References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard...

22
References Abani N, Reitz RD (2007) Unsteady turbulent round jets and vortex motion. Phys Fluids 19:125102. doi:10.1063/1.2821910 Abani N, Munnannur A, Reitz RD (2008a) Reduction of numerical parameter dependencies in diesel spray models. J Eng Gas Turb Power 130:032809. doi:10.1115/ICEF2007-1667 Abani N, Kokjohn LS, Park SW, Bergin M, Munnannur A, Ning W, Sun Y, Reitz RD (2008b) An improved spray model for reducing numerical parameters dependencies in diesel engine CFD simulations. SAE Paper 2008-01-0970. doi:10.4271/2008-01-0970 Abani N, Reitz RD (2010) Diesel engine emissions and combustion predictions using advanced mixing models applicable to fuel sprays. Combust Theory Modeling 14:715–746. doi: 10.1080/13647830.2010.512958 Abraham J, Bracco FV, Reitz RD (1985) Comparisons of computed and measured premixed charge engine combustion. Combust Flame 60:309–322. doi:10.1016/0010-2180(85)90036-7 Abraham J, Magi V (1999) A virtual liquid source (VLS) model for vaporizing diesel sprays. SAE Paper 1999-01-0911. doi:10.4271/1999-01-0911 Aceves SM, Flowers DL, Westbrook CK, Smith JR, Dibble RW, Christensen M, Pitz WJ, Johansson B (2000) A multi-zone model for prediction of HCCI combustion and emissions. SAE Paper 2000-01-0327. doi:10.4271/2000-01-0327 Aceves SM, Flowers DL, Martinez-Frias J, Smith JR, Westbrook CK, Pitz WJ, Dibble RW (2001) A sequential fluid-mechanic chemical-kinetic model of propane HCCI combustion. SAE Paper 2001-01-1027. doi:10.4271/2001-01-1027 Aceves SM, Flowers DL, Espinosa-loza F, Babajimopoulos A, Assanis DN (2005) Analysis of premixed charge compression ignition combustion with a sequential fluid mechanics- multizone chemical kinetics model. SAE Paper 2005-01-0115. doi:10.4271/2005-01-0115 Adomeit P, Lang O, Pischinger S, Aymanns R, Graf M, Stapf G (2007) Analysis of cyclic fluctuations of charge motion and mixture formation in a DISI engine in stratified operation. SAE Paper 2007-01-1412. doi:10.4271/2007-01-1412 Aittokoski T, Miettinen K (2008) Cost effective simulation-based multiobjective optimization in the performance of an internal combustion engine. Eng Optimiz 40:593–612. doi: 10.1080/03052150801914429 Akihama K, Takatori Y, Inagaki Z, Sasaki S, Dean AM (2001) Mechanism of the smokeless rich diesel combustion by reducing temperature. SAE Paper 2001-01-0655. doi:10.4271/2001-01-0655 Ali MM, Storey C (1994) Modified controlled random search algorithms. Int J Comput Math 54:229–235. doi:10.1080/00207169408804329 Amsden AA, Ramshaw JD, O’Rourke PJ, Dukowicz JK, Butler TD (1985) KIVA: a computer program for two- and three-dimensional fluid flows with chemical reactions and fuel sprays. Los Alamos National Laboratory Report No. LA-10245-MS 287

Transcript of References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard...

Page 1: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

References

Abani N, Reitz RD (2007) Unsteady turbulent round jets and vortex motion. Phys Fluids19:125102. doi:10.1063/1.2821910

Abani N, Munnannur A, Reitz RD (2008a) Reduction of numerical parameter dependencies indiesel spray models. J Eng Gas Turb Power 130:032809. doi:10.1115/ICEF2007-1667

Abani N, Kokjohn LS, Park SW, Bergin M, Munnannur A, Ning W, Sun Y, Reitz RD (2008b) Animproved spray model for reducing numerical parameters dependencies in diesel engine CFDsimulations. SAE Paper 2008-01-0970. doi:10.4271/2008-01-0970

Abani N, Reitz RD (2010) Diesel engine emissions and combustion predictions using advancedmixing models applicable to fuel sprays. Combust Theory Modeling 14:715–746. doi:10.1080/13647830.2010.512958

Abraham J, Bracco FV, Reitz RD (1985) Comparisons of computed and measured premixedcharge engine combustion. Combust Flame 60:309–322. doi:10.1016/0010-2180(85)90036-7

Abraham J, Magi V (1999) A virtual liquid source (VLS) model for vaporizing diesel sprays.SAE Paper 1999-01-0911. doi:10.4271/1999-01-0911

Aceves SM, Flowers DL, Westbrook CK, Smith JR, Dibble RW, Christensen M, Pitz WJ,Johansson B (2000) A multi-zone model for prediction of HCCI combustion and emissions.SAE Paper 2000-01-0327. doi:10.4271/2000-01-0327

Aceves SM, Flowers DL, Martinez-Frias J, Smith JR, Westbrook CK, Pitz WJ, Dibble RW(2001) A sequential fluid-mechanic chemical-kinetic model of propane HCCI combustion.SAE Paper 2001-01-1027. doi:10.4271/2001-01-1027

Aceves SM, Flowers DL, Espinosa-loza F, Babajimopoulos A, Assanis DN (2005) Analysis ofpremixed charge compression ignition combustion with a sequential fluid mechanics-multizone chemical kinetics model. SAE Paper 2005-01-0115. doi:10.4271/2005-01-0115

Adomeit P, Lang O, Pischinger S, Aymanns R, Graf M, Stapf G (2007) Analysis of cyclicfluctuations of charge motion and mixture formation in a DISI engine in stratified operation.SAE Paper 2007-01-1412. doi:10.4271/2007-01-1412

Aittokoski T, Miettinen K (2008) Cost effective simulation-based multiobjective optimization inthe performance of an internal combustion engine. Eng Optimiz 40:593–612. doi:10.1080/03052150801914429

Akihama K, Takatori Y, Inagaki Z, Sasaki S, Dean AM (2001) Mechanism of the smokeless rich dieselcombustion by reducing temperature. SAE Paper 2001-01-0655. doi:10.4271/2001-01-0655

Ali MM, Storey C (1994) Modified controlled random search algorithms. Int J Comput Math54:229–235. doi:10.1080/00207169408804329

Amsden AA, Ramshaw JD, O’Rourke PJ, Dukowicz JK, Butler TD (1985) KIVA: a computerprogram for two- and three-dimensional fluid flows with chemical reactions and fuel sprays.Los Alamos National Laboratory Report No. LA-10245-MS

287

Page 2: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Amsden AA, O’Rourke PJ, Butler TD (1989) KIVA-II: a computer program for chemicallyreactive flows with sprays. Los Alamos National Laboratory Report No. LA-11560-MS

Amsden AA (1993) KIVA-3: a KIVA program with block-structured mesh for complexgeometries. Los Alamos National Laboratory Report No. LA-12503-MS

Amsden AA (1997) KIVA-3V: A block-structured KIVA program for engines with vertical orcanted valves. Los Alamos National Laboratory Report No. LA-13313-MS

Ando H, Sakai Y, Kuwahara K (2009) Universal rule of hydrocarbon oxidation. SAE Paper 2009-01-0948. doi: 10.4271/2009-01-0948

Apte SV, Gorokhovsk M, Moin P (2003) LES of atomizing spray with stochastic modeling ofsecondary breakup. Int J Multiphase Flow 29:1503–1522. doi:10.1016/S0301-9322(03)00111-3

Arakawa M, Hagiwara I (1998) Development of adaptive real range (ARRange) geneticalgorithms. JSME Int J C 41:969–977

Arcoumanis C, Bicen AF, Vafidis C, Whitelaw JH (1984) Three-dimensional flow field in four-stroke model engines. SAE Paper 841360. doi:10.4271/841360

Babajimopoulos A, Assanis DN, Flowers DL, Aceves SM, Hessel RP (2005) A fully coupledcomputational fluid dynamics and multi-zone model with detailed chemical kinetics for thesimulation of premixed charge compression ignition engines. Int J Engine Res 6:497–512.doi:10.1243/146808705X30503

Babinsky E, Sojka PE (2002) Modeling drop size distribution. Prog Energy Combust Sci 28:303–329. doi:10.1016/S0360-1285(02)00004-7

Balewski B, Heine B, Tropea C (2010) Experimental investigation of the correlation between nozzleflow and spray using laser Doppler velocimeter, phase Doppler system, high-speed photography,and X-ray radiography. Atomization Spray 20:57–70. doi:10.1615/AtomizSpr.v20.i1

Banerjee S, Liang T, Rutland CJ, Hu B (2010) Validation of an LES multi mode combustionmodel for diesel combustion. SAE Paper 2010-01-0361. doi:10.4271/2010-01-0361

Barroso G, Escher A, Boulouchos K (2005) Experimental and numerical investigations on HCCI-combustion. SAE Paper 2005-24-038. doi:10.4271/2005-24-038

Beale JC, Reitz RD (1999) Modeling spray atomization with the Kelvin–Helmholtz/Rayleigh–Taylor hybrid model. Atomization Spray 9:623–650

Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension ofLagrangian–Eulerian spray modeling: application to high pressure evaporating diesel sprays.SAE Paper 2000-01-1893. doi:10.4271/2000-01-1893

Benedict RP (1980) Fundamentals of pipe flow. Wiley, New YorkBergin MJ, Reitz RD (2005) Soot and NOx emissions reduction in diesel engines via spin-spray

combustion. In: Proceedings of the 18th annual conference on liquid atomization and spray systemsBergin MJ, Hessel RP, Reitz RD (2005) Optimization of a large diesel engine via spin spray

combustion. SAE Paper 2005-01-0916. doi:10.4271/2005-01-0916Bharadwa N, Rutland CJ, Chang SM (2009) LES modeling of spray induced turbulence effects.

