REDES ÓPTICAS - unitec.edu.ve · Wide Web; E-mail Distributed processing; Client/Server...

64
REDES ÓPTICAS Preparado por: José Fernando Sánchez S Sistemas de Comunicaciones Avanzadas UNITEC Mayo 2009

Transcript of REDES ÓPTICAS - unitec.edu.ve · Wide Web; E-mail Distributed processing; Client/Server...

  • REDES PTICAS

    Preparado por:

    Jos Fernando Snchez S

    Sistemas de Comunicaciones Avanzadas

    UNITEC

    Mayo 2009

  • Introduccin

    "Comunicacin" proviene de la raz latina communicare, es decir, "hacer comn" algo.

    "Informacin" tiene su origen en las palabras in y formare, es decir, "instruir hacia adentro.

    "Telecomunicaciones" significa comunicar a distancia.

    Optica" (Del gr. ). Parte de la fsica que estudia las leyes y los fenmenos de la luz. .

    "Comunicacin son todos aquellos procedimientos por medio de los cuales una mente afecta a otra"

    Shannon

  • Identificacin de la red de telecomunicaciones

    OADM

    WDM10G

    Core

    Acceso ULTIMA MILLA

    STM-XX

    Backbone

    STM-XXSTM-XX

    ISP

    Proveedores de contenido

    Grandes empresas Soho/ Pymes Sector residencial

  • Por qu Fibra Optica ?

    Conexin de puntos distantes.

    Interconexin de centros de cableado.

    Interconexin de edificios.

    Confidencialidad.

    Medio ambiente con perturbacioneselectromagnticas.

    Ambientes Industriales.

    Puntos con distinta tierra.

  • Aplicaciones que causan

    incremento de Ancho de Banda.

    50%31%

    25%

    17%

    15%

    11%

    5%

    4%

    0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

    Videoconferencing;

    Interactive Video

    Multimedia

    Imaging

    CAD files; Graphics

    File transfer; Uploading;

    Downloading

    Internet; Interactive World

    Wide Web; E-mail

    Distributed processing;

    Client/Server

    Telemedicina

  • Beneficios de la FO Largas distancias de Transmisin

    decenas de kilmetros entre

    amplificacdores

    Ancho de banda del orden de

    Terabit/seg

    Cables Livianos

    Diametros pequeos

    Fcil instalacin

    Aislacin (dielectrica)

    Sin Interferencias

    Sin Perturbaciones

    Equivalencia con el cobre en la capacidad de

    transmisin

  • Ventajas de la Fibra

    Optica

    Totalmente Inmune a las Interferencias Electromagnticas.

    Baja Atenuacin.

    Gran Ancho de Banda, > 1 Ghz.

    Absolutamente Confidencial.

    Aislacin Dielctrica entre puntos de conexin.

    Interconexin de grandes distancias.

  • Backbone de Fibra Optica

  • Ba

    ckb

    on

    e v

    erti

    cal

    o d

    e ed

    ific

    io

    Ba

    ckb

    on

    e

    Edifico 1 Edifico 2

    Backbones de Fibra Optica

  • Workstation Workstation Workstation Workstation Workstation Workstation Workstation Workstation Workstation

    Enterprise Servers

    Core Switching / Routing

    FO

    eMail Server

    Laser printer Laser printer IBM laser printerPlotter

    Laser printer ASCII Printer

    FO

    FO

    UTP UTPUTP

  • Enterprise Server

    Enterprise Server

    Enterprise Server

    Admin Server

    Graphics Server

    Workstation Workstation Workstation

    Workstation Workstation Workstation

    Workstation Workstation Workstation

    Workstation Workstation Workstation

    Admin Group Graphics Dept

    Backbone

    Server Farm

    Switch Farm

  • CDDistribuidor

    de Campo

    BDDistribuidor

    de Edificio

    FDDistribuidor

    de Piso

    TOToma de

    Telecom.

    Subsistema

    Backbone de CampoSubsistema

    Backbone de Edificio

    Subsistema

    Cableado Horizontal

    TP(opcional

    )

    Area de

    Trabajo

    Sistema de Cableado Genrico

    ISO/IEC 11801

    Esquema De Cableado Genrico

  • Ethernet MultiPunto

    Switch 100 BASE-T

    Switch 100

    Switch 100

    Fibra Optica

    Switch 100

  • Ethernet Punto a Punto

    Switch 100 BASE-T Switch 100 BASE-T

    Media Converter de FO

  • Introduccin

    Las redes pticas son aquellas en las que el medio de

    transmisin dominante es la fibra ptica. Constituyen

    una de las alternativas para brindar soluciones para

    transmisin de alta capacidad, ofrecer dispositivos

    rpidos de conmutacin y tambin convertirse en una

    solucin de ltimo kilmetro (local loop) hasta el cliente

    final.

