zeta-function on thecritical line, J. Number Theory 32 (1989), no. 2, 151–191.

Halberstam, H. and Richert, H.-E., Sieve Methods, Academic Press [A subsidiary ofHarcourt Brace Jovanovich, Publishers], London-New York, 1974, London Math-ematical Society Monographs, No. 4.

Haran, S., Index Theory, Potential Theory, and the Riemann Hypothesis, L-Functions and Arithmetic (Durham, 1989), London Math. Soc. Lecture Note Ser.,vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 257–270.

Hardy, G. H., Divergent Series, Oxford, at the Clarendon Press, 1949.Hardy, G. H. and Rogosinski, W. W., Notes on Fourier series. I. On sine series with

positive coefficients, J. London Math. Soc. 18 (1943), 50–57.Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers, Oxford,

at the Clarendon Press, 1954, 3rd ed.Haselgrove, C. B. and Miller, J. C. P., Tables of the Riemann zeta function, Royal

Society Mathematical Tables, Vol. 6, Cambridge University Press, New York, 1960.Heath-Brown, D. R., Gaps between primes, and the pair correlation of zeros of the

zeta function, Acta Arith. 41 (1982), no. 1, 85–99.Heath-Brown, D. R., Artin’s conjecture for primitive roots, Quart. J. Math. Oxford

Ser. (2) 37 (1986), no. 145, 27–38.Heath-Brown, D. R. and Goldston, D. A., A note on the differences between consec-

utive primes, Math. Ann. 266 (1984), no. 3, 317–320.Heins, M., Complex Function Theory, Pure and Applied Mathematics, Vol. 28, Aca-

demic Press, New York, 1968.Hildebrand, A., On Wirsing’s mean value theorem for multiplicative functions, Bull.

London Math. Soc. 18 (1986), no. 2, 147–152.Hooley, C., On Artin’s conjecture, J. Reine Angew. Math. 225 (1967), 209–220.Hutchinson, J. I., On the roots of the Riemann zeta function, Trans. Amer. Math.

Soc. 27 (1925), no. 1, 49–60.Huxley, M. N., Exponential sums and the Riemann zeta function. IV, Proc. London

Math. Soc. (3) 66 (1993), no. 1, 1–40.Huxley, M. N., A note on exponential sums with a difference, Bull. London Math.

Soc. 26 (1994), no. 4, 325–327.Ingham, A. E., On Wiener’s method in Tauberian theorems, Proc. London Math.

Soc. (2) 38 (1935), 458–480.Ingham, A. E., A note on the distribution of primes, Acta. Arith. 1 (1936), 201–211.Ingham, A. E., On two conjectures in the theory of numbers, Amer. J. Math. 64

(1942), 313–319.Ingham, A. E., The Distribution of Prime Numbers, Cambridge Tracts in Mathe-

matics and Mathematical Physics, No. 30, Stechert-Hafner, Inc., New York, 1964.Ivic, A., Large values of the error term in the divisor problem, Invent. Math. 71

(1983), no. 3, 513–520.Ivic, A., The Riemann Zeta-Function, A Wiley-Interscience Publication, John Wiley

& Sons Inc., New York, 1985, The theory of the Riemann zeta-function withapplications.

Ivic, A., On a problem connected with zeros of ζ(s) on the critical line, Monatsh.Math. 104 (1987), no. 1, 17–27.

Ivic, A., Large values of certain number-theoretic error terms, Acta Arith. 56 (1990),no. 2, 135–159.

Page 13: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

References 495

Ivic, A., Lectures on Mean Values of the Riemann Zeta Function, Tata Institute ofFundamental Research Lectures on Mathematics and Physics, vol. 82, Publishedfor the Tata Institute of Fundamental Research, Bombay, 1991.

Ivic, A., On a class of convolution functions connected with ζ(s), Bull. Acad. SerbeSci. Arts Cl. Sci. Math. Natur. (1995), no. 20, 29–50.

Ivic, A., On the fourth moment of the Riemann zeta-function, Publ. Inst. Math.(Beograd) (N.S.) 57(71) (1995), 101–110.

Ivic, A., On the distribution of zeros of a class of convolution functions, Bull. Cl.Sci. Math. Nat. Sci. Math. (1996), no. 21, 61–71.

Ivic, A., On the ternary additive divisor problem and the sixth moment of the zeta-function, Sieve Methods, Exponential Sums, and their Applications in NumberTheory (Cardiff, 1995), London Math. Soc. Lecture Note Ser., vol. 237, CambridgeUniv. Press, Cambridge, 1997, pp. 205–243.

Ivic, A., On the multiplicity of zeros of the zeta-function, Bull. Cl. Sci. Math. Nat.Sci. Math. (1999), no. 24, 119–132.

Ivic, A. and Motohashi, Y., The mean square of the error term for the fourth powermoment of the zeta-function, Proc. London Math. Soc. (3) 69 (1994), no. 2, 309–329.

Ivic, A. and te Riele, H. J. J., On the zeros of the error term for the mean square of|ζ( 1

2+ it)|, Math. Comp. 56 (1991), no. 193, 303–328.

Iwaniec, H., Fourier coefficients of modular forms of half-integral weight, Invent.Math. 87 (1987), no. 2, 385–401.

Iwaniec, H., Introduction to the Spectral Theory of Automorphic Forms, Bibliotecade la Revista Matematica Iberoamericana. [Library of the Revista MatematicaIberoamericana], Revista Matematica Iberoamericana, Madrid, 1995.

Iwaniec, H., Topics in Classical Automorphic Forms, Graduate Studies in Mathe-matics, vol. 17, American Mathematical Society, Providence, RI, 1997.

Iwaniec, H. and Kowalski, E., Analytic Number Theory, American MathematicalSociety Colloquium Publications, vol. 53, American Mathematical Society, Provi-dence, RI, 2004.

Iwaniec, H. and Sarnak, P., Perspectives on the analytic theory of L-functions, Geom.Funct. Anal., Special Volume, Part II (2000), 705–741, GAFA 2000 (Tel Aviv,1999).

Jacquet, H., Principal L-functions of the linear group, Automorphic Forms, Rep-resentations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ.,Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math.Soc., Providence, R.I., 1979, pp. 63–86.

Jutila, M., On the value distribution of the zeta function on the critical line, Bull.London Math. Soc. 15 (1983), no. 5, 513–518.

Kalecki, M., A simple elementary proof of M(x) =∑

n≤x µ(n) = o(x), Acta Arith.13 (1967/1968), 1–7.

Karatsuba, A. A., On the zeros of the Davenport-Heilbronn function lying on thecritical line (Russian), Izv. Akad. Nauk SSSR ser. mat. 54 (1990), no. 2, 303–315.

Karatsuba, A. A. and Voronin, S. M., The Riemann Zeta-Function, de Gruyter Expo-sitions in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 1992, Translatedfrom the Russian by Neal Koblitz.

Katz, N. M., An overview of Deligne’s proof of the Riemann hypothesis for vari-eties over finite fields, Mathematical Developments Arising from Hilbert Problems(Proc. Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill.,1974), Amer. Math. Soc., Providence, R.I., 1976, pp. 275–305.

Page 14: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

496 References

Katz, N. M. and Sarnak, P., Random Matrices, Frobenius Eigenvalues, and Mon-odromy, American Mathematical Society Colloquium Publications, vol. 45, Amer-ican Mathematical Society, Providence, RI, 1999.

Katz, N. M. and Sarnak, P., Zeroes of zeta functions and symmetry, Bull. Amer.Math. Soc. (N.S.) 36 (1999), no. 1, 1–26.

Kuznetsov, N. V., Sums of Kloosterman sums and the eighth power moment of theRiemann zeta-function, Number Theory and Related Topics (Bombay, 1988), TataInst. Fund. Res. Stud. Math., vol. 12, Tata Inst. Fund. Res., Bombay, 1989, pp. 57–117.

Landau, E., Uber einige neuere Grenzwertsatze, Rend. Circ. Mat. Palermo 34 (1912),121–131.

Landau, E., Handbuch der Lehre von der Verteilung der Primzahlen. 2 Bande,Chelsea Publishing Co., New York, 1953, 2d ed, With an appendix by Paul T.Bateman.

Langlands, R. P., On the Functional Equations Satisfied by Eisenstein Series,Springer-Verlag, Berlin, 1976, Lecture Notes in Mathematics, Vol. 544.

Lavrik, A. A., Uniform approximations and zeros in short intervals of the derivativesof the Hardy Z-function, Anal. Math. 17 (1991), no. 4, 257–279.

Lehman, R. S., On the difference π(x)− li(x), Acta Arith. 11 (1966), 397–410.Lehmer, D. H., Extended computation of the Riemann zeta-function, Mathematika

3 (1956), 102–108.Lehmer, D. H., On the roots of the Riemann zeta-function, Acta Math. 95 (1956),

291–298.LeVeque, W. J., Topics in Number Theory. Vols. I, II, Dover Publications Inc.,

Mineola, NY, 2002, Reprint of the 1956 original [Addison-Wesley Publishing Co.,Inc., Reading, Mass.; MR0080682 (18,283d)], with separate errata list for thisedition by the author.

Levinson, N., A motivated account of an elementary proof of the prime number the-orem., Amer. Math. Monthly 76 (1969), 225–245.

Levinson, N., More than one third of zeros of Riemann’s zeta-function are on σ =1/2, Advances in Math. 13 (1974), 383–436.

Lidl, R. and Niederreiter, H., Introduction to Finite Fields and Their Applications,first ed., Cambridge University Press, Cambridge, 1994.

Lindenstrauss, E., Invariant measures and arithmetic quantum unique ergodicity,Ann. of Math. (2) 163 (2006), no. 1, 165–219.

Littlewood, J. E., Sur la distribution des nombres premiers, Comptes rendusAcademie Sci. (Paris) 158 (1914), 1869–1872.

Mehta, M. L., Random Matrices and the Statistical Theory of Energy Levels, Aca-demic Press, New York, 1967.

Mehta, M. L., Random Matrices, second ed., Academic Press Inc., Boston, MA, 1991.Mertens, F., Uber eine Zahlentheoretische Funktion, Sitzungsberichte Akad. Wien.

106 (1897), 761–830.Meyer, R., On a representation of the idele class group related to primes and zeros

of L-functions, Duke Math. J. 127 (2005), no. 3, 519–595.Miller, G. L., Riemann’s hypothesis and tests for primality, J. Comput. System Sci.

13 (1976), no. 3, 300–317, Working papers presented at the ACM-SIGACT Sym-posium on the Theory of Computing (Albuquerque, N.M., 1975).

Molteni, G., Upper and lower bounds at s = 1 for certain Dirichlet series with Eulerproduct, Duke Math. J. 111 (2002), no. 1, 133–158.

Page 15: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

References 497

Montgomery, H. L., Topics in Multiplicative Number Theory, Springer-Verlag, Berlin,1971, Lecture Notes in Mathematics, Vol. 227.

Montgomery, H. L., The pair correlation of zeros of the zeta function, Analytic Num-ber Theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis,MO., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 181–193.

Montgomery, H. L., Distribution of the zeros of the Riemann zeta function, Proceed-ings of the International Congress of Mathematicians (Vancouver, B. C., 1974),Vol. 1, Canad. Math. Congress, Montreal, Que., 1975, pp. 379–381.

Montgomery, H. L., Extreme values of the Riemann zeta function, Comment. Math.Helv. 52 (1977), no. 4, 511–518.

Montgomery, H. L. and Vaughan, R. C., Hilbert’s inequality, J. London Math. Soc.(2) 8 (1974), 73–82.

Motohashi, Y., The fourth power mean of the Riemann zeta-function, Proceedingsof the Amalfi Conference on Analytic Number Theory (Maiori, 1989) (Salerno),Univ. Salerno, 1992, pp. 325–344.

Motohashi, Y., An explicit formula for the fourth power mean of the Riemann zeta-function, Acta Math. 170 (1993), no. 2, 181–220.

Motohashi, Y., A relation between the Riemann zeta-function and the hyperbolicLaplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), no. 2, 299–313.

Motohashi, Y., The Riemann zeta-function and the non-EuclideanLaplacian [translation of Sugaku 45 (1993), no. 3, 221–243; MR1256466(95b:11081)], Sugaku Expositions 8 (1995), no. 1, 59–87, Sugaku Expositions.

Motohashi, Y., Spectral Theory of the Riemann Zeta-Function, Cambridge Tracts inMathematics, vol. 127, Cambridge University Press, Cambridge, 1997.

Nair, M., On Chebyshev-type inequalities for primes, Amer. Math. Monthly 89(1982), no. 2, 126–129.

Newman, D. J., Simple analytic proof of the prime number theorem, Amer. Math.Monthly 87 (1980), no. 9, 693–696.

Odlyzko, A. M., http://www.dtc.umn.edu/~odlyzko/.Odlyzko, A. M., On the distribution of spacings between zeros of the zeta function,

Math. Comp. 48 (1987), no. 177, 273–308.Odlyzko, A. M., Supercomputers and the Riemann zeta function, Supercomputing

89: Supercomputing Structures and Computations, Proc. 4-th Intern. Conf. onSupercomputing (Kartashev, L. P. and Kartashev, S. I., eds.), International Su-percomputing Institute, 1989, pp. 348–352.

Odlyzko, A. M., Analytic computations in number theory, Mathematics of Computa-tion 1943–1993: A Half-Century of Computational Mathematics (Vancouver, BC,1993), Proc. Sympos. Appl. Math., vol. 48, Amer. Math. Soc., Providence, RI,1994, pp. 451–463.

