References - link.springer.com3A978-0-387-76426-9%2F1.pdfMulti-million atom simulation of...

25
References 1. T.H. Courtney. Mechanical behavior of materials. McGraw-Hill, New York, 1990. 2. H. Gao. In: European White Book on Fundamental Research in Materials Sci- ence, chapter: Modelling Strategies for Nano- and Biomaterials, pages 144–148 Max-Planck Institut, Germany 2001. 3. B. Wu, A. Heidelberg, and J.J. Boland. Mechanical properties of ultrahigh- strength gold nanowires. Nat. Mater., 4:525–529, 2005. 4. S.E. Cross, Y.-S. Jin, J. Rao, and J.K. Gimzewski. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol., 2:780–783, 2007. 5. R.K. Nalla, J.H. Kinney, and R.O. Ritchie. Mechanistic fracture criteria for the failure of human cortical bone. Nat. Mater., 2:168–168, 2003. 6. P.E. Marszalek, H. Lu, H. Li, M. Carrion-Vazquez, A.F. Oberhauser, K. Schul- ten, and J.M. Fernandez. Mechanical unfolding intermediates in titin modules. Nature, 402:100–103, 1999. 7. M.J. Buehler. Hierarchical chemo-nanomechanics of stretching protein molecules: Entropic elasticity, protein unfolding and molecular fracture. J. Mech. Mater. Struct., 2(6):1019–1057, 2007. 8. M.J. Buehler. Atomistic modeling of elasticity, plasticity and fracture of protein crystals. J. Comput. Theor. Nanosci., 3(5):670–683, 2006. 9. F. Cleri, S. Yip, D. Wolf, and S. Philpot. Atomic-scale mechanism of crack- tip plasticity: Dislocation nucleation and crack-tip shielding. Phys. Rev. Lett, 79:1309–1312, 1997. 10. J. Tersoff. Empirical interatomic potentials for carbon, with applications to amorphous carbon. Phys. Rev. Lett., 61(25):2879–2883, 1988. 11. M.T. Yin and Marvin L. Cohen. Will diamond transform under megabar pressures? Phys. Rev. Lett., 50(25):2006–2009, 1983. 12. M.J. Buehler, A. van Duin, T. Jacob, Y. Jang, B. Merinov, and W.A. Goddard. Formation of water at a pt(111) catalyst surface: A study using the reaxff reactive force field. Mater. Res. Soc. Symp. Proc. Vol., 900E:0900–O03–09.1– 0900–O03–09.6, 2006. 13. M.J. Buehler and H. Gao. In: Handbook of Theoretical and Computational Nanotechnology, chapter Ultra-large scale simulations of dynamic materials failure. American Scientific Publishers (ASP), Stevenson Ranch, CA 2006.

Transcript of References - link.springer.com3A978-0-387-76426-9%2F1.pdfMulti-million atom simulation of...

  • References

    1. T.H. Courtney. Mechanical behavior of materials. McGraw-Hill, New York,1990.

    2. H. Gao. In: European White Book on Fundamental Research in Materials Sci-ence, chapter: Modelling Strategies for Nano- and Biomaterials, pages 144–148Max-Planck Institut, Germany 2001.

    3. B. Wu, A. Heidelberg, and J.J. Boland. Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater., 4:525–529, 2005.

    4. S.E. Cross, Y.-S. Jin, J. Rao, and J.K. Gimzewski. Nanomechanical analysisof cells from cancer patients. Nat. Nanotechnol., 2:780–783, 2007.

    5. R.K. Nalla, J.H. Kinney, and R.O. Ritchie. Mechanistic fracture criteria forthe failure of human cortical bone. Nat. Mater., 2:168–168, 2003.

    6. P.E. Marszalek, H. Lu, H. Li, M. Carrion-Vazquez, A.F. Oberhauser, K. Schul-ten, and J.M. Fernandez. Mechanical unfolding intermediates in titin modules.Nature, 402:100–103, 1999.

    7. M.J. Buehler. Hierarchical chemo-nanomechanics of stretching proteinmolecules: Entropic elasticity, protein unfolding and molecular fracture.J. Mech. Mater. Struct., 2(6):1019–1057, 2007.

    8. M.J. Buehler. Atomistic modeling of elasticity, plasticity and fracture of proteincrystals. J. Comput. Theor. Nanosci., 3(5):670–683, 2006.

    9. F. Cleri, S. Yip, D. Wolf, and S. Philpot. Atomic-scale mechanism of crack-tip plasticity: Dislocation nucleation and crack-tip shielding. Phys. Rev. Lett,79:1309–1312, 1997.

    10. J. Tersoff. Empirical interatomic potentials for carbon, with applications toamorphous carbon. Phys. Rev. Lett., 61(25):2879–2883, 1988.

    11. M.T. Yin and Marvin L. Cohen. Will diamond transform under megabarpressures? Phys. Rev. Lett., 50(25):2006–2009, 1983.

    12. M.J. Buehler, A. van Duin, T. Jacob, Y. Jang, B. Merinov, and W.A. Goddard.Formation of water at a pt(111) catalyst surface: A study using the reaxffreactive force field. Mater. Res. Soc. Symp. Proc. Vol., 900E:0900–O03–09.1–0900–O03–09.6, 2006.

    13. M.J. Buehler and H. Gao. In: Handbook of Theoretical and ComputationalNanotechnology, chapter Ultra-large scale simulations of dynamic materialsfailure. American Scientific Publishers (ASP), Stevenson Ranch, CA 2006.

  • 464 References

    14. M.J. Buehler. Multi-million atom simulation of work-hardening in ductilemetals with multi-body potentials. Unpublished results.

    15. F. Ercolessi and J.B. Adams. Interatomic potentials from 1st principle-calculations – the force matching method. Europhys. Lett., 28(8):583–588,1994.

    16. Y. L. Sun, Z.P. Luo, A. Fertala, and K.N. An. Stretching type II collagen withoptical tweezers. J. Biomech., 37(11):1665–1669, 2004.

    17. M.J. Buehler and S.Y. Wong. Entropic elasticity controls nanomechanics ofsingle tropocollagen molecules. Biophys. J., 93(1):37–43, 2007.

    18. W.K. Liu, E.G. Karpov, S. Zhang, and H.S. Park. An introduction to com-putational nanomechanics and materials. Comput. Methods Appl. Mech. Eng.,193(17–20):1529–1578, 2004.

    19. H.S. Park, E.G. Karpov, W.K. Liu, and P.A. Klein. The bridging scale for two-dimensional atomistic/continumn coupling. Phil. Mag., 85(1):79–113, 2005.

    20. E.B. Tadmor, M. Ortiz, and R. Phillips. Quasicontinuum analysis of defects insolids. Phil. Mag. A, 73:1529, 1996.

    21. D.H. Warner, W.A. Curtin and S. Qu. Rate dependence of crack-tip processespredicts twinning trends in f.c.c. metals. Nat. Mater., 6:876–881, 2007.

    22. L.B. Freund. Dynamic Fracture Mechanics. Cambridge University Press,Cambridge ISBN 0-521-30330-3, 1990.

    23. B.Q. Vu and V.K. Kinra. Britle fracture of plates in tension – static fieldradiated by a suddenly stopping crack. Eng. Fract. Mech., 15(1–2):107–114,1981.

    24. S. Chen, M.J. Buehler, and H. Gao. Supersonic mode III cracks propagatingin a stiff strip embedded in a soft matrix. Unpublished results.

    25. T. Cramer, A. Wanner, and P. Gumbsch. Energy dissipation and path instabil-ities in dynamic fracture of silicon single crystals. Phys. Rev. Lett., 85:788–791,2000.

    26. M.J. Buehler, A. Cohen, and D. Sen. Multi-paradigm modeling of fractureof a silicon single crystal under mode ii shear loading. J. Algorithm Comput.Technol., 2(2):203–221, 2008.

    27. H. Gao. A theory of local limiting speed in dynamic fracture. J. Mech. Phys.Solids, 44(9):1453–1474, 1996.

    28. M.J. Buehler, F.F. Abraham, and H. Gao. Hyperelasticity governs dynamicfracture at a critical length scale. Nature, 426:141–146, 2003.

    29. M.J. Buehler and H. Gao. Dynamical fracture instabilities due to localhyperelasticity at crack tips. Nature, 439:307–310, 2006.

    30. J.R. Rice. Dislocation nucleation from a crack: an analysis based on the Peierlsconcept. J. Mech. Phys. Solids, 40:239–271, 1992.

    31. D.J. Oh and R.A Johnson. Simple embedded atom method model for fcc andhcp metals. J. Mater. Res., 3:471–478, 1988.

    32. J.E. Angelo, N.R. Moody, and M.I. Baskes. Trapping of hydrogen to latticedefects in nickel. Model. Simul. Mater. Sci. Eng., 3:289–307, 1995.

    33. Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos. Interatomicpotentials for monoatomic metals from experimental and ab-initio calculations.Phys. Rev. B, 59:3393407, 1998.

    34. A.F. Voter. In: Intermetallic Compounds: Principles and Applications, chapterThe embedded-atom model, page 7790. Wiley, New York, 1995.

  • References 465

    35. A.F. Voter and S.P. Chen. Accurate interatomic potentials for Ni, Al and Ni3Alcharacterization of defects. Mater. Res. Soc. Symp. Proc., 82:175180, 1987.

    36. C. Kelchner, S.J. Plimpton, and J.C. Hamilton. Dislocation nucleation anddefect structure during surface-intendation. Phys. Rev. B, 58:11085–11088,1998.

    37. R.L. Fleischer. Cross slip of extended dislocations. Acta Met., 7:134–135, 1959.38. J.P. Hirth and J. Lothe. Theory of Dislocations. Wiley-Interscience, New York,

    1982.39. M.J. Buehler, A. Hartmaier, H. Gao, F.F. Abraham, and M. Duchaineau.

    Atomic plasticity: Description and analysis of a one-billion atom simulation ofductile materials failure. Comput. Methods Appl. Mech. Eng., 193(48–51):5257–5282, 2004.

    40. D. Sen and M.J. Buehler. Shock loading of bone-inspired metallic nanocom-posites. Solid State Phenom., 139:11–22, 2008.

    41. D. Sen and M.J. Buehler. Simulating chemistry in mechanical deformation ofmetals. Int. J. Multiscale Comput. Eng., 5:181202, 2007.

    42. V. Yamakov, S.R.Phillpot D. Wolf, A.K. Mukherjee, and H. Gleiter.Deformation-mechanism map for nanocrystalline metals by moleculardynamicssimulation. Nat. Mater., 3:43–47, 2004.