SAE Paper 2009-01-0847. Int J Engine Res 10:97–119. doi:10.1243/14680874JER02309Bhattacharjee B, Schwer DA, Barton PI, Green WH (2003) Optimally-reduced kinetic models:

reaction elimination in large-scale kinetic mechanisms. Combust Flame 135:191–208. doi:10.1016/S0010-2180(03)00159-7

Borgnakke C, Xiao Y (1991) Compressible turbulence predicted by Reynolds stress models. SAEPaper 910260. doi:10.4271/910260

Boudier P, Henriot S, Poinsot TJ, Baritaud T (1992) A model for turbulent flame ignition andpropagation in spark ignition engines. Proc Combust Inst 24:503–510. doi:10.1016/S0082-0784(06)80064-0

Bowman CT (1975) Kinetics of pollutant formation and destruction in combustion. Prog EnergyCombust Sci 1:33–45. doi:10.1016/0360-1285(75)90005-2

Brahma J, Sharp MC, Richter IB, Frazier TR (2008) Development of the nearest neighbourmultivariate localized regression modelling technique for steady state engine calibration andcomparison with neural networks and global regression. Int J Engine Res 9(4):297–324. doi:10.1243/14680874JER00708

288 References

Page 3: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Bray KNC, Libby PA (1994) Recent developments in the BML model of premixed turbulentcombustion. In: Libby PA, Williams FA (eds) Turbulent reacting flow. Academic Press, NewYork, pp 63–113

Brown PN, Byrne GD, Hindmarsh AC (1989) VODE: a variable coefficient ODE solver. SIAM JSci Stat Comput 10:1038–1051. doi:10.1137/0910062

Broyden CG (1970) The convergence of a class of double-rank minimization algorithms. J InstMath Appl 6:76–90. doi:10.1093/imamat/6.1.76

Butler TD, Cloutman LD, Dukowicz JK, Ramshaw JD (1979) CONCHAS: an arbitraryLagrangian–Eulerian computer code for multicomponent chemically reactive fluid flow at allspeeds. Los Alamos Scientific Laboratory Report LA-8129-MS

Cao L, Zhao H, Jiang X (2008) Analysis of controlled auto-ignition/HCCI combustion in a directinjection gasoline engine with single and split fuel injections. Combust Sci Technol 180:176–205. doi:10.1080/00102200701600903

Carrol DL (1996) Genetic algorithms and optimizing chemical oxygen-iodine laser. Dev TheorAppl Mech 18:411–424

Chen JY, Dibble RW, Kolbu J, Homma R (2003) Optimization of homogeneous chargecomparession ignition with genetic algorithms. Combust Sci Technol 175:373–392. doi:10.1080/00102200302400

Cloutman LD, Dukowicz JK, Ramshaw JD, Amsden AA (1982) CONCHASSPRAY: a computercode for reactive flows with fuel sprays. Los Alamos National Laboratory Report LA-9294-MS

Coello Coello CA, Pulido GT (2001) A micro-genetic algorithm for multiobjective optimization.In: First international conference on evolutionary multi-criterion optimization. Lecture notesin computer science, vol 1993, pp 126–140. doi:10.1007/3-540-44719-9_9

Corbinelli G, Befrui B, Reckers W (2010) Large eddy simulation and optical studies of theprimary break-up of a thin planar-sheet liquid jet. SAE Paper 2010-01-0622. doi:10.4271/2010-01-0622

Cowland C, Gutmann P, Herzog PL (2004) Passenger vehicle diesel engines for the US. SAEPaper 2004-01-1452. doi:10.4271/2004-01-1452

Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (1998a) A comprehensive modeling study of n-heptane oxidation. Combust Flame 114:149–177. doi:10.1016/S0010-2180(97)00282-4

Curran HJ, Pitz WJ, Westbrook CK, Callahan CV, Dryer FL (1998b) Oxidation of automotiveprimary reference fuels at elevated pressures. Proc Combust Inst 27:379–387. doi:10.1016/S0082-0784(98)80426-8

Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (2002) A comprehensive modeling study of iso-octane oxidation. Combust Flame 129:253–280. doi:10.1016/S0010-2180(01)00373-X

Dahms R, Fansler TD, Drake MC, Kuo TW, Lippert AM, Peters N (2009) Modeling ignitionphenomena in spray-guided spark-ignited engines. Proc Combust Inst 32:2743–2750. doi:10.1016/j.proci.2008.05.052

De Villiers E, Gosman AD, Welle HG (2004) Large eddy simulation of primary diesel sprayatomization. SAE Paper 2004-01-0100. doi: 10.4271/2004-01-0100

Deb K (2001) Multi-objective optimization using evolutionary algorithms. John Wiley & Sons,New York

Deb K, Jain S (2002) Running performance metrics for evolutionary multi-objective optimiza-tion. KanGAL Report No. 2002004

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective geneticalgorithm: NSGA-II. Evol Comput 6:182–197. doi:10.1109/4235.996017

Dec J (1997) A conceptual model of DI diesel combustion based on laser-sheet imaging. SAEPaper 970827. doi: 10.4271/970827

Dillies B, Marx K, Dec J, Espey C (1993) Diesel engine combustion modeling using the coherentflame model in KIVA-II. SAE Paper 930074. doi: 10.4271/930074

Drake MC, Haworth DC (2007) Advanced gasoline engine development using optical diagnosticsand numerical modeling. Proc Combust Inst 31:99–124. doi:10.1016/j.proci.2006.08.120

References 289

Page 4: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Draper NR, Smith H (1981) Applied regression analysis. John Wiley and Sons, New YorkDuclos JM, Colin O (2001) Arc and kernel tracking ignition model for 3D spark-ignition engine

calculations. COMODIA 5:343–350EPA (2010) Inventory of U.S. greenhouse gas emissions and sinks: 1990-2008.

http://www.epa.gov/climatechange/emissions/usinventoryreport.html accessed 28 Oct 2010ESTECO, modeFRONTIERTM 4 User Manual, 2008Faeth GM (1977) Current status of droplet and liquid combustion. Prog Energy Combust Sci

3:191–224. doi:10.1016/0360-1285(77)90012-0Falfari S, Bianchi GM (2007) Development of an ignition model for S.I. engines simulation. SAE

Paper 2007-01-0148. doi: 10.4271/2007-01-0148Fan L, Reitz RD (2000) Development of an ignition and combustion model for spark-ignition

engines. SAE Paper 2000-01-2809 SAE Tran J Engines 109:1977-1989. doi:10.4271/2000-01-2809

Farhang-Mehr A, Azarm S (2002) Diversity assessment of pareto-optimal solution sets: anentropy approach. Proc the World Congress on Comput Intelligence: 723-728

Finol CA, Robinson K (2006) Thermal modelling of modern engines: a review of empiricalcorrelations to estimate the in-cylinder heat transfer coefficient. Proc Inst Mech Eng D: J AutoEng 220:1765–1781. doi:10.1243/09544070JAUTO202

FIRE Manual 8.5. AVL List GmbH. 2006Fisher EM, Pitz WJ, Curran HJ, Westbrook CK (2000) Detailed chemical kinetic mechanisms for

combustion of oxygenated fuels. Proc Combust Inst 28:1579–1586. doi:10.1016/S0082-0784(00)80555-X

Flowers DL, Aceves SM, Martinez-Frias J, Hessel RP, Dibble RW (2003) Effect of mixing onhydrocarbon and carbon monoxide emissions prediction for iso-octane HCCI enginecombustion using a multi-zone detailed kinetic solver. SAE Paper 2003-01-1821. doi:10.4271/2003-01-1821

FLUENT 6.3 user’s guide. Fluent Inc. 2006Fonseca CM, Fleming PL (1993) Genetic algorithms for multiobjective optimization: formula-

tion, discussion and generation. Proceeding of the Fifth International Conference on Genetic.Algorithms, Morgan Kaufmann Publishers, Inc, San Meteo, CA, pp 416–423

Ge HW (2006) Probability density function modeling of turbulent non–reactive and reactivespray flows. Dissertation, University of Heidelberg, Heidelberg, Germany.http://www.ub.uni-heidelberg.de/archiv/6478. accessed Nov. 2010

Ge HW, Shi Y, Reitz RD, Wickman DD, Zhu GS, Zhang HS, Kalish Y (2009a) Heavy-dutydiesel combustion optimization using multi-objective genetic algorithm and multi-dimen-sional modeling. SAE Paper 2009-01-0716. doi: 10.4271/2009-01-0716

Ge HW, Shi Y, Reitz RD, Wickman DD, Willems W (2009b) Optimization of a HSDI dieselengine for passenger cars using a multi-objective genetic algorithm and multi-dimensionalmodeling. SAE Paper 2009-01-0715. doi: 10.4271/2009-01-0715

Ge HW, Shi Y, Reitz RD, Wickman DD, Willems W (2010a) Engine development using multi-dimensional CFD and computer optimization. SAE Paper 2010-01-0360. doi:10.4271/2010-01-0360

Ge HW, Shi Y, Reitz RD, Willems W (2010b) Optimization of a high-speed direct-injectiondiesel engine at low-load operation using computational fluid dynamics with detailedchemistry and a multi-objective genetic algorithm. Proc Inst Mech Eng D: J Auto Eng224:547–563. doi:10.1243/09544070JAUTO1351

Ge HW, Juneja H, Shi Y, Yang SY, Reitz RD (2010c) A two-zone multi-grid model for SI enginecombustion simulation using detailed chemistry. J Combust 2010:201780. doi:10.1155/2010/201780

Ge HW, Lee CW, Shi Y, Reitz RD, Willems W (2011) Coupling of scaling laws andcomputational optimization to develop guidelines for diesel engine down-sizing. SAE WorldCongress 2011

Gen M, Cheng R (1997) Genetic algorithms and engineering designs. Wiley, New York

290 References

Page 5: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Genzale CL, Reitz RD, Wickman DD (2007) A computational investigation into the effects ofspray targeting, bowl geometry and swirl ratio for low-temperature combustion in a heavy-duty diesel engine. SAE Paper 2007-01-0119. doi: 10.4271/2007-01-0119

Ghojel (2010) Review of the development and applications of the Wiebe function: a tribute tothe contribution of Ivan Wiebe to engine research. Int J Engine Res 11:297–312. doi:10.1243/14680874JER06510

Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading

Goldin GM, Ren Z, Zahirovic S (2009) A cell agglomeration algorithm for accelerating detailedchemistry in CFD. Combust Theory Modelling 13:721–739. doi:10.1080/13647830903154542

Golovitchev VI, http://www.tfd.chalmers.se/*valeri/MECH.html, Accessed in June 2006Gorokhovski M, Herrmann M (2008) Modeling primary atomization. Annu Rev Fluid Mech

40:343–366. doi:10.1146/annurev.fluid.40.111406.102200Gupta HC, Syed SA (1979) REC-P3 (reciprocating engine combustion, planar geometry, third

version): A computer program for combustion in reciprocating engines. MAE Report No.1431, Mechanical and Aerospace Engineering Department, Princeton University

Halstead M, Kirsh L, Quinn C (1977) The autoignition of hydrocarbon fuels at high temperaturesand pressures-fitting of a mathematical model. Combust Flame 30:45–60. doi:10.1016/0010-2180(77)90050-5

Hamosfakidis V, Reitz RD (2003) Optimization of a hydrocarbon fuel ignition model. CombustFlame 132:433–450. doi:10.1016/S0010-2180(02)00489-3

Han ZY, Reitz RD (1995) Turbulence modeling of internal combustion engines using RNG k-emodels. Combust Sci Technol 106:267–295. doi:10.1080/00102209508907782

Han ZY, Reitz RD (1996) A temperature wall function formulation for variable-densiy turbulentflows with application to engine convective heat transfer modeling. Int J Heat Mass Tran40:613–625. doi:10.1016/0017-9310(96)00117-2

Han ZY, Parrish SE, Farrell PV, Reitz RD (1997) Modeling atomization processes of pressure-swirl hollow-cone fuel sprays. Atomization Spray 7:663–684

Hanjalic K, Launder BE (1972) Reynolds stress model of turbulence and its application to thinshear flows. J Fluid Mech 52:609–638. doi:10.1017/S002211207200268X

Hanson R, Splitter D, Reitz RD (2009) Operating a heavy-duty direct-injection compression-ignition engine with gasoline for low emissions. SAE Paper 2009-01-1442. doi:10.4271/2009-01-1442