Odlyzko, A. M. and te Riele, H. J. J., Disproof of the Mertens conjecture, J. ReineAngew. Math. 357 (1985), 138–160.

Ono, K. and Soundararajan, K., Ramanujan’s ternary quadratic form, Invent. Math.130 (1997), no. 3, 415–454.

Polya, G., Verschiedene Bemerkungen zur Zahlentheorie, Jahresbericht derdeutschen Math.-Vereinigung 28 (1919), 31–40.

Postnikov, A. G. and Romanov, N. P., A simplification of A. Selberg’s elementaryproof of the asymptotic law of distribution of prime numbers, Uspehi Mat. Nauk(N.S.) 10 (1955), no. 4(66), 75–87.

Pratt, V. R., Every prime has a succinct certificate, SIAM J. Comput. 4 (1975),no. 3, 214–220.

Page 16: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

498 References

Rabin, M. O., Probabilistic algorithm for testing primality, J. Number Theory 12(1980), no. 1, 128–138.

Ramachandra, K., Progress towards a conjecture on the mean-value of Titchmarshseries, Recent Progress in Analytic Number Theory, Vol. 1 (Durham, 1979), Aca-demic Press, London, 1981, pp. 303–318.

Ramachandra, K., On the Mean-Value and Omega-Theorems for the Riemann Zeta-Function, Tata Institute of Fundamental Research Lectures on Mathematics andPhysics, vol. 85, Published for the Tata Institute of Fundamental Research, Bom-bay, 1995.

Renyi, A., On the large sieve of Ju V. Linnik, Compositio Math. 8 (1950), 68–75.Riemann, B., Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse,

November 1859.Rosser, J. B., Yohe, J. M., and Schoenfeld, L., Rigorous computation and the zeros

of the Riemann zeta-function (with discussion), Information Processing 68 (Proc.IFIP Congress, Edinburgh, 1968), Vol. 1: Mathematics, Software, North-Holland,Amsterdam, 1969, pp. 70–76.

Rudnick, Z. and Sarnak, P., Zeros of principal L-functions and random matrix theory,Duke Math. J. 81 (1996), no. 2, 269–322, A celebration of John F. Nash, Jr.

Saffari, B. and Vaughan, R. C., On the fractional parts of x/n and related sequences.II, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 2, v, 1–30.

Selberg, A., On the zeros of Riemann’s zeta-function, Skr. Norske Vid. Akad. OsloI. 1942 (1942), no. 10, 59.

Selberg, A., On the zeros of the zeta-function of Riemann, Norske Vid. Selsk. Forh.,Trondhjem 15 (1942), no. 16, 59–62.

Selberg, A., On the normal density of primes in small intervals, and the differencebetween consecutive primes, Arch. Math. Naturvid. 47 (1943), no. 6, 87–105.

Selberg, A., On the remainder in the formula for N(T ), the number of zeros of ζ(s)in the strip 0 < t < T , Avh. Norske Vid. Akad. Oslo. I. 1944 (1944), no. 1, 27.

Selberg, A., Contributions to the theory of the Riemann zeta-function, Arch. Math.Naturvid. 48 (1946), no. 5, 89–155.

Selberg, A., An elementary proof of the prime-number theorem, Ann. of Math. (2)50 (1949), 305–313.

Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Rie-mannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.)20 (1956), 47–87.

Selberg, A., Old and new conjectures and results about a class of Dirichlet series,Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989)(Salerno), Univ. Salerno, 1992, pp. 367–385.

Serre, J.-P., Quelques applications du theoreme de densite de Chebotarev, Inst. HautesEtudes Sci. Publ. Math. (1981), no. 54, 323–401.

Severi, F., Sulla totalita delle curve algebriche tracciate sopra una superficie algebrica,Math. Ann. 62 (1906), no. 2, 194–225.

Siegel, C. L., Uber Riemanns Nachlass zur analytischen Zahlentheorie, Quellen undStudien zur Geschichte der Mathematik, Astronomie und Physik 2 (1932), 45–80.

Skewes, S., On the difference π(x)− lix. I, J. London Math. Soc. 8 (1933), 277–283.Solovay, R. and Strassen, V., A fast Monte-Carlo test for primality, SIAM J. Comput.

6 (1977), no. 1, 84–85.Spira, R., Some zeros of the Titchmarsh counterexample, Math. Comp. 63 (1994),

no. 208, 747–748.

Page 17: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

References 499

Tate, J., Number theoretic background, Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977),Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I.,1979, pp. 3–26.

Taylor, R. and Wiles, A., Ring-theoretic properties of certain Hecke algebras, Ann.of Math. (2) 141 (1995), no. 3, 553–572.

te Riele, H. J. J., On the sign of the difference π(x)− li(x), Math. Comp. 48 (1987),no. 177, 323–328.

te Riele, H. J. J. and van de Lune, J., Computational number theory at CWI in1970–1994, CWI Quarterly 7 (1994), no. 4, 285–335.

Titchmarsh, E. C., The zeros of the zeta-function, Proc. Royal Soc. A 151 (1935),234–255.

Titchmarsh, E. C., The zeros of the zeta-function, Proc. Royal Soc. A 157 (1936),261–263.

Titchmarsh, E. C., The Theory of Functions, Oxford Univ. Press, London, 1939.Titchmarsh, E. C., The Theory of the Riemann Zeta-Function, second ed., The

Clarendon Press Oxford University Press, New York, 1986, edited and with apreface by D. R. Heath-Brown.

Tsang, K. M., Some Ω-theorems for the Riemann zeta-function, Acta Arith. 46(1986), no. 4, 369–395.

Tsang, K. M., The large values of the Riemann zeta-function, Mathematika 40(1993), no. 2, 203–214.

Turan, P., On some approximative Dirichlet-polynomials in the theory of the zeta-function of Riemann, Danske Vid. Selsk. Mat.-Fys. Medd. 24 (1948), no. 17, 36.

Vaaler, J. D., Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc.(N.S.) 12 (1985), no. 2, 183–216.

van de Lune, J., te Riele, H. J. J., and Winter, D. T., On the zeros of the Riemannzeta function in the critical strip. IV, Math. Comp. 46 (1986), no. 174, 667–681.

van der Waerden, B. L., Zur Algebraischen Geometrie. XIII, Math. Ann. 115 (1938),no. 1, 359–378.

van der Waerden, B. L., Zur algebraischen Geometrie. XIV. Schnittpunktszahlen vonalgebraischen Mannigfaltigkeiten, Math. Ann. 115 (1938), no. 1, 619–642.

van Leeuwen, J. (ed.), Handbook of Theoretical Computer Science. Vol. A, ElsevierScience Publishers B.V., Amsterdam, 1990, Algorithms and complexity.

Vinogradov, A. I., The density hypothesis for Dirichet L-series, Izv. Akad. NaukSSSR Ser. Mat. 29 (1965), 903–934.

von zur Gathen, J. and Gerhard, J., Modern Computer Algebra, second ed., Cam-bridge University Press, Cambridge, 2003.

Waldspurger, J.-L., Sur les coefficients de Fourier des formes modulaires de poidsdemi-entier, J. Math. Pures Appl. (9) 60 (1981), no. 4, 375–484.

Weil, A., Sur les fonctions algebriques a corps de constantes fini, C. R. Acad. Sci.Paris 210 (1940), 592–594.

Weil, A., Sur les Courbes Algebriques et les Varietes qui s’en dEduisent, ActualitesSci. Ind., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945), Hermann etCie., Paris, 1948.

Weil, A., Sur les “formules explicites” de la theorie des nombres premiers, Comm.Sem. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (1952), no. TomeSupplementaire, 252–265.

Weil, A., Basic Number Theory, third ed., Springer-Verlag, New York, 1974, DieGrundlehren der Mathematischen Wissenschaften, Band 144.

Page 18: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

500 References

Weil, A., Scientific Works. Collected Papers. Vol. I (1926–1951), Springer-Verlag,New York, 1979.

Widder, D. V., The Laplace Transform, Princeton Mathematical Series, v. 6, Prince-ton University Press, Princeton, N. J., 1941.

Wiener, N., Tauberian theorems, Ann. of Math. (2) 33 (1932), no. 1, 1–100.Wiles, A., Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141

(1995), no. 3, 443–551.

Page 19: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index

L-functions, 95, 98, 99, 107, 116, 123,307, see Artin L-function, seeDirichlet series, see Hasse–WeilL-function

L(s,∆), 108

degree 2, 108

L(s, χ), 107, 108, 350

degree 1, 108

partial sum, 350

L(s, χ1), 56

ζ(s), 56

L(s, χ3), 123

L(s, χk), 56, 126

L(s, π), 59, 109

L(s, π∞), 59, 108

L(s, πp), 59, 108

LE(s), 124

L∆(s), 124

Λ(s, χ), 108

Λ(s, π), 59, 109

arithmetic variety, 98

automorphic, 58–60

automorphic form, 124

automorphic representation, 98

class, 95

degree m, 108

Dirichlet, 107, 126, 350

Dirichlet series, 98

elliptic curve, 98, 100, 124, 128, 129

modularity, 129

rational point, 128

extremal, 128

family, 103, 125, 129

global, 98Maass waveform, 99, 104modular, 100, 124, 128Ramanujan τ cusp form, 126

L-series, see Dirichlet L-seriesk-tuple correlation, 409

zeros of ζ(s), 409k-tuple correlation function, 409k-tuple hypothesis, 451kth consecutive spacing, 41nth divided difference function, 146nth harmonic number, 48evaluation∆, 272∑

ρ1

σ2+t2, 233∑

ρyσ−1

σ2+t2, 264∑

ρyσ−1

t2, 260∑

pmlog(p)

pm , 276∑pm log(p), 268

somme des ρ, 260

Abelian character, 451Abelian integral, 314accumulation point, see condensation

pointadele ring, 58, 108adeles, 104adjacency matrix, 53

graph, 53Adleman, 471Adleman–Huang algorithm, 124Adleman–Huang primality testing

algorithm, 471

Page 20: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

502 Index

Adleman–Pomerance–Rumely primalitytesting algorithm, 471

Agrawal, 63, 469, 470Agrawal–Kayal, 110Agrawal–Kayal–Saxena, 110Agrawal–Kayal–Saxena primality

testing algorithm, 63, 110,469–474

correctness proof, 469, 471, 472, 474,477, 478, 480

deterministic, 63, 469, 470, 472polynomial time, 63, 469–471running time, 110, 469, 471, 472time complexity, 469, 471, 472,

478–480unconditional, 63, 469–471

Alacantara–Bode, 52algebraic closure, 315algebraic curve, 314

correspondence, 314algebraic extension, 315

degree, 315separable, 315

algebraic function, 314finite field, 314

algebraic index theorem, 103algebraic number field, 58algebraic variety, 100

cohomology, 101finite field, 100, 101topological structure, 101

algebraically closed field, 103algorithms, see primality testing

algorithmsalternating series, 36Euler–MacLaurin summation, 29, 30ζ(s), 30

fast Fourier transform (FFT), 35Fermat’s little theorem, 470Odlyzko–Schonhage, 35Riemann hypothesis, 29Riemann–Siegel, see Riemann–Siegel

formulasieve of Eratosthenes, 470

running time, 470Turing, 34

alternating zeta function, 49, 55, 96,325, see Dirichlet eta function, seezeta functions, (1− 21−s)ζ(s)

partial sum, 325, see partial sumalternative hypothesis, 127American Institute of Mathematics, 117analytic continuation, 5, 11, 14, 147,

191, 426, 431, 432L-function, 98L(s, χ), 108L(s, χk), 56Lp(s), 57Γ (s), 13η(s), 56ζ′(s)ζ(s)

, 427

ζ(s), 5, 11–13, 37, 55, 58, 95, 97, 107,117, 191, 304, 425, 428

ζ(s, a), 136Laplace transform, 427

analytical mean, 356Anzahl der Primzahlen, 183, 190approximate functional equation, 32,

33, 120approximationN(T ), 119, 144, 157N0(T ), 144, 157NM (T ), 157S(T ), 148SM (T ), 148Z(t), 154

<( Γ ′(a)Γ (a)

), 233Γ ′(a)Γ (a)

, 237ζ′(s)ζ(s)

, 238–240

log(ζ(s)), 201µ(n), 128π(x), 96–98, 118, 132, 162, 163ψµ(x), 217ϕ(x), 163, 172–174, 177–179ζ(s), 32Li(x), 198Diophantine, 400distribution of prime numbers, 469zero of ζ(s), 44

argument principle, 19arithmetic functions

( an

), 471, see Jacobi symbol(a, n), 473A(n), 479, see Artin’s constantL(n), 332, 351L1(n), 342, 351

Page 21: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index 503

Λ(n), 102, 119, 304, 305, 307, 428,429, 434, see von Mangoldt’sfunction

χk(n), 56

λ(n), 6, 8, 46, 330, 399, 400, seeLiouville’s function(

np

), 57, see Legendre symbol

log(n), 433

µ(n), 47, 69, 119, 127, 132, 284, 309,356, 402, 419, 433, 434, 438, 439,see Mobius function

