REFERENCE DESIGN IRDCiP2021C-1 - irf.com

12
International Rectifier 233 Kansas Street, El Segundo, CA 90245 USA R R E E F F E E R R E E N N C C E E D D E E S S I I G G N N IRDCiP2021C-1 IRDCiP2021C-1: 500kHz, 40A, Single Output, Dual Phase Synchronous Buck Converter Featuring iP2021C and IR3623M Overview This reference design is capable of delivering a continuous current of 40A, single output without heatsink at an ambient temperature of 45ºC and airflow of 200LFM. Fig. 4 – Fig. 16 provide performance graphs, thermal images, and waveforms. Fig. 1 – Fig. 3 are provided to engineers as design references for implementing an IR3623+iP2021C solution. The components installed on this demoboard were selected based on operation at an input voltage of 12V (+/-10%), a switching frequency of 500kHz (+/- 15%), and an output voltage of 1.2V. Major changes from these set points may require optimizing the control loop and/or adjusting the values of input/output filters in order to meet the user’s specific application requirements. Refer to iP2021C and IR3623 datasheets for more information. IRDCiP2021C-1 Recommended Operating Conditions (refer to the iP2021C datasheet for maximum operating conditions) Input voltage: 8.5V – 14.5V Output voltage: 0.8 – 5V Switching Freq: 500kHz Output current: This reference design is capable of delivering a continuous current of 40A without heatsink at an ambient temperature of 45ºC and airflow of 200LFM. Demoboard Quick Start Guide Initial Settings: VOUT is set to 1.2V, but can be adjusted from 0.8V to 5V by changing the values of R11 and R15 according to the following formula: R11 = R15 = (10k * 0.8) / (VOUT - 0.8) The switching frequency is set to 500kHz, but can be adjusted by changing the value of R26. See Fig. 4 for the relationship between R26 and the switching frequency. 8/13/2009

Transcript of REFERENCE DESIGN IRDCiP2021C-1 - irf.com

Page 1: REFERENCE DESIGN IRDCiP2021C-1 - irf.com

International Rectifier 233 Kansas Street, El Segundo, CA 90245 USA

RREEFFEERREENNCCEE DDEESSIIGGNN IRDCiP2021C-1

IRDCiP2021C-1: 500kHz, 40A, Single Output, Dual Phase Synchronous Buck Converter Featuring iP2021C and IR3623M

Overview This reference design is capable of delivering a continuous current of 40A, single output without heatsink at an ambient temperature of 45ºC and airflow of 200LFM. Fig. 4 – Fig. 16 provide performance graphs, thermal images, and waveforms. Fig. 1 – Fig. 3 are provided to engineers as design references for implementing an IR3623+iP2021C solution.

The components installed on this demoboard were selected based on operation at an input voltage of 12V (+/-10%), a switching frequency of 500kHz (+/-15%), and an output voltage of 1.2V. Major changes from these set points may require optimizing the control loop and/or adjusting the values of input/output filters in order to meet the user’s specific application requirements. Refer to iP2021C and IR3623 datasheets for more information.

IRDCiP2021C-1 Recommended Operating Conditions (refer to the iP2021C datasheet for maximum operating conditions)

Input voltage: 8.5V – 14.5V

Output voltage: 0.8 – 5V

Switching Freq: 500kHz

Output current: This reference design is capable of delivering a continuous current of 40A without heatsink at an ambient temperature of 45ºC and airflow of 200LFM.

Demoboard Quick Start Guide Initial Settings: VOUT is set to 1.2V, but can be adjusted from 0.8V to 5V by changing the values of R11 and R15 according to the following formula:

R11 = R15 = (10k * 0.8) / (VOUT - 0.8)

The switching frequency is set to 500kHz, but can be adjusted by changing the value of R26. See Fig. 4 for the relationship between R26 and the switching frequency.

8/13/2009

Page 2: REFERENCE DESIGN IRDCiP2021C-1 - irf.com

IRDCiP2021C-1 Power Up Procedure: 1. Apply input voltage across VIN and PGND.