Hasse C, Bikas G, Peters N (2000) Modeling DI-diesel combustion using the Eulerian particleflamelet model (EPFM). SAE Paper 2000-01-2934. doi: 10.4271/2000-01-2934

Hasse C, Sohm V, Durst B (2010) Numerical investigation of cyclic variations in gasolineengines using a hybrid URANS/LES modeling approach. Comput Fluids 39:25–48. doi:10.1016/j.compfluid.2009.07.001

Haworth DC, El Tahry SH (1991) Probability density-function approach for multidimensionalturbulent-flow calculations with application to in-cylinder flows in reciprocating-engines.AIAA J 29:208–218. doi:10.2514/3.10566

Haworth DC (1999) Large-eddy simulation of in-cylinder flows. Oil Gas Sci Tech 54:175–185.doi:10.2516/ogst:1999012

Haworth DC, Jansen K (2000) Large-eddy simulation on unstructured deforming meshes: towardreciprocating IC engines. Comput Fluids 29:493–524. doi:10.1016/S0045-7930(99)00015-8

Haworth DC (2005) A review of turbulent combustion modeling for multidimensional in-cylinderCFD. SAE Paper 2005-01-0993. doi: 10.4271/2005-01-0993

Haworth DC (2010) Progress in probability density function methods for turbulent reacting flows.Prog Energy Combust Sci 36(2):168–259. doi:10.1016/j.pecs.2009.09.003

Herbinet O, Pitz WJ, Westbrook CK (2008) Detailed chemical kinetic oxidation mechanism for abiodiesel surrogate. Combust Flame 154:507–528. doi:10.1016/j.combustflame.2008.03.003

Herweg R, Maly RR (1992) A fundamental model for flame kernel formation in S.I. engines.SAE Paper 922243. doi: 10.4271/922243

References 291

Page 6: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Hessel RP (1993) Numerical simulation of valved intake port and in-cylinder flows using KIVA3.Dissertation, University of Wisconsin-Madison

Heywood JB (1976) Pollutant formation and control in spark-ignition engines. Prog EnergyCombust Sci 1:135–164. doi:10.1016/S0082-0784(75)80383-3

Heywood JB (1988) Internal combustion engine fundamentals. McCraw-Hill Company,New York

Hiraya, K, Kakuhou, A, Urushihara, T, Itoh, T (2002) A study of gasoline-fueled compressionignition engine*Effect of fuel reformation during negative valve overlap. SAE Paper 2002-08-0319

Hiroyasu H, Kodota T (1976) Models for combustion and formation of nitric oxide and soot in DIdiesel engines. SAE Paper 760129. doi: 10.4271/760129

Hiroyasu H, Kadota T, Arai M (1978) Supplementary comments: fuel spray characterization indiesel engines. Combustion Modeling in Reciprocating Engines Symposium, General MotorsResearch Laboratories

Hirt CW, Amsden AA, Cook JL (1997) An arbitrary Lagrangian-Eulerian computing method forall flow speeds. J Comput Phys 135:203–216. doi:10.1006/jcph.1997.5702

Hoffman SR, Abraham J (2009) A comparative study of n-heptane, methyl decanoate, anddimethyl ether combustion characteristics under homogeneous-charge compression–ignitionengine conditions. Fuel 88:1099–1108. doi:10.1016/j.fuel.2008.11.016

Holland JH (1975) Adaptation in natural and artificial systems. MIT press, CambridgeHori T, Kuge T, Senda J, Fujimoto H (2007) Large eddy simulation of diesel spray combustion

with eddy-dissipation model and CIP method by use of KIVALES. SAE Paper 2007-01-0247.doi: 10.4271/2007-01-0247

Hu B, Rutland CJ (2006) Flamelet modeling with LES for diesel engine simulations. SAE Paper2006-01-0058. doi: 10.4271/2006-01-0058

Hu B, Jhavar R, Singh S, Reitz RD, Rutland CJ (2007) LES modeling of diesel combustion underpartially premixed and non-premixed conditions. SAE Paper 2007-01-0163. doi:10.4271/2007-01-0163

Hu B, Musculus M, Oefelein J (2010) Large eddy simulation of a transient air jet with emphasison entrainment during deceleration. SAE Paper 2010-01-1133. doi: 10.4271/2010-01-1133

Hwang W, Dec J, Sjöberg M (2008) Spectroscopic and chemical-kinetic analysis of the phases ofHCCI autoignition and combustion for single- and two-stage ignition fuels. Combust Flame154:387–409. doi:10.1016/j.combustflame.2008.03.019

Huang H, Fairweather M, Griffiths JF, Tomlin AS, Brad RB (2005) A systematic lumpingapproach for the reduction of comprehensive kinetic models. Proc Combust Inst 30:1309–1316. doi:10.1016/j.proci.2004.08.001

Hudak E (1998) Time-resolved exhaust measurements of a two-stroke direct-injection engine.M.S. Thesis, University ofWisconsin-Madison

Ibrahim EA, Yang HQ, Przekwas AJ (1993) Modeling of spray droplets deformation andbreakup. J Propuls 9:652–654

Ibrahim A, Bari S (2008) Optimization of a natural gas SI engine employing EGR strategy usinga two-zone combustion model. Fuel 87:1824–1834. doi:10.1016/j.fuel.2007.10.004

Iwamoto Y, Noma K, Nakayama O, Yamauchi T, Ando H (1997) Development of gasoline directinjection engine. SAE Paper 970541. doi: 10.4271/970541

Iyer CO, Yi, JW (2009a) 3D CFD upfront optimization of the in-cylinder flow of the 3.5L V6EcoBoost engine. SAE Paper 2009-01-1492. doi: 10.4271/2009-01-1492

Iyer CO, Yi JW (2009b) Spray pattern optimization for the duratec 3.5L EcoBoost engine. SAEPaper 2009-01-1916. doi: 10.4271/2009-01-1916

Jeong S, Minemura Y, Obayashi S (2006) Optimization of combustion chamber for diesel engineusing Krigine model. J Fluid Sci Technol 1:138–146. doi:10.1299/jfst.1.138

Jeong S, Obayashi S, Minemura Y (2008) Application of hybrid evolutionary algorithms to lowexhaust emission diesel engine design. Eng Optimiz 40:1–16. doi:10.1080/03052150701561155

292 References

Page 7: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Jhavar R, Rutland CJ (2006) Using large eddy simulations to study mixing effects in earlyinjection diesel engine combustion. SAE Paper 2006-01-0871. doi: 10.4271/2006-01-0871

Joelsson T, Yu R, Bai XS, Vressner A, Johansson B (2008) Large eddy simulation andexperiments of the auto-ignition process of lean ethanol/air mixture in HCCI engines. SAEPaper 2008-01-1668. doi: 10.4271/2008-01-1668

Kaario O, Pokela H, Kjäldman L, Tiainen J, Larmi M (2003) LES and RNG turbulence modelingin DI diesel engines. SAE Paper 2003-01-1069. doi: 10.4271/2003-01-1069

Kalghatgi GT, Risberg P, Angstrom HE (2006) Advantages of fuels with high resistance to auto-ignition in late-injection, low-temperature, compression ignition combustion. SAE Paper2006-01-3385. doi: 10.4271/2006-01-3385

Kalghatgi GT, Risberg P, Angstrom HE (2007) Partially pre-mixed auto-ignition of gasoline toattain low smoke and low NOx at high load in a compression ignition engine and comparisonwith a diesel fuel. SAE Paper 2007-01-0006. doi: 10.4271/2007-01-0006

Kee RJ, Rupley FM, Miller JA (1990) CHEMKIN-II: A FORTRAN chemical kinetics packagefor the analysis of gas-phase chemical kinetics. Sandia National Laboratories ReportSAND89-8009

Kim M, Liechty MP, Reitz RD (2005) Application of micro-genetic algorithms for theoptimization of injection strategies in a heavy-duty diesel engine. SAE Paper 2005-01-0219.doi: 10.4271/2005-01-0219

Kimura S, Aoki O, Kitahara Y, Ogawa H, Muranaka S, Enomoto Y (1999) New combustionconcept for ultra-clean and high-efficiency small DI diesel engines. SAE Paper 1999-01-3681.doi: 10.4271/1999-01-3681

Kimura S, Aoki O, Kitahara Y, Aiyoshizawa E (2001) Ultra-clean combustion technologycombining a low-temperature and premixed combustion concept for meeting future emissionstandards. SAE Paper 2001-01-0200. doi: 10.4271/2001-01-0200

Klimenko AY, Bilger RW (1999) Conditional moment closure for turbulent combustion. ProgEnergy Combust Sci 25:595–687. doi:10.1016/S0360-1285(99)00006-4

Knowles JD, Corne DW (2000) Approximating the nondominated front using the pareto archivedevolution strategy. Evol Comput 8:149–172. doi:10.1162/106365600568167

Kokjohn SL, Hanson R, Splitter D, Reitz RD (2009) Experiments and modeling of dual-fuelHCCI and PCCI combustion using in-cylinder fuel blending. SAE Paper 2009-01-2647. doi:10.4271/2009-01-2647

Kokjohn SL, Hanson R, Splitter D, Reitz RD (2011) Fuel Reactivity Controlled CompressionIgnition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion. Int J EngineRes, Special Issue on Fuel Efficiency, accepted

Kolmogorov AN (1991) The local structure of turbulence in incompressible viscous fluid for verylarge Reynolds numbers. Proc R Soc Lond A 434:9–13. doi:10.1098/rspa.1991.0075

Kong SC, Reitz RD (1993) Multidimensional modeling of diesel ignition and combustion usingmultistep kinetics models. J Eng Gas Turb Power 115:781–789. doi:10.1115/1.2906775

Kong SC, Han ZY, Reitz RD (1995) The development and application of a diesel ignition andcombustion model for multidimensional engine simulations. SAE Paper 950278. doi:10.4271/950278

Kong SC, Marriott CD,Reitz RD, Christensen M. (2001) Modeling and experiments of HCCIengine combustion using detailed chemical kinetics with multidimensional CFD, SAE Paper2001-01-1026. doi: 10.4271/2001-01-1026

Kong SC, Sun Y, Reitz RD (2007) Modeling diesel spray flame lift-off, sooting tendency andNOx emissions using detailed chemistry with phenomenological soot model. J Eng Gas TurbPower 129:245–251. doi:10.1115/1.218159

Kook S, Bae C, Miles PC, Choi D, Bergin M, Reitz RD (2006) The effect of swirl ratio and fuelinjection parameters on CO emission and fuel conversion efficiency for high-dilution, low-temperature combustion in an automotive diesel engine. SAE Paper 2006-01-0197. doi:10.4271/2006-01-0197

References 293

Page 8: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Kranendonk LA, An X, Caswell AW, Herold RE, Sanders ST, Huber R, Fujimoto JG, Okura Y,Urata Y (2007) High speed engine gas thermometry by fourier-domain mode-locked laserabsorption spectroscopy. Opt Express 15:15115–15128

Krige DG (1951) A statistical approach to some basic mine valuation problems on theWitwatersrand. J Chem Metal Mining Soc South Africa 52:119–139

Kurniawan WH, Abdullah S, Nopiah ZM, Sopian K (2007) Multi-objective optimization ofcombustion process in a compressed natural gas direct injection engine using coupled code ofCFD and genetic algorithm. SAE Paper 2007-01-1902. doi: 10.4271/2007-01-1902