ω(n), 6, 46

φ(n), 48, 54, 58, 127, see Euler’sphi function, see Euler’s totientfunction

ψ(n), 473

ψν(n), 207

σ(n), 48, 123

upper bound, 48

σk(n), 48

τ(n), 124, 356, see Ramanujan’s taufunction

a(k), 67

dk(n), 140, see general divisorfunction

h(d), 127, 408, see class number

on(a), 473

uy(p), 434

vy(p), 434

arithmetic progression, 128, 356, 365

extended Riemann hypothesis, 63

prime numbers, 63, 107, 127, 220, 227

quadratic forms, 220

arithmetic variety, 98

L-functions, 98

arithmetical mean, 328

Artin, 64, 101, 110, 124, 479

Artin L-function, 100, 314, 316

polynomial, 314

Artin’s constant, 479, see arithmeticfunctions, A(n)

Artin’s primitive root conjecture, 64,110, 479

conditional proof, 64

consequence, 479

generalized Riemann hypothesis, 64,479

proof, 64

Heath-Brown, 64Murty–Gupta, 64

assertation de Riemann–Stieltjes, 211asymptotic behaviorE2(T ), 139F (X,T ), 447, 449, 451, 458F (α), 408H(z), 26H(n)(z), 26Ik(T ), 67J(X,T ), 463M(x), 307, 308, 311, 440, 442–445MZ,f (t), 134, 149N(T ), 15, 41, 132, 459N(σ, T + 1)−N(σ, T ), 65N0(T ), 157Z(t), 133, 134∆(t), 150∆(k)(t), 150Γ (s), 21Π(x)− π(x), 381

1ζ(s)

, 307, 308, 312ζ′(s)ζ(s)

, 23, 229, 245

S(T ), 66S1(T ), 66π(x), 18, 96, 227, 284, 302, 303, 365,

427ψ(x), 305, 307, 308, 312, 427, 429ψµ(x), 217∑

ρ1

γ2 , 378, 379∑ρ

, 378, 379∑n

µ(n)n

, 288, 442∑p

log(p)p−1

, 277, 278∑p

log(p)ps−1

, 245∑p

log(p)p

, 365, 419, 422, 435, 440, 441∑p log(p), 275, 354∑pm

log(p)pm , 268, 276, 277∑

pm log(p), 268, 272, 275θ(x), 303ϑ(t), 25, 26ϑ(x), 354, 356, 358, 359, 365–368,

370, 371ϑ(n)(t), 25, 26ζ(s), 142Li(x), 96, 226, 227, 283mean squareS(t), 113

Page 22: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

504 Index

mean valueζ( 1

2+ it), 141

prime numbers, 212, 218, 220, 222,225, 226, 260, 300, 301, 425, 450,479

Sophie Germain primes, 479zerosRn(s), 349Vn(s), 325, 347Davenport–Heilbronn zeta function,

136Atkin, 471Atkin’s primality testing algorithm, 471Atkinson, 137automorphic form, 108, 112, 124automorphic function, 58–60automorphic representation, 98

cuspidal, 108auxiliary Tauberian theorem, 426, 432

consequence, 426, 427prime number theorem, 427proof, 427, 430–432

Backlund, 29–31, 34Baez–Duarte theorem, 121Balasubramanian, 67, 142Balazard, 121Barnes, 67, 120, 307Barnes’s G function, 67Bays, 44Bell, 161Bernoulli number, 30, 150Bernoulli polynomial, 30Bertrand, 63, 162Bertrand’s postulate, 63, 162

Riemann hypothesis, 63Bessel function, 129Beurling, 52, 53, 121, 356Bieberbach conjecture, 71

proof, 71de Branges, 71

binomial, 57, 429, 476Birch, 128Birch and Swinnerton-Dyer conjecture,

128, 129Bohr, 100, 297, 298, 302, 329, 330Bohr’s theorem, 298Bombieri, 94, 95, 106, 107, 131, 136Bombieri–A. Vinogradov theorem, 111

Borwein, 36bound, see convexity bound, see lower

bound, see upper boundE1(T ), 139F (X,T ), 451F (y, λ), 395, 396L(1, χD), 64

generalized Riemann hypothesis, 64L( 1

2+ it, π), 109

MZ,f (t), 156R(T ), 378R(x), 360, 361R2v, 30Un(s), 323Vn(s), 348Z(t), 143Z(k)(t), 143M(x)

x, 434, 435

ζ′(s)ζ(s)

, 217, 240

π(x), 303ϕ(x), 168ζ( 1

2+ it), 142

rn(s), 323, 337, 338Dirichlet L-series, 64order of ζ(s), 138series

nontrivial zeros, 379Skewes number, 43, 44zero

imaginary part, 240, 243, 244spacing, 408

Brent, 34Breuil, 99Brownian bridge, 121Brownian motion, 121Brun, 127Brun–Titchmarsh theorem, 127Burnol, 121

Cahen, 204, 212, 214, 297, 308Cahen’s formula, 297cardinalityG, 476, 477G, 476, 477, 480

lower bound, 476, 480upper bound, 477

Carleman, 430Carleman’s formula, 430

Page 23: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index 505

Carlson, 100Carlson’s density theorem, 100

Ingham’s exponent, 100Carmichael, 470Carmichael number, 470Cartier, 123Cauchy, 38, 155, 297, 305, 414, 426, 430,

443, 446, 460, 466Cauchy’s criterion, 423Cauchy’s estimate, 348Cauchy’s integral formula, 38, 99, 426,

430, 460Cauchy’s residue theorem, 38Cauchy’s theorem, 297, 305, 310Cauchy–Schwarz inequality, 155, 414,

443, 446, 466central character, 58, 108χ, 58

central line, see critical lineCesaro, 298Cesaro mean, 298, 324, 326, see meanChandrasekharan, 426character, 349, 451

( ab), 57

χ, 58, 108, 349, 350χ3, 123, 124χk, 56, 126, 127Abelian, 451central, 108Dirichlet, 64, 98, 107, 124χ, 107χD, 64nonprincipal, 64primitive, 99

primitive, 56principal, 56Tauberian, 451

characteristic polynomial, 125matrix, 126unitary matrix, 67

characteristic root, 101Chebyshev, 161, 162, 199, 300, 303, 427,

433Chebyshev polynomial, 36Chebyshev’s theorem, 303Chen, 62Chen’s theorem, 62Chowla, 63, 124class number, 123, 127, 408

L-functions, 127lower bound, 128

class number formula, 127class number problem, 124, 127class of functions, 71Eβ

α, 143L-functions, see L-functionsSβ

α, 143T β

α , 154convolution function, 143

Clay Mathematics Institute, 4, 93, 94,106, 107

prize, 131closed orbit, 52clustering point, see condensation pointco-NP, see complexity classcohomology, 101, 103

algebraic variety, 101zeta functions, 103

cohomology group, 111Frobenius endomorphism, 111

coincidence number, 314compact support, 54complex integration theory, 426complex zero, see nontrivial zerocomplexity class, 470

co-NP, 471, 473NP, 471, 473P, 469, 470, 473

complexity theory, 470composite integer, 470computationA∗T (u), 399, 402, 404L(n), 351N(T ), 34, 35N1(T ), 38S(T ), 142Z(t), 32, 33γn, 401

table, 403, 404π(x), 46

Gauss, 46ρn, 99, 133, 399ζ′(ρn), 401ζ(s), 29, 33, 36, 399, 401

table, 401zeroζ′(s), 38ζ(s), 31, 32, 35, 38, 39, 70, 125

Page 24: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

506 Index

Artin L-function, 100Dirichlet L-function, 100elliptic curve L-function, 100Maass L-function, 100

Comrie, 388condensation point, 322, 326–328, 352conductor, 109, 110

curve, 124elliptic curve, 110representation, 109

congruence test, 110conjecturesF (X,T ) ∼ T

2πlog(T ), 447, 449

Ik(T ) ∼ a(k)g(k)

Γ (k2+1)(log T )k2

, 67

Ik(T ) ∼ ck(log T )k2, 67

π(x) < Li(x), 43, 134, 198disproof, 43, 44, 376false, 134Skewes, 44

π(x) ∼∫ x

2dt

log(t), 118, 119

π(x) ∼ Li(x), see theoremsArtin’s primitive root, 64, 110, 479

conditional proof, 64consequence, 479generalized Riemann hypothesis,

64, 479proof, 64

Bieberbach, 71de Branges, 71proof, 71

Birch and Swinnerton-Dyer, 128, 129density of prime numbers, 471Gauss, 118, 119

proof, 127restatement, 119

Goldbach, 62, 301Goldbach (strong), 62Goldbach (weak), 62

generalized Riemann hypothesis, 62statement implying, 62

GUE, 125Hilbert–Polya, 37, 40Keating–Snaith, 67, 111, 125, 126Langlands, 59Mertens, 37, 69, 119, 133, 402, 404

conditional disproof, 402disproof, 69, 119

moments of L-functions, 126

Montgomery’s pair correlation, 41,43, 124, 128, 405, 449

equivalent statement, 463Montgomery–Odlyzko law, 42Polya, 399, 400

disproof, 399–402Riemann hypothesis, 400, 401verification, 399

pair correlation, 449Shimura–Taniyama–Weil, 107Sophie Germain prime density, 471,

479Turan, 402

conditional disproof, 402Weil, 106, 111, 313

conjugacy class, 137norm, 137

Connes, 112Conrad, 99Conrey, 27, 67, 71, 100, 113, 116, 117,

125, 127, 131constant, see Euler’s constantBn, 30, 150G, 377, 380Hn, 48R2v, 30, 31Λ, 51

lower bound, 51γ, see Euler’s constantλ(n)

Riemann hypothesis, 50sign, 50

λn, 50, 122ρ, 163dk, 36g, 101, 315gn, 33, 34de Bruijn–Newman, 51twin prime, 479

constante d’Euler, 230, 434contour integral, 38, 146, 147, 191, 193,

205, 206, 213, 215, 217, 219, 305,392, 419, 420, 430, 431

classical, 420finite, 419, 420infinite, 420

contragredient representation, 59, 109convergence theorem

Ingham, 420

Page 25: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index 507

convexity bound, 120convolution, 434

Dirichlet, 434convolution functions, 131, 143, 149,

154MZ,f (t), 134, 143, 146

M(k)Z,f (t), 143

class, 143correspondence, 314

algebraic curve, 314complementary, 315curve, 101degree, 314, 315irreducible, 314module, 315product, 315

critical line, 15, 30, 34, 49, 107, 119,132, 133, 136–138, 142, 157, 209,296, 320, 407, 426

L-function, 60, 126, 129Λ(s, χ), 112η(s), 49ζ(s), 5, 15, 18, 24, 27, 30–32, 34, 35,

38, 40, 100, 112, 119, 120, 125,132–134, 157, 212, 240, 244, 296,297, 307, 400, 407

ζK(s), 408Davenport–Heilbronn zeta function,

136large value, 134mean value formula, 137zeros, 100, 111, 112, 119, 120, 125,

126, 129, 132–134, 136, 157, 212,240, 244, 296, 297, 400, 407, 408

zeta function, 111critical strip, 15, 18, 29, 30, 49, 119,

132, 136, 304, 426L-function, 126η(s), 49ξ(s), 19ζ(s), 18, 19, 24, 30, 41, 297, 304, 378,

426ζK(s), 408Davenport–Heilbronn zeta function,

136Epstein zeta function, 136values of µ(σ), 142zeros, 126, 136, 297, 304, 378, 408,

426

cryptography, 61, 469, 470curve, 101, 111, 315, see elliptic curve=(ζ(s)) = 0, 118<(ζ(s)) = 0, 118algebraic, 314conductor, 124nonsingular, 100projective, 100

cusp form, 108pseudo, 123

cycle, 53graph, 53

Riemann hypothesis, 53cyclotomic polynomial, 476

finite field, 476irreducible factor, 476

Daboussi, 433, 434, 438, 439Dani, 52Dani’s theorem, 52Davenport, 136, 462Davenport–Heilbronn zeta function,

131, 134, 136de Branges, 71, 112de Bruijn, 51, 121de Bruijn–Newman constant, 51

Riemann hypothesis, 51de la Vallee Poussin, 9, 16, 47, 61, 110,

112, 119, 199, 221–224, 227, 229,268, 279, 280, 300, 304, 305, 420,425

Dedekind, 124Dedekind zeta function, 58, 408, see

zeta functions, ζK(s)ζ(s), 58

degree, 17, 108Z(t, C), 101ζK(s), 315algebraic extension, 315correspondence, 314, 315divisor, 101polynomial, 473

Delange, 434Deligne, 101, 103, 125, 126, 128, 313Deligne’s theorem, 101density hypothesis, 138Deshouillers, 62determinant

Redheffer matrix, 52

Page 26: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

508 Index

Deuring, 127Diamond, 99differenceN(T )−N0(T ), 144, 157N(σ, T + 1)−N(σ, T ), 65NM (T )−N(T ), 157S(T )− SM (T ), 148Π(x)− π(x), 381π(x) − Li(x), 43, 134, 198, 284, 375,

376sign, 43, 134, 198, 375, 376, 381,

386, 389, 397imaginary parts of zeros, 405, 406

distribution, 406differential equation, 128Diophantine approximation, 400Dirac’s function, 406, 409Dirichlet, 107, 183, 190, 204, 206, 207,

210, 220, 225Dirichlet L-function, 56, 100, see

L-functionsDirichlet L-series, 56, 60, 64L(1, χD), 64L(s, χ), 350L(s, χk), 56bound, 64

Dirichlet character, 64, 98, 107, 124χ, 107χD, 64nonprincipal, 64primitive, 99

Dirichlet convolution, 434Dirichlet eta function, 49, 55, 56, see

alternating zeta function, see zetafunctions, η(s)

convergence, 56Riemann hypothesis, 49

Dirichlet polynomial, 121, 317, 318, 414approximative, 317, 318

Dirichlet series, 10, 11, 111, 132, 203,204, 206, 210, 219, 298, 305, 307,309, 328, 424, 426