2. Apply load across VOUT pads and PGND pads.

3. Toggle the SEQ (SW1) and EN (SW2) switches to the ON position.

4. Adjust load to desired level. See recommendations above.

www.irf.com 2

Page 3: REFERENCE DESIGN IRDCiP2021C-1 - irf.com

IRDCiP2021C-1

3 www.irf.com

Demoboard Schematic

Fig. 1 Schematic

12

34

56

ABCD

65

43

21

D C B A

1

Inter

natio

nal R

ectif

ier23

3 Kan

sas

St.

iPOW

IR G

roup

El S

egun

doC

A 9

0245

1B22

-Jul

-200

912

:38:3

9

iP20

21 &

IR36

23M

Eva

l - S

ing

le O

utp

utTi

tle

Size

:N

umbe

r:

Date

:

Rev

isio

n:

Shee

tof

:

Time

:

Tabl

oid

C15

100u

FC

1710

uF

L1

0.22

uH L2

0.22

uH

R17

3.65

K

R18

3.65

K

C1

10uF

16V

C2

10uF

16V

C5

10uF

16V

C6

10uF

16V

C3

10uF

16V

C7

10uF

16V

T5 PGN

D

T3 VOU

T1

T1 VIN

TP3

+VO

UTS

1

TP4

-VOU

TS1

C4

10uF

16V

C8

10uF

16V

R22

open

C16

100u

FC

1810

uF

C14

680u

F

T2 PGN

D

TP1

+VIN

S1

TP2

VIN

C19

100u

F

C20

100u

F

C21

10uF

B1 BOAR

D

C54

1uF

T6 PGN

D

T4 VOU

T2

TP5

+VO

UTS

2

TP6

-VOU

TS2

C24

open

R12

open

R10

open

R16

0

R6

open

R26

78.7K

(500

kHz)

R14

open

C36

open

C42

open

C34

open

C33

0.1u

F

TP23

SYN

C

C31

1uF

C32

100p

F

R8

open

C38

open

C40

open

R11

20K

R9

10K

R15

20K

R5

11K

R13

10K

C35

5.6p

F

C41

100p

F

R7

200

C37

2700

pF

C39

390p

F

C23

open

C25

open

C26

open

C22

10uF

1.2V

1.2V

R4 0

R21

open

R19 0 R20 op

enPG

OO

D11

VREF

27

COM

P118

Ph_E

n115

RT

30

SYN

C23

SS1

17

SS2

8

PWM

114

VP1

25

TRAC

K122

VSEN

121

SEQ

24

OCS

ET1

16

ENAB

LE31

VCC

12

5V_SNS32FB

119

VOUT313

TRAC

K23

PGND 29

GND 28

PGO

OD2

2

VP2

26

COM

P27

Ph_E

n210

PWM

211

VSEN

24

OCS

ET2

9

FB2

6

OCGnd 20

FAU

LT5

PGND 0

U3

IRU3

623M

TP18

TRAC

K2

TP17

TRAC

K1 TP24

FAU

LT

C28

open

C30

open

R1

10K R2

10KR3 0

R25

30.1K

R23

10K

R24

10K

TP15

PGO

OD1

TP16

PGO

OD2

C27

open

C29

open

TRK2

TRK1

SEQ

SYN

C

PGD

1

PGD

2

VREF

EN SS1

SS2

RT

FLT

FB1

FB2

VSEN

1

CC1

CC2

OC1

OC2

EN1

EN2

PWM

1

PWM

2

VSW

1

VSW

2

VSEN

2

VIN

VOU

T3

VOU

T3

VOU

T1

VOU

T1

VOU

T2

VIN

VOU

T3

VOU

T3

C13

0.1u

FC

431u

F

R28

0

R33

10K

VOU

T3

R35 0

R27

0

R34

10K

PH_E

N1

PH_E

N2

C51

100p

F

C52

100p

F

R36

open

VP2

R45

open

R29

1.62

KC

490.