    43. J. Schiotz and K.W. Jacobsen. A maximum in the strength of nanocrystallinecopper. Science, 301:1357–1359, 2003.

    44. N. Broedling, A. Hartmaier, M.J. Buehler, and H. Gao. Strength limit of abioinspired metallic nanocomposite. J. Mech. Phys. Solids, 56(3):1086–1104,2008.

    45. D. Sen and M.J. Buehler. Crystal size controlled deformation mechanism:Breakdown of dislocation mediated plasticity in single nanocrystals undergeometric confinement. Phys. Rev. B, 47:195439, 2008.

    46. H. Gao, L. Zhang, W.D. Nix, C.V. Thompson, and E. Arzt. Crack-like grainboundary diffusion wedges in thin metal films. Acta Mater., 47:2865–2878,1999.

    47. L. Zhang. A class of strongly coupled elasticity and diffusion problems in thinmetal films. PhD thesis, Stanford University, Stanford, CA, 2001.

    48. L. Zhang and H. Gao. Coupled grain boundary and surface diffusion in apolycrystalline thin film constrained by substrate. Z. Metallk., 93:417–427,2002.

    49. M.J. Buehler, A. Hartmaier, and H. Gao. Constrained grain boundary diffusionin thin copper films. Mater. Res. Soc. Proc., 821:P1.2, 2004.

    50. A. Hartmaier, M.J. Buehler, and H. Gao. A discrete dislocation model ofdiffusional creep. Diffusion and Defect Forum, 224–225:107–128, 2003.

    51. T.J. Balk, G. Dehm, and E. Arzt. Parallel glide: Unexpected dislocation motionparallel to the substrate in ultrathin copper films. Acta Mater., 51:4471–4485,2003.

    52. M.J. Buehler. Mesoscale modeling of mechanics of carbon nanotubes: Self-assembly, self-folding and fracture. J. Mater. Res., 21(11):2855–2869, 2006.

    53. I. Jager and P. Fratzl. Mineralized collagen fibrils: A mechanical model witha staggered arrangement of mineral particles. Biophys. J., 79(4):1737–1746,2000.

  • 466 References

    54. H. Gao, B. Ji, I.L. Jäger, E. Arzt, and P. Fratzl. Materials become insen-sitive to flaws at nanoscale: Lessons from nature. P. Natl. Acad. Sci. USA,100(10):5597–5600, 2003.

    55. E. Arzt. Iological and artificial attachment devices: Lessons for materialsscientists from flies and geckos. Mater. Sci. Eng.: C, 26:1245–1250, 2006.

    56. C.E. Inglis. Stresses in a plate due to the presence of cracks and sharp corners.Trans. Inst. Naval Architects, 55:219, 1913.

    57. G.I. Taylor. Mechanism of plastic deformation in crystals. Proc. R. Soc. A,145:362, 1934.

    58. J.E. Gordon. The New Science of Strong Materials. Princeton University Press,Princeton, NJ, 1984.

    59. M. Marder and J. Fineberg. How things break. Phys. Today, 49(9):24–29, 1996.60. D. Hull and D.J. Bacon. Introduction to Dislocations. Butterworth Heinemann,

    2002.61. K.B. Broberg. Cracks and Fracture. Academic Press, San Diego, CA, 1990.62. A.A. Griffith. The phenomenon of rupture and flows in solids. Phil. Trans.

    Roy. Soc. A, 221:163–198, 1920.63. G.R. Irwin. In: Fracturing of Metals, Fracture dynamics, pages 147–166,

    American Society for Metals, Cleveland, OH, 1948.64. T.L. Anderson. Fracture Mechanics: Fundamentals and Applications. CRC

    Press, Boca Raton, 1991.65. L.B. Freund and S. Suresh. Thin Film Materials. Cambridge University Press,

    Cambridge, 2003.66. J.R. Rice and R.M. Thomson. Ductile versus brittle behavior of crystals. Phil.

    Mag., 29:73–97, 1974.67. J.R. Rice and G.B. Beltz. The activation energy for dislocation nucleation at

    a crack. J. Mech. Phys. Solids, 42:333–360, 1994.68. V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter. Grain-boundary diffusion

    creep in nanocrystalline palladium by molecular-dynamics simulation. ActaMater., 50:61–73, 2002.

    69. V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter. Deformation mechanismcrossover and mechanical behaviour in nanocrystalline materials. Phil. Mag.Lett., 83:385–393, 2003.

    70. H. van Swygenhoven and P.M. Derlet. Grain-boundary sliding in nanocrys-taline fcc metals. Phys. Rev. B, 64:224105, 2001.

    71. L.B. Freund. The stability of a dislocation in a strained layer on a substrate.J. Appl. Mech., 54:553–557, 1987.

    72. W.D. Nix. Mechanical properties of thin films. Metall. Trans. A, 20:2217–2245,1989.

    73. W.D. Nix. Yielding and strain hardening of thin metal films on substrates.Scripta Mater., 39:545–554, 2001.

    74. C.T. Lim, M. Dao, S. Suresh, C.H. Sow, and K.T. Chew. Large deformationof living cells using laser traps. Acta Mater., 52:1837–1845, 2004.

    75. S. Suresh, J. Spatz, J.P. Mills, A. Micoulet, M. Dao, C.T. Limand, M. Beil,and T. Seufferlein. Connections between single-cell biomechanics and humandisease states: gastrointestinal cancer and malaria. Acta Biomaterialia, 1:15–30, 2005.

  • References 467

    76. J. Li, M. Dao, C.T. Lim, and S. Suresh. Spectrin-level modeling of thecytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J.,88:3707–3719, 2005.

    77. G. Bao and S. Suresh. Cell and molecular mechanics of biological materials.Nat. Mater., 2(11):715–725, 2003.

    78. M.J. Buehler. Nano- and micromechanical properties of hierarchical biologicalmaterials and tissues. J. Mater. Sci., 42(21):8765–8770, 2007.

    79. M. Sotomayor and K. Schulten. Single-molecule experiments in vitro and insilico. Science, 316(5828):1144–1148, 2007.

    80. M.J. Buehler and T. Ackbarow. Fracture mechanics of protein materials.Mater. Today, 10(9):46–58, 2007.

    81. B.J. Alder and T.E. Wainwright. Phase transformations for a hard spheresystem. J. Chem. Phys., 27:1208–1209, 1957.

    82. B.J. Alder and T.E. Wainwright. Studies in molecular dynamics. 1. Generalmethod. J. Chem. Phys., 31:459–466, 1959.

    83. A. Rahman. Correlations in the motions of atoms in liquid Argon. Phys. Rev.,136:A405A411, 1964.

    84. M.P. Allen and D.J. Tildesley. Computer Simulation of Liquids. OxfordUniversity Press, Oxford, 1989.

    85. M.F. Ashby. Modelling of materials problems. J. Comput. Aided Mater. Design,3:95–99, 1996.

    86. S. Yip. Lecture notes of subject 22.00. MIT’s Open Course Ware site,http://ocw.mit.edu/OcwWeb/Nuclear-Engineering/22-00JSpring-2006/CourseHome/, 2007).

    87. M. Springborg. Density-Functional Methods in Chemistry and Materials Sci-ence. Wiley research series in Theoretical Chemistry, Wiely, New York,1997.

    88. R.P. Feynman. Feynman Lectures On Physics. Addison-Wesley, Reading, MA,1970.

    89. A.F. Voter, F. Montalenti, and T.C. Germann. Extending the time scale inatomistic simulation of materials. Ann. Rev. Mat. Res., 32:321–346, 2002.

    90. W.K. Hastings. Monte carlo sampling methods using markov chains and theirapplications. Biometrika, 57(1):97–109, 1970.

    91. M.N. Rosenbluth, A.H. Teller, N. Metropolis, A.W. Rosenbluth, and E. Teller.Equations of state calculations by fast computing machines. J. Chem. Phys.,21(6):1087–1092, 1953.

    92. R. Car and M. Parrinello. Unified approach for molecular dynamics and densityfunctional theory. Phys. Rev. Lett., 55:2471, 1985.

    93. A.C.T. van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard. Reaxff: Areactive force field for hydrocarbons. J. Phys. Chem. A, 105:9396–9409, 2001.

    94. M.W. Finnis and J.E. Sinclair. A simple empirical n-body potential fortransition metals. Phil. Mag. A, 50:45–55, 1984.

    95. R. Madec, B. Devincre, L. Kubin, T. Hoc, and D. Rodney. The role of collinearinteraction in dislocation-induced hardening. Science, 301:1879–1882, 2003.

    96. B. von Blanckenhagen, P. Gumbsch, and E. Arzt. Dislocation sources in dis-crete dislocation simulations of thin film plasticity and the Hall-Petch relation.Model. Simul. Mater. Sci. Eng., 9:157–169, 2001.

    97. H. H. M. Cleveringa, E. van der Giessen, and A. Needleman. Comparisonof discrete dislocation and continuum plasticity predictions for a compositematerial. Acta Mater., 45:3163–3179, 1997.

  • 468 References

    98. H.H.M. Cleveringa, E. van der Giessen, and A. Needleman. A discrete dislo-cation analysis of mode I crack growth. J. Mech. Phys. Solids, 48:1133–1157,2000.

    99. H.H.M. Cleveringa, E. Van der Giessen, and A. Needleman. A discretedislocation analysis of bending. Int. J. Plast., 15:837–868, 1999.

    100. L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, and Y. Bréchet.Dislocation microstructures and plastic flow: A 3D simulation. Solid StatePhenom., 23–24:455–472, 1992.

    101. L.P. Kubin, B. Devincre, G. Canova, and Y. Bréchet. 3-D simulations ofdislocations and plasticity. Key Eng. Mater., 103:217–226, 1995.

    102. B. van Beest, G. Kramer, and R. van Santen. Force-fields for silicas and alu-minophosphates based on ab-initio calculations. Phys. Rev. Lett., 64(16):1955,1990.

    103. P.M. Morse. Diatomic molecules according to the wave mechanics. II-vibrational levels. Phys. Rev., 34:57–64, 1929.

    104. N.J. Wagner, B.L. Holian, and A.F. Voter. Molecular-dynamics simulation oftwo-dimensional materials at high strain rates. Phys. Rev. A, 45:8457–8470,1992.

    105. P. Gumbsch, S.J. Zhou, and B.L. Holian. Molecular dynamics investigation ofdynamic crack instability. Phys. Rev. B, 55:3445, 1997.