(1− 21−2s)ζ(2s), 298summability, 298

L-functionprimitive waveform, 99

L(s,∆), 59, 108L(s, χ), 107L(s, χ3), 123

L(s, χk), 56Lν(s), 208

conjugate, 208identity with conjugate, 209

Lp(s), 57η(s), 56, 96, 325

1ζ(s)

, 49, 119, 127, 132, 285, 286, 307,308, 311, 422

convergence, 49, 285, 288derivative, 285

ζ′(s)ζ(s)

, 304, 411, 428ζ(2s)ζ(s)

, 400

log(ζ(s)), 304ψ(x), 119∑

nµ(n)

n, 307, 308, 311

ζ(s), 10, 12, 55, 95, 107, 117, 131,190, 192, 228, 302, 319, 425

convergence, 10, 55, 117, 190real line, 10

coefficient, 420cn, 27

general, 203, 204ordinary, 204Parseval’s identity, 413partial sum, 328summability, 298zero-free region, 210

Dirichlet’s class number formula, 127Dirichlet’s theorem, 356, 365, 387, 397,

400proof, 365

discrete measure, 54Riemann hypothesis, 54

discrete spectrum, 139discriminant, 108, 127distribution des nombres premiers, 211distribution des zerosLν(s), 209, 210

distribution of prime numbers, 63,95–98, 111, 118, 121, 132, 211,212, 218, 220, 222, 223, 225, 228,300–302, 354, 439, 440, 450, 469,see prime number theorem

distribution of valuesζ( 1

2+ it), 126

distribution of zerosL-functions, 111, 112, 126

upper bound, 111

Page 27: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index 509

Lν(s), 209, 210MZ,f (t), 144, 147, 154Z(t), 143, 144, 146ξ(t), 193ζ(s), 41, 65, 95, 99, 118, 119, 125,

127, 138, 157, 260, 303, 319, 407,412, 459

approximation, 407upper bound, 412

zeta function, 125finite field, 125

divisor, 48, 101, 314, 315degree, 101effective, 101norm, 101positive, 101prime, 102

divisor function, 47, 48, 140divisor group, 100, 101, 103divisor problem, 66, 141

ternary additive, 141Doetsch, 426duality

prime numbers and zeros, 122Dyson, 40, 42, 100, 124, 405, 409

Edwards, 95, 136, 426Effinger, 62eigenfunction, 99eigenvalue

Frobenius endomorphism, 101, 111Gaussian unitary ensemble, 42

normalized, 42Hecke operator, 99Hermitian matrix, 124, 125, 405, 409Hermitian operator, 40, 121Laplace operator, 122linear operator, 405, 409

self-adjoint, 103zeros of ζ(s), 405, 409

linear transformation, 111matrix, 40

distribution, 103, 111orthogonal matrix, 103pair correlation, 405pair correlation function, 405, 409pseudo cusp form, 123spacing

Gaussian unitary ensemble, 42

symmetric matrix, 405, 409symplectic matrix, 103, 405, 409unitary matrix, 103, 123, 405, 409zerosΛ(s, χ), 112ζ(s), 40, 41, 121, 123, 125zeta function, 111

Eilertsen, 351Einstein, 70Einstein’s relativity theory, 70Eisenstein, 112, 183Eisenstein series, 112

inner product formula, 112Elliott, 440, 445elliptic curve, 98, 100, 110, 124, 128,

129, 471L-function, 98conductor, 110isogenous, 110modularity, 98primality test, 471rational point, 129reduction modulo p, 110

elliptic function, 298embedding

projective, 103Enestrom–Kakeya theorem, 328Enke, 46Epstein zeta function, 136equidistribution rate, 110equivalence class, 127equivalent extended Riemann hypothe-

sis, 57equivalent form, 53

Nyman–Beurling, 53equivalent functions, 330Eratosthenes, 470Erdos, 61, 317, 327, 352–354, 363, 364,

372, 420, 425, 433, 434, 439, 441Erdos’s result, 354–356ergodic measure, 52ergodic theory, 52

Riemann hypothesis, 52ERH, see extended Riemann hypothesiseRH, see extended Riemann hypothesisestimateE1(T ), 138, 139E2(T ), 138Ek(T ), 140

Page 28: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

510 Index

N(T ), 31, 378N(T )−N0(T ), 144R2v, 31S(T ), 142Z(t), 143ζ( 1

2+ it), 138

ζ(s)at infinity, 420

coefficient, 348Euclid, 301, 302Euclid’s theorem, 301, 302Euler, 10, 29, 62, 96, 118, 190, 230, 285,

301, 302, 319Euler product, 10, 11L-function

global, 98primitive waveform, 99

L(s, χ), 107L(s, χ3), 124ζ(s), 11, 16, 96, 107, 118, 131, 136,

190, 228, 302, 304, 319, 425, 427,428

convergence, 190logarithm, 16, 96logarithmic derivative, 229, 304,

427, 428ζ(s, C), 101Z(s), 137Davenport–Heilbronn zeta function

lack, 136fundamental theorem of arithmetic,

11zeta function

number field, 124Euler product formula, see Euler

productEuler’s constant, 48, 52, 135, 230, 434

Riemann hypothesis, 52Euler’s factorisation formula, 422Euler’s phi function, 127, see Euler’s

totient functionEuler’s totient function, 48, 54, 58, 473,

see Euler’s phi functionEuler–MacLaurin summation formula,

29, 38, see algorithmsimprovement, 32Riemann–Siegel formula, 32

evaluation∆, 272

∑ρ

1σ2+t2

, 233∑ρ

yσ−1

σ2+t2, 264∑

ρyσ−1

t2, 260∑

pmlog(p)

pm , 276∑pm log(p), 268

explicit formulaψ(x), 119, 462Motohashi, 139Riemann, 102, 119Weil, 102, 122, 123L-function, 102ζ(s), 102zeta function, 102

exponential decay, 13, 144exponential time, 471extended Riemann hypothesis, 57, 58,

469arithmetic progression, 63consequence, 61, 63, 469, 471equivalent statement, 57, 58generalized Riemann hypothesis, 57primality test, 469, 471

Farey, 48Farey series, 48Fn, 48Haros, 48Riemann hypothesis, 49term, 48

Farmer, 126fast Fourier transform algorithm, see

algorithmsFejer, 317, 327Fermat, 301, 470Fermat’s last theorem, 4, 99, 107, 120Fermat’s little theorem, 110, 301, 470,

471extension, 301finite field

primality test, 471generalization, 471, 472polynomial ring

finite field, 471primality test, 470, 471

FFT, see fast Fourier transformfield, see finite field, see function field,

see number fieldalgebraic closure, 315

Page 29: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index 511

algebraically closed, 103Galois, 315imaginary quadratic, 127

Fields medal, 27, 313finite field, 100, 101, 111, 125, 314, 471,

473, 476Fp, 473, 476Fq, 100, 101polynomial ring, 471

fixed point formula, 102flow, 52

horocyclic, 52fonction

elliptique, 298Mobius, 434Riemann, 200, 222–224, 228Schlomilch, 204Von Mangoldt, 434

form factor, 405, 409forme quadratique, 220formule

Cahen, 297Gauss, 230, 237, 243Legendre, 173, 175, 179Riemann, 297

Fourier analysis, 420Fourier integral, 426Fourier inversion, 97Fourier transform, 51, 121, 122, 144,

407, 420, 452, 463of Ξ(t), 121

Fourier’s theorem, 194Fouvry, 479fractional part, 12, 30, 52, 121, see

functions, xFrey, 107Friedlander, 128Frobenius endomorphism, 101, 103

cohomology group, 111eigenvalue, 101, 111fixed point, 102Lefschetz fixed point formula, 102trace, 102

Fujii, 147, 459function field, 313, 314

Riemann hypothesis, 313, 314functional analysis, 121, 199functional equationL-function

elliptic curve, 98global, 98primitive waveform, 99

L(s,∆), 59, 108L(s, χ), 108L(s, χ3), 124LE(s), 124L∆(s), 124Lν(s), 209Λ(s, π), 59, 109µ(σ), 141ϑ(t), 13, 25ξ(s), 14, 20ζ(s), 14, 15, 95–97, 107, 117, 131,

191, 192, 280, 304, 319logarithmic derivative, 411symmetric, 117, 150

ζ(s, C), 101ζK(s), 316Z(s), 137alternating zeta function, 96approximate, 32, 33, 120Davenport–Heilbronn zeta function,

136zeta function

number field, 124functions, see L-functions, see arith-

metic functions, see convolutionfunctions, see Dirichlet series,see mean, see partial sum, seeSchlomilch function, see zetafunctions

A(u), 399, 400A∗T (u), 399, 400Bn(x), 30Ek(T ), 137Em, 33F (X,T ), 447, 449, 459F (α), 405, 406F (α, T ), 405, 406F (x), 193, 227, 278, see functions,

π(x)F (y, λ), 390, 394G, 149, see Barnes’s G functionH(λ, z), 51H(z), 26, 27I, 145, 155I1, 145, 152I1(T ), 67

Page 30: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

512 Index

I2, 145, 152I2(T ), 67Ik(T ), 66, 67, 125J(X,T ), 463Jµ(x), 212L(s,∆), 59L(x), 332, 399, 400L1(x), 342Lp(s), 57M(x), 47, 69, 119, 307–309, 402,

433–435, 445, see Mertens’function

N(T ), 9, 15, 19–21, 24, 31, 35, 38, 41,99, 119, 132, 378, 459

N(α, T ), 100N(σ, T ), 65, 138N0(T ), 119, 144N1(T ), 38NM (T ), 144R(T ), 378R(t, x), 151R(x), 359, 360S(N), 35S(T ), 119, 132S(t), 112S(t, x), 151SM (T ), 147U , 155Z(t), 32, 33, 35, 133–135, 142, 143,

150, 151even, 133logarithmic derivative, 135real, 133

Z(k)(t), 143Z2(ξ), 139[x, x1, x1, . . . , xn], 146[x], 12, 428∆, 20, 122, 270∆(t), 150∆(x), 140∆(z), 59, 108, 124∆(k)(t), 150∆2(x), 140∆k(x), 140Γ (s), 12, 13, 15, 22, 26, 107, 118Λ(s), 107Λ(s,∆), 108Φ(t), 51, 121Π(s− 1), 190

Π(x), 97, 377, 381Π0(x), 377, 378, 388

<( Γ ′(a)Γ (a)

), 233

<( ζ′(s)ζ(s)

), 22

<(log(ζ(s))), 16Ξ(iz), 51Ξ(t), 121, 297χ(s), 32, 131η(s), 49

1ζ(s)

, 49, 119, 132, 285derivative, 285

Γ ′(a)Γ (a)

, 231, 237Γ ′(s)Γ (s)

, 22log(ζ(s))

s, 194

ξ′(s)ξ(s)

, 50Riemann hypothesis, 50

ξ(s)ξ(s)

, 21, 22ζ′(s)ζ(s)

, 22, 23, 214, 216, 229, 245, 304s = 0, 268, 279

ζ′(s)ζ2(s)

, 285

f(x), see Fourier transformln(x), 473log((s− 1)ζ(s)), 96log(Γ (a)), 231log(Γ (s)), 21log(ξ(t)), 193log(ζ(s)), 16, 97, 193, 200, 201, 203,

304real part, 201singularity, 97

log(s− 1), 211log(x), 433, 473S(T ), 21, 24, 65, 66S1(T ), 65, 66µ(σ), 140φ, 101φ(t), 121π(x), 7, 18, 27, 43, 46, 61, 96, 97, 118,

119, 132, 161, 162, 222, 227, 278,302, 365, 375–377, 420, 425, 447,see functions, ϕ(x)

π(x)− Li(x), 134, 375, 376π(x; k, l), 57, 58, 63, 127π2(x, k), 458ψ(x), 96, 119, 305, 307–309, 377, 379,

427, 429, 448

Page 31: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index 513

ψ0(x), 377, 379ψ1(x), 380ψµ(x), 214σ(y), 267, 268, 271, 273, 275, 283sin θ(t), 33θ(t), 32, 33, 150θ(x), 303ϕ(u, t), 248ϕ(x), 163, 207, see functions, φ(x)ϑ(t), 13, 25, 26, see Jacobi theta

functionϑ(x), 96, 354, 365ξ( 1

2+ it), 297

ξ(t), 38ξ(s), 14, 19–22, 25–27, 31, 38, 50, 95,

118, 135, 297ξ(s, χ3), 124ξ(t), 97, 192, 193ξE(s), 124ξ∆, 124ξk(s), 204, 205ζ′(s), 49

convergence, 49ζ( 1

2+ it), 100, 117, 120, 126, 131

x, 121f(x), 173, 194k, 147, 156k-tuple correlation, 409k(t,H), 147k(t, T ), 156Li(x), 18, 46, 58, 96, 132, 162, 197,

222, 225, 281, 375, 376, 388x, 12, 30, 52pair correlation, 405, 409

fundamental theorem of arithmetic, 10,118

analytic form, 11Euler product, 11

Gallagher, 449, 451, 456Galois field, 315gamma function, 12, 13, 15, 22, 26, 107,

118logarithmic derivative, 22

Gauss, 43, 46, 96, 118, 127, 134, 183,190, 198, 225, 230, 237, 243, 301,303, 304, 425