47uF

R39 0

VP2

R30

1.62

KC

500.

47uF

R40 0

FB2

R46

9.31

KC

5710

00pF

R47

open

R44 0

R43 0

R42 0

R41 0

VOU

T1

VOU

T2

C45 1uF

C53

1uF

R31

0

R32

0

PWM

1_IC

VCC

VDD

VDD

PWM

2_IC

TP10

EN2

TP12

PWM

2

TP9

EN1

TP11

PWM

1

TP21

VSW

1 TP22

VSW

2

TP13

SS1

TP14

SS2

TP7

VDD

TP8

PGN

D

TP19

CC1

TP20

CC2

TP25

FB1

TP26

FB2

TP27

+VIN

S2

TP28

PGN

D

C55

open

C56

open

SW1

ENSW

2SE

Q

TP29

VO1A

TP30

VO1B

TP31

VO2A

TP32

VO2B

TP35

VOU

T1

TP33

PGN

D

TP36

VOU

T2

TP34

PGN

D

TP37

PGN

DTP

38PG

ND

VOS1

-

VOS2

-

-VOU

TS1

-VOU

TS2

T7 PGN

D

T9 PGN

D

VIN12

ENA1

11

PWM

15

CVCC4

VIN11

VIN29 PGND 7

VSW

12

ENA2

10

PWM

26

PGND 3

VSW

28

U1

iP20

21

OC1

VIN

C9

10uF

16V

C10

10uF

16V

C11

10uF

16V

C12

10uF

16V

1 2

C44

open

1 2

C46

220u

F

1 2

C47

open

1 2

C48

open

VOU

T1

1 2

C58

open

1 2

C59

220u

F

1 2

C60

open

1 2

C61

open

VOU

T2

R37

open

R38 0 R48

open

R49 0

VOS1

+

VOS1

D+

VOS1

D-

VOS1

S+

VOS1

S-

C62

1uF

59.0K

(600

kHz)

16.2K

(1M

Hz)

Page 4: REFERENCE DESIGN IRDCiP2021C-1 - irf.com

IRDCiP2021C-1 Bill of Material

gV

alu

e 2

To

lera

nce

Pac

kaV

alu

e 1

ype

2yp

e 1

Tn

ato

rT

gD

esi

Qu

anti

tye

Man

ufa

c 1

Man

ufa

c 1N

o

16C

1, C

2, C

3, C

4, C

5, C

6, C

7, C

8, C

9, C

10,

C11

, C

12,

C17

, C

18,

C21

, C

22ca

paci

tor

X7R

10.0

uF16

V10

%12

06T

DK

C32

16X

7R1C

106K

T

2C

13,

C33

capa

cito

rX

7R0.

100u

F50

V10

%06

03T

DK

C16

08X

7R1H

104K

1C

14ca

paci

tor

elec

trol

ytic

680u

F16

V20

%S

MD

Pan

ason

icE

EV

-FK

1C68

1GP

4C

15,

C16

, C

19,

C20

capa

cito

rX

5R10

0uF

6.3V

20%

1210

TD

KC

3225

X5R

0J10

7M6

C31

, C

43,

C45

, C

53,

C54

, C

62ca

paci

tor

X7R

1.00

uF16

V10

%06

03T

DK

C16

08X

7R1C

105K

T4

C32

, C

41,

C51

, C

52ca

paci

tor

NP

O10

0pF

50V

5%06

03P

hyco

mp

0603

CG

101J

9B20

1C

35ca

paci

tor

NP

O5.