    (a) Punto a punto (b) DWDM

  • Ventajas ofrecidas por las redes pticas

    Las redes pticas se constituyen en una de las

    alternativas ms importantes para:

    Satisfacer la creciente demanda de

    ancho de banda,

    Proporcionar transparencia a protocolos

    Proveer alta confiabilidad de conexin

    Ofrecer una operacin y mantenimiento

    simple

  • Ventajas ofrecidas por las redes pticas

    Bajas prdidas (0.2 dB/ km) casi a

    frecuencia constante.

    Gran ancho de banda (GHz.km).

    Tamao y peso reducidos.

    Inmunes a EMI.

    Seguras ( dificilmente pinchables).

    Material base abundante.

  • Diferencias en los medios cableados

  • QUE ES LA LUZ Hay objetos luminosos y objetos

    oscuros.

    La luz se propaga a partir de las fuentes en todas las direcciones posibles.

    Se propaga a travs de la atmsfera, y aun donde no hay atmsfera; y se sigue propagando indefinidamente mientras no se encuentre con un obstculo que le impida el paso.

    La luz viaja en lnea recta mientras no haya nada que la desve y mientras no cambie el medio a travs del cual se est propagando

    http://sombranosilencio.no.sapo.pt/luz.jpg
  • Los obstculos pueden tener muy diversos

    efectos sobre la luz.

    Objetos opacos, que no la dejan pasar. Esto a su

    vez se puede deber a dos razones: ya sea que el

    objeto refleje la luz que incide sobre su superficie, ya

    sea que la absorba. En realidad, la mayora de los

    cuerpos opacos reflejan una parte de la luz que les

    llega y absorbe el resto.

    La luz que absorbe un objeto ya no la regresa.

  • Los materiales transparentes tienen otro efecto interesante sobre la luz: la refractan. Esto significa que al entrar la luz en el material cambia su direccin de propagacin. Mientras sta sigue viajando en el nuevo material, se propaga en lnea recta y ya no se desva, pero si llega a cambiar nuevamente de medio, se refracta otra vez.

  • Reflexion

    Las superficies de los cuerpos speras o irregulares, producen una reflexin difusa, enviando la luz reflejada en todas las direccionesposibles,

    Una superficie lisa y bien pulida, en cambio, produce una reflexin regular; la luz que incide en una direccin determinada, la refleja en otra direccin bien determinada

    Un reflector perfectamente liso y limpio es invisible, como lo es el espejo que slo nos permite ver la imagen reflejada.

    http://images.google.com.co/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Total_internal_reflection.jpg/250px-Total_internal_reflection.jpg&imgrefurl=http://es.wikipedia.org/wiki/Reflexi%25C3%25B3n_interna_total&h=184&w=250&sz=6&hl=es&start=2&tbnid=YGf-KnBm0Rw8NM:&tbnh=82&tbnw=111&prev=/images%3Fq%3Dreflexion%2Bluz%26gbv%3D2%26svnum%3D10%26hl%3Des%26sa%3DG
  • Refraccin

    Es responsable de que una cuchara parcialmente sumergida en un vaso de agua parezca quebrada.

    Cuando un rayo de luz pasa de un medio a otro con diferente ndice de refraccin, se desva. Si el ndice de refraccin del segundo medio es mayor que el del primero, el rayo se quiebra, alejndose de la superficie entre los medios.

    Cuando disminuye el ndice de refraccin, sucede lo contrario: el rayo se acerca a la superficie.

    El ndice de refraccin de los materiales es mayor que 1, aunque en algunas circunstancias especiales puede llegar a ser menor que 1

    http://images.google.com.co/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/thumb/2/20/Refracao.png/180px-Refracao.png&imgrefurl=http://es.wikibooks.org/wiki/F%25C3%25ADsica/%25C3%2593ptica/Reflexi%25C3%25B3n_y_refracci%25C3%25B3n&h=180&w=180&sz=6&hl=es&start=7&tbnid=Ecc4rmCOG0ZRoM:&tbnh=101&tbnw=101&prev=/images%3Fq%3Drefraccion%2Bluz%26gbv%3D2%26ndsp%3D20%26svnum%3D10%26hl%3Des%26sa%3DN
  • Color

    La luz siempre lleva asociado algn color, o una combinacin de ellos; esto nos sugiere que el color ha de estar relacionado con alguna propiedad fsica de la luz.