Gauss measure, 124Gauss sum, 109

sign, 108Gauss’s class number problem, 127Gauss’s conjecture, 118, 119

proof, 127restatement, 119

Gauss’s formula, 230, 237, 243Gaussian unitary ensemble, 40, 42, 111,

124eigenvalue, 42

normalized, 42eigenvalue spacing, 42

Gaussian unitary ensemble conjecture,125

Gel’fand, 143Gelfond, 120, 147general divisor function, 140, see

arithmetic functions, dk(n)general linear group, 58, 108generalized Riemann hypothesis, 56

Artin’s primitive root conjecture, 64,479

consequence, 62, 64extended Riemann hypothesis, 57Goldbach’s conjecture, 62Miller–Rabin primality test, 63primality test, 63Riemann hypothesis, 57Solovay–Strassen primality test, 63

generic point, 314genus, 101, 315geodesic, 123geodesic motion, 110

surface, 110Germain, 471, 479Ghosh, 67, 125Gilbert, 222GLH, see grand Lindelof hypothesisGoldbach, 62, 301Goldbach conjecture, 62, 301

strong, 62weak, 62

Goldbach type, 110Goldfeld, 128, 479Goldschmidt, 198Goldston, 447, 448, 450, 459Goldwasser, 471Goldwasser–Kilian primality testing

algorithm, 471Gonek, 125

Page 32: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

514 Index

Goursat, 199Gram, 29, 33, 34, 285Gram block, 34

consecutive, 34Gram point, 33–35

bad, 34good, 34

Gram’s law, 33–35, 410exception, 34

grand Lindelof hypothesis, 109approximation, 110consequence, 109

grand Riemann hypothesis, 58–60, 106,107, 109

Λ(s, π), 113approximation, 110, 111consequence, 107, 109, 415Dirichlet L-functions, 110

consequence, 110verification, 112

graph, 53adjacency matrix, 53cycle, 53of Z(t), 142

graph theory, 53GRH, see grand Riemann hypothesisgRH, see generalized Riemann

hypothesisGronwall, 338Gronwall’s inequality, 338Gross, 128Grothendieck, 101groupG, 476

cardinality, 476, 477Sn, 53Γ0(N), 98, 99GLm, 108GLm(A), 58, 108GLm(Qv), 108SL(2,Z), 122G, 476

cardinality, 476, 477Div(C), 100cohomology, 111conjugacy class, 137divisor, 100, 101, 103element, 53

order, 53

general linear, 58, 108Hecke, 98ideles, 112modular, 108, 139monodromy, 111rational points

elliptic curve, 129semi-simple, 112symmetric, 53

GUE, see Gaussian unitary ensembleGUE conjecture, 125Gupta, 64, 351

Haar measure, 125, 126Haas, 123Hadamard, 15, 47, 61, 110, 119, 199,

200, 205, 215, 222, 224, 227, 300,304, 305, 313, 420, 425

Hadamard product representation, 21logarithmic derivative, 21

Hadamard–de la Vallee Poussintheorem, 199, 222

Hafner, 138Halasz, 446Halberstam, 458Halphen, 212, 218, 219Halphen’s theorem, 212, 218, 219Hamiltonian, 110

eigenstate, 110Hardy, 9, 24, 31, 32, 51, 62, 67, 96, 110,

120, 123, 125, 138, 296, 297, 300,301, 307, 308, 456

Hardy and LittlewoodRiemann hypothesis, 51

Hardy’s Z-function, 32, 33, 35Hardy’s function, 31Hardy’s theorem, 24, 27

proof, 27Riemann hypothesis, 24, 27

harmonic form, 103harmonic number, 48harmonic series, 10, 11, 16Haros, 48

Farey series, 48Haselgrove, 399–401Hasse, 101Hasse–Weil L-function, 124, 129Heath-Brown, 63, 64, 72, 100, 450Heath-Brown’s theorem, 64

Page 33: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index 515

Artin’s primitive root conjecture, 64Hecke, 124, 127Hecke group, 98Hecke operator, 99

eigenvalue, 99Heilbronn, 127, 136Heins, 420, 426Hejhal, 121, 123, 136Hermite, 199Hermitian linear operator, 405, 409Hermitian matrix, 124, 125, 405, 409,

410eigenvalue, 124, 125, 405, 409

Hermitian operator, 40, 121eigenvalue, 40, 121

heuristics, 130Hilbert, 4, 37, 40, 52, 103, 111, 117,

120, 121, 124Hilbert space, 112L-functions, 112

Hilbert–Polya conjecture, 40, seeconjectures

Hilbert–Schmidt integral operator, 52Riemann hypothesis, 52

Hildebrand, 438, 439Hodge, 103Hodge’s theorem, 103Hooley, 64, 98horocyclic flow, 52Huang, 471Hudson, 44Hurwitz, 136, 204, 206, 209, 325Hurwitz zeta function, 136, see zeta

functions, ζ(s, a)Hurwitz’s theorem, 325Hutchinson, 29, 34Huxley, 138hyperbolic Laplacian, 99hypothesis H, 44, 375, 377, 380

consequence, 375, 377, 378, 380–382,384, 386, 388, 395

Riemann hypothesis, 44

ideal, 58ideal class, 127idele class group, 112Ikehara, 420, 424, 426Ikehara–Wiener Tauberian theorem,

424, 426

“poor man’s” version, 424, 426prime number theorem, 424, 426

imaginary quadratic field, 127inegalite de Selberg, 434infimum

1− σn, 227, 247, 251, 256

M(n)n−12 , 70

upper bound, 70M(x)

x, 434

zerosimaginary parts, 408, 410

Ingham, 67, 120, 125, 296, 376, 383,399, 400, 402, 419, 420, 426

Ingham’s convergence theorem, 420proof, 420–422

Ingham’s exponent, 100Ingham’s theorem, 419

proofNewman, 419

integerintrospective, 475, 476

closed under multiplication, 475,476

residue, 476set, 476

modulo n, 473, 476residue, 476

odd, 51square, 64sum

prime numbers, 62integer ring, 473OK , 58

integral ideal, 58norm, 58

integral operator, 52integral part, 12, see functions, [x]integral representationF (X,T ), 459MZ,f (t), 143

M(k)Z,f (t), 143

N(T ), 99Z2(ξ), 139[x, x1, x1, . . . , xn], 146Γ (s), 13Π(s− 1)ζ(s), 191Γ ′(a)Γ (a)

, 231, 237log(ζ(s))

s, 194

Page 34: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

516 Index

ζ′(s)ζ(s)

, 429

log(Γ (a)), 231ψ(x), 305ξ(t), 192ξk(s), 205ζ(s), 12, 96, 97, 428Li(x), 46, 58, 132, 225, 281, 376

intermediate value theorem, 38internet security, 469intersection number, 314, 315introspective, 475, 476, see integer

polynomial, 475inverse Fourier transform, 149inversion, 197inversion formula, 97irreducible correspondence, 314irreducible polynomial, 473, 476irreducible representation

unitary, 58, 108isogenous, 110Ivic, 100, 130, 131, 138–140, 143Iwaniec, 98, 113, 116, 127, 128

Jacobi, 183, 192, 314, 471Jacobi symbol, 471, see arithmetic

functions,(

an

)primality test, 471

Jacobi theta function, 13, 25, 26, seefunctions, ϑ(t)

Jacobi’s inversion theorem, 314Jensen mean, 329, 352, see meanJessen, 323, 350Jutila, 142

Kalai, 477Karatsuba, 136Katz, 103, 125, 126Kayal, 63, 469, 470Keating, 67, 111, 125, 126Keating–Snaith conjecture, 111, 125,

126Kilian, 471Klein, 133Knopp, 322Korevaar, 61, 424, 425Korobov, 18Kossuth Prize, 317Kowalski, 113Kristensen, 351

Kubilius, 440, 445, 446Kuznetsov, 141

Lacroix, 238Lagarias, 48, 50, 123Landau, 6, 7, 95, 100, 127, 139, 296,

297, 301, 329, 333, 341, 419, 420,422, 426

Landau’s classical result, 139Landau’s paradigma, 341Landau’s theorem, 333, 334, 341Landau–Siegel zero, 127, 128Langlands, 59, 109, 112Langlands conjecture, 483Langlands program, 124Laplace, 122, 424, 426, 427Laplace integral, 424, 426Laplace operator, 122

eigenvalue, 122Laplace transform, 426, 427large sieve, 438, 439

exponential sum, 445Montgomery, 440prime number theorem, 438, 439standard version, 445

large sieve inequality, 438, 440, 445, 446Elliott, 440, 445prime number theorem, 438proof, 440, 445Turan–Kubilius inequality, 440, 445,

446Laurent series, 17Lavrik, 143lcm, see least common denominatorLCM(m), see least common denomina-

torleast common denominator, 473Lebesgue, 383, 431Lebesgue integral, 383Leech, 401Lefschetz fixed point formula, 102Legendre, 118, 163, 173, 175, 179, 182,

238, 303, 304, 425Legendre symbol, 57, see arithmetic

functions,(

np

)Legendre’s conjecture, see conjecturesLegendre’s formula, 173, 175, 179Lehman, 34, 44, 134Lehmer, 43, 401

Page 35: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index 517

Lehmer’s phenomenon, 43, 131, 134,136

Lejeune, 225Lenstra, 476, 480Levinson, 27, 100, 120LH, see Lindelof hypothesisLi, 71limite inferieure

1− σn, 227, 247, 251, 256limite superieureσn, 227, 244, 247

Lindelof, 65Lindelof hypothesis, 65, 120, 137, 138

conditional disproof, 141equivalent statement, 65, 138, 140,

141grand, see grand Lindelof hypothesisimplication, 138Riemann hypothesis, 65, 120, 137,

138statement affecting, 140statement implying, 65zeros of ζ(s), 138

line of symmetry, see critical linelinear operator, 103, 405, 409

eigenvalue, 103, 405, 409Hermitian, 405, 409self-adjoint, 103unitary, 405, 409zeros of ζ(s), 405, 409

linear transformationeigenvalue, 111

Liouville’s function, 6, 8, 46, 330, 399,400, see arithmetic functions, λ(n)

prime number theorem, 7Riemann hypothesis, 6, 46

Lipschitz, 209Littlewood, 43, 51, 62, 64, 67, 98, 110,

120, 123, 125, 134, 138, 296, 307,308, 375–378, 390

Littlewood’s theorem, 376local representation, 58, 108location of prime numbers, 63location of zeros

(1− 21−2s)ζ(2s), 298Jn(s), 329L-functions, 98L(s, χ), 350Lν(s), 209

MZ,f (t), 144Un(s), 322, 335Vn(s), 343, 349Z(t), 144Λ(s), 107Λ(s, χ), 112Λ(s, π), 111ξ(s), 38ξ(t), 193ζ(s), 14, 15, 24, 30, 70, 95, 99, 100,

112, 119, 120, 131, 132, 191, 199,200, 228, 240, 244, 260, 296, 297,304, 319, 320, 375–378, 380, 399,401, 403, 404, 412

Λ(s, π), 109Davenport–Heilbronn zeta function,

136partial sum, 71, 317

locus, 314lois asymptotiques relatives aux nombre

premiers, 260lower bound

1− σ, 227, 247, 251, 256, 294, 295E1(T ), 138E2(T ), 138F (X,T ), 458L(1, χk), 127L(n), 332S(t), 112Z(t), 143Λ, 51γn, 229π(x), 96, 97, 303ψ(x), 97∑

ρ1

s−ρ, 243∑

plog(p)

p, 372, 374

ϕ(x), 168ϑ(x), 97, 355h(d), 127, 128on(a), 474cardinality of G, 476, 480class number, 128Dirichlet polynomial, 121LCM(m), 473product of prime numbers, 480supremum

M(n)n−12 , 70

zeros

Page 36: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

518 Index

ζ(s), 136, 417Davenport–Heilbronn zeta function,

136imaginary parts, 294, 416

Lucas, 301

Mobius function, 47, 69, 119, 127, 128,132, 284, 356, 402, 419, 433, 434,438, 439, see arithmetic functions,µ(n)

Maass L-function, 100Maass waveform, 99, 104Maass–Selberg formula, 112MacLaurin, 29MacLaurin summation formula, 99Mansion, 224, 225, 295matrix

adjacency, 53eigenvalue, 40, 103, 111Hermitian, 124, 125, 405, 409, 410orthogonal, 103, 126random, 40, 42, 106Redheffer, 52

determinant, 52symmetric, 405, 409symplectic, 103, 126, 405, 409unitary, 67, 103, 123, 405, 409unitary symplectic, 126

maximumZ(t), 134–136ξ(t), 40, 100ζ( 1

2+ it), 142

mean, 328Cn(s), 324, 326E1(T ), 140E2(T ), 140Jn(s), 329Rn(s), 324, 326analytical, 356arithmetical, 328Cesaro, 298, 324, 326, see mean,

Cn(s)Jensen, 329, 352, see mean, Jn(s)Riesz, 324, 326, see mean, Rn(s)

mean squareS(t), 113

asymptotic behavior, 113ζ( 1

2+ it), 156

mean value

MZ,f (t), 144, 155Z(t), 144ζ( 1

2+ it), 141

asymptotic behavior, 141ζ(s), 66

mean value formula, 134, 137critical line, 137

mean value theorem, 17, 146Wirsing, 439

measure, 52, 54discrete, 54ergodic, 52

Mehta, 42Mellin, 297Mellin inversion formula, 25Mellin transform, 102, 426, 427meromorphic function, 19, 59, 139Mertens, 37, 69, 133, 284, 285, 402, 428,