    106. R. Komanduri, N. Chandrasekaran, and L.M. Raff. Molecular dynamics (MD)simulations of uniaxial tension of some single-crystal cubic metals at nanolevel.Int. J. Mech. Sci., 43:2237–2260, 2001.

    107. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress.Structural stability and lattice defects in copper: Ab-initio, tight-binding andembedded-atom calculations. Phys. Rev. B, 63:224106, 2001.

    108. F.J. Cherne, M.I. Baskes, and P.A. Deymier. Properties of liquid nickel: A crit-ical comparison of EAM and MEAM calculations. Phys. Rev. A, 65(2):024209,2002.

    109. M.I. Baskes. Embedded-atom method: Derivation and application to impu-rities, surfaces and other defects in metals. Phys. Rev. B, 29(12):6443–6543,1984.

    110. K.W. Jacobsen, J.-K. Norskov, and M.J. Puska. Interatomic interactions in theeffective-medium theory. Phys. Rev. B, 35(14):7423, 1987.

    111. K.W. Yacobsen, P. Stoltze, and J.K. Norskov. A semi-empirical effectivemedium theory for metals and alloys. Surf. Sci., 366:394, 1996.

    112. J.A. Zimmermann. Continuum and atomistic modeling of dislocation nucleationat crystal surface ledges. PhD thesis, Stanford University, 1999.

    113. J.A. Zimmerman, H. Gao, and F.F. Abraham. Generalized stacking faultenergies for embedded atom FCC metals. Model. Simul. Mater. Sci. Eng.,8:103–115, 2000.

    114. J.G. Swadener, M.I. Baskes, and M. Nastasi. Molecular dynamics simulationof brittle fracture in silicon. Phys. Rev. Lett., 89(8):085503, 2002.

    115. A.D. MacKerell and D. Bashford et al. All-atom empirical potential formolecular modeling and dynamics studies of proteins. J. Phys. Chem. B,102:3586–3616, 1998.

    116. S.L. Mayo, B.D. Olafson, and W.A. Goddard. Dreiding - a generic force-fieldfor molecular simulations. J. Phys. Chem., 94:8897–8909, 1990.

  • References 469

    117. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, and W.M. Skiff. Uff, afull periodic-table force-field for molecular mechanics and molecular-dynamicssimulations. J. Am. Chem. Soc., 114(25):10024–10035, 1992.

    118. A.D. Mackerell. Empirical force fields for biological macromolecules: Overviewand issues. J. Comput. Chem., 25(13):1584–1604, 2004.

    119. D.W. Brenner. Relationship between the embedded-atom method and Tersoffpotentials. Phys. Rev. Lett., 63:1022, 1989.

    120. J. Pauling. Atomic radii and interatomic distances in metals. J. Am. Chem.Soc., 69(3):542–553, 1947.

    121. H.S. Johnston. Adv. Chem. Phys., 3:131, 1960.122. H.S. Johnston and C.A. Parr. Activation energies from bond energies. I.

    Hydrogen transfer reactions. J. Am. Chem. Soc., 85:2544–2551, 1963.123. J. Tersoff. New empirical model for the structural properties of silicon. Phys.

    Rev. Lett., 56(6):632–635, 1986.124. F. Stillinger and T.A. Weber. Computer-simulation of local order in condensed

    phases of silicon. Phys. Rev. B, 31(8):5262–5271, 1985.125. D.W. Brenner. Empirical potential for hydrocarbons for use in simulating the

    chemical vapor-deposition of diamond films. Phys. Rev. B, 42(15):9458–9471,1990.

    126. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, and S.B.Sinnott. A second-generation reactive empirical bond order (rebo) potentialenergy expression for hydrocarbons. J. Phys. Condens. Matt., 14(4):783–802,2002.

    127. S.J. Stuart, A.B. Tutein, and J.A. Harrison. A reactive potential for hydro-carbons with intermolecular interactions. J. Chem. Phys., 112(14):6472–6486,2000.

    128. S. Cheung, W. Deng, A.C.T. van Duin, and W.A. Goddard. ReaxFFmgh reac-tive force field for magnesium hydride systems. J. Phys. Chem. A., 109:851,2005.

    129. K.D. Nielson, A.C.T. van Duin, J. Oxgaard, W. Deng, and W.A. Goddard.Development of the ReaxFF reactive force field for describing transition metalcatalyzed reactions, with application to the initial stages of the catalyticformation of carbon nanotubes. J. Phys. Chem. A., 109:49, 2005.

    130. K. Chenoweth, S. Cheung, A.C.T. van Duin, W.A. Kober, and W.A. Goddard.Simulations on the thermal decompositions of a poly(dimethylsiloxane) poly-mer using the ReaxFF reactive force field. J. Am. Chem. Soc., 127:7192–7202,2005.

    131. A.C.T. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, and W.A.Goddard. Reaxffsio: Reactive force field for silicon and silicon oxide systems.J. Phys. Chem. A, 107:3803–3811, 2003.

    132. A.K. Rappe and W.A. Goddard. Charge equilibration for molecular dynamicssimulations. J. Phys. Chem., 95:3358–3363, 1991.

    133. A. Nakano, R. Kalo, K. Nomura, A. Sharma, P. Vashishta, F. Shimojo,A. van Duin, W.A. Goddard III, R. Biswas, and D. Srivastava. A divide-and-conquer/cellular-decomposition framework for million-to-billion atom simula-tions of chemical reactions. Comp. Mat. Sci., 38:642652, 2007.

    134. B.P. Uberuaga, S.J. Stuart, and A.F. Voter. Introduction to the time scaleproblem. Proc. of Comput. Nanosci. Nanotech., ISBN 0-9708275-6-3:128–131,2002.

  • 470 References

    135. J. Su and W.A. Goddard. Excited electron dynamics modeling of warm densematter. Phys. Rev. Lett., 99:185003, 2007.

    136. J.A. Zimmerman, E.B. Webb, J.J. Hoytz, R.E. Jonesy, P.A. Klein, and D.J.Bammann. Calculation of stress in atomistic simulation. Model. Sim. Mat. Sci.Engr., 12:S319–S332, 2004.

    137. C.L. Rountree, R.K. Kalia, E. Lidorikis, A. Nakano, L. van Brutzel, andP. Vashishta. Atomistic aspects of crack propagation in brittle materials:Multimillion atom molecular dynamics simulations. Annu. Rev. Mater. Res.,32:377–400, 2002.

    138. F.F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T.D. de La Rubia, andM. Seager. Simulating materials failure by using up to one billion atomsand the world’s fastest computer: Work-hardening. P. Natl. Acad. Sci. USA,99(9):5783–5787, 2002.

    139. A. Sharma, R.K. Kalia, and P. Vashishta. Large multidimensional datavizualization for materials science. Comp. Sci. Eng., 5(2):26–33, 2003.

    140. P. Vashishta, R.K. Kalia, and A. Nakano. Multimillion atom molecular dynam-ics simulations of nanostructures on parallel computers. J. Nanopart. Res.,5:119–135, 2003.

    141. K. Kadau, T.C. Germann, and P.S. Lomdahl. Molecular dynamics comes of age:320 billion atom simulation on bluegene/L. Int. J. Mod. Phys. C, 17:1755–1761,2006.

    142. W. Gropp, W. Lusk, and A. Skjellum. Using MPI. MIT Press, Cambridge,MA, 2nd edition, 1999.

    143. S. Plimpton. Fast parallel algorithms for short-range molecular-dynamics. J.Comput. Phys., 117:1–19, 1995.

    144. A. Nakano, M.E. Bachlechner, R.K. Kalia, E. Lidorikis, P. Vashishta, and G.Z.Voyiadijs. Multiscale simulation of nanosystems. Comp. Sci. Eng., 3(4):56–66,2001.

    145. J. Stone, J. Gullingsrud, P. Grayson, and K. Schulten. A system for interactivemolecular dynamics simulation. In: 2001 ACM Symposium on Interactive 3DGraphics, pages 191–194, 2001.

    146. F.F. Abraham, D. Brodbeck, W.E. Rudge, and X. Xu. A molecular dynamicsinvestigation of rapid fracture mechanics. J. Mech. Phys. Solids, 45(9):1595–1619, 1997.

    147. J.A. Zimmerman, C.L. Kelchner, P.A. Klein, J.C. Hamilton, and S.M. Foiles.Surface step effects on nanoindentation. Phys. Rev. Lett., 87(16):165507, 2001.

    148. W.A. Humphrey, A. Dahlke, and K. Schulten. Vmd: Visual molecular dynam-ics. J. Mol. Graph., 14:33, 1996.

    149. J. Schiotz, T. Leffers, and B.N. Singh. Dislocation nucleation and vacancyformation during high-speed deformation of fcc metals. Phil. Mag. Lett.,81:301–309, 2001.

    150. D. Faken and H. Jonsson. Systematic analysis of local atomic structurecombined with 3D computer graphics. Comput. Mater. Sci., 2:279, 1994.

    151. J.D. Honeycutt and H.C. Andersen. Molecular dynamics study of melting andfreezing of small Lennard-Jones clusters. J. Phys. Chem., 91:4950, 1987.

    152. P.M. Derlet, A. Hasnaoui, and H. van Swygenhoven. Atomistic simulations asguidance to experiments. Scripta Mater., 49:629–635, 2003.

    153. D. Farkas, H. van Swygenhoven, and P. Derlet. Intergranular fracture innanocrystalline metals. Phys. Rev. B, 66:184112, 2002.

  • References 471

    154. H. van Swygenhoven, P.M. Derlet, and A. Hasnaoui. Atomic mechanism fordislocation emission from nanosized grain boundaries. Phys. Rev. B, 66:024101,2002.

    155. F.F. Abraham, D. Brodbeck, R.A. Rafey, and W.E. Rudge. Instabilitydynamics of fracture: A computer simulation investigation. Phys. Rev. Lett.,73(2):272–275, 1994.

    156. F.F. Abraham, D. Brodbeck, W.E. Rudge, J.Q. Broughton, D. Schneider,B. Land, D. Lifka, J. Gerner, M. Rosenkranz, J. Skivira, and H. Gao. Ab-initio dynamics of rapid fracture. Model. Simul. Mater. Sci. Eng., 6:639–670,1998.

    157. P. Klein and H. Gao. Crack nucleation and growth as strain localization in avirtual-bond continuum. Eng. Fract. Mech., 61:21–48, 1998.