    Dos factores contribuyen al color de los objetos: stos mismos y la luz que los ilumina. Por ejemplo, una hoja de papel blanco es blanca cuando est iluminada por la luz del Sol, pero se ve roja cuando se la ilumina con luz roja.

  • La luz emitida por un foco o fuente de luz tiene un color que depende de la fuente: del material que la constituye, del mecanismo de emisin y de condiciones fsicas, como la temperatura de la fuente.

    Objetos iluminados por una fuente de luz roja se vern ms claros que otros, pero todos se vern rojos y de ningn otro color. Esto nos indica que los objetos no cambian el color de la luz que les llega; slo afectan su intensidad, su brillo. Las superficies que parecen ms claras son las que reflejan mayor cantidad de luz roja y absorben menos.

  • Encindanse simultneamente la luz roja, la verde y una azul, en proporciones adecuadas de intensidad: los objetos parecen haber recuperado su color "normal"

  • Color

    Las superficies blancas son las que reflejan todos los colores; las negras no reflejan ninguno, porque lo absorben todo. Cuando un material transparente es incoloro es porque deja pasar todos los colores, sin reflejar o absorber ninguno en particular.

    Cuando el rojo, el verde y el azul se suman en proporciones adecuadas, el resultado es blanco. Por ello a estos tres colores se les llama primarios.

  • Cuando se enva un haz de luz blanca hacia un prisma de vidrio (o de otro material transparente), el prisma refracta la luz dos veces: a la entrada y a la salida. Pero lo hace de una manera curiosa; descomponindola en todos los colores del espectro. En otras palabras, el prisma dispersa la luz en forma de abanico, separndola en cada uno de sus colores.

    La componente roja es siempre la que menos se quiebra y la violeta es la que sufre una mayor refraccin. Esta observacin nos indica que el ndice de refraccin del vidrio es diferente para cada uno de los colores: para el naranja es mayor que para el rojo, para el amarillo mayor que para el naranja.

  • La intensidad de cada uno de los colores que aparecen en el espectro depende de la luz original que se dispers. Por ejemplo, si la luz era rojiza antes de entrar al prisma, el espectro contendr bsicamente luz roja, y una proporcin menor de los otros colores. Si la luz es de un color puro, no se dispersa: sale del prisma igual como entr en l (pero desviada). Como puede verse, aqu tenemos un procedimiento para identificar cualquier luz: se la dispersa mediante un prisma y despus se mide la intensidad producida por cada uno de sus componentes.

  • Mediante combinaciones adecuadas de los tres colores primarios rojo, verde, y azul es posible producir cualquier color; no hay color alguno que no pueda obtenerse de esta manera.

    Al color blanco, por ejemplo, corresponde la terna (1/3, 1/3, 1/3) lo que indica que est compuesto de proporciones iguales de rojo, verde y azul. Podra decirse que a cualquier color corresponde un punto en el espacio cromtico. [De hecho, cualquier terna de nmeros iguales representa luz blanca; por ejemplo, (2, 2, 2) corresponde a una luz blanca de mayor intensidad].

  • Daltonismo

    Se sabe que una variedad de las clulas visuales que se encuentra en la retina (los conos) contiene tres tipos de una sustancia sensible a la luz de diferentes colores; estas clulas son las responsables de la percepcin cromtica. La ausencia de una o ms de dichas sustancias se traduce entonces en la incapacidad de distinguir determinados colores.

  • http://images.google.com.co/imgres?imgurl=http://www.patagonias.net/IMAGES/Pictures/SierraGrande-atardecer.jpg&imgrefurl=http://www.patagonias.net/IMAGES/Pictures/Album/index4.htm&h=392&w=595&sz=34&tbnid=2VLsoMpFfskJ:&tbnh=87&tbnw=133&hl=es&start=4&prev=/images%3Fq%3Datardecer%26svnum%3D10%26hl%3Des%26lr%3D%26sa%3DGhttp://images.google.com.co/imgres?imgurl=http://www.patagonias.net/IMAGES/Pictures/Neuquen-atardecer.jpg&imgrefurl=http://www.patagonias.net/IMAGES/Pictures/Album/index3.htm&h=347&w=600&sz=27&tbnid=TC3WqeVZ3N8J:&tbnh=76&tbnw=133&hl=es&start=12&prev=/images%3Fq%3Datardecer%26svnum%3D10%26hl%3Des%26lr%3D%26sa%3DG
  • Dispersin

    El color del cielo se debe a la dispersin de la luz solar por la atmsfera.