Kung EH, Haworth DC (2008) Transported probability density function (tPDF) modeling fordirect-injection internal combustion engines. SAE Paper 2008-01-0969; SAE Int J Engines 1:591-606. doi: 10.4271/2008-01-0969

Lakshminarayanan PA, Aghav YV (2010) Modelling diesel combustion. Springer, New YorkLam SH, Goussis DA (1994) The CSP method for simplifying kinetics. Int J Chem Kinet 26:461–

486. doi:10.1002/kin.550260408Launder BE, Spalding DB (1972) Mathematical models of turbulence. Academic Press, LongdonLaunder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Meth

Appl Mech Eng 3:269–289Lebrère L, Buffat M, LePenven L, Dillies B (1996) Application of Reynolds stress modeling to

engine flow calculations. J Fluids Eng 118:710–721. doi:10.1115/1.2835500Lee S, Reitz RD (2006) Spray targeting to minimize soot and CO formation in premixed charge

compression ignition (HCCI) combustion with a HSDI diesel engine. SAE Paper 2006-01-0918. doi: 10.4271/2006-01-0918

Lee CW, Mastorakos E (2007) Numerical simulations of homogeneous charge compressionignition engines with high levels of residual gas. Int J Engine Res 8:63–78. doi:10.1243/14680874JER02006

Lee CW, Reitz RD (2010) Predictions of the effects of piston-liner crevices on flow motion andemissions in 3-D diesel engine simulations. Int J Engine Res 11:47–60. doi:10.1243/14680874JER05209

Lee CW, Reitz RD, Kurtz E (2010) Evaluation of the relative impact of diesel engine designparameters in up- and down-scaled engines. SAE Paper 2010-01-0180. doi:10.4271/2010-01-0180

Lee D, Pomraning E, Rutland CJ, (2002) LES modeling of diesel engines. SAE Paper 2002-01-2779; SAE Tran J Engines 111: 2566-2578. doi: 10.4271/2002-01-2779

Lee DK, Han IS, Huh KY, Lee JH, Kim SJ, Kang W, Kim YT (2008) A new combustion modelbased on transport of mean reaction progress variable in a spark ignition engine. SAE Paper2008-01-0964. doi: 10.4271/2008-01-0964

Lefebvre AH (1989) Atomization and sprays. Hemisphere, New YorkLevich VG (1962) Physicochemical hydrodynamics. Prentice-Hall Inc., Englewood Cliffs, New

Jersey, pp 639–650Li YH, Kong SC (2008) Diesel combustion modelling using LES turbulence model with detailed

chemistry. Combust Theory Modelling 12:205–219. doi:10.1080/13647830701487805Liang L, Reitz RD, Iyer CO, Yi J (2007) Modeling knock in spark-ignition engines using a G-

equation combustion model incorporating detailed chemical kinetics. SAE Paper 2007-01-0165. doi: 10.4271/2007-01-0165

Liang L, Stevens JG, Farrell JT (2009a) A dynamic multi-zone partitioning scheme for solvingdetailed chemical kinetics in reactive flow computations. Combust Sci Techno l 181:1345–1371. doi:10.1080/00102200903190836

Liang L, Stevens JG, Farrell JT (2009b) A dynamic adaptive chemistry scheme for reactive flowcomputations. Proc Combust Inst 32:527–534. doi:10.1016/j.proci.2008.05.073

Liang L, Stevens J, Raman S, Farrell J (2009c) The use of dynamic adaptive chemistry incombustion simulation of gasoline surrogate fuels. Combust Flame 156:1493–1502. doi:10.1016/j.combustflame.2009.02.008

294 References

Page 9: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Liang L, Naik CV, Puduppakkam K, Wang C, Modak A, Meeks E, Ge HW, Reitz RD, RutlandCJ (2010) Efficient simulation of diesel engine combustion using realistic chemical kinetics inCFD. SAE Paper 2010-01-0178. doi: 10.4271/2010-01-0178

Lin Y, Zhang HH (2006) Component selection and smoothing in multivariate nonparametricregression. Ann Stat 34:2272–2297. doi:10.1214/009053606000000722

Lippert AM, Reitz RD (1997) Modeling of multicomponent fuels using continuous distributionswith application to droplet evaporation and sprays. SAE Paper 972882. doi: 10.4271/972882

Lippert AM, El Tahry SH, Huebler MS, Parrish SE, Inoue H, Noyori T, Nakama K, Abe T(2004a) Development and optimization of a small-displacement spark-ignition direct-injection engine-stratified operation. SAE Paper 2004-01-0033. doi: 10.4271/2004-01-0033

Lippert AM, El Tahry SH, Huebler MS, Parrish SE, Inoue H, Noyori T (2004b) Development andoptimization of a small-displacement spark-ignition direct-injection engine-full-load opera-tion. SAE Paper 2004-01-0034. doi: 10.4271/2004-01-0034

Lippert AM, Chang S, Are S, Schmidt DP (2005) Mesh independence and adaptive meshrefinement for advanced engine spray simulations. SAE Paper 2005-01-0207. doi:10.4271/2005-01-0207

Liu Y, Reitz RD (2005) Optimizing HSDI diesel combustion and emissions using multipleinjection strategies. SAE Paper 2005-01-0212. doi: 10.4271/2005-01-0212

Liu Y, Lu F, Reitz RD (2006) The use of non-parametric regression to investigate the sensitivitiesof HSDI diesel emissions and fuel consumption to engine parameters. Int J Engine Res 7:167–180. doi:10.1243/146808705X57784

Liu ZP, Im KS, Wang YJ, Fezzaa K, Xie XB, Lai MC, Wang J (2010) Near-nozzle structure ofdiesel sprays affected by internal geometry of injector nozzle: visualized by single-shot X-rayimaging. SAE Paper 2010-01-0877. doi: 10.4271/2010-01-0877

Lu TF, Ju YG, Law CK (2001) Complex CSP for chemistry reduction and analysis. CombustFlame 126:1445–1455. doi:10.1016/S0010-2180(01)00252-8

Lu TF, Law CK (2005) A directed relation graph method for mechanism reduction. ProcCombust Inst 30:1333–1341. doi:10.1016/j.proci.2004.08.145

Lu TF, Law CK (2006a) Linear time reduction of large kinetic mechanisms with directed relationgraph: n-Heptane and iso-octane. Combust Flame 144:24–36. doi:10.1016/j.combustflame.2005.02.015

Lu TF, Law CK (2006b) On the applicability of directed relation graphs to the reduction ofreaction mechanisms. Combust Flame 146:472–483. doi:10.1016/j.combustflame.2006.04.017

Luo KH, Bray KNC (1992) 3D simulation of induction port flow of a four-valve engineconfiguration. SAE Paper 920586. doi: 10.4271/920586

Lutz AE, Kee RJ, Miller JA (1988) SENKIN: A FORTRAN program for predictinghomogeneous gas phase chemical kinetics with sensitivity analysis. SAND 89-8009-UC-4

Maas U, Pope SB (1992) Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. Proc Combust Inst 24:103–112. doi:10.1016/S0082-0784(06)80017-2

Magnussen BF, Hjertager BH (1977) On mathematical modeling of turbulent combustion withspecial emphasis on soot formation and combustion. Proc Combust Inst 16:719–729. doi:10.1016/S0082-0784(77)80366-4

Manente V, Tunestal P, Johansson B (2009) Effects of different type of gasoline fuels on heavyduty partially premixed combustion. SAE Paper 2009-01-2668. doi: 10.4271/2009-01-2668

Marinov NM (1999) A detailed chemical kinetic model for high temperature ethanol oxidation.Int J Chem Kinet 31:183–220

Mckinley TL, Primus RJ (1990) Three dimensional calculations of air motion, sprays, andcombustion in a quiescent direct-injection diesel engine. ASME paper 90-ICE-2

Mitsos A, Oxberry GM, Barton PI, Green WH (2008) Optimal automatic reaction and specieselimination in kinetic mechanisms. Combust Flame 155:118–132. doi:10.1016/j.combustflame.2008.03.004

References 295

Page 10: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Miettinen K, Mäkelä MM (1995) Interactive bundle-based method for nondifferentiable multiob-jective optimization: NIMBUS. Optimization 34:231–246. doi:10.1080/02331939508844109

Moin P, Kim J (1997) Tackling turbulence with supercomputers. Scientific American Magazine276:62–68

Montgomery DT, Reitz RD (1996) Six-mode cycle evaluation of the effect of EGR and multipleinjections on particulate and NOx emissions from a D.I. diesel engine. SAE Paper 960316.doi:10.4271/960316

Montgomery DT (2000) An investigation into optimization of heavy-duty diesel engine operatingparameters when using multiple injections and EGR. Dissertation, University of Wisconsin-Madison

Munnannur A, Reitz RD, (2007) Droplet collision modeling in multidimensional spraycomputations. Proceedings of ILASS Americas, 20th Annual Conference on LiquidAtomization and Spray Systems, Chicago, IL

Munnannur A (2007) Droplet collision modeling in multi-dimensional engine spray computa-tions. Dissertation, University of Wisconsin-Madison

Munnannur A, Reitz RD (2009) A comprehensive collision model for multi-dimensional enginespray computations. Atomization Sprays 19:597–619. doi:10.1615/AtomizSpr.v19.i7.10

Musculus MP, Rutland CJ (1995) Coherent flamelet modeling of diesel engine combustion.Combust Sci Technol 104:295–337. doi:10.1080/00102209508907726

Naber JD, Reitz RD (1988) Modeling engine spray/wall impingement. SAE Paper 880107. doi:10.4271/880107

Nagle J, Strickland-Constable RF (1962) Oxidation of carbon between 1000 and 2000�C.Proceeding of the Fifth Carbon Conference 1:265–325

Nagy T, Turanyi T (2009) Reduction of very large reaction mechanisms using methods based onsimulation error minimization. Combust Flame 156:417–428. doi:10.1016/j.combustflame.2008.11.001

Naik S, Ramadan B (2004) A numerical study and optimization of GDI engine parameters forbetter performance and complete combustion using KIVA-3V and VISUALDOC, SAE Paper2004-01-3008. doi: 10.4271/2004-01-3008

Naik CV, Puduppakkam K, Wang C, Kottalam J, Liang L, Hodgson D, Meeks E (2010) Applyingdetailed kinetics to realistic engine simulation: the surrogate blend optimizer and mechanismreduction strategies. SAE Paper 2010-01-0541. doi: 10.4271/2010-01-0541

Naitoh K, Itoh T, Takagi Y, Kuwahara K (1992) Large eddy simulation of premixed-flame inengine based on the multi-level formulation and the renormalization group theory. SAE Paper920590. doi: 10.4271/920590

Nguyen D, Widrow B (1990) Improving the learning speed of 2-layer neural networks bychoosing initial values of the adaptive weights. Proceeding of International Joint Conferenceon Neural Network 3:21–26

Ning W, Reitz RD, Diwakar R, Lippert AM (2009) An Eulerian-Lagrangian spray andatomization model with improved turbulence modeling. Atomization Spray 19:727–739. doi:10.1615/AtomizSpr.v19.i8.20