    158. P. Zhang, P. Klein, Y. Huang, and H. Gao. Numerical simulation of cohe-sive fracture by the virtual-internal-bond model. Comput. Modeling Eng. Sci.,3(2):263–277, 1998.

    159. H. Gao and P. Klein. Numerical simulation of crack growth in an isotropic solidwith randomized internal cohesive bonds. J. Mech. Phys. Solids, 46(2):187–218,2001.

    160. M. Born and K. Huang. Dynamical Theories of Crystal Lattices. Clarendon,Oxford, 1956.

    161. K. Huang. On the atomic theory of elasticity. Proc. R. Soc. Lond., 203:178–194,2002.

    162. J.J. Weiner. Hellmann-Feynmann theorem, elastic moduli, and the cauchyrelation. Phys. Rev. B, 24:845–848, 1983.

    163. R.W. Ogden. Nonlinear Elastic Deformations. Wiley, New York, 1984.164. J.E. Marsden and T.J.R. Hughes. Mathematical Foundations of Elasticity.

    Prentice Hall, Englewood Cliffs, NJ, 1983.165. H. Gao, Y. Huang, and F.F. Abraham. Continuum and atomistic studies of

    intersonic crack propagation. J. Mech. Phys. Solids, 49:2113–2132, 2001.166. F.F. Abraham. Dynamics of brittle fracture with variable elasticity. Phys. Rev.

    Lett., 77(5):869, 1996.167. D.H. Boal. Mechanics of the cell. Cambridge University Press, New York, 2002.168. D.I. Bower. An Introduction to Polymer Physics. Cambridge University Press,

    New York, 2002.169. C. Bustamante, J.F. Marko, E.D. Siggia, and S. Smith. Entropic elasticity of

    lambda-phage DNA. Science, 265(5178):1599–1600, 1994.170. J.F. Marko and E.D. Siggia. Stretching DNA. Macromolecules, 28(26):8759–

    8770, 1995.171. S. Kohlhoff, P. Gumbsch, and H.F. Fischmeister. Crack propagation in b.c.c.

    crystals studied with a combined finite-element and atomistic model. Phil.Mag. A, 64:851–878, 1991.

    172. P. Gumbsch. Brittle fracture processes modelled on the atomic scale. Z.Metallkd., 87:341–348, 1996.

    173. V. Bulatov, F.F. Abraham, L. Kubin, B. Devincre, and S. Yip. Connectingatomistic and mesoscale simulations of crystal plasticity. Nature, 391:669–672,1998.

    174. F.F. Abraham, J.Q. Broughton, N. Bernstein, and E. Kaxiras. Spanning thelength scales in dynamic simulation. Comput. Phys., 12(6):538–546, 1998.

  • 472 References

    175. V. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips, and M. Ortiz.An adaptive methodology for atomic scale mechanics - the quasicontinuummethod. J. Mech. Phys. Sol., 73:611–642, 1999.

    176. V. Bulatov and T.D. de-la Rubia. Materials research by means of multiscalecomputer simulation. MRS Bull., 26(3):169–170, 2001.

    177. W.A. Curtin and R.E. Miller. Atomistic/continuum coupling in computationalmaterials science. Model. Sim. Mater. Sci. Eng., 11(3):R33–R68, 2003.

    178. M.F. Horstemeyer, M.I. Baskes, V.C. Prandtl, J. Philliber, and S. Vonderheid.A multiscale analysis of fixed-end simple shear using molecular-dynamics, crys-tal plasticity and a macroscopic internal state variable theory. Model. Sim. Mat.Sci. Eng., 11:265–386, 2003.

    179. A.J. Haslam, D. Moldovan, S.R. Phillpot, D. Wolf, and H. Gleiter. Combinedatomistic and mesoscale simulation of grain growth in nanocrystalline thinfilms. Comput. Mat. Sci., 23:15–32, 2003.

    180. D. Moldovan, D. Wolf, S.R. Phillpot, and A.J. Haslam. Mesoscopic simulationof two-dimensional grain growth with anisotropic grain-boundary properties.Phil. Mag. A, 82(7):1271–1297, 2002.

    181. K.W. Schwarz. Simulation of dislocations on the mesoscopic scale. I. Meth-ods and examples, II. Application to strained-layer relaxation. J. Appl. Phys.,85:108–129, 1999.

    182. L. Nicola, E. Van der Giessen, and A. Needleman. Discrete dislocation analysisof size effects in thin films. J. Appl. Phys., 93:5920–5928, 2003.

    183. P. Gumbsch and G.E. Beltz. On the continuum versus atomsitic descriptionsof dislocation nucleation and cleavage in nickel. Model. Sim. Mat. Sci. Eng.,3(5):597–613, 1995.

    184. F.F. Abraham, N. Bernstein, J.Q. Broughton, and D. Hess. Dynamic fractureof silicon: Concurrent simulation of quantum electrons, classical atoms, andthe continuum solid. MRS Bull., 25(5):27–32, 2000.

    185. G. Lu, E.B. Tadmor, and E. Kaxiras. From electrons to finite elements: Aconcurrent multiscale approach for metals. Phys. Rev. B, 73(2), 2006. 024108.

    186. H. Lu, N.P. Daphalapurkar, B. Wang, S. Roy, and R. Komanduri. Multiscalesimulation from atomistic to continuum-coupling molecular dynamics (md)with the material point method (mpm). Phil. Mag., 86(20):2971–2994, 2006.

    187. G.J. Wagner and W.K. Liu. Coupling of atomistic and continuum simulationsusing a bridging scale decomposition. J. Comput. Phys., 190(1):249–274, 2003.

    188. D.E. Farrell, H.S. Park, and W.K. Liu. Implementation aspects of the bridgingscale method and application to intersonic crack propagation. Int. J. Numer.Meth. Eng., 71(5):583–605, 2007.

    189. V.B. Shenoy, R. Miller, E.B. Tadmor, R. Phillips, and M. Ortiz. Quasicontin-uum models of interfacial structure and deformation. Phys. Rev. Lett., 80:742,1998.

    190. Z. Tang, H. Zhao, G. Li, and N.R. Aluru. Finite-temperature quasicontin-uum method for multiscale analysis of silicon nanostructures. Phys. Rev. B,74(6):064110, 2006.

    191. J. Knap and M. Ortiz. An analysis of the quasicontinuum method. J. Mech.Phys. Solids, 49:1899–1923, 2001.

  • References 473

    192. L.E. Shilkrot, R.E. Miller, and W.A. Curtin. Multiscale plasticity modeling:coupled atomistics and discrete dislocation mechanics. J. Mech. Phys. Solids,52(4):755–787, 2004.

    193. T.D. Nguyen, S. Govindjee, P.A. Klein, and H. Gao. A rate-dependent cohesivecontinuum model for the study of crack dynamics. Comput. Meth. Appl. Mech.Eng., 193(30–32):3239–3265, 2003.

    194. F.H. Seitz and J.W. Mintmire. Electrostatic potentials for metal-oxide surfacesand interfaces. Phys. Rev. B, 50:11996–12003, 1994.

    195. X.W. Zhou, H.N.G. Adley, J.S. Filhol, and M.N. Neurock. Modified chargetransfer-embedded atom method potential for metal/metal oxide systems.Phys. Rev. B, 69:035492, 2004.

    196. S.G. Parker, C.R. Johnson, and D. Beazley. Computational steering softwaresystems and strategies. IEEE Comput. Sci. Eng., 4(4):50–599, 1997.

    197. M.J. Buehler, J. Dodson, P. Meulbroek, A. Duin, and W.A. Goddard. Thecomputational materials design facility (CMDF): A powerful framework formultiparadigm multi-scale simulations. Mat. Res. Soc. Proc., 894:LL3.8, 2006.

    198. T.C. Germann and A.F. Voter. Accelerating molecular dynamics simulations.Proc. Comput. Nanosci. Nanotech., ISBN 0-9708275-6-3:140–143, 2002.

    199. A. Laioa and M. Parrinello. Escaping free-energy minima. P. Natl. Acad. Sci.USA, 99:12562–12566, 2002.

    200. A.F. Voter. Parallel replica method for dynamics of infrequent events. Phys.Rev. B, 57(22):985–988, 1998.

    201. F. Montalenti, A.F. Voter, and R. Ferrando. Spontaneous atomic shuffle in flatterraces: Ag(100). Phys. Rev. B, 66:205404, 2002.

    202. A.F. Voter. Hyperdynamics: Accelerated molecular dynamics of infrequentevents. Phys. Rev. Lett., 78(20):3908–3911, 1997.

    203. F. Montalenti, M.R. Sorensen, and A.F. Voter. Closing the gap between exper-iment and theory: Crystal growth by temperature accelerated dynamics. Phys.Rev. Lett., 87(12):126101, 2001.

    204. I. Kaur and W. Gust. Handbook of Grain and Interface Boundary DiffusionData. Ziegler Press, Stuttgart, 1989.

    205. M.L. Falk, A. Needleman, and J. Rice. A critical evaluation of cohesive zonemodels of dynamic fracture. J. Phys. IV Fr., 11:43–50, 2001.

    206. P.A Klein, J.W. Foulk, E.P. Chen, S.A. Wimmer, and H.J. Gao. Physics-based modeling of brittle fracture: Cohesive formulations and the applicationof meshfree methods. Theor. Appl. Fract. Mech., 37:99–166, 2001.

    207. J. Fineberg, S.P. Gross, M. Marder, and H.L. Swinney. Instability and dynamicfracture. Phys. Rev. Lett., 67(4):457–460, 1991.

    208. Y. Huang and H. Gao. Intersonic crack propagation–Part II: The suddenlystopping crack. J. Appl. Mech., 69:76–79, 2002.

    209. D. Gross and T. Selig. Fracture Mechanics. Springer Verlag, Heidelberg, 2006.210. E.H. Yoffe. The moving griffith crack. Phil. Mag., 42:739–750, 1951.211. B.R. Baker. Dynamic stresses created by a moving crack. J. Appl. Mech.,

    29:567–578, 1962.212. H. Tada and P.C. Paris. The Stress Analysis of Cracks Handbook. ASME Press,

    New York, 2001.

  • 474 References

    213. W.T. Ashurst and W.G. Hoover. Microscopic fracture studies in 2-dimensionaltriangular lattice. Phys. Rev. B, 14(4):1465–1473, 1976.

    214. M. Marder and S. Gross. Origin of crack tip instabilities. J. Mech. Phys. Solids,43(1):1–48, 1995.

    215. A.J. Rosakis, O. Samudrala, and D. Coker. Cracks faster than the shear wavespeed. Science, 284(5418):1337–1340, 1999.