60pF

50V

+/-

0.50

pF06

03K

OA

NP

O06

03H

TT

D5R

6D1

C37

capa

cito

rX

7R27

00pF

50V

10%

0603

KO

AX

7R06

03H

TT

D27

2K1

C39

capa

cito

rN

PO

390p

F50

V5%

0603

KO

AN

PO

0603

HT

TD

391J

2C

46,

C59

capa

cito

rta

ntal

um p

olym

er22

0uF

2.5V

20%

7343

San

yo2R

5TP

C22

0M2

C49

, C

50ca

paci

tor

X7R

0.47

0uF

16V

10%

0603

TD

KC

1608

X7R

1C47

4KT

1C

57ca

paci

tor

X7R

1000

pF50

V10

%06

03B

C C

ompo

nent

0603

B10

2K50

0NT

2L1

, L2

indu

ctor

ferr

ite0.

22uH

47A

10%

SM

TV

itec

59P

R98

73N

8R

1, R

2, R

9, R

13,

R23

, R

24,

R33

, R

34re

sist

orth

ick

film

10.0

K1/

10W

1%06

03K

OA

RK

73H

1J10

02F

2R

11,

R15

resi

stor

thic

k fil

m20

.0K

1/10

W1%

0603

KO

AR

K73

H1J

2002

F

11R

3, R

4, R

16,

R27

, R

28,

R31

, R

32,

R38

, R

39,

R40

, R

49re

sist

orth

ick

film

01/

10W

1%06

03K

OA

RK

73Z

1JLT

D

2R

17,

R18

resi

stor

thic

k fil

m3.

65K

1/10

W1%

0603

KO

AR

K73

H1J

LTD

3651

F1

R19

resi

stor

thic

k fil

m0

1/8W

<50

m08

05R

OH

MM

CR

10E

ZH

J000

1R

25re

sist

orth

ick

film

30.1

K1/

10W

1%06

03K

OA

RK

73H

1J30

12F

1R

26re

sist

orth

ick

film

78.7

K1/

10W

1%06

03K

OA

RK

73H

1JLT

D78

72F

2R

29,

R30

resi

stor

thic

k fil

m1.

62K

1/10

W1%

0603

KO

AR

K73

H1J

LTD

1621

F1

R35

resi

stor

thic

k fil

m0

1/8W

<50

m12

06P

anas

onic

ER

J-8G

EY

0R00

4R

41,

R42

, R

43,

R44

resi

stor

man

gani

n-fo

il0

2Wn/

a28

17Is

otek

Cor

pS

MT

-R00

01

R46

resi

stor

thic

k fil

m9.

31K

1/10

W1%

0603

KO

AR

K73

H1J

LTD

9311

F1

R5

resi

stor

thic

k fil

m11

.0K

1/10

W1%

0603

KO

AR

K73

H1J

LTD

1102

F1

R7

resi

stor

thic

k fil

m20

01/

10W

1%06

03K

OA

RK

73H

1J20

00F

2S

W1,

SW

2sw

itch

slid

eS

PD

T30

VD

C0.

2Apc

b m

ount

E-S

witc

hE

G12

18

18T

P1,

TP

2, T

P3,

TP

4, T

P5,

TP

6, T

P7,

TP

8,

TP

27,

TP

28,

TP

29,

TP

30,

TP

31,

TP

32,

TP

33,

TP

34,

TP

35,

TP

36ha

rdw

are

test

poi

nt90

mils

112

x 15

0 m

ils-

5016

Key

ston

e50

16

20

TP

9, T

P10

, T

P11

, T

P12

, T

P13

, T

P14

, T

P15

, T

P16

, T

P17

, T

P18

, T

P19

, T

P20

, T

P21

, T

P22

, T

P23

, T

P24

, T

P25

, T

P26

, T

P37

, T

P38

hard

war

ete

st p

oint

60 m

ils40

x 1

05 m

ils-

5015

Key

ston

e50

15

1U

1iP

2021

LGA

uni

tre

v a

--

7.65

mm

x 1

1mm

IRF

rev

a1

U3

IC a

nalo

gP

WM

con

trol

ler

-0.5

- 1

6V-0

.5 -

16V

-40

- 12

0°C

MLP

Q-3

2LIR

FIR

3623

M

www.irf.com 4

Page 5: REFERENCE DESIGN IRDCiP2021C-1 - irf.com

IRDCiP2021C-1

Demoboard Component Placement

Fig. 2 Top Layer (Face View)