Nishida K, Hiroyasu H (1989) Simplified three-dimensional modeling of mixture formation andcombustion in a D.I. diesel engine. SAE Paper 890269

Nukiyama S, Tanasawa Y (1939) Experiments on the atomization of liquids in an air stream.Report 3: on the droplet-szie distribution in an atomized jet. Trans Soc Mech Eng Jpn 5:62–67

Nurick WH (1976) Orifice cavitation and its effects on spray mixing. J Fluids Eng 98:681–687Ogawa H, Matsui Y, Kimura S, Kawashima J (1996) Three-dimensional computation of the

effects of the swirl ratio in direct-injection diesel engines on NOx and soot emissions. SAEPaper 961125. doi: 10.4271/961125

O’ Rourke PJ (1981) Collective Drop Effects in Vaporizing Liquid Sprays. Dissertation,Princeton University

O’ Rourke PJ, Amsden AA (1987) Three dimensional numerical simulations of the UPS-292-SCengine. SAE Paper 870597. doi: 10.4271/ 870597

296 References

Page 11: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

O’ Rourke PJ, Amsden AA (2000) A spray/wall interaction submodel for the KIVA-3 wall filmmodel. SAE Paper 2000-01-0271. doi: 10.4271/2000-01-0271

Opat R, Ra Y, Gonzalez MA, Krieger R, Reitz RD, Foster DE, Durrett RP, Siewert RM (2007)Investigation of mixing and temperature effects on HC/CO emissions for highly dilute lowtemperature combustion in a light duty diesel engine. SAE Paper 2007-01-0193. doi:10.4271/2007-01-0193

OpenFOAM User Guide. http://www.openfoam.com/docs/user/, Accessed in 2010Papoutsakis A, Theodorakakos A, Giannadakis E, Papoulias D, Gavaises M (2009) LES

predictions of the vortical flow structures in diesel injector nozzles. SAE Paper 2009-01-0833.doi: 10.4271/2009-01-0833

Park SW, Reitz RD (2007) Numerical study on the low emission window of homogeneous chargecompression ignition diesel combustion. Combust Sci Technol 179:2279–2307. doi:10.1080/00102200701484142

Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transferin three-dimensional parabolic flows. Int J Heat Mass Tran 15:1787–1806. doi:10.1016/0017-9310(72)90054-3

Patel A, Kong SC, Reitz RD (2004) Development and validation of a reduced reactionmechanism for HCCI engine simulations. SAE Paper 2004-01-0558. doi:10.4271/2004-01-0558

Patterson MA, Kong SC, Hampson GJ, Reitz RD (1994) Modeling the effects of fuel injectioncharacteristics on diesel engine soot and NOx emissions. SAE Paper 940523

Pauls C, Grünefeld G, Vogel S, Peters N (2007) Combined simulations and OH-chemilumines-cence measurements of the combustion process using different fuels under diesel-engine likeconditions. SAE Paper 2007-01-0020. doi: 10.4271/2007-01-0020

Pepiot-Desjardins P, Pitsch H (2005) Systematic reduction of large chemical mechanisms, 4thJoint Meeting of the U.S. Sections of the Combustion Institute, Drexel University, March 21–23, 2005

Pepiot-Desjardins P, Pitsch H (2008a) An efficient error-propagation-based reduction method forlarge chemical kinetic mechanisms. Combust Flame 154:67–81. doi:10.1016/j.combustflame.2007.10.020

Pepiot-Desjardins P, Pitsch H (2008b) An automatic chemical lumping method for the reductionof large chemical kinetic mechanisms. Combust Theory Model 12:1089–1108. doi:10.1080/13647830802245177

Peters N (1984) Laminar diffusion flamelet models in non-premixed turbulent combustion. ProgEnergy Combust Sci 10(3):319–339. doi:10.1016/0360-1285(84)90114-X

Peters N (1999) The turbulent burning velocity for large-scale and small-scale turbulence. J FluidMech 384:107–132. doi:10.1017/S0022112098004212

Peters N (2000) Turbulent combustion. Cambridge University Press, Cambridge, UKPickett, LM, Siebers DL, Idicheria CA (2005) Relationship between ignition processes and the

lift-off length of diesel fuel jets. SAE Paper 2005-01-3843. doi: 10.4271/2005-01-3843Pitsch H, Barths H, Peters N (1996) Three-dimensional modeling of NOx and soot formation in

DI-diesel engines using detailed chemistry based on the interactive flamelet approach. SAEPaper 962057. doi: 10.4271/962057

Pope SB (1985) PDF methods for turbulent reactive flows. Prog Energy Combust Sci 11:119–192. doi:10.1016/0360-1285(85)90002-4

Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge, UKPrice WL (1977) Global optimization by controlled random search. Comput J 20:367–370Puduppakkam KV, Liang L, Shelburn A, Naik CV, Meeks E, Bunting B (2010) Predicting

emissions using CFD simulations of an E30 gasoline surrogate in an HCCI engine withdetailed chemical kinetics. SAE Paper 2010-01-0362. doi: 10.4271/2010-01-0362

Ra Y, Reitz RD (2003) The application of a multi-component vaporization model to gasolinedirect injection engines. Int J Engine Res 4:193–218. doi:10.1243/146808703322223388

References 297

Page 12: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Ra Y, Reitz RD (2004) A model for droplet vaporization for use in gasoline and HCCI engineapplications. J Eng Gas Turb Power 126:422–428. doi:10.1115/1.1688367

Ra Y, Reitz RD (2008) A reduced chemical kinetic model for IC engine combustion simulationswith primary reference fuels. Combust Flame 155:713–738

Ra Y, Reitz RD (2009) A vaporization model for discrete multi-component fuel sprays. Int JMultiphase Flow 35(2):101–117. doi:10.1016/j.ijmultiphaseflow.2008.10.006

Ramshaw JD, Dukowicz JK (1979) APACHE: A generalized-mesh Eulerian computer code formulticomponent chemically reactive fluid flow. Los Alamos Scientific Laboratory Report LA-7427

Reitz RD, Bracco FV (1986) Mechanisms of breakup of round liquid jets. In: Cheremisnoff N(ed) The Encyclopedia of Fluid Mechanics. Gulf Publishing, Houston, Texas, Vol. 3, Chapter10, pp. 233–249

Reitz RD, Kuo TW (1989) Modeling of HC emissions due to crevice flows in premixed-chargeengines. SAE Paper 892085. DOI: 10.4271/892085

Reitz RD, Rutland CJ (1995) Development and testing of diesel engine CFD models. ProgEnergy Combust Sci 21:173–196. doi:10.1016/0360-1285(95)00003-Z

Reitz RD (2006) Computer modeling of sprays. http://www.erc.wisc.edu/spraycourses.phpRichards KJ, Senecal PK, Pomraning E (2008) CONVERGETM(Version 1.2) Manual. Conver-

gent Science IncRichard S, Colin O, Vermorel O, Benkenida A, Angelberger C, Veynante D (2007) Towards

large eddy simulation of combustion in spark ignition engines. Proc Combust Inst 31:3059–3066. doi:10.1016/j.proci.2006.07.086

Rivard WC, Farmer OA, Butler TD (1975) RICE: A computer program for multicomponentchemically reactive flows at all speeds. Los Alamos Scientific Laboratory Report LA-5812

Rosin P, Rammler E (1933) The laws governing the fineness of powdered coal. J Inst Fuel 7:29–36Sankaran V, Menon S (2002) LES of spray combustion in swirling flows. J Turbul 3:11. doi:

10.1088/1468-5248/3/1/011Sarre CVK, Kong SC, Reitz RD (1999) Modeling the effects of injector nozzle geometry on

diesel sprays. SAE Paper 1999-01-0912. doi: 10.4271/1999-01-0912Sasaki D, Obayashi S (2005) Efficient search for trade-offs by adaptive range multi-objective

genetic algorithms. J Aerosp Comput Info Commun 2:44–64Schmidt DP, Nouar I, Senecal PK, Rutland CJ, Martin JK, Reitz RD, Hoffman JA (1999)

Pressure-swirl atomization in the near field. SAE Paper 1999-01-0496; SAE Tran J Engines108: 471-484. doi: 10.4271/1999-01-0496

Schmidt DP, Rutland CJ (2000) A new droplet collision algorithm. 164(1): 62-80. doi:10.1006/jcph.2000.6568

Schmidt S (2008) EcoTest Testing and Assessment Protocol Release 2.0. http://www.ecotest.eu/Documents/TestingAndAssessmentProtocol.pdf. accessed in Dec 2, 2010

Senecal PK, Schmidt DP, Nouar I, Rutland CJ, Reitz RD, Corrodini ML (1999) Modeling highspeed viscous liquid sheet atomization. Int J Multiphase Flow 25:1073–1097. doi:10.1016/S0301-9322(99)00057-9

Senecal PK (2000) Numerical optimization using the gen4 micro-genetic algorithm code, usermanual. Engine Research Center, University of Wisconsin-Madison

Senecal PK, Reitz RD (2000) Simultaneous reduction of engine emissions and fuel consumptionusing genetic algorithms and multi-dimensional spray and combustion modeling. SAE Paper2000-01-1890. doi: 10.4271/2000-01-1890

Senecal PK, Pomraning E, Richards KJ (2002) Multi-mode genetic algorithm optimization ofcombustion chamber geometry for low emissions. SAE Paper 2002-01-0958. doi:10.4271/2002-01-0958

Senecal PK, Richards KJ, Pomraning E, Yang T, Dai MZ, McDavid RM, Patterson MA, Hou S,Shethaji T (2007) A new parallel cut-cell cartesian CFD code for rapid grid generation applied toin-cylinder diesel engine simulations. SAE Paper 2007-01-0159. doi: 10.4271/2007-01-0159

298 References

Page 13: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Seo JY, Lee YU, Han IS, Huh KY, Kim HN (2008) Extended CMC model for turbulent spraycombustion in a diesel engine. SAE Paper 2008-01-2411. doi: 10.4271/2008-01-2411

Shen HX, Hinze PC, Heywood JB (1994) A model for flame initiation and early development inSI engine and its application to cycle-to-cycle variations. SAE Paper 942049. doi:10.4271/942049

Sher E, Bar-Kohany T (2002) Optimization of variable valve timing for maximizing performanceof an unthrottled SI engine-a theoretical study. Energy 27:757–775. doi:10.1016/S0360-5442(02)00022-1

Sher E, Ben-Ya’Ish J, Kravchik T (1992) On the birth of spark channels. Combust Flame 89:186–194. doi:10.1016/0010-2180(92)90027-M

Shethaji T, Rutland CJ, Barths H, El Tahry SH, Lippert A (2005) Assessment of RANS and LESturbulence models: turbulent flow past a backward-facing step and multidimensionalsimulation of in-cylinder flows. SAE Paper 2005-01-0202. doi: 10.4271/2005-01-0202

Shi Y, Reitz RD (2008a) Assessment of optimization methodologies to study the effects of bowlgeometry, spray targeting and swirl ratio for a heavy-duty diesel engine operated at high load.SAE Paper 2008-01-0949. doi: 10.4271/2008-01-0949