439, 441Mertens’ conjecture, 69, 119, 133, 402,

404conditional disproof, 402disproof, 69, 119

Odlyzko-te Riele, 69Riemann hypothesis, 69

Mertens’ formula, 441Mertens’ function, 47, 48, 69, 402, 438,

see functions, M(x)order, 69, 70Riemann hypothesis, 47

Mertens’ theory, 439Meyer, 220Meyer series, 220Millennium Prize, 4, 72, 94, 107, 113Miller, 63, 110, 401, 471Miller’s primality testing algorithm, 98,

110, 471running time, 110

minimumZ(t), 134–136ξ(t), 40, 100ζ( 1

2+ it), 142

modular form, 107, 124modular function, 98modular group, 108, 139module, 315

correspondence, 315modulus, 64moment, 128, 129

Page 37: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index 519

L( 12

+ it, π), 111asymptotics, 111

L( 12, π), 111

asymptotics, 111ζ( 1

2+ it), 120, 131, 137, 140, 141

ζ(s), 66, 125Brownian bridge, 121characteristic polynomial, 125, 126family of L-functions, 126zeta function, 130

monodromy group, 111Montgomery, 40–42, 71, 100, 103, 124,

125, 128, 142, 317, 405, 406, 440,447–449, 459, 463

Montgomery’s conjecture, see conjec-tures

Montgomery’s large sieve, 440Montgomery’s pair correlation

conjecture, 41, 43, see conjecturesRiemann hypothesis, 41

Montgomery–Odlyzko law, 42, 111Motohashi, 127, 138–141Motohashi’s fundamental explicit

formula, 139moyenne de Cesaro, 298Mueller, 449, 450, 459multiple poleZ2(ξ), 139

multiple zeroL-function, 128, 129

elliptic curve, 129triple, 128

ξ(t)odd, 38

multiplicity, see orderpk, 147poleL1(s), 208Z(t, C), 101Z2(ξ), 139ξk(s), 205ζ(s), 11, 15, 95, 99, 117, 131, 200,

304, 319ζ(s, C), 101

zeroL-function, 128MZ,f (t), 144Z(t), 133, 143, 144ξ(t), 38

ξ(t), 99ζ(s), 39, 100, 122, 128, 133, 134,

400, 407–409, 416elliptic curve L-function, 129

Newman, 51, 61, 121, 419, 420, 424–427non-Euclidean Laplacian, 139

discrete spectrum, 139nonsingular model, 315nontrivial zero, 5, 15, 100, 227L(s, χ3), 124L(s, χk), 57L∆(s), 124Lν(s), 209Λ(s), 107η(s), 49ξ( 1

2+ it), 121

ζ(s), 5, 15, 18, 38–41, 70, 95, 97, 119,131–135, 157, 228–230, 233, 260,296, 297, 303, 304, 319, 326, 375,376, 399, 400, 405, 406, 426, 447,449, 456

lim inf(1− σn), 227, 247, 251, 256lim sup(σn), 227, 244, 247ρ, 119, 135, 228ρn, 399, 400argument principle, 19conjugate, 229counting, 18, 19distribution, 407existence, 27, 38, 42, 304, 407proportion, 27simple, 100smallest, 35, 38, 41, 70, 99, 100,

131, 229, 376, 387, 388, 399–401symmetric, 15

ζK(s), 58Davenport–Heilbronn zeta function,

136norm

conjugacy class, 137divisor, 101integral ideal, 58

NP, see complexity classnumber field, 58number of primes, 95, 183, 190, 198numeratorZ(t, C), 101ζK(s), 315

Page 38: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

520 Index

degree, 315polynomial, 315

Nyman, 53, 121Nyman–Beurling equivalent form, 53

Riemann hypothesis, 53Nyman–Beurling theorem, 121

Odlyzko, 35, 42, 51, 69, 70, 100, 103,111, 112, 119, 120, 125, 133, 134

Odlyzko–Schonhage algorithm, 35operator, 26

Hecke, 99Hermitian, 40, 121integral, 52

Hilbert–Schmidt, 52Laplace, 122linear, 103, 405, 409, see linear

operatorself-adjoint, 111

orbit, 52closed, 52

order, see multiplicity(s− 1)ζ(s), 137E1(T ), 137E2(T ), 137, 139Ek(T ), 140Em, 33M(x), 69, 70, 119

M(k)Z,f (t), 144

N(T )−N0(T ), 157N(α, T ), 100

Ingham’s exponent, 100NM (T )−N(T ), 157R(x), 361S(T ), 119, 132Z(t), 143Z(k)(t), 143Π(x)− π(x), 381S(T ), 66S1(T ), 66π(x), 302, 303π(x)− Li(x), 227, 284ψ(x), 305σ(y), 267, 268∑

ρyσ−1

σ2+t2, 265–267∑

ρyσ−1

t2, 263, 264∑

nµ(n)

n, 288

θ(x), 303

ϑ(x), 366ξ(s), 135ζ( 1

2+ it), 120, 138

ζ(s)bound, 138critical line, 138Z(s), 137Li(x), 380group element, 53integer modulo n, 473symmetric group element, 53

equivalent statement, 54orthogonal matrix, 103, 126

eigenvalue, 103oscillations

of Z(t), 142, 143

P, see complexity classPolya, 37, 40, 103, 111, 121, 124, 129,

296, 333, 335, 351, 400Polya’s conjecture

Riemann hypothesis, 399–401Polya’s theorem, 333, 334poleL1(s), 208Lν(s), 208Γ (s), 228ξk(s), 205ζ(s), 200, 203

simple, 200pair correlation, 124, 128, 405, 406, 409,

447–449, see spacing betweeneigenvalue, 405

symmetric matrix, 405, 409symplectic matrix, 405, 409

Montgomery, 463prime numbers, 447, 448, 450short interval, 447, 448zeros of ζ(s), 42, 409, 447, 448, 459

pair correlation conjecture, 449pair correlation function, 42, 405, 409

eigenvalueGaussian unitary ensemble, 42Hermitian matrix, 405, 409unitary matrix, 405, 409

plot, 42Parseval, 413Parseval’s identity, 413partial sum, 317, 350

Page 39: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index 521

L(s, χ), 350Un(s), 320, 324, 326Vn(s), 325, 343Wn(s), 330rn(s), 322alternating zeta function, 325, see

partial sum, Vn(s)Dirichlet series, 328power series, 352Riemann hypothesis, 71, 317, 320,

321, 324, 325Riemann zeta function, 71, 317, 320,

see partial sum, Un(s)zero, 317, 327, 328

behavior, 322condensation point, 327, 328, 352

zero-free region, 317paths

0 1, 1510 1, 151

peak, 154Z(t), 142, 143ζ( 1

2+ it), 100

ζ(s), 40perfect square, 479Petersen, 351Phragmen–Lindelof theorem, 120Piltz, 210Plancherel, 463Plancherel’s identity, 463Poincare, 211Poisson summation, 13poleL-function, 98

location, 98L1(s), 208

multiplicity, 208simple, 208

Lν(s), 208Z(t, C), 101

multiplicity, 101simple, 101

Z2(ξ), 139critical line, 139multiplicity, 139multiplicity five, 139simple, 139

Γ (s), 13, 14, 228residue, 13

simple, 14ζ′(s)ζ(s)

residue, 229, 230ξk(s), 205

multiplicity, 205residue, 205simple, 205

ζ(σ), 17residue, 17simple, 17

ζ(s), 11, 14, 15, 38, 95, 99, 117, 127,131, 191, 200, 203, 304, 319

multiplicity, 11, 14residue, 11, 15simple, 11, 14, 15, 95, 99, 117, 131,

200, 304, 319ζ(s, C), 101

multiplicity, 101simple, 101

meromorphic function, 19counting, 19

residue, 38zeta functions, 101

polynomialQn(X), 476ζK(s), 315Artin L-function, 314Bernouilli, 30characteristic, 67, 125Chebyshev, 36cyclotomic, 476degree, 473introspective, 475irreducible, 473, 476residue, 476

polynomial ring, 471Fermat’s little theorem, 471finite field, 471

polynomial time, 469–471Pomerance, 471, 480positive integer

introspective, 475, 476perfect square, 479

Poulsen, 351power series, 352

partial sum, 352Pratt, 471premiers de la progression arithmetique,

227

Page 40: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

522 Index

primality testing algorithms, 63, 301,469, 470, 472, see Agrawal–Kayal–Saxena primality test

Adleman–Huang, 471Adleman–Pomerance–Rumely, 471Atkin, 471conditional, 471elliptic curve, 471exponential time, 471

deterministic, 471extended Riemann hypothesis, 469,

471Fermat’s little theorem, 470

polynomial ring, 471generalized Riemann hypothesis, 63Goldwasser–Kilian, 471Jacobi symbol, 471Miller, 110, 471

running time, 110Miller–Rabin, 63

conditional deterministic, 63conditional polynomial time, 63generalized Riemann hypothesis, 63

polynomial time, 469–472deterministic, 469–471proof, 469, 472randomized, 471, 472

Rabin, 471reciprocity law, 471running time, 470, 472Solovay’s primality test, 471Solovay–Strassen, 63

conditional deterministic, 63generalized Riemann hypothesis, 63

Sophie Germain prime density, 471,479

time complexity, 471, 479Strassen, 471unconditional, 469–471

primality testing problem, 471prime, see prime number

divisor, 102representation, 58

prime k-tuple hypothesis, 451weak, 451

prime counting function, 46, 183, 190,198, 227, 278, 425

see functions, π(x), 483prime decomposition, 301

prime number, 63, 64, 300, 301, 469,470

accumulation, 190arithmetic progression, 63, 107, 127,

220, 227, 458distribution bound, 111upper bound, 458

asymptotic behavior, 212, 218, 220,222, 225, 226, 260, 300, 301, 425,450, 479

bad, 367cardinality, 301, 302decomposition, 301density, 198, 479

sieve, 471distribution, 18, 63, 95–98, 111, 118,

121, 132, 211, 212, 218, 220, 222,223, 225, 228, 300–302, 354, 439,440, 450, 469, see prime numbertheorem

sieve, 439upper bound, 439, 440

estimate, 439good, 367, 371

existence, 367, 369, 372interval, 63large, 470location, 63, 354pair, 41, 124, 301

distribution, 41, 124pair correlation, 447, 448, 450power, 461

location, 461product, 301, 480

lower bound, 480property, 470Riemann zeta function, 46set, 470Sophie Germain, 471, 479

density, 471, 479spacing, 450sum of three, 62sum of two, 62twin, 41, 124

constant, 479distribution, 41, 124

zeros of ζ(s), 410prime number theorem, 7, 43, 46, 61,

109, 119, 162, 172, 199, 222,

Page 41: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index 523

284, 300–303, 307–309, 353, 354,363–365, 419, 420, 424, 425,433, 434, 469, see theorems,π(x) ∼ x

log(x)

arithmetic progression, 356, 365proof, 356, 365

auxiliary Tauberian theorem, 427conditional proof, 162, 172consequence, 414Dirichlet series, 307equivalent statement, 8, 303, 305,

307, 309, 354, 361, 365, 419, 420,422, 427, 429, 438, 439, 441

exposition, 300Gauss, 46history, 300, 301, 424, 426Ikehara–Wiener Tauberian theorem,

424, 426intuitive statement, 8large sieve, 438, 439large sieve inequality, 438Liouville’s function, 7proof, 18, 119, 199, 222, 285, 302,

307, 308, 353, 354, 363, 364, 374,419, 420, 434

analytic, 8, 419, 420Daboussi, 433, 438, 439de la Vallee Poussin, 8, 9, 47, 61,

119, 222, 300, 304, 305, 420, 425elementary, 8, 61, 353, 354, 363,

364, 371, 433, 438Erdos, 61, 353, 363, 364, 420, 425,

433, 439, 441Erdos-Selberg, 363, 372, 373Hadamard, 8, 47, 61, 119, 199, 222,

300, 304, 305, 420, 425Hardy–Littlewood, 307, 308Hildebrand, 438, 439Ikehara, 420Korevaar, 8, 61, 424, 427Newman, 61, 419, 420, 422, 424, 426Selberg, 61, 353, 354, 361–363, 365,

369, 420, 425, 433, 439simplification, 363, 365, 371, 372Wiener, 420

Riemann hypothesis, 43similar theorem, 307, 308Wiener theory, 426

primitive character, 56

primitive root, 64primitive waveform, 99Primzahlsatz, 301principal character, 56principal valueπ(x), 282Li(x), 226

problems of the millennium, 94, 95, 106,107, 131

product representation, see Eulerproduct

L(s,∆), 59, 108L(s, χ3), 124L(s, π), 59L(s, π∞), 59L(s, πp), 59LE(s), 124L∆(s), 124Lν(s), 208

1ζ(s)

, 119, 285

ξ(s), 15Hadamard, 21

logarithmic derivative, 21progression arithmetique

formes quadratiques, 220nombres premiers, 220, 227

projective curve, 100nonsingular, 100

projective variety, 103nonsingular, 103

pseudo cusp form, 123eigenvalue, 123

Purdue, 71

quadratic form, 220, 316arithmetic progression, 220equivalence class, 127negative semidefinite, 103self-intersection, 103ternary, 110

quadratic twist, 126quantum chaos, 110

Rabin, 63, 471Rabin’s primality testing algorithm, 471racine, see zero, see zeroRademacher, 63, 70, 120Rains, 48Ram Murty, 64