Fig. 3 Bottom Layer (Through View)

5 www.irf.com

Page 6: REFERENCE DESIGN IRDCiP2021C-1 - irf.com

IRDCiP2021C-1 Description of Test Points and Connectors

1. Jumpers

Jumper Pin Name Description

SW1 EN Board Enable ( switch Up = On ) - Vin pin on top Off, Down =

SW2 SEQ Sequence ( switch Up = Off, Down = On ) - Vin pin on top

2. Points ctors Test /Conne

Test Point Pin Name Description

T1 / T2 VIN / P Vin supply voltage GND

T ense P2 / TP28 VIN / PGND Vin supply voltage s

T3 / T5 / T7 VOUT1 / PGND / PGND to DC load Channel 1 Output, connect

TP35 / TP33 VOUT1 / PGND Channel 1 Output sense

TP21 / TP37 VSW1 / PGND Channel 1 switch node / PGND test points

TP9 EN1 Channel 1 Enable test point

TP11 PWM1 Channel 1 PWM test point

TP19 CC1 Channel 1 error amplifier output

TP25 FB1 Channel 1 error amplifier non-inverting input

T4 T2 / PGND / PGND / T6 / T9 VOU Channel 2 Output, connect to DC load

TP36 / TP34 VOUT2 / PGND Channel 2 Output sense

TP22 / TP38 VSW2 / PGND Channel 2 switch node / PGND test points

TP10 EN2 Channel 2 Enable test point

TP12 PWM2 Channel 2 PWM test point

TP20 CC2 Channel 2 error amplifier output

TP26 FB2 Channel 2 error amplifier non-inverting input

TP7 / TP8 / PGND le VDD Supply voltage for IRU3623 and iPOWIR modu

TP23 SYNC External frequency synchronization input

TP17 TRACK1 if not used Channel 1 tracking input, pull-up to Vout3

TP18 TRACK2 Track2 test point

TP15 PGOOD1 Channel 1 Power good test point

TP16 PGOOD2 Channel 2 Power good test point

TP13 SS1 Channel 1 Soft start test point

TP14 SS2 Channel 2 Soft start test point

TP24 FAULT Fault monitor test point

3. points ement Test for Efficiency Measur

Test Point Pin Name Description

TP1 / TP4 +VINS 1 Channel 1 Vin sense for eff rement 1 / -VOUTS iciency measu

TP3 / TP4 +VOUTS1 / -VOUTS1 nt Channel 1 Output sense for efficiency measureme

TP27 / TP6 +VINS2 / -VOUTS2 Channel 2 Vin sense for efficiency measurement

TP5 / TP6 +VOUTS2 / -VOUTS2 nt Channel 2 Output sense for efficiency measureme

www.irf.com 6

Page 7: REFERENCE DESIGN IRDCiP2021C-1 - irf.com

IRDCiP2021C-1

Test Results

Fig. 4 Relationship Between Switching Frequency and R2

6

Fig. 5 Power Up Sequence (C3: EN, C1: SS1, C4: VOUT)

Fig. 6 Power Down Sequence (C3: EN, C1: SS1, C4: VOUT)

VIN = 12V, VOUT = 1.2V, Iout = 40A, fsw = 500 kHz

VIN = 12V, VOUT = 1.2V, Iout = 40A, fsw = 500 kHz

7 www.irf.com

Page 8: REFERENCE DESIGN IRDCiP2021C-1 - irf.com

IRDCiP2021C-1

g. 7 Hiccup Mode Over Current Protection (C1: SS1, C4: Iout, C3: VOUT)

VIN = 12V, VOUT = 1.2V, fsw = 500 kHz

Fi

Fi

g. 8 Hiccup Mode Over Current Protection (C1: SS1, C4: Iout, C3: VOUT)