Shi Y, Reitz RD (2008b) Optimization study of the effects of bowl geometry, spray targeting andswirl ratio for a heavy-duty diesel engine operated at low- and high-load. Int J Engine Res9:325–346. doi:10.1243/14680874JER00808

Shi Y, Reitz RD(2008c) Study of diesel engine size-scaling relationships based on turbulence andchemistry scales. SAE Paper 2008-01-0955. doi: 10.4271/2008-01-0955

Shi Y, Hessel RP, Reitz RD (2009a) An adaptive multi-grid chemistry (AMC) model for efficientsimulation of HCCI and DI engine combustion. Combust Theory Model 13:83–104. doi:10.1080/13647830802401101

Shi Y, Kokjohn SL, Ge HW, Reitz RD (2009b) Efficient multidimensional simulation of HCCIand DI engine combustion with detailed chemistry. SAE Paper 2009-01-0701. doi:10.4271/2009-01-0701

Shi Y, Reitz RD (2010a) Assessment of multi-objective genetic algorithms with different nichingstrategies and regression methods for engine optimization and design. J Eng Gas Turb Power132:052801. doi:10.1115/1.4000144

Shi Y, Liang L, Ge HW, Reitz RD (2010b) Acceleration of the chemistry solver for modeling DIengine combustion using dynamic adaptive chemistry (DAC) schemes. Combust TheoryModel 14:69–89. doi:10.1080/13647830903548834

Shi Y, Reitz RD (2010c) Optimization of a heavy-duty compression-ignition engine fueled withdiesel and gasoline-like fuels. Fuel 89:3416–3430. doi:10.1016/j.fuel.2010.02.023

Shi Y, Wang Y, Reitz RD (2010d) CFD modeling a heavy-duty compression-ignition enginefueled with diesel and gasoline-like fuels. Int J Engine Res 11:355–373. doi:10.1243/14680874JER537

Shrivastava R, Hessel RP, Reitz RD (2002) CFD optimization of DI diesel engine performanceand emissions using variable intake valve actuation with boost pressure, EGR and multipleinjections. SAE Paper 2002-01-0959; SAE Tran J Engines 111: 1612-1699. doi:10.4271/2002-01-0959

Siebers DL (1999) Scaling liquid-phase fuel penetration in diesel sprays based on mixing-limitedvaporization. SAE Paper 1999-01-0528. doi:10.4271/1999-01-0528

Siebers DL, Higgins B, Pickett L (2002) Flame lift-off on direct-injection diesel fuel jets: Oxygenconcentration effects. SAE Paper 2002-01-0890. doi: 10.4271/2002-01-0890

Singh S, Reitz RD, Musculus MPB, Lachaux T (2007a) Validation of engine combustion modelsagainst detailed in-cylinder diagnostics data for a heavy-duty DI diesel engine. Int J EngineRes 8:97–126. doi:10.1243/14680874JER02406

Singh S, Wickman D, Stanton D, Tan ZC, Reitz RD (2007b) Development and validation of ahybrid, auto-ignition/flame-propagation model against engine experiments and flame lift off.SAE Paper 2007-01-0171; SAE Tran J Engines 116: 176-194. doi: 10.4271/2007-01-0171

References 299

Page 14: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, Bowman CT,Hanson RK, Song SH, Gardiner WCJ, Lissianski VV, Qin ZW http://www.me.berkeley.edu/gri_mech/. Accessed on Sep. 2009

Song JH, Sunwoo MH (2000) A modeling and experimental study of initial flame kerneldevelopment and propagation in SI engines. SAE Paper 2000-01-0960. doi:10.4271/2000-01-0960

Spalding DB (1971) Mixing and chemical reaction in steady confined turbulent flames. ProcCombust Inst 13:649–657. doi:10.1016/S0082-0784(71)80067-X

Stager LA, Reitz RD (2007) Assessment of diesel engine size-scaling relationships. SAE Paper2007-01-0127. doi: 10.4271/2007-01-0127

Staples, L, Reitz RD, Hergart C (2009) An experimental investigation into diesel engine size-scaling parameters. SAE Paper 2007-01-1124. doi: 10.4271/2009-01-1124

Stanton DW, Rutland CJ (1998) Multi-dimensional modeling of thin liquid films and spray-wallinteractions resulting from impinging sprays. Int J Heat Mass Trans 41(20):3037–3054. doi:10.1016/S0017-9310(98)00054-4

Star-CD Version 3.20 User Guide. CD-adapco Group, 2004Stiesch G, Tan ZC, Merker GP, Reitz RD (2001) Modeling the effect of split injections on DISI

engine performance. SAE Paper 2001-01-0965. doi:10.4271/2001-01-0965Subramanian MN, Reitz RD, Ruman M (2003) Reduction of emissions and fuel consumption in a

2-stroke direct injection engine with multidimensional modeling and an evolutionary searchtechnique. SAE Paper 2003-01-0544. doi: 10.4271/2003-01-0544

Sun Y, Reitz RD (2006) Modeling diesel engine NOx and soot reduction with optimized two-stage combustion. SAE Paper 2006-01-0027. doi: 10.4271/2006-01-0027

Sun Y, Reitz RD (2009) Advanced computational fluid dynamics modeling of direct injectionengines in Advanced direct injection combustion engine technologies and development, Zhao HEd. Vol. 2: Diesel engines, Chapter 18, pp. 676-707, Woodhead Publishing Ltd., Cambridge

Sun W, Chen Z, Gou X, Ju Y (2010) A path flux analysis method for the reduction of detailedchemical kinetic mechanisms. Combust Flame 157:1298–1307. doi:10.1016/j.combustflame.2010.03.006

Szekely GA, Solomon AS, Tsai P (2004) Optimization of the stratified-charge regime of thereverse-tumble wall-controlled gasoline direct-injection engine. SAE Paper 2004-01-0037.doi: 10.4271/2004-01-0037

Tan ZC, Reitz RD (2003) Ignition and combustion modeling in spark-ignition engines using alevel set method. SAE Paper 2003-01-0722; SAE Tran J Engines 112(3):1028-1040. doi:10.4271/2003-01-0722

Tan ZC, Reitz RD (2006) An ignition and combustion model based on the level-set method forspark ignition engine multidimensional modeling. Combust Flame 145(1–2):1–15. doi:10.1016/j.combustflame.2005.12.007

Tanner FX, Srinivasan S (2005) Optimization of fuel injection configurations for the reduction ofemissions and fuel consumption in a diesel engine using a conjugate gradient method. SAEPaper 2005-01-1244. doi:10.4271/2005-01-1244

Tanner FX, Srinivasan S (2009) CFD-based optimization of fuel injection strategies in a dieselengine using an adaptive gradient method. Appl Math Model 33:1366–1385. doi:10.1016/j.apm.2008.01.023

Tao F, Foster DE, Reitz RD (2006) Soot structure in a conventional non-premixed diesel flame.SAE Paper 2006-01-0196. DOI: 10.4271/2006-01-0196

Taut C, Correa C, Deutschmann O, Warnatz J, Einecke S, Schulz C, Wolfrum J (2000) Three-dimensional modeling with Monte Carlo-probability density function methods and laserdiagnostics of the combustion in a two-stroke engine. Proc Combust Inst 28:1153–1159. doi:10.1016/S0082-0784(00)80325-2

Tennison PJ, Georjon TL, Farrell PV, Reitz RD (1998) An experimental and numerical study ofsprays from a common rail injection system for use in an HSDI diesel engine. SAE Paper980810; SAE Tran J Engines 107: 1228-1242. doi: 10.4271/980810

300 References

Page 15: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Thain D, Tannenbaum T, Livny M (2005) Distributed computing in practice: the CONDORexperience. Concurr Comput-Pract Exp 17:323–356. doi:10.1002/cpe.v17:2/4

ThoSOIs L, Lauvergne R, Poinsot T (2007) Using LES to investigate reacting flow physics inengine design process. SAE Paper 2007-01-0166. doi: 10.4271/2007-01-0166

Tibaut P, Marohni V (2006) Diesel bowl optimization using advanced optimization techniques.SAE Paper 2006-08-0234

Toninel S, Forkel T, Durst B, Hasse C, Linse D (2009) Implementation and validation of the G-equation model coupled with flamelet libraries for simulating premixed combustion in I.C.engines. SAE Paper 2009-01-0709. doi: 10.4271/2009-01-0709

Torres DJ, Trujillo MF (2006) KIVA-4: An unstructured ALE code for compressible gas flowwith sprays. J Comput Phys 219:943–975. doi:10.1016/j.jcp.2006.07.006

Trouve A, Poinsot TJ (1994) The evolution equation for the flame surface density in turbulentpremixed combustion. J Fluid Mech 278:1–31. doi:10.1017/S0022112094003599

Turanyi T, Berces T, Vajda S (1989) Reaction rate analysis of complex kinetic systems. Int JChem Kinet 21:83–99. doi:10.1002/kin.550210203

Turanyi T (1990a) Sensitivity analysis of complex kinetic systems: tools and applications. J MathChem 5:203–248. doi:10.1007/BF01166355

Turanyi T (1990b) Reduction of large reaction mechanisms. New J Chem 14:795–803Vajda S, Valko P, Turanyi T (1985) Principal component analysis of kinetic models. Int J Chem

Kinet 17:55–81. doi:10.1002/kin.550170107VECTIS 3.8 User’s Manual. Ricardo Consulting Engineers Ltd. 2006Vermorel O, Richard S, Colin O, Angelberger C, Benkenida A, Veynante D (2007) Multi-cycle

LES simulations of flow and combustion in a PFI SI 4-valve production engine. SAE Paper2007-01-0151. doi: 10.4271/2007-01-0151

Vermorel O, Richard S, Colin O, Angelberger C, Benkenida A, Veynante D (2009) Towards theunderstanding of cyclic variability in a spark ignited engine using multi-cycle LES. CombustFlame 156:1525–1541. doi:10.1016/j.combustflame.2009.04.007

Versaevel P, Motte P, Wieser K (2000) A new 3D model for vaporizing diesel sprays based onmixing-limited vaporization. SAE Paper 2000-01-0949. doi:10.4271/2000-01-0949

Veynante D, Vervisch L (2002) Turbulent combustion modeling. Prog Energy Combust Sci28:193–266. doi:10.1016/S0360-1285(01)00017-X

Vishwanathan G, Reitz RD (2009) Modeling soot formation using reduced PAH chemistry in n-heptane lifted flames with application to low-temperature combustion. J Eng Gas Turb Power131:032801/1-7. doi:10.1115/1.3043806

Wahiduzzaman S, Ferguson CR (1988) The effect of aspect ratio on heat loss from a swirlingflow within a cylinder. Int J Heat Fluid Flow 9:188–193. doi:10.1016/0142-727X(88)90070-7

Wan YP, Peters N (1997) Application of the cross-sectional average method to calculations of thedense spray region in a diesel engine. SAE Paper 972866. doi:10.4271/972866

Wang Y, Ge HW, Reitz RD (2010) Validation of mesh- and timestep- independent spray modelsfor multi-dimensional engine CFD simulation. SAE Paper 2010-01-0626. SAE Int J FuelsLubri 3(1):277-302. doi: 10.4271/2010-01-0626