    216. A.J. Rosakis. Intersonic shear cracks and fault ruptures. Adv. Phys., 51(4):1189–1257, 2002.

    217. Y. Huang and H. Gao. Intersonic crack propagation–Part I: The fundamentalsolution. J. Appl. Mech., 68:169–175, 2001.

    218. E. Gerde and M. Marder. Friction and fracture. Nature, 413:285, 2001.219. F.F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T.D. de La Rubia, and

    M. Seager. Simulating materials failure by using up to one billion atoms and theworld’s fastest computer: Brittle fracture. P. Natl. Acad. Sci. USA, 99(9):5788–5792, 2002.

    220. F.F. Abraham. How fast can cracks move? A research adventure in materialsfailure using millions of atoms and big computers. Adv. Phys., 52(8):727–790,2003.

    221. M. Marder. Molecular dynamics of cracks. Comput. Sci. Eng., 1(5):48–55, 1999.222. D. Holland and M. Marder. Cracks and atoms. Adv. Mater., 11(10):793, 1999.223. D. Holland and M. Marder. Ideal brittle fracture of silicon studied with

    molecular dynamics. Phys. Rev. Lett., 80(4):746, 1998.224. J.A. Hauch, D. Holland, M. Marder, and H.L. Swinney. Dynamic fracture in

    single crystal silicon. Phys. Rev. Lett., 82:3823–3826, 1999.225. P. Vashishta, R.K. Kalia, and A. Nakano. Large-scale atomistic simulations of

    dynamic fracture. Comp. Sci. Eng., 1(5):56–65, 1999.226. R. Mikulla, J. Stadler, F. Krul, H.-R. Trebin, and P. Gumbsch. Crack

    propagation in quasicrystals. Phys. Rev. Lett., 81(15):3163–3166, 1998.227. H.-R. Trebin, R. Mikulla, J. Stadler, G. Schaaf, and P. Gumbsch. Molecular

    dynamics simulations of crack propagation in quasicrystals. Comput. Phys.Commn., 121–122:536–539, 1999.

    228. C. Kittel. Einführung in die Festkörperphysik. Oldenburg, München, 2ndedition, 1999.

    229. R. Mikulla, J. Roth, and H.-R. Trebin. Simulation of shear-stress in 2-dimensional decagonal quasi-crystals. Phil. Mag. B, 71(5), 1995.

    230. G.F. Guo, W. Yang, and Y. Huang. Supersonic crack growth in a solid ofupturn stress-strain relation under anti-plane shear. J. Mech. Phys. Solids,51:1971–1985, 2003.

    231. K. Hellan. Introduction to Fracture Mechanics. McGraw-Hill, New York, 1984.232. Hellan. Debond dynamics of an elastic strip, I: Timoshenko-beam properties

    and steady motion. Int. J. Fract., 14(1):91–100, 1978.233. L.B. Freund. A simple model of the double cantilever beam crack proapgation

    specimen. J. Mech. Phys. Solids, 25:69–79, 1977.234. L.B. Freund. Crack propagation in an elastic solid subjected to general loading,

    II. nonuniform rate of extension. J. Mech. Phys. Solids, 20:141–152, 1972.235. S. Fratini, O. Pla, P. Gonzalez, F. Guinea, and E. Louis. Energy radiation of

    moving cracks. Phys. Rev. B, 66(10):104104, 2002.

  • References 475

    236. A. Boresi and K.P. Chong. Elasticity in Engineering Mechanics. Wiley-Interscience, New York, 2nd edition, 2000.

    237. F.F. Abraham and H. Gao. How fast can cracks propagate? Phys. Rev. Lett.,84(14):3113–3116, 2000.

    238. M. Zhou. Equivalent continuum for dynamically deforming atomistic particlesystems. Phil. Mag. A, 82(13), 2002.

    239. D.H. Tsai. Virial theorem and stress calculation in molecular-dynamics. J.Chem. Phys., 70(3):1375–1382, 1979.

    240. L.I. Slepyan. Models and Phenomena in Fracture Mechanics. Springer, Berlin,2002.

    241. J. Fineberg, S.P. Gross, M. Marder, and H.L. Swinney. Instability in thepropagation of fast cracks. Phys. Rev. B, 45(10):5146–5154, 1992.

    242. K. Ravi-Chandar. Dynamic fracture of nominally brittle materials. Int. J.Fract., 90:83–102, 1998.

    243. P.D. Washabaugh and W.G. Knauss. A reconcilation of dynamic crack velocityand rayleigh-wave speed in isotropic brittle solids. Int. J. Fract., 65:97–114,1994.

    244. E. Sharon and J. Fineberg. Confirming the continuum theory of dynamic brittlefracture for fast cracks. Nature, 397:333, 1999.

    245. J.E. Field. Brittle fracture–its study and application. Contemp. Phys., 12:1–31,1971.

    246. J.A. Hauch and M. Marder. Energy balance in dynamic fracture, investigatedby a potential drop technique. Int. J. Fract., 1–2:133–151, 1998.

    247. D. Hull and P. Beardmore. Velocity of propagation of cleavage cracks inTungsten. In. J. Fract., 2:468–488, 1966.

    248. H. Gao. Elastic waves in a hyperelastic solid near its plane-strain equibiaxialcohesive limit. Phil. Mag. Lett., 76(5):307–314, 1997.

    249. K.B. Broberg. Dynamic crack propagation in a layer. Int. J. Solids Struct.,32(6–7):883–896, 1995.

    250. P.J. Petersan, D. Robert, M. Deegan, M. Marder, and H.L. Swinney. Cracks inrubber under tension exceed the shear wave speed. Phys. Rev. Lett., 93:015504,2004.

    251. H. Gao. Surface roughening and branching instabilities in dynamic fracture. J.Mech. Phys. Solids, 41(3):457–486, 1993.

    252. J.D. Eshelby. Elastic field of a crack extending non-uniformly under generalanti-plane loading. J. Mech. Phys. Solids, 17(3):177–199, 1969.

    253. H.H. Yu and Z. Suo. Intersonic crack growth on an interface. P. R. Soc. Lond.A Mat., 456(1993):223–246, 2000.

    254. D.J. Andrews. Rupture velocity of plane strain shear cracks. J. Geophys. Res.,81:5679–5687, 1976.

    255. R.J. Archuleta. Analysis of near-source static and dynamic measurements fromthe 1979 imperial valley earthquake. Bull. Seismol. Soc. Am., 72:1927–1956,1982.

    256. H. Kuppers. The initial course of crack velocity in glass plates. Int. J. Fract.Mech., 3:13–17, 1969.

    257. A.F. Fossum and L.B. Freund. Nonuniformly moving shear crack model of ashallow focus earthquake mechanism. J. Geophys. Res., 80:3343–3347, 1975.

    258. B.A. Auld. Accoustic Fields and Waves in Solids. R.E. Krieger PublishingCompany, Malabar, FL, 2nd edition, ISBN 0-89874-783-X edition, 1990.

  • 476 References

    259. R. Burridge. Admissible speeds for plain-strain self-similar cracks with frictionbut lacking cohesion. Geophys. J. R. Astron. Soc., 35:439–455, 1973.

    260. J.R. Rice and G.C. Sih. Plane problems of cracks in dissimilar media. Trans.ASME, 32(2):418–423, 1965.

    261. J.R. Rice. Elastic fracture mechanics concepts for interfacial cracks. Trans.ASME, 55(1):98–103, 1988.

    262. A.H. England. A crack between dissimilar media. J. Appl. Mech., 32:400–402,1965.

    263. Williams M.L. The stresses areound a fault or crack in dissimilar media. Bull.Seismol. Soc. Am., 49:199–204, 1959.

    264. W. Yang, Z. Suo, and C.F. Shih. Mechanics of dynamic debonding. Proc. R.Soc. Lond. A, 433:679–697, 1991.

    265. C. Liu, J. Lambros, and A.J. Rosakis. Highly transient elastodynamic crackgrowth in a bimaterial interface: higher order asymptotic analysis and experi-ments. J. Mech. Phys. Solids, 41:1887–1954, 1993.

    266. J. Lambros and A.J. Rosakis. Development of a dynamic decohesion criterionfor subsonic fracture of the interface between two dissimilar materials. Proc.R. Soc. Lond. A, 41:711–736, 1995.

    267. A.J. Rosakis. Intersonic crack propagation in bimaterial systems. J. Mech.Phys. Solids, 6(10):1789–1813, 1998.

    268. C. Liu, Y. Huang, and A.J. Rosakis. Shear dominated transonic interfacialcrack growth in a bimaterial–II. Asymptotic fields and favorable velocityregimes. J. Mech. Phys. Solids, 43(2):189–206, 1993.

    269. S. Chen. Personal communication.270. H.F. Zhang and A.H.W. Ngan. Atomistic simulation of screw dislocation

    mobility ahead of a mode III crack tip in the bcc structure. Scripta Mater.,41(7):737–742, 2002.

    271. G. Schoeck. Dislocation emission from crack tips as a variational problem ofthe crack energy. J. Mech. Phys. Solids, 44(3):413–437, 1996.

    272. F.F. Abraham and H. Gao. Anamalous brittle-ductile fracture behaviors inFCC crystals. Phil. Mag. Lett., 78:307–312, 1998.

    273. S. Chen, M.J. Buehler, and H. Gao. The mode III broberg problem: Supersoniccracking in a stiff strip. unpublished results.

    274. M.J. Buehler, A.C.T. van Duin, and W.A. Goddard. Multi-paradigm modelingof dynamical crack propagation in silicon using the reaxff reactive force field.Phys. Rev. Lett., 96(9):095505, 2006.

    275. M.J. Buehler, H. Tang, A.C.T. van Duin, and W.A. Goddard. Threshold crackspeed controls dynamical fracture of silicon single crystals. Phys. Rev. Lett.,99:165502, 2007.

    276. T. Cramer, A. Wanner, and P. Gumbsch. Crack velocities during dynamicfracture of glass and single crystalline silicon. Phys. Status Solidi A, 164:R5,1997.

    277. F. Ebrahimi and L. Kalwani. Fracture anisotropy in silicon single crystal.Mater. Sci. Eng. A, 268:116–126, 1999.

    278. R.D. Deegan, S. Chheda, L. Patel, M. Marder, H.L. Swinney, J. Kim, andA. de Lozanne. Wavy and rough cracks in silicon. Phys. Rev. E, 67(6):066209,2003.