VIN = 12V, VOUT = 1.2V, fsw = 500 kHz

Fig. 9 Deadtime and Ringing on Switch Node

www.irf.com 8

Page 9: REFERENCE DESIGN IRDCiP2021C-1 - irf.com

IRDCiP2021C-1

Fig. 2)

Fig. 10 Output Voltage DC Ripple

Vp-p = 20 mV

out sw

Fig. 11 Output Voltage DC Ripple

12 Load Transient Response (C1: VOUT – AC, C2: Iout divided by

VIN = 12V, VOUT = 1.2V, I = 20A, f = 500 kHz

VIN = 12V, VOUT = 1.2V, Iout = 20A, fsw = 500 kHz

VIN = 12V, VOUT = 1.2V, Iout = 0-40A, 0.5A/µs, Hfsw = 500 k z

9 www.irf.com

Page 10: REFERENCE DESIGN IRDCiP2021C-1 - irf.com

IRDCiP2021C-1

Fig. 13 Bode Plot (VIN = 12V, VOUT = 1.2V, Iout = 20A) Current Sharing Accuracy The accuracy of current sharing is tested by measuring the DC voltage across the two inductors at the following operating conditions: VIN = 12V; VOUT = 1.2V; Iout = 10 – 40A. The test results are shown below:

Table 1 Inductor DC Voltages at Different Currents for Single Output Configuration

Iout (A) VL1 (mV) VL2 (mV)

fc = 65 kHz PM = 49

10 1.5 1.9 20 3.4 3.8 30 5.5 5.8 40 7.5 7.9

www.irf.com 10

Page 11: REFERENCE DESIGN IRDCiP2021C-1 - irf.com

IRDCiP2021C-1

VIN = 12V, VOUT = 1.2V, 200LFM, fsw = 500kHz, No Heatsink

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0 5 10 15 20 25 30 35 40

Load Current (A)

Po

wer

Lo

ss (

W)

45CRoom Temperature

Fig. 14 Power Loss

VIN = 12V, VOUT = 1.2V, 200LFM, fsw = 500kHz, No Heatsink

72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

0 5 10 15 20 25 30 35 40

Load Current (A)

Eff

icie

ncy

45C

Room Temperature

Fig. 15 Efficiency

11 www.irf.com

Page 12: REFERENCE DESIGN IRDCiP2021C-1 - irf.com

IRDCiP2021C-1

www.irf.com 12

IRDCiP2021C-1

www.irf.com 12

Fig. 16 Thermal Image: Iout = 40A, VIN = 12V, VOUT = 1.2V, TA = 45oC, fsw = 500kHz, 200LFM, No Heatsink, Maximum IC Temperature = 94.2oC

Refer to the following application notes for detailed guidelines and suggestions when implementing iPOWIR Technology products: AN-1043: Stabilize the Buck Converter with Transconductance Amplifier This paper explains how to design the voltage compensation network for Buck Converters with Transconductance Amplifier. The design methods and equations for Type II and Type III compensation are given. AN-1028: Recommended Design, Integration and Rework Guidelines for International Rectifier’s iPowIR Technology BGA and LGA and Packages This paper discusses optimization of the layout design for mounting iPowIR BGA and LGA packages on printed circuit boards, accounting for thermal and electrical performance and assembly considerations. Topics discussed include PCB layout placement, and via interconnect suggestions, as well as soldering, pick and place, reflow, inspection, cleaning and reworking recommendations. AN-1030: Applying iPOWIR Products in Your Thermal Environment This paper explains how to use the Power Loss and SOA curves in the data sheet to validate if the operating conditions and thermal environment are within the Safe Operating Area of the iPOWIR product. AN-1047: Graphical solution for two branch heatsinking Safe Operating Area Detailed explanation of the dual axis SOA graph and how it is derived. Use of this design for any application should be fully verified by the customer. Internation l Rectifier cannot guarantee suitability for your applications, and is not liable for any result of usage for such applications including, without limitation, erty damage or violation of third party intellectual property rights. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

a

personal or prop