Westbrook CK, Pitz WJ, Herbinet O, Curran HJ, Silke EJ (2009) A comprehensive detailedchemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octaneto n-hexadecane. Combust Flame 156:181–199. doi:10.1016/j.combustflame.2008.07.014

Wickman DD, Senecal, PK, Reitz RD (2001) Diesel engine combustion chamber geometryoptimization using genetic algorithms and multi-dimensional spray and combustion modeling.SAE Paper 2001-01-0547. doi:10.4271/2001-01-0547

Wickman DD (2003) HSDI diesel engine combustion chamber geometry optimization.Dissertation, University of Wisconsin-Madison

Wiebe II (1956) Semi-empirical expression for combustion rate in engines. In Proceedings ofConference on Piston engines, USSR:185–191

Wiebe II (1962) Progress in engine cycle analysis: Combustion rate and cycle processes.Mashgiz, Ural-Siberia Branch, 271

References 301

Page 16: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Wiedenhoefer JF, Reitz RD (2003a) Multidimensional modeling of the effects of radiation and sootdeposition in heavy-duty diesel engines. SAE Paper 2003-01-0560. doi:10.4271/2003-01-0560

Wiedenhoefer JF, Reitz RD (2003b) A multidimensional radiation model for diesel enginesimulations with comparison to experiment. Numer Heat Tranf A-Appl 44:665–682

Williams FA (1958) Spray combustion and atomization. Phys Fluids 1:541–555. doi:10.1063/1.1724379

Woschni G (1967) Universally applicable equation for the instantaneous heat transfer coefficientin the internal combustion engine. SAE Paper 670931. doi:10.4271/670931

Wright YM, Boulouchos K, De Paola G, Mastorakos E (2009) Multi-dimensional conditionalmoment closure modelling applied to a heavy-duty common-rail diesel engine. SAE Paper2009-01-0717. doi:10.4271/2009-01-0717

Xin J, Ricart L, Reitz RD (1998) Computer modeling of diesel spray atomization andcombustion. Combust Sci Technol 137:171–194. doi:10.1080/00102209808952050

Xu Z, Yi JW, Curtis E, Wooldridge S (2009) Application of CFD modeling in GDI engine pistonoptimization. SAE Paper 2009-01-1936.doi:10.4271/2009-01-1936

Xue Q, Kong SC (2009) Development of adaptive mesh refinement scheme for engine spraysimulations. Comput Fluids 38:939–949. doi:10.1016/j.compfluid.2008.10.004

Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence. I. basic theory. J SciComput 1:3–51. doi:10.1007/BF01061452

Yamamoto S, Nagaoka M, Ueda R, Wakisaka Y, Noda S (2010) Numerical simulation of dieselcombustion with a high exhaust gas recirculation rate. Int J Engine Res 11:17–27. doi:10.1243/14680874JER05309

Yang SL, Peschke BD, Hanjalic K (2000) Second-moment closure model for IC engine flowsimulation using KIVA code. J Eng Gas Turb Power 122:355–363. doi:10.1115/1.483213

Yang SL, Siow YK, Teo CY, Hanjalic K (2005) A KIVA code with Reynolds-stress model forengine flow simulation. Energy 30:427–445. doi:10.1016/j.energy.2004.09.004

Yang SY, Reitz RD (2009a) Improved combustion sub-models for modeling gasoline engineswith level set G-equation and detailed chemical kinetics. Proc Inst Mech Eng D, J Auto Eng223:703–726. doi:10.1243/09544070JAUTO1062

Yang SY, Reitz RD (2009b) Integration of a continuous multi-component fuel evaporation modelwith an improved G-equation combustion and detailed chemical kinetics model withapplication to GDI engines. SAE Paper 2009-01-0722. doi: 10.4271/2009-01-0722

Yang SY, Reitz RD (2010a) A continuous multi-component fuel flame propagation and chemicalkinetics model. J Eng Gas Turb Power 132:072802-1-7. doi:10.1115/1.4000267

Yang SY, Ra Y, Reitz RD, VanDerWege B, Yi J (2010) Development of a realisticmulticomponent fuel evaporation model. Atomization Sprays 20:965–981. doi:10.1615/AtomizSpr.v20.i11

Yang XF, Takamoto Y, Okajima A (2000) Improvement of three-dimensional diesel spraymodeling in near region with coarse mesh. SAE Paper 2000-01-0274. doi:10.4271/2000-01-0274

Yeh F, Liu U (1991) On the motion of small particles in a homogeneous turbulent shear flow.Phys Fluids 3:2758–2776. doi:10.1063/1.858165

Yorita H, Okabe S, Ishiguro H, Shibata M (2007) Ignition simulation and visualization for sparkplug electrode design. SAE Paper 2007-01-0940. doi:10.4271/2007-01-0940

Yoshikawa T, Reitz RD (2009) Development of oil gallery cooling model considering thecocktail shaker effect for internal combustion engines. Numer Heat Tranf A-Appl 56:563–578. doi:10.1080/10407780903323512

Yossefi D, Belmont MR, Thurley R, Thomas JC, Hacohen J (1993) A coupled experimental-theoretical model of flame kernel development in a spark ignition engine. SAE Paper 932716.doi: 10.4271/932716

Zhang YX, Ghandhi JB, Petersen BR, Rutland CJ (2010) Large eddy simulation of scalardissipation rate in an internal combustion engine. SAE Paper 2010-01-0625. doi:10.4271/2010-01-0625

302 References

Page 17: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Zhang YZ, Kung EH, Haworth DC (2005) A PDF method for multidimensional modeling ofHCCI engine combustion: effects of turbulence/chemistry interactions on ignition timing andemissions. Proc Combust Inst 30:2763–2771. doi:10.1016/j.proci.2004.08.236

Zhu GS, Reitz RD (2002) A model for high pressure vaporization of droplets of complex liquidmixtures using continuous thermodynamics. Int J Heat Mass Transfer 45:495–507. doi:10.1016/S0017-9310(01)00173-9

Zhu Y, Reitz RD (1999) A 1-D gas dynamics code for subsonic and supersonic flows applied topredict EGR levels in a heavy-duty diesel engine. Int J Vehicle Design 22:227–252. doi:10.1504/IJVD.1999.001867

Zuo BF, Gomes AM, Rutland CJ (2000) Modelling of superheated fuel spray and vaporization.Int J Engine Res 1:321–336. doi:10.1243/1468087001545218

References 303

Page 18: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Index

AAcetylene, 46, 154, 174

see soot precursor, 44–46, 154Adaptive Multi-grid Chemistry (AMC), 14,

94–95, 99–102, 104, 116, 122–123,233, 235–236, 263–264, 266, 284

Arbitrary Lagrangian–Eulerian (ALE), 68Arc, 41Arrhenius equation, 29, 42, 45, 80Atomization, 46, 49, 60, 180, 187–188

BBezier, 126–128, 192, 219–220, 226–227, 233,

276, 281Bio-diesel, 79Boiling temperature, 60Bottom Dead Center (BDC), 114Boundary condition, 66Box-Cox transformation, 139Bray-Moss-Libby (BML), 40Breakdown, 41Breakup length, 50, 53–54Breakup time, 50, 53–54, 150Broyden–Fletcher–Goldfarb–Shanno

(BFGS), 15

CCarbon monoxide (CO), 5, 8, 42, 88, 102,

104–109, 189Caterpillar (CAT), 88, 126, 148, 153, 189Characteristic Time Combustion (CTC)

model, 22, 38, 127–128, 177, 189,199, 260–261, 263

CHEMKIN, 38, 80, 85, 95, 154, 222, 261, 264Chi-squared distribution, 48–49

Chrysler, 182Coalescence, 57Coherent flame model, 40Cold start, 6Collision, 56–58, 60, 70, 76–79, 101, 219Compression ratio (CR), 5, 88, 126–127,

148, 154, 158, 161, 168–169,183, 190–191, 211, 220, 255,269, 272, 275

Compression-Ignition (CI), 2, 14, 234, 284Computational Fluid Dynamics (CFD), 3, 27Computational Singular Perturbation

(CSP), 79Conditional Moment Closure (CMC), 41Continuous Droplet Model (CDM), 30Continuous Formulation Model (CFM), 30Contraction coefficient, 47Controlled Random Search (CRS), 9CONVERGE, 70Convergence metric, 134Courant–Friedrichs–Lewy (CFL), 69Crevice, 63–64, 168, 232, 244, 249, 275Crowding distance, 24–25, 132–133

DDepth First Search (DFS), 81Design of Experiments (DoE), 139, 210Detroit Diesel Company (DDC), 210Diesel Particulate Filters (DPF), viDiffusion combustion, 14, 39, 189

also see diffusion flame, 14, 39, 189Direct Injection (DI), 2, 5, 7, 9, 71, 79, 149,

178, 181–182, 218, 234, 284High Speed Direct Injection (HSDI), 9, 14,

71, 148, 218, 232, 272, 280, 285Direct Numerical Simulation (DNS), 32

305

Page 19: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

D (cont.)Directed Relation Graph (DRG), 80–81Directed Relation Graph with Error

Propagation (DRGEP), 80–81Discharge coefficient, 46–47, 49Discrete Particle Ignition Kernel (DPIK)

model, 41–42, 180see ignition, 41

Dispersion, 50–51, 54Diversity metric, 135Downsizing, 148, 272Drag, 55Droplet deformation, 55Droplet size, 46, 48–49Dual fuel, vii, 258Dynamic Adaptive Chemistry (DAC), 105

Extended Dynamic AdaptiveChemistry (EDAC), 105

EEmissions

see Nox emission model, 43see Soot model, 44

Engine combustion phasing, 84Engine Research Center (ERC), 42–43, 46,

95, 101, 114–117, 123–124, 127,179, 210

Environmental Protection Agency (EPA), 1Equilibrium constant, 29equivalence ratio, 7, 10, 88, 94, 96–97,

104, 108–109, 113, 117, 126,162, 169, 172, 176, 190–191,205, 223, 235, 270

ESTECO, 15, 27, 211Evaporation Model, 58Exhaust Gas Recirculation (EGR), vi, 5, 9–10,

101–102, 104, 112, 117, 126, 154,162, 169, 176, 190–191, 211, 220,234–238, 268, 273

Exhaust Valve Opening (EVO), 5, 210Extended Dynamic Adaptive Chemistry

(EDAC), 105see Dynamic Adaptive Chemistry

(DAC), 105

FFederal Test Procedure (FTP), 88Fiat, 102–105FIRE, 70Finite volume, 68, 179Fitness value, 25Flame kernel, 41

Flame lift-off length, 147, 150–152, 175Flame propagation, 41–42Flame surface density model, 40, 180Flamelet, 39

Eulerian particle flamelet model(EPFM), 40

Representative Interactive Flamelet(RIF), 40

FLUENT, 70FORTé, 70Frossling correlation, 58Fuel consumption, 192

see Gross indicated specific fuelconsumption, 192

GG-equation, 40, 42, 70Gas jet model, 77Gasoline Direct Injection (GDI), 2, 5Genetic Algorithms (GA), 10–12, 20–22, 24,