Page 42: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

524 Index

Ramachandra, 67, 141, 142Ramanujan, 110, 296Ramanujan property, 98Ramanujan’s tau function, 124, see

arithmetic functions, τ(n)random matrix, 40, 42, 106

Riemann hypothesis, 40random matrix ensemble, 111random matrix theory, 40, 42, 116,

124–126, 128, 129, 131Hilbert, 40Polya, 40Riemann hypothesis, 40

random walk, 6, 7rational function, 35, 315Z(t, C), 101

rational point, 128, 129elliptic curve, 129

reciprocity law, 471primality test, 471

Redheffer, 53, 123Redheffer matrix, 52

determinant, 52Riemann hypothesis, 53

relationπ(x) and ψ(x), 429σ and t, 120, 240, 244, 250, 251, 289,

294, 295Renyi, 445representation, 58, 108π, 58, 59, 108π∞, 58, 108πp, 58, 108πv, 58, 108automorphic, 98automorphic cuspidal, 58, 108conductor, 109contragredient, 59, 109irreducible unitary, 58, 108local, 58, 108prime, 58

residue, 38, 97integer modulo n, 476introspective integer modulo n, 476pole, 38

ζ′(s)ζ(s)

, 229, 230

ξk(s), 205ζ(σ), 17

ζ(s), 15polynomial, 476

residue theorem, 38, 146, 147, 153, 421RH, see Riemann hypothesisRibet, 107Richert, 458Riemann, 3, 4, 9, 10, 12, 14, 15, 19, 31,

32, 38, 39, 43, 70, 95, 97, 98, 107,117–119, 132, 133, 161, 183, 190,200, 211, 226, 297, 300, 303, 304,431

Riemann hypothesis, 3–6, 15, 29, 37,55, 61, 70, 93–95, 97, 99, 106,107, 116, 117, 119, 120, 130–133,154, 157, 161, 183, 296, 304,307, 319, 376, 399, 426, seeextended Riemann hypothesis, seegeneralized Riemann hypothesis,see grand Riemann hypothesis

L-functions, 99, 104, 124consequence, 98global, 98Maass waveform, 100modular form, 100primitive waveform, 99verification, 100

L(s, χ3), 124L(s, χk)

implication, 127verification, 126

LE(s), 124L∆(s), 124Z(t, C), 101Λ(s), 107Λ(s, π), 113η(s), 56ξ′(s)ξ(s)

, 50λn, 50ζ(s, C), 101ζK(s), 58, 313, 316

consequence, 316proof, 313, 316Z(s), 137

true, 137algorithm, 29axioms, 124Bertrand’s postulate, 63conditional disproof, 130, 131, 141,

157

Page 43: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index 525

connection, 137, 328

Lindelof hypothesis, 137

consequence, 41, 43, 44, 61, 63, 65–67,322, 335, 376, 399–401, 405–408,447–451, 458

Titchmarsh, 65

convolution function, 131, 154

curve, 111

proof, 125

cycle

graph, 53

Davenport–Heilbronn zeta function

false, 136

de Bruijn–Newman constant, 51

Dirichlet L-function, 99, 100

Dirichlet eta function, 49

discrete measure, 54

disproof, 93, 154, 157

false, 70

Rademacher, 70

doubts, 93, 130, 131, 134, 137, 154,157

Epstein zeta function

false, 136

equivalent statement, 6, 18, 45–54,56, 70, 98, 100, 103, 112, 119,121–123, 132, 133, 144

analytical, 49

number theoretic, 45

ergodic theory, 52

Euler’s constant, 52

evidence, 18, 32, 37, 39, 99, 102, 112,120, 134, see verification

extension, 61, 94, 95

Farey series, 49

finite field, 314

proof, 314

function (finite field)

proof, 314

function field, 313, 314

proof, 313

Weil, 313, 314

generalization, 107

Hardy and Littlewood, 51

Hardy’s theorem, 24, 27

Hilbert–Schmidt integral operator, 52

history, 39

hypothesis H, 44

implication, 120, 122, 133, 135, 137,140, 142, 143, 154, 155, 157

Lindelof hypothesis, 138intuitive statement, 6Lindelof hypothesis, 65Lindelof’s relaxation, 65Liouville’s function, 6, 46Mertens’ conjecture, 69Mertens’ function, 47Montgomery’s pair correlation

conjecture, 41necessary condition, 24, 27Nyman–Beurling equivalent form, 53order

symmetric group element, 54original statement, 183, 304Polya’s conjecture, 399–401partial sum, 71, 317, 320, 321, 324,

325prime number theorem, 43probabilistic argument, 121proof, 72

false, 69, 72ideas, 93

quasi, 128random matrix, 40, 42random matrix theory, 40Redheffer matrix, 53Salem, 52Skewes number

bound, 43statement affecting, 140statement implying, 57, 70, 71, 133,

138, 149, 154, 240, 244, 317, 320,321, 324, 325, 341, 350, 351, 400,451

sum of divisors function, 48variety (finite field), 103, 111

proof, 103variety (general)

proof, 125verification, 19, 24, 27, 29, 32, 34, 35,

37–39, 42, 99, 100, 112, 120, 121,125, 130, 133, 134, 241, 244, 296,351, 399, 407

zeta functionnumber field, 58, 124

zeta functions, 101proof, 101

Page 44: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

526 Index

Riemann summability, 451, 452, 456Riemann surface, 99, 183Riemann zeta function, 4, 5, 9–12, 14,

15, 29, 31, 33, 35, 37, 94, 95,107, 116, 117, 123, 131, 161, 183,190, 199, 200, 222–224, 228, 296,297, 302, 317–319, 375, 376, 399,400, 406, 424, 425, 449, see zetafunctions, ζ(s)

L-functions, 98behavior, 69integral formula, 428partial sum, 71, 317, 320, see partial

sumprime numbers, 46properties, 183, 424, 428

Riemann’s explicit formula, 102, 119Riemann’s formula, 97, 297Riemann’s memoir, 15, 97, 132,

183–189, 303English translation, 183, 190

Riemann–Lebesgue lemma, 431Riemann–Roch theorem, 101, 103Riemann–Siegel formula, 32–34, 38, 39,

99, 120, 133, 144, 150, 153Euler–MacLaurin summation

formula, 32Riemann–Stieltjes assertation, 211Riemann–von Mangoldt formula, 132,

136Riesz, 298Riesz mean, 324, 326, see meanRiesz’s theorem, 298ringZn, 473A, 58, 108R∗, 54Z/pZ, 64OK , 58Z, 473adeles, 58, 108integers, 58, 473integers modulo n, 473polynomial, 471

RMT, see random matrix theoryRobin, 48Rogosinski, 456Rolle’s theorem, 120root, see zero

primitive, 64Rosser, 34Rosser’s rule, 34

false, 34Lehman, 34

Rouche, 348Rouche’s theorem, 348Rubinstein, 126Rudnick, 103, 128Rumely, 471running time, 469–473Ruzsa, 446

seriesDirichlet, 204, 206, 219, 298Lν(s), 208sommablilite, 298

Meyer, 220Weber, 220

Sabbagh, 71Saffari, 448, 465Sahai, 477Saias, 121Salem, 51, 52

Riemann hypothesis, 52Sarnak, 60, 98, 103, 106, 107, 125, 126,

128Saxena, 63, 110, 469, 470Schonhage, 35, 125Schaar, 231Schlomilch, 204Schlomilch function, 204Schmidt, 52, 101Schneider, 120Schwarz, 155, 414, 443, 446, 466Selberg, 27, 61, 100, 120, 122, 124,

125, 142, 144, 350, 353, 354, 364,365, 369, 371, 372, 407, 420, 425,433–435, 438–440, 447, 448, 457,459, 461

Dirichlet’s theorem, 365Selberg zeta function, 137, see zeta

functions, Z(s)Selberg’s asymptotic formula, 353, 354,

358, 363, 364, 433, 434, 438–441proof, 358, 365

Selberg’s result, 136extension, 447

Selberg’s trace formula, 122, 123

Page 45: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index 527

Selberg’s upper bound sieve, 440semi-simple group, 112series∑

nµ(n)

n, 284, 442

convergence, 284, 419, 422∑p

1ps , 201, 211, 302, 304

convergence, 302∑p

log(p)p−1

, 277∑p

log(p)p

, 365, 372, 419, 422, 435, 441∑p log(p), 96, 275, 303, 354, 365∑nk=1

1ks , 317∑

pmlog(p)

pm , 268, 276, 277∑pm log(p), 268, 275, 447

Farey, 48Fn, 48

nontrivial zeros, 23, 50, 119, 122, 124,135, 231, 233–237, 252–256, 260,264, 291, 399, 400, 405–407, 409,416, 449∑, 252, 264, 291∑′, 252, 264, 291∑′′, 252, 264, 292∑ yσ−1

σ2+t2, 264∑

ρ1

(u−ρ)(1−ρ), 235–237∑

ρ1

1−ρ, 230∑

ρ1

γ2 , 378, 379∑ρ

, 378, 379∑ρ

1ρ(1−ρ)

, 231∑ρ

1ρ, 230∑

ρ1

σ2+t2, 233, 234∑

ρ1

s−ρ, 229, 240–243, 245, 246,

248, 249, 252–256, 291, 292∑ρ

1tr , 261∑

ρσ

σ2+t2, 231∑

ρyρ−1

ρ(ρ−1), 276∑

ρyσ−1

σ2+t2, 265–267, 271, 273, 275,

283∑ρ

yσ−1

t2, 260, 261, 263∑s

r, 261upper bound, 378

series representation, see Dirichletseries, see partial sum

F (X,T ), 449F (y, λ), 394L(x), 400LE(s), 124

L∆(s), 124M(x), 69, 402, 433–435, 438, 439R(t, x), 151S(t, x), 152Π(x), 377, 381<(log(ζ(s))), 16ξ′(s)ξ(s)

, 135ζ′(s)ζ(s)

, 23, 214, 216, 245, 286, 304ζ′(s)ζ2(s)

, 285

log((s− 1)ζ(s)), 96log(ξ(s)), 193log(ζ(s)), 16, 193, 200, 203

convergence, 200log(n), 433log(s− 1), 211R(log(ζ(s))), 201ψ(x), 307, 379, 427, 429, 447ψ1(x), 380θ(x), 303ϑ(x), 354, 365ξ(t), 193ζ(s), 33, 428ζ(s, a), 136Li(x), 96

Serre, 107, 110setN , 473introspective integers, 476positive integers, 473

Severi, 103, 314, 315Sherman, 352Shilov, 143Shimura, 107Shimura–Taniyama–Weil conjecture,

107Siegel, 32, 70, 120, 127, 133, 150sieve, 64, 127, 438–440, 471, see large

sieve, see upper bound sieveestimate, 450large, 438, 439prime distribution, 439prime number density, 471technique, 433

sieve of Eratosthenes algorithm, 470running time, 470

signA∗T (u), 402, 404L(x), 400

Page 46: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

528 Index

verification, 400

λn, 50

π(x) − Li(x), 43, 134, 198, 375, 376,381, 386, 389, 397

change, 376

ξ(t), 38

change, 38

ξ(s), 27

ξ(t), 99

change, 99, 100

ζ( 12

+ it), 33

change, 33

change, 334, 335

Gauss sum, 108

simple pole

L1, 208

Z(t, C), 101

Z2(ξ), 139

Γ (s), 14

ξk, 205

ζ(σ), 17

ζ(s), 11, 14, 15, 95, 99, 117, 131, 200,304, 319

ζ(s, C), 101

simple zero

Z(t), 133

ζ(s), 14, 38, 39, 100, 133, 134, 407

Skewes, 43, 44, 375, 376

Skewes number, 43

bound, 43, 44

upper bound, 43, 44

Snaith, 67, 111, 125, 126

Sobolev space, 112

Solovay, 63, 471

Solovay’s primality testing algorithm,471

Solovay-Strassen algorithm, seealgorithms

Sophie Germain primes, 471, 479, seeconjectures

asymptotic behavior, 479

density, 471, 479

primality test, 471, 479

Soundararajan, 67

spacing between zeros

L-function, 103, 129

Z(t), 134, 135, 142, 149

ξ(t), 103

ζ(s), 41, 42, 100, 119, 124, 127, 128,133, 142, 405, 406, 449, 459

kth, 41average, 408distribution, 410normalized, 41small, 43

ζK(s), 408bound, 408

zeta function, 103spectral interpretation

zerosL-function, 112Λ(s, π), 111ζ(s), 111, 121, 122, 126

spectral theory, 139, 141non-Euclidean Laplacian, 139

spectrum, 122Spira, 136Steiner, 183Stern, 183Stieltjes, 69, 119, 200, 211, 212, 285Stirling, 21Stirling’s formula, 21, 22, 26, 135, 150Strassen, 63, 471Strassen’s primality testing algorithm,

471subconvex estimate, 111Sudan, 477sum of divisors function, 47, 48

Riemann hypothesis, 48summability, 452

Dirichlet series, 298support, 54supremum

M(n)n−12 , 70

lower bound, 70M(x)

x, 434

σn, 227, 244, 247zeros

imaginary parts, 241, 244, 408, 410surface, 103

arithmetic hyperbolic, 110projective nonsingular, 103

Swinnerton-Dyer, 128Sylvester, 225symmetric functional equation, 117, 150ζ(s), 117, 150

symmetric group, 53

Page 47: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index 529

element, 53order, 53

symmetric matrix, 405, 409eigenvalue, 405, 409

symplectic matrix, 103, 126, 405, 409eigenvalue, 103, 405, 409unitary, 126

Szele Prize, 317

Taniyama, 107Tate, 104Tauberian character, 451Tauberian theorem, 308, see auxiliary