    279. N.P. Bailey and J.P. Sethna. Macroscopic measure of the cohesive length scale:Fracture of notched single-crystal silicon. Phys. Rev. B, 68(20):205204, 2003.

  • References 477

    280. A. Strachan, T. Cagin, and W.A. Goddard. Crack propagation in a tantalumnano-slab. J. Comput.-Aided Mater. Des., 8:151–159, 2002.

    281. Martin Z. Bazant and Efthimios Kaxiras. Modeling of covalent bonding insolids by inversion of cohesive energy curves. Phys. Rev. Lett., 77(21):4370–4373, 1996.

    282. A. Strachan, A.C.T. van Duin, D. Chakraborty, S. Dasgupta, and W.A.Goddard. Shock waves in high-energy materials: The initial chemical eventsin nitramine RDX. Phys. Rev. Lett., 91:098301, 2003.

    283. A.D. Becke. Density-function thermochemistry. 3. The role of exact exchange.J. Chem. Phys., 98(7):5648–5652, 1993.

    284. T. Cramer, A. Wanner, and P. Gumbsch. Dynamic fracture of glass and single-crystalline silicon. Z. Metallkd., 90:675–686, 1999.

    285. V.P. Smyshlyaev and N.A. Fleck. The role of strain gradients in the grain sizeeffect for polycrystals. J. Mech. Phys. Solids, 44:465–495, 1996.

    286. J.Y. Shu and N.A. Fleck. The prediction of a size effect in micro-indentation.Int. J. Solids Struct., 35:1363–1383, 1998.

    287. T. Mura. Micromechanics of Defects in Solids. Martinus Nijhoff, Dordrecht,1987.

    288. N.A. Fleck and J.W. Hutchinson. A phenomenological theory for straingradient effects in plasticity. J. Mech. Phys. Solids, 41:1825, 1993.

    289. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson. Mechanism-based straingradient plasticity–I. Theory. J. Mech. Phys. Solids, 47:1239–1263, 1999.

    290. E.H. Lee. Elastic-plastic deformation at finite strains. J. Appl. Mech., 1:1, 1969.291. C.S. Han, H. Gao, Y. Huang, and W.D. Nix. Mechanism-based strain gradient

    crystal plasticity - I. Theory. J. Mech. Phys. Solids, 53(5):1188–1203, 2005.292. J. Roth, F. Gähler, and H.-R. Trebin. A molecular dynamics run with

    5.180.116.000 particles. Int. J. Mod. Phys. C, 11:317–322, 2000.293. R.G. Hoagland, J.P. Hirth, and P.C. Gehlen. Atomic simulation of dislocation

    core structure and Peierls stress in alkali-halide. Phil. Mag., 34(3):413–439,1976.

    294. B. deCelis, A.S. Argon, and S. Yip. Molecular-dynamics simulation of cracktip processes in alpha-iron and copper. J. Appl. Phys., 54(9):4864–4878, 1983.

    295. S.J. Zhou, D.M. Beazly, P.S. Lomdahl, and B.L. Holian. Large-scale molecular-dynamics simulations of three-dimensional ductile failure. Phys. Rev. Lett.,78:479–482, 1997.

    296. A. Girshick, D.G. Pettifor, and V. Vitek. Atomistic simulation of titanium -II. Structure of 1/3 < 1210 > screw dislocations and slip systems in titanium.Phil. Mag. A, 77:999–1012, 1998.

    297. J. Cserti, M. Khantha, V. Vitek, and D.P. Pope. An atomistic study of thedislocation core structures and mechanical-behavior of a model alloy. Mat.Sci. Eng. A, 152(1–2):95–102, 1998.

    298. S.J. Zhou, D.L. Preston, P.S. Lomdahl, and D.M. Beazley. Large-scalemolecular-dynamics simulations of dislocation interactions in copper. Science,279:1525–1527, 1998.

    299. Y. Qi, A. Strachan, T. Cagin, and W.A. Goddard III. Large-scale atomisticsimulations of screw dislocation structure, annihilation and cross-slip in FCCNi. Mat. Sci. Eng. A, 145:309–310, 2001.

  • 478 References

    300. G.D. Schaaf, J. Roth, and H.-R. Trebin. Dislocation motion in icosahedralquasicrystals at elevated temperatures: Numerical simulation. Phil. Mag.,83(21):2449–2465, 2003.

    301. M.J. Buehler, A. Hartmaier, M.A. Duchaineau, F.R. Abraham, and H.J. Gao.The dynamical complexity of work-hardening: a large-scale molecular dynamicssimulation. Acta Mechanica Sinica, 21(2):103–111, 2005.

    302. P. Gumbsch and H. Gao. Dislocations faster than the speed of sound. Science,283:965–968, 1999.

    303. D. Wolf, V. Yamakov, S.R. Phillpot, and A.K. Mukherjee. Deformation mecha-nism and inverse Hall-Petch behavior in nanocrystalline materials. Z. Metallk.,94:1052–1061, 2003.

    304. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter. Dis-location processes in the deformation of nanocrystalline aluminium by MDsimulation. Nat. Mater., 1:1–4, 2002.

    305. K.W. Jacobsen and J. Schiotz. Computational materials science - nanoscaleplasticity. Nat. Mater., 1:15–16, 2002.

    306. E. Arzt. Size effects in materials due to microstructural and dimensionalconstraints: A comparative review. Acta Mater., 46:5611–5626, 1998.

    307. R. Krause-Rehberg, M. Brohl, H. Leipner, A. Kupsch, T. Drost, A. Polity,U. Beyer, and H. Alexander. Defects in plastically deformed semiconduc-tors studied by positron annihilation: Silicon and germanium. Phys. Rev. B,47:13266, 1993.

    308. A.A. Rempel, S.Z. Nazarova, and A.I. Gusev. Intrinsic defects in palladiumafter severe plastic deformation. Phys. Stat. Sol., 181:R16, 2000.

    309. S.J. Zhou, D.L. Preston, and F. Louchet. Investigation of vacancy formationby a jogged dissociated dislocation with large-scale molecular dynamics anddislocation energetics. Acta Mat., 47:2695–2703, 1999.

    310. J. Marian, W. Cai, and V.V. Bulatov. Dynamic transitions from smooth torough to twinning in dislocation motion. Nat. Mater., 3:158–163, 2004.

    311. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter.Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater., 3(1):43–47, 2004.

    312. T. Vegge. Atomistic simulations of screw dislocation cross slip in copper andnickel. Mat. Sci. Eng. A-Struct., 309:113, 2001.

    313. T. Vegge and W. Jacobsen. Atomistic simulations of dislocation processes incopper. J. Phys. Condens. Matt., 14:2929, 2002.

    314. M. Wen and D.L. Lin. Atomistic process of dislocation cross-slip in ni3al.Scripta Mater., 36:265, 1997.

    315. V.B. Shenoy, R.V. Kukta, and R. Phillips. Quasicontinuum models of interfa-cial structure and deformation. Phys. Rev. Lett., 84:1491, 2000.

    316. N.F. Mott. The work hardening of metals. Trans. Met. Soc. AIME, 218:962,1960.

    317. M. Rhee, H.M. Zbib, J.P. Hirth, H. Huang, and T.D. de la Rubia. Models forlong-/short-range interactions and cross slip in 3d dislocation simulation of bccsingle crystals. Modeling Simul. Mater. Sci. Eng., 6:467, 1998.

    318. P.B. Hirsch and D.H. Warrington. Athe flow stress of aluminium and copperat high temperatures. Phil. Mag., 6:735, 1961.

    319. F.R.N. Nabarro. In: Report of a conference on strength of solids, pages 75–90.London: Phys. Soc., 1948.

  • References 479

    320. R.L. Coble. A model for boundary controlled creep in polycrystalline materials.J. Appl. Phys., 41:1679–1682, 1963.

    321. T.G. Nieh and J. Wadsworth. Hall-Petch relation in nanocrystalline solids.Scripta Met., 25(4):955–958, 1991.

    322. S. Yip. The strongest size. Nature, 391:532–533, 1998.323. K.S. Kumar, H. Van Swygenhoven, and S. Suresh. Mechanical behavior of

    nanocrystalline metals and alloys. Acta Mater., 51(10):5743–5774, 2003.324. J. Schiotz, D. DiTolla, and K.W. Yacobsen. Softening of nanocrystalline metals

    at very small grain sizes. Nature, 391:561–563, 1998.325. V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, and H. Gleiter. Length scale

    effects in the nucleation of extended dislocations in nanocrystalline Al bymolecular-dynamics simulations. Acta Mater., 49:2713–2722, 2001.

    326. R. Würschum, S. Herth, and U. Brossmann. Diffusion in nanocrystalline metalsand alloys–a status report. Adv. Eng. Mat., 5(5):365–372, 2003.

    327. J. Schiotz, T. Vegge, D. DiTolla, and K.W. Yacobsen. Atomic-scale simula-tions of the mechanical deformation of nanocrystalline metals. Phys. Rev. B,60:11971–11983, 1999.

    328. H. van Swygenhoven and A. Caro. Plastic behavior of nanophase metals studiedby molecular dynamics. Phys. Rev. B, 58:11246–11251, 1998.

    329. H. van Swygenhoven, M. Spaczer, A. Caro, and D. Farkas. Competing plasticdeformation mechanisms in nanophase metals. Phys. Rev. B, 60:22–25, 1999.

    330. H. van Swygenhoven, M. Spaczer, and A. Caro. Microscopic description ofplasticity in computer generated metallic nanophase samples: A comparisonbetween Cu and Ni. Acata Mat., 47:3117, 1999.

    331. A. Hasnaoui, H. van Swygenhoven, and P.M. Derlet. Dimples on nanocrys-talline fracture surfaces as evidence for shear plane formation. Science,300(5625):1550–1552, 2003.

    332. M.W. Chen, E. Ma, K.J. Hemker, Y. Wang H. Sheng, and C. Xuemei.Deformation twinning in nanocrystalline aluminum. Science, 300:1275–1277,2003.

    333. H. Ikeda, Y. Qi, T. Cagin, K. Samwer, W. L. Johnson, and W.A. Goddard.Strain rate induced amorphization in metallic nanowires. Phys. Rev. Lett.,82(14):2900–2903, 1999.

    334. G. Rubio-Bollinger, S.R. Bahn, N. Agrait, K.W. Jacobsen, and S. Vieira.Mechanical properties and formation mechanisms of a wire of single gold atoms.Phys. Rev. Lett., 87(2):026101, 2001.