26–27, 178, 181, 210, 217, 221, 232Adaptive Range Multi-objective Genetic

Algorithm (ARMOGA), 11, 22, 25,125, 128

Multi-objective genetic algorithm(MOGA), 22

Non-dominated Sorting Genetic Algorithm(NSGA), 11, 21, 24, 26, 125

Single-Objective GeneticAlgorithm (SOGA), 9, 20

Micro-Genetic Algorithm(micro-GA, l-GA), 11, 20, 125

Glow, 41GM, 102–105Gradient-based method, 8Gross Indicated Specific Fuel Consumption

(GISFC), 192see Fuel Consumption, 192

Grouping, 95–97Growth rate, 50–52

HHeat Release Rate (HRR), 106n-Heptane, 42, 46, 79High Throughput Computing (HTC), 219Homogeneous Charge Compression Ignition

(HCCI), vii, 2, 10, 13, 75, 79,84–88, 94–96, 99–101, 104–109,113–117, 162–165, 234, 284

Hydrocarbons (HC), 63, 102see Unburned Hydrocarbons (UHC),

63, 102

306 Index

Page 20: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

IIgnition, 41

discrete particle ignition kernel model(DPIK), 41, 180

Shell auto-ignition model (Shell model), 42Ignition delay, 10, 163Indicated Mean Effective Pressure (IMEP), 88,

101, 104, 148, 154, 162, 169, 220,235, 261, 264–265, 267, 269

Indicated Specific Fuel Consumption (ISFC),148, 182, 185, 187–188

Gross Indicated Specific Fuel Consumption(GISFC), 125, 129, 139–144, 192,194–200, 206–207, 209, 212–213,215–218, 222–231, 236–237, 239,243, 248–249, 261, 264–269, 271,273, 276–280

Iso-octane, 79, 180Intake Valve Closing (IVC), 10, 88Internal Combustion Engines, 1, 2, 14Intrinsic Low-Dimensional Manifolds

(ILDM), 79

Kk-e model, 33, 35, 37

RNG k-e model, 37, 39K-nearest neighbors (KN), 13, 72, 125Kelvin-Helmholtz (KH) model, 51Knock, 42Kriging (KR), 13, 72, 125Kwickgrid, 126, 191, 193

LLagrangian-Drop Eulerian-Fluid (LDEF), 75Large Eddy Simulation (LES), 33–34, 38,

40, 70Latin Hypercube Sampling (LHS), 8Law-of-the-wall, 66Lawrence Livermore National Laboratory

(LLNL), 114–116, 122–124, 236Ligament diameter, 50Linearized Instability Sheet Atomization

(LISA) model, 49–50, 180Locally Homogeneous Flow (LHF), 30

MMaximum merit function (MMF)

see merit functionMean Deviation of the Distance between

Neighbor Pareto Solutions(MDDNPS), 129–132

Mean Distance between Extreme ParetoSolutions (MDEPS), 129–132

Mean Distance to the Pareto Front (MDPF),129–132

Mercedes Benz, 178Mercury Marine, 182Merit Function, 11, 20–22, 181, 183–184, 189

Maximum merit function (MMF), 184Method of Characteristics (MOC), 179Methyl Butanoate (MB), 79Methyl decanoate (MD), 79, 83, 87, 89Misfire, 236, 240ModeFRONTIER, 11, 16, 21, 27, 73, 128,

144, 211Modified Bessel function, 51–52Modulated Kinetics (MK), 13–14, 234,

255, 269Monte-Carlo, 34, 68Multi-component, 6, 60Multi-Objective Evolutionary Algorithms

(MOEA), 24Multi-step phenomenological soot model

see sootMulti-zone, 13, 94, 96, 99Multiple injection, 9–10

NNagle and Strickland-Constable, 45NEDC, 264Negative Valve Overlap (NVO), 258Neural Networks (NN), 13, 72, 125, 138, 140,

144–145Non-differentiable Interactive Multi-objective

BUndle-based optimization System(NIMBUS), 9

Non-Methane Hydrocarbons(NMHC), 239–240, 248–249

Non-Parametric Regression (NPR), 71, 210non-premixed combustion, 107, 117Niche, 25–26

Niching technique, 125, 131, 135, 284Nitrogen dioxide (NO2), 43, 154Nitrogen monoxide (NO), 3, 5, 10, 43–44, 107,

109, 112, 114, 154Nitrogen Oxide (NOx), 3–11, 43–44, 71,

101, 104–109, 114–115, 118–125,128–129, 176, 182, 185–218,222–230, 233–242, 245–251,255–257, 261, 264–277

Nozzle flow model, 46–48Number of Pareto Solutions (NPS), 129–130Nukiyama-Tanasawa distribution, 49Nusselt number, 59

Index 307

Page 21: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

On-Octane, 79Ohnesorge number, 52OpenFOAM, 70Ordinary Differential Equations (ODE),

80, 95, 106–107

PPareto

Pareto front, 19, 21–26, 128–136, 193–195,212, 222, 236, 269, 277

Pareto design, 198, 261, 269–270, 277Partially Premixed Combustion (PPC), 2, 14,

40, 234, 255, 259Particulate Matter (PM), 1, 148, 239Particle Swarm Optimization (PSO), 9, 11Path Flux Analysis (PFA), 80–84, 106Peak Pressure Rise Rate (PPRR), 236–242,

245, 247–257Peclet number, 59Perfectly Stirred Reactor (PSR), 38Polycyclic Aromatic Hydrocarbons

(PAH), 46Port Fuel Injection (PFI), 6, 60Prandtl number, 36–37, 59Premixed Charge Compression Ignition

(PCCI), 10, 13, 102–105, 255Premixed combustion, 194, 233, 242, 245,

252, 255, 258Primary breakup, 48–51Primary Reference Fuel (PRF), 79, 101, 116,

236, 255Principal Component Analysis (PCA), 79–80,

85–93, 284Probability Density Function (PDF), 34, 40Progress equivalence ratio, 96–97, 108–113

QQuasi-Second-Order Upwind (QSOU), 68Quasi-Steady-State (QSS), 80, 82

RR-value-based breadth-first search (RBFS), 82Radial Basis Functions (RBF)

see Regression analysisRadius-of-Influence (ROI) model, 57–58, 219Rayleigh-Taylor (RT) model, 51–54, 70, 79,

101, 128Ranz-Marshall correlation, 59Reaction rate, 29, 38–40, 79–80, 107Reaction mechanism reduction, 13–14, 79–84

Reactivity Controlled Compression Ignition(RCCI), vii

Regression analysisCOmponent Selection and Smoothing

Operator (COSSO) method, 12,71–73, 189, 195–196, 210,218, 222, 283

k-nearest method, 13, 72–73, 125, 133,138, 144–145, 211

Kriging method, 8, 13, 72–73, 125,138, 144–145

Neural networks method, 13, 72–73, 125,138, 144

Radial Basis functions method, 13, 72–73,125, 138–141, 144–145

Remapping, 95, 98–99Representative Interactive

Flamelet (RIF)see flamelet

Response Surface Method (RSM), 7–8, 12–13,72, 138–140, 144, 195–200,211–219, 227–230, 266–267,277–278

Reynolds Stress Model (RSM), 34Reynolds Averaged Numerical Simulation

(RANS), 33–34, 38RNG k-e model

see k-e modelRosin-Rammler

distribution, 149, 180

SSauter mean diameter (SMD), 185Sauter Mean Radius (SMR), 48Scaling law, 147–177, 269, 271–274,

280–281, 284–285Schmidt number, 37, 58Secondary breakup, 51–54Selective Catalytic Reduction (SCR), viSemi-Implicit Method for Pressure-Linked

Equations (SIMPLE), 68SENKIN, 85Sequential Quadratic Programming

(SQP), 7Sharing function, 25Shell auto-ignition model

(Shell model)see ignition

Sherwood number, 58Single-cylinder research engine,

153, 178, 182Smoothing spline analysis of variance

(SS-ANOVA), 71–72

308 Index

Page 22: References - link.springer.com3A978-0-85729-619-1%2F1.pdf · Atomization Spray 9:623–650 Béard P, Duclos JM, Habchi C, Bruneaux G, Mokaddem K, Baritaud T (2000) Extension of Lagrangian–Eulerian

Sootsoot emission, 3, 11, 71, 105, 115, 123, 125,

139, 152–156, 163, 165, 173–176,189–193, 196–198, 201–217,222–234, 237, 248, 252, 261,264–267, 271–278

soot formation, 10, 44–45, 150, 166,175–176, 189, 204, 230, 244

soot precursor, 44–46, 101, 128, 154,174–175

two-step soot model, 44–46, 101, 154multi-step phenomenological

soot model, 46Spalding mass transfer number, 58Spark Ignition (SI), 2, 5, 41, 177, 234, 284

spark-ignition direct injection (SIDI), 5Spray angle, 6, 46, 103, 137, 161, 168,

184, 191–192, 195–199, 201–203,205–206, 209–210, 212–213,215–218, 220, 225, 229–230,241–242, 250–251, 260–261, 275,277–278, 281

Spray equation, 32, 68, 75Spray tip penetration, 77–78, 147–152, 159,

164–165, 169, 175, 178, 203,207–208, 215, 223–226, 229,234, 249, 270, 272, 280, 284

Squish flow, 167, 170, 203Star-CD, 70Stratification, 5–6, 102, 178Subgrid-scale (SGS), 33, 70Surface-to-volume, 64, 163Swirl, 5–6, 10, 49–50, 68, 149, 151–153, 159,

176, 178, 180, 182, 195–200, 204,206–209, 225–226, 229–230, 236,244, 247, 250, 254–258, 270, 280

swirl ratio, 9, 11–12, 14, 125–128, 137,148, 151–154, 159, 161, 168, 176,189–199, 202–211, 220, 226,229–230, 241–246, 249–251,254–255, 258–261, 264,270–275, 278–281

TTaylor Analogy Breakup (TAB), 55, 180Taylor number, 52

Top Dead Center (TDC), 6, 149, 156–157,161, 168–173, 202, 252, 255, 275

Tumble flow, 5–6, 10, 149, 159–160, 178, 180,185, 227, 230–232

Turbulence, 4, 6, 11, 30, 32–42, 54, 67, 95,148, 151, 156, 158, 162–166, 171,175–176

Turbulence correlation time, 54Turbulent persistence time, 55Two-step soot model

see soot

UUnburned Hydrocarbons (UHC), 63, 102,

178–179, 187, 235Hydrocarbons (HC), 42, 63, 85, 87–88,

96, 102, 107–110, 178–179,182, 186–187, 235

VVariable Valve Timings (VVT), 5Vapor pressure, 47VECTIS, 70Vena contracta, 47–48Viscosity, 35, 38, 50–51, 53, 65

WWall film, 60–62Wall function, 67, 70Wall heat transfer, 3, 67, 102, 148, 156, 158,

175–176, 178, 182, 185–187Wall impingement, 60–63, 101, 128, 149,

178, 187, 191, 203, 205, 207–208,215–216, 224, 229, 234, 270, 280

Wavelength, 51–53, 100Wave number, 32, 50Wave stability theory, 49–53Weber number, 51, 52, 56, 60Well stirred reactor (WSR), 95

ZZel’dovich mechanism, 43, 128

Index 309