Tauberian theoremTauberian theory, 426Taylor, 99Taylor series, 16, 26, 305, 328Taylor’s formula, 144, 151Tchebotarev’s density theorem, 98Tchebychev, 97, 212, 225, 226, 420, 422,

see Chebyshevte Riele, 44, 62, 69, 70, 100, 119, 133,

134, 139ternary additive divisor problem, 141Terras, 123theoreme

Bohr, 298Cauchy, 297Halphen, 212, 218, 219nombres premiers, 433, 434

demonstration, 434Riesz, 298von Mangoldt, 260, 261

theoremsI1(T ) ∼ log T , 67

proof, 67I2(T ) ∼ 1

2π2 (log T )4, 67proof, 67

Ik(T ) ≥ (a(k) + o(1))(log T )k2, 67

conditional proof, 67proof, 67

Ik(T ) ≥ 2(ak + o(1))(log T )k2, 67

proof, 67M(x) = o(x), 307, 308, 433, 434, 438,

439proof, 311, 433, 434, 438–440, 442

N(T ) ∼ T2π

log( T2π

) − T2π

, 15, 19, 24,31, 41

proof, 15, 24, 31

von Mangoldt, 15, 311

Γ (µ)

∑p<x log(p) logµ−1( x

p) ∼ x, 218

π(x) ∼ xlog(x)

, 16, 162, 172, 302, 309,420, 425, 427, see prime numbertheorem

π(x) ∼ Li(x), 43, 46, 61, 96, 98, 132,134, 162, 199, 222, 225–227, 282,284

proof, 199, 222ψ(x) ∼ x, 305, 308, 427

proof, 312, 429∑n<x Λ(n) ∼ x, 119, 307∑n<x

µ(n)n

= O(1), 442∑n<x

µ(n)n

= o(1), 288, 307, 308proof, 312∑p<x

log(p)p

∼ log(x), 278, 365, 419,435, 441

proof, 422, 423∑p<x log(p) ∼ x, 212, 218, 275∑p≤x

log(p)p

= log(x) +O(1), 354∑pm<x

log(p)pm ∼ log(x), 277∑

pm<x log(p) ∼ x, 275θ(x) ∼ x, 303ϑ(x) ∼ x, 354, 356, 365

Time magazine, 70Titchmarsh, 58, 63, 65, 66, 100, 121,

127, 296, 307, 388, 426, 459Titchmarsh’s S(T ) function, 65trace

Frobenius endomorphism, 102trace formula

Selberg, 122, 123

transcendence of 2√

2, 120trivial zero, 14, 95, 118ζ(s), 14, 131, 191, 228, 304, 319

Tsang, 142, 148Turan, 71, 134, 317, 318, 402, 440, 445,

446Turan’s conjecture, 402, 483

conditional disproof, 402Turan’s inequality, 402, see Turan’s

conjectureconditional disproof, 402disproof, 404

Turan–Kubilius inequality, 440, 445,446

dual, 445, 446large sieve inequality, 440, 445, 446

Page 48: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

530 Index

Turing, 34, 473Turing machine, 473

deterministic polynomial time, 473Turing’s algorithm, 34twin prime constant, 479twist, 126

quadratic, 126

Ungar, 320Ungar’s theorem, 320unitary linear operator, 405, 409unitary matrix, 67, 103, 123, 405, 409

characteristic polynomial, 67eigenvalue, 103, 123, 405, 409symplectic, 126

unitary representationirreducible, 108

upper boundE1(T ), 138E2(T ), 138Ek(T ), 138, 140Ik(T ), 66M(x), 440S(T ), 142S(t), 112SM (T ), 156Z(t), 143∆k(T ), 140π(x), 96, 97, 303, 429π2(x, k), 458ψ(x), 97, 379, 429σ, 227, 244, 247, 375–377, 380σ(n), 48σ(y), 267, 268∑

ρ1

γ2 , 378∑ρ

, 378∑ρ

yσ−1

σ2+t2, 265–267∑

ρyσ−1

t2, 263, 264

ϕ(x), 168ϑ(x), 97, 355, 366ζ( 1

2+ it), 138

Li(x), 380, 381cardinality of G, 477distribution of zeros, 412infimumM(n)n−

12 , 70

prime distribution, 439, 440Skewes number, 43, 44

zerosDavenport–Heilbronn zeta function,

136imaginary parts, 416

upper bound sieve, 440Selberg, 440

Vaaler, 457valeur principale

de Li(x), 226valueN1(T ), 38S(T ), 142ζ′(s), 49ζ( 1

2+ it), 142

van de Lune, 100, 120, 134van der Waerden, 314variety

algebraic, 100, 101arithmetic, 98field, 103finite field, 103, 111

Riemann hypothesis, 103, 111general, 125

Riemann hypothesis, 125non-singular, 103projective, 103zeta functions, 103

Vaughan, 448, 465Verdier, 101Vinogradov, 18, 62, 110, 322Vinogradov’s theorem, 62Volchkov, 52von Mangoldt, 15, 31, 132, 210, 225,

226, 229, 260, 261, 285, 434von Mangoldt’s function, 119, 428, 434,

see arithmetic functions, Λ(n)von Mangoldt’s theorem, 260, 261

waveformMaass, 99, 104primitive, 99

Weber, 220Weber series, 220Weber’s formula, 220Wedeniwski, 120Weierstrass, 422Weierstrass M -test, 422Weil, 101–104, 107, 125, 126, 313, 314

Page 49: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index 531

Weil conjecture, 106, 111, 313Weil’s explicit formula, 102, 122, 123L-function

number field, 102ζ(s), 102zeta function

curve, 102Weil’s positivity criterion, 122Weil–Guinand–Riemann formula, 112Weinberger, 408Weyl, 120, 322, 336Weyl sum, 120Weyl’s inequality, 336Wiener, 420, 424, 426, 452Wiener theory, 426

prime number theorem, 426Wiener’s Tauberian theorem, 452Wiener’s Tauberian theory, 426Wiles, 4, 99, 120, 124, 129Wilkins, 183, 190Wilson, 301Wilson’s theorem, 301Winter, 100Winther, 351Wirsing, 439Wirsing’s mean value theorem, 439

Xi function, 51, 297xi function, 14, 19–22, 25–27, 31, 38, 50,

192, 297Xian-Jin Li, 122

Yau, 313

zeroLν(s), 209ζ(s), 199–201, 214, 226, 228, 229, 296,

297conjugees, 229, 230distribution, 199, 200imaginaires, 227, 228, 233, 240

Zagier, 128zero

(1− 21−2s)ζ(2s), 298location, 298

H(λ, z), 51real, 51

Jn(s), 329location, 329

L-function, 98, 100, 103, 112, 126,127, 129, see Landau–Siegel zero

critical line, 60, 126, 129critical strip, 126distribution, 111, 112, 126elliptic curve, 129fluctuation, 111high multiplicity, 128, 129location, 98multiplicity, 128triple, 128

L(s, χ)line <(s) = 1, 350location, 350

L(s, χ3), 123, 124L(s, χk), 126, 127

connection, 127L(s, π)

line <(s) = 1, 110LE(s), 124Lν(s), 209, 210

conjugate, 209distribution, 209, 210location, 209

MZ,f (t), 144, 147, 154, 156γ, 147, 156distribution, 144, 147, 154location, 144multiplicity, 144

Rn(s)asymptotic behavior, 349

Un(s), 321, 322, 326condensation point, 322, 326location, 322, 335

Vn(s), 325, 326, 347, 349asymptotic behavior, 325, 347condensation point, 325, 326, 347location, 343, 349

Z(t), 133–135, 142–144, 146, 149, 154γn, 135, 142distribution, 143, 144, 146location, 144multiplicity, 133, 143, 144simple, 133

Z(t, C), 101Λ(s), 107

location, 107Λ(s, χ), 112

critical line, 112

Page 50: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

532 Index

eigenvalue, 112location, 112

Λ(s, π), 109, 111fluctuation, 111location, 109, 111

Ξ(t), 121η(s), 49, 56

critical line, 49critical strip, 491

ζ(s), 285, 288

sin θ(t), 33ξ′(s), 120, 121ξ( 1

2+ it), 121

ξ(t), 38multiplicity, 38odd, 38

ξ(s), 15, 19, 27, 31, 38, 95argument principle, 20critical strip, 19distribution, 95imaginary part, 38location, 38

ξ(t), 103, 193distribution, 193location, 193multiplicity, 99multiplicity odd, 99

ζ( 12

+ it), 119, 212ζ(s), 14, 15, 24, 31, 95, 100, 109, 111,

119–125, 127, 128, 133, 157, 191,199–201, 212, 214, 224, 226, 228,229, 240, 244, 296, 297, 304, 319,376, 405, 406

ρ, 95, 376, 378ρn, 399, 400k-tuple correlation, 409behavior, 113, 133, 211, 405, 407,

409computation, 32conjugate, 119, 209, 227, 230, 247,

320connection, 127counting, 18critical line, 5, 15, 18, 24, 27, 30–32,

34, 35, 38, 40, 100, 112, 119, 120,125, 132–134, 157, 212, 240, 244,296, 297, 307, 400, 407

critical strip, 18, 19, 24, 30, 41, 297,304, 378, 426

distribution, 41, 65, 95, 99, 118,119, 125, 127, 136, 138, 157, 199,200, 260, 303, 319, 378, 407, 412,459

eigenvalue, 121, 123, 125imaginary part, 40, 41, 133, 376,

378, 387, 388, 399–401, 405–407,447, 449, 456

integer part, 124line <(s) = 1, 16–18, 61, 110, 119,

199, 201–203, 221, 222, 224, 226,304, 305, 420, 425, 428

linear dependence, 400linear operator, 405, 409location, 14, 15, 24, 30, 70, 95, 99,

100, 112, 119, 120, 131, 132, 191,199, 200, 228, 240, 244, 260, 296,297, 304, 319, 320, 375–378, 380,399, 401, 403, 404, 412

multiplicity, 39, 100, 122, 128, 133,134, 400, 407–409, 416

pair correlation, 447, 448, 459prime number, 410relation between σ and t, 120, 240,

244, 250, 251, 257–259, 289, 294,295

simple, 14, 38, 39, 100, 133, 134, 407symmetric, 15, 119

ζK(s), 58, 408critical line, 408critical strip, 408

alternating zeta function, 325wk, 325, 326, 343, 347, 349line <(s) = 1, 325, 350

Artin L-function, 100Bessel function, 129convolution function, 134Davenport–Heilbronn zeta function,

136asymptotic behavior, 136behavior, 136critical line, 136critical strip, 136distribution, 136location, 136

Dirichlet L-function, 100Dirichlet series, 328elliptic curve L-function, 129

multiplicity, 129

Page 51: References - link.springer.com978-0-387-72126-2/1.pdf · References 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical

Index 533

Epstein zeta function, 136critical strip, 136

family, 111L-functions, 111

Landau–Siegel, 127, 128Maass L-function, 100meromorphic function, 19

counting, 19partial sum, 71, 317, 327, 328

behavior, 322condensation point, 327, 328, 352Dirichlet series, 328location, 71, 317Riemann zeta function, 71

Riesz mean, 349behavior, 349condensation point, 349

zeta function, 111, 125critical line, 111distribution, 125eigenvalue, 111

zeta functions, 101, 103zero-density theorem, 66, 110, 111zero-free region, 16

(z − 1)ζ(s), 420Cn(s), 324Jn(s), 329L-functions, 112L(s, χ), 350L(s, π), 110Un(s), 320–323, 338Vn(s), 325π(x)− Li(x), 375ξ(t), 193ζ′(s), 50ζ(s), 15, 16, 18, 110, 118, 119, 199,

200, 203, 222, 319–321, 420, 428Korobov, 18Vinogradov, 18

Dirichlet series, 210partial sum, 71, 317

Riemann zeta function, 71zeta functions, 35, 101, 123, 124, 132,

136, see alternating zeta func-tion, see Davenport–Heilbronnzeta function, see Epstein zetafunction, see Selberg zeta function

(1 − 21−s)ζ(s), 325, see alternatingzeta function

(z − 1)ζ(s), 420

Z(t, C), 101

degree, 101

numerator, 101

rational function, 101

=(ζ(s)), 118

<(ζ(s)), 118

η(s), 35, 36, 56, see alternating zetafunction, see Dirichlet eta function

ζ(σ), 17

ζ(s), 4, 5, 10–12, 14, 15, 29, 31,33, 35, 56, 65, 66, 95, 99, 107,117, 131, 132, 138, 190, 200, 201,222–224, 228, 296, 297, 302, 319,376, 400, 425, see Riemann zetafunction

L(s, χ1), 56

ζK(s), 58

s = 0, 280

behavior, 34, 66

critical line, 34

derivative, 49, 99

integral formula, 97

logarithm, 16, 97, 193, 200, 201, 304

logarithmic derivative, 22, 214, 216,229, 304, 427, 428

partial sum, 320

peak, 40

properties, 304

ζ(s, C), 101

ζ(s, a), 136, see Hurwitz zeta function

ζk(s), 140

ζK(s), 58, 315, 316, 408, see Dedekindzeta function

numerator, 315

f(s), see Davenport–Heilbronn zetafunction

Z(s), 137, see Selberg zeta function

(1− 21−2s)ζ(2s), 298

cohomology, 103

curve, 101, see zeta functions, ζ(s, C)

Dirichlet, 107, see L-functions

field, 103

finite field, 125, 126

history, 95

number field, 124

variety, 103

Zinoviev, 62