    335. A.M. Leach, M. McDowell, and K. Gall. Deformation of top-down and bottom-up silver nanowires. Adv. Funct. Mater., 17(1):43–53, 2007.

    336. E.Z. da Silva, A.J.R. da Silva, and A. Fazzio. How do gold nanowires break?Phys. Rev. Lett., 87(25):256102, 2001.

    337. J.K. Diao, K. Gall, M.L. Dunn, and J.A. Zimmerman. Atomistic simulationsof the yielding of gold nanowires. Acta Mater., 54(3):643–653, 2006.

    338. K. Gall, J.K. Diao, and M.L. Dunn. The strength of gold nanowires. NanoLett., 4(12):2431–2436, 2004.

    339. P. Heino, H. Häkkinen, and K. Kaski. Molecular-dynamics study of mechanicalproperties of copper. Europhys. Lett., 41:273–278, 1998.

    340. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix. Sample dimensionsinfluence strength and crystal plasticity. Science, 305:987–989, 2004.

  • 480 References

    341. R.P. Vinci, E.M. Zielinski, and J.C. Bravman. Thermal strain and stress incopper thin films. Thin Solid Films, 262:142–153, 1995.

    342. M.J. Kobrinsky and C.V. Thompson. The thickness dependence of the flowstress of capped and uncapped polycrystalline Ag thin films. Appl. Phys. Lett.,73:2429–2431, 1998.

    343. R.-M. Keller, S.P. Baker, and E. Arzt. Stress-temperature behavior of unpas-sivated thin copper films. Acta Mater., 47(2):415–426, 1999.

    344. M.J. Kobrinsky, G. Dehm, C.V. Thompson, and E. Arzt. Effects of thicknesson the characteristic length scale of dislocation plasticity in Ag thin films. ActaMater., 49:3597, 2001.

    345. W.D. Nix. Yielding and strain hardening of thin metal films on substrates.Scripta Mater., 39:545–554, 1998.

    346. G. Dehm, T.J. Balk, B. von Blanckenhagen, P. Gumbsch, and E. Arzt. Dislo-cation dynamics in sub-micron confinement: Recent progress in Cu thin filmplasticity. Z. Metallk., 93(5):383–391, 2002.

    347. M. Legros, K.J. Hemker, A. Gouldstone, S. Suresh, R.-M. Keller-Flaig, andE. Arzt. Microstructural evolution in passivated Al films on Si substratesduring thermal cycling. Acta Mater., 50:3435–3452, 2002.

    348. B. von Blanckenhagen, P. Gumbsch, and E. Arzt. Dislocation sources and theflow stress of polycrystalline thin metal films. Phil. Mag. Lett., 83:1–8, 2003.

    349. L. Nicola, E. Van der Giessen, and A. Needleman. Discrete dislocation analysisof size effects in thin films. Thin Solid Films, 479:329–338, 2005.

    350. T.J. Balk, G. Dehm, and E. Arzt. Observations of dislocation motion and stressinhomogeneities in thin copper films. Mat. Res. Soc. Symp. Proc., 673:2.7.1–2.7.6, 2001.

    351. D. Weiss, H. Gao, and E. Arzt. Constrained diffusional creep in UHV-producedcopper thin films. Acta Mater., 49:2395–2403, 2001.

    352. Z. Suo and J.W. Hutchinson. Steady-state cracking in brittle substratesbeneath adherent films. Int. J. Solids Struct., 25(11):1337–1353, 1989.

    353. J.D. Eshelby. In: Dislocations in Solids, volume 1, Ed. F.R.N. Nabarro, page167. North-Holland, Amsterdam, 1979.

    354. A.R. Zak and M.L. Williams. Crack point singularities at a bi-materialinterface. J. Appl. Mech., 30:142–143, 1963.

    355. P. Keblinski, D. Wolf, S.R. Phillpot, and H. Gleiter. Continuousthermodynamic-equilibrium glass transition in high energy grain boundaries?Phil. Mag. Lett., 76(3):143–151, 1997.

    356. P. Keblinski, D. Wolf, S.R. Phillpot, and H. Gleiter. Self-diffusion in high-anglefcc metal grain boundaries by molecular dynamics simulation. Phil. Mag. Lett.,79(11):2735–2761, 1999.

    357. P. Lagarde and M. Biscondi. Intercrystalline creep of oriented copper bicrystals.Mem. Etud. Sci. Rev. Met., 71:121–131, 1974.

    358. E. Budke, C. Herzig, S. Prokofjev, and L. Shvindlerman. Study of grain-boundary diffusion of Au in copper within Σ5 misorientation range in the con-text of structure of grain boundaries. Defect and Diffusion Forum, 156:21–33,1998.

    359. W.C. Swope, H.C. Andersen, P.H. Berens, and K.R. Wilson. A computer-simulation method for the calculation of equilibrium-constants for the forma-tion of physical clusters of molecules - application to small water clusters.J. Chem. Phys., 76(1):637–649, 1982.

  • References 481

    360. R.E. Peierls. The size of a dislocation. Proc. Pys. Soc., 52:256, 1940.361. Y.-L. Shen. Strength and interface-constrained plasticity in thin metal films.

    J. Mater. Res., 18:2281–2284, 2003.362. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu. Ultrahigh strength and high

    electrical conductivity in copper. Science, 304:422–426, 2004.363. S. Iijima. Helical microtubules of graphitic carbon. Nature, 354(6348):56–58,

    1991.364. A. Modi, N. Koratkar, E. Lass, B.Q. Wei, and P.M. Ajayan. Miniaturized gas

    ionization sensors using carbon nanotubes. Nature, 424(6945):171–174, 2003.365. J.Y. Huang, S. Chen, Z.Q. Wang, K. Kempa, Y.M. Wang, S.H. Jo, G. Chen,

    M.S. Dresselhaus, and Z.F. Ren. Superplastic carbon nanotubes - conditionshave been discovered that allow extensive deformation of rigid single-wallednanotubes. Nature, 439(7074):281–281, 2006.

    366. S.E. Moulton, A.I. Minett, and G.G. Wallace. Carbon nanotube basedelectronic and electrochemical sensors. Sensor Lett., 3(3):183–193, 2005.

    367. V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T.A. Arias, and P.L. McEuen. Atunable carbon nanotube electromechanical oscillator. Nature, 431(7006):284–287, 2004.

    368. W.D. Zhang, F. Yang, and P.Y. Gu. Carbon nanotubes grow to pillars.Nanotechnology, 16(10):2442–2445, 2005.

    369. B.I. Yakobson, C.J. Brabec, and J. Bernholc. Nanomechanics of carbon tubes:Instabilities beyond linear response. Phys. Rev. Lett., 76(14):2511–2514, 1996.

    370. M.J. Buehler, Y. Kong, and H. Gao. Deformation mechanisms of very longsingle-wall carbon nanotubes subject to compressive loading. J. Eng. Mater.Tech., 126(3):245–249, 2004.

    371. M.J. Buehler, Y. Kong, Huang Y., and H.J. Gao. Self-folding and unfolding ofcarbon nanotubes. J. Eng. Mater. Techno., 128(1):3–10, 2006.

    372. W. Zhou, Y. Huang, B. Liu, K.C. Hwang, J.M. Zuo, M.J. Buehler, and H. Gao.Self-folding of single- and multiwall carbon nanotubes. Applied Physics Letters,90:3107–3110, 2007.

    373. H.J. Gao and S.H. Chen. Flaw tolerance in a thin strip under tension. J. Appl.Mech.-Trans. ASME, 72(5):732–737, 2005.

    374. H.J. Gao. Application of fracture mechanics concepts to hierarchical biome-chanics of bone and bone-like materials. Int. J. Fract., 138(1–4):101–137,2006.

    375. M.J. Buehler, H. Yao, H. Gao, and B. Ji. Cracking and adhesion at small scales:Atomistic and continuum studies of flaw tolerant nanostructures. Model. Sim.Mat. Sci. Eng., 14:799–816, 2006.

    376. H. Gao and H. Yao. Shape insensitive optimal adhesion of nanoscale fibrillarstructures. P. Natl. Acad. Sci. USA, 101:7851–7856, 2004.

    377. H. Gao, B. Ji, M.J. Buehler, and H. Yao. Flaw tolerant bulk and surfacenanostructures of biological systems. Mech. Chem. Biosyst., 1(1):37–52, 2004.

    378. H. Gao, X. Wang, H. Yao, S. Gorb, and E. Arzt. Mechanics of hierarchicaladhesion structures of geckos. Mech. Mat., 37(2–3):275–285, 2005.

    379. K.L. Johnson, K. Kendall, and A.D. Roberts. Surface energy and contact ofelastic solids. Proc. R. Soc. A, 324:301–313, 1971.

  • Index

    N2 scaling, 72µVT, 40

    Abell-Tersoff approach, 60Adhesion, 439, 452, 453Adhesion strength, 459Advanced molecular dynamics methods,

    177Aluminum

    nanocrystalline, 379AMBER, 56Analysis techniques, 410Asymptotic stress field, 194Atomic hypothesis, 35Atomic interactions, 35Atomistic simulations, 33Atomistic theory, 16, 121Averaging, 36Avogadro’s number, 79, 155

    Barrierdislocation motion, 424

    BCC, 9bcc packing, 13Beam elasticity, 110Berendsen thermostat, 40Billion-atom simulation, 341Bimaterial interface, 287Biological materials, 56Biomechanics, 9, 452Bond order potentials, 59, 63Bookkeeping, 73Boundary conditions, 90, 399

    displacement, 90

    mechanical, 90steered molecular dynamics, 92

    Brittle failure, 12Brittle versus ductile, 12Brittle-to-ductile transition, 342Buffer region, 171

    CADD, 167Canonical ensemble, 40Carbon nanotubes, 438Catalysis, 66Cauchy relation, 55Centrosymmetry parameter, 86Centrosymmetry technique, 410Charge equilibration, 63CHARMM, 56Chemical bonding, 46Chemical complexity, 56, 62, 63, 304,

    359Classical molecular dynamics, 37CMDF, 173Coble creep, 378Cohesive zone, 446Common neighbor analysis, 90Computational efficiency, 54Computational Materials Design

    FacilityCMDF, 173

    Computer experiments, 35Computer power, 79Computing power, historical

    development, 79Concurrent multiscale modeling, 162

  • 484 Index

    Concurrent multiscale simulation tools,157

    Confinement, 244, 301, 436Constrained grain boundary diffusion,

    385atomistic simulations, 396bicrystal model, 396continuum model, 388experimental evidence, 386

    Continuum mechanics, 15, 95Continuum theory, 16, 121Copper

    nanocrystalline, 379nanostructured, 422

    Coulomb potential, 64Coupling

    atomistic-continuum, 393atomistic-continuum theories of

    plasticity, 339atomistic-experiment, 249, 271atomistic-mesoscopic scale, 432strain, 124stress, 123

    Coupling constantheat bath, 41

    Crack, 401, 419diffusion wedge, 386hyperelasticity, 207initiation time, 267parallel glide dislocations, 404versus diffusion wedge, 406

    Cracks, 10Cross-slip, 352Crystal structure, 9

    Deformationdiffusive, 378elastic, 5nanocrystalline materials, 378plastic, 5, 373thin films, 430

    Deformation map, 434Deformation mechanisms, 373Deformation tensor, 104Deformation-mechanism map, 374Density functional theory, 48DFT, 164Differential beam equations, 116Differential multiscale modeling, 159

    Diffusion, 15, 378Diffusion wedges, 385, 395, 397, 409

    crack like, 401dislocation glide, 409formation, 400versus crack, 406, 408

    Diffusive displacement, 401Diffusivity

    copper, 178dependence, 436surface, 178

    Discretization, 76Dislocation

    cross slip, 425pileup, 404pilups, 425

    Dislocation bowing, 412Dislocation channelling, 382Dislocation climb, 388Dislocation cutting, 346Dislocation density, 418

    tensor, 341Dislocation dipole, 396, 403Dislocation dragging force, 349Dislocation motion

    grain boundaries, 421Dislocation network, 421Dislocation pinning, 346Dislocations, 10, 11, 341

    interaction, 424Displacement, 97DREIDING, 56Ductile failure, 13Dundur’s parameter, 393Dynamic materials failure, 5

    EAM, 54, 166, 357, 359Edge dislocation, 329, 390Elastic regime, 5Electron gas, 55Electron volt, 155Electronic properties, 68Embedded atom potential, 48Embedded-atom method, 54Empirical potentials, 50Energetic elasticity, 122Energy approach to elasticity, 105Energy length scale

    characteristic, 188, 234, 244, 299

  • Index 485

    Energy method, 85Energy minimization, 43Energy release rate, 190, 196, 447, 453Entropic elasticity, 122Equations of motion, 39Ergodic hypothesis, 36, 41Experiments

    polycrystalline films, 409

    Failure, 5Failure processes, 32FCC, 9FCC lattice, 142FCC packing, 13FEAt, 163Flaw tolerance, 446, 457Flaws, 10Fleischer mechanism, 351Force calculation, 71Force field, 48Fracture, 12Fracture instability, 197Fracture surface energy, 140Fracture surface energy 3D, 148Free energy minima, 176Friedel-Escaig mechanism, 351

    Gecko, 452, 453Geometric analysis, 85Geometric confinement, 14, 373, 381Geometrically necessary dislocations,

    389Glassy phase, 398Glide

    parallel glide dislocations, 409Grain boundary, 401

    dislocation source, 414, 415jogs, 402stability, 402

    Grain boundary processes, 378Grain boundary structure

    elevated temperature, 400Grain boundary traction relaxation,

    410, 415Grain boundary tractions, 430Grain triple junction, 408Grand canonical ensemble ensemble, 40Green-Kubo relations, 76Griffith condition, 13, 266

    Hall-Petch, 373Hamiltonian, 37Hardening, 424Harmonic potential, 54, 128, 142HCP, 9Heat bath, 41Hierarchical multiscale methods, 157High-energy grain boundary, 410, 414Homologous temperature, 400Hooke’s law, 97Hybrid models, 169, 304, 359Hyperelasticity, 62, 108, 260

    Image force, 392Image stress, 406Insects, 452Interface

    crack-grain boundary, 419Interface effect, 381Interfaces, 287, 436

    dissimilar materials, 287Interfaces and geometric confinement,

    436Interfacial dislocations, 382, 418Intersonic mode I cracks, 242Interstitial tubes, 351Inverse Hall-Petch effect, 375, 376Isobaric-isothermal ensemble, 40

    Jog dragging, 412Jogs, 413

    kcal/mole, 155

    Langevin dynamics, 41Large-scale computing, 78Leap-frog algorithm, 39Length-and time scale

    Classical molecular dynamics, 341Lennard-Jones, 48, 52Limitations, classical molecular

    dynamics, 68LINUX

    supercomputers, 82Liquid-like grain boundary, 398Loading

    strain field, 399Lomer-Cottrell locks, 355Long-time limit, 179Low-energy grain boundary, 410

  • 486 Index

    MAAD, 163Materials failure

    ductile, 85nickel, 85

    Materials in small dimensions, 381Mathews-Freund-Nix mechanism, 386Mean square displacement function, 75Measurement, 37Mechanical properties, 142Medium-range-order analysis, 90Melting temperature

    copper, 399Mesoscopic simulations, 50, 434Message passing, 80Metropolis-Hastings algorithm, 45Microcanonical ensemble, 40Microelectronic devices, 381Microscopic configurations, 41Microstructure, 9, 76Miniaturization, 381Mirror-mist-hackle, 197Mode I fracture

    Mother-daughter mechanism, 289Mode II fracture, 243, 294Mode III fracture, 142, 299Model materials, 35, 341Modeling, 32Modeling and simulation, 32, 33, 90Molecular dynamics, 37Molecular statics, 44Monte Carlo, 37, 45Morse potential, 53Mother-daughter mechanism, 289Mother-daughter-granddaughter

    mechanism, 294MPI, 80Multi-body potential, 54Multi-scale phenomena, 35Multi-scale simulations

    hierarchical, 432Multiparadigm modeling, 158, 170, 357Multiscale, 157Multiscale modeling and simulation,

    157

    Nanocrystalline copper, 376Nanocrystalline materials, 15, 353Nanoindentation, 167Nanomaterials, 26, 438, 446

    Nanoscale, 381confinement, 391deformation phenomena, 435

    Nanoscale adhesion, 453Nanostructured materials, 376

    strain rate, 379yield stress, 379

    Nanostructures, 446Nanotechnology, 3, 381Navier-Bernouilli, 114Newton, 155Newton’s laws, 96Nickel, 85

    nanocrystalline, 379Nonlinear elasticity, 108NPT, 40NVE, 40NVT, 40

    On-the-fly concurrent multiscalemethods, 158

    Organic materials, 56Oxidation, 357

    Pair potential, 48, 50Parallel glide dislocations, 167, 384, 419

    experimental evidence, 386minimum film thickness, 403nucleation, 393, 396, 402nucleation mechanism, 394

    Parallel molecular dynamics, 80Parrinello-Rahman, 41Partial dislocations, 348, 350, 422Partial point defects, 413Pascal, 155PBC, 70Peach-Koehler force, 392Periodic boundary conditions, 70Petaflop computers, 80Phonons, 164Pinning potential, 399Plane strain, 399Plastic deformation, 5Plasticity, 341

    atomistic modeling, 414nanocrystalline materials, 422polycrystalline thin films, 414thin films, 409

    Point defect generation, 413

  • Index 487

    Polycrystalline films, 409Polycrystalline thin films

    atomistic modeling, 415Polycrystalline thin metal films, 381Polymers, 9, 56Post-processing, 85Potential, 48Property calculation, 73, 93Protein unfolding, 92Proteins, 9, 56

    Quantizationstress, 392

    Quantum mechanics, 32, 35, 68Quasicontinuum method, QC, 165Quasicrystals, 201, 343

    Brittle fracture, 201Dislocations, 343Ductile failure, 343

    Radial distribution function, 74Reactive potentials, 59ReaxFF, 59, 62, 169, 304, 359Reduced units, 155Reference units, 155Relaxation, 399Relaxation mechanisms, 430Rice-Thomson model, 404Richard Feynman, 35Rigid boundaries, 403Rise time, 41Robustness, 459

    SC, 9Screw dislocation, 329Self-folding, 439Sessile locks, 353Shielded Coulomb potential, 64Shock loading, 364Silicon, 55Simulation, 32Simulation techniques, 49Single atoms, 179Single edge dislocations, 390Size effects, 373, 381, 438, 452Slip planes, 353Slip vector, 88, 341, 410, 412Small-scale materials, 199Speedup, 81

    Spring constant ratio, 236Stacking fault, 358State transition, 179Statistical mechanics, 36Strain, 97Strain rate, 266, 400Stress, 97Stress intensity, 393Stress intensity factor, 194, 266, 390,

    396parallel glide dislocations, 402

    Stress tensor, 99Sub-micron scale, 381Sub-nano structure, 422Submicron thin films, 385Suddenly stopping crack, 260

    mode I, 268mode II, 278, 280mode III, 303

    Super-Rayleigh fracture, 242, 274Supercomputers, 79Supercomputing, 78, 80, 201, 342Supersonic fracture, 207, 210, 280, 281,

    289Supersonic mode I cracks, 289Supersonic mode II cracks, 243Surface diffusion, 177Surface diffusivity, 177Surface effects, 381, 436Surface steps, 178, 417

    Temperature, 73Temperature accelerated method, 177Tersoff potential, 61The strongest size, 376Thermodynamics, 41, 105, 121Thin films, 167, 381

    deformation map, 434yield stress, 384, 433, 435

    Threading dislocations, 382, 383, 386,402, 417

    versus parallel glide dislocations, 416,430

    Three-dimensional molecular dynamicssimulations, 142

    Threshold stress, 433Tight-Binding approach, 162Tight-binding potential, 48Tilt grain boundary, 399

  • 488 Index

    Time scale, 407Time scale dilemma, 175, 176Time scale methods, 175Time step, 43top500.org, 80Transition region, 171Transport properties, 76Triangular lattice, 9Triple junction, 410Twin grain boundary, 424Twin lamella, 422Two-dimensional lattice, 128

    UFF, 56Unit conversion, 155Unstable stacking fault energy, 14

    Vacancy tubes, 351Velocity autocorrelation function, 76Velocity verlet, 398Velocity Verlet algorithm, 40

    Verlet algorithm, 39Virial strain, 124Virial stress, 76, 77, 123Virtual internal bond method, VIB, 168Viscoelasticity, 169Visualization, 83, 85, 345, 401

    distributed computing, 83movies, 83Richard Hamming, 84virtual reality, 83

    Volterra edge dislocations, 388

    Water formation, 66Work-hardening, 354

    Yield stress, 435Young’s modulus, 97, 120, 133, 142, 204

    bilinear, 138, 207FCC, 142, 144

    Zhou’s virial stress, 77