    Siempre que un haz de luz atraviesa un gas, las molculas del gas desvan una parte de esa luz en todas direcciones. Es como si la luz fuese un haz de municiones lanzadas a travs de un gas formado de pequeas pelotas; si no hay muchas pelotas (o sea, si el gas no es denso), la mayor parte de las municiones atraviesa sin desviarse, pero algunas chocarn con ellas y rebotarn en todas las direcciones posibles.

  • Conforme aumenta la densidad del gas, se

    hace ms notable el efecto de la dispersin.

    Tambin los lquidos y los slidos

    transparentes dispersan una fraccin de la luz

    que los atraviesa, sobre todo cuando contienen

    impurezas. Cuando la dispersin es alta, se

    habla ya no de materiales transparentes, sino

    traslcidos: aquellos que transmiten la luz de

    manera difusa.

  • El efecto de dispersin por la atmsfera es ms notable en la luz violeta y azul que en el resto del espectro. Por ello, aunque la luz solar es blanca, el Sol aparece amarillento cuando lo miramos de frente (porque ha perdido una parte de su componente azul), y en cambio la luz dispersada por la atmsfera, que ilumina el cielo, es esencialmente azul.

    Al acercarse el Sol al horizonte, la luz que nos llega tiene que atravesar una capa ms gruesa de atmsfera, por lo que la dispersin aumenta; la mayor parte de la luz violeta, azul y verde es desviada, de manera que slo nos llegan los colores comprendidos entre el amarillo y el rojo. A esto se debe el color de los ocasos.

  • Difraccin

    Se observa en un estanque de agua donde hay una barrera, que la onda se deforma al llegar a ella, como dndole la vuelta al obstculo. El resultado es que la onda puede ser detectada aun detrs de la barrera aunque con una menor intensidad. Este efecto, llamado difraccin, se presenta en todos los fenmenos ondulatorios.

    Gracias a la difraccin del sonido podemos escuchar a alguien que nos llama desde otro cuarto: el sonido le da la vuelta a los bordes de las paredes. Es ms, los tonos ms bajos nos llegan mejor, lo que significa que las ondas de mayor longitud se difractan ms.

  • Esto explica por qu no es usual observar la difraccin de la luz: la longitud de las ondas de la luz es sumamente pequea, pequesima comparada con el tamao de los objetos que nos rodean. De hecho, el italiano F. Grimaldi descubri en 1650 la difraccin de la luz al observar cuidadosamente la sombra de un cabello.

    Como resultado de la difraccin de la luz, los contornos de las sombras pierden su nitidez; la frontera entre luz y sombra deja de ser clara. En la zona del borde aparecen franjas claras y oscuras.

  • Interferencia Las ondas de luz emitidas por dos fuentes con fases constantes

    interfieren, dando lugar a un patrn como el de la figura.

    Para que esta interferencia se d es necesario que las dos fuentes enven sus ondas en forma coherente, es decir, que las crestas (o los valles) salgan de sus respectivas fuentes al mismo tiempo (en fase) o con una diferencia de tiempos que se mantenga constante durante toda la emisin; si la fase vara al azar, se destruye la interferencia.

  • En el caso de la figura, en lugar de dos fuentes, se usaron dos rendijas por las que pasa la luz emitida por una solamente.

    La razn de ello es que dos fuentes de luz independientes no producen emisiones coherentes.

    Cada una de las rendijas acta como una nueva fuente. Las zonas oscuras son aquellas en las que la onda de una fuente siempre cancela a la de la otra; son las llamadas zonas de interferencia destructiva, en las que la onda resultante siempre es nula. A sas no llega la luz.

    Las zonas que aparecen ms iluminadas son aquellas en las que siempre coinciden las crestas (o los valles), producindose interferencia constructiva.

  • La luz es un

    fenmeno ondulatorio !!!!!!!!

  • Polarizacin de la luz

    Todas las ondas tienen propiedades en comn, pero tambin tienen caractersticas especficas.

    En particular, resulta que en algunos casos la perturbacin del medio es paralela a la direccin de propagacin de la onda; pinsese por ejemplo en el caso del sonido, en que la alteracin provocada por la fuente sonora se propaga como una onda de compresin y expansin del aire. Se trata aqu de ondaslongitudinales.

    En otros casos la perturbacin del medio es perpendicular a la direccin de propagacin de la onda, como sucede, por ejemplo, con las olas en el agua, o con una cuerda que se pone a vibrar. Se trata entonces de ondas transversales.

  • Las ondas de luz son transversales. Y una diferencia importante entre los dos tipos de onda es que las transversales se pueden polarizar, mientras que las longitudinales no.

    Para entender lo que esto significa, veamos la figura, en la que se dejan caer palillos a travs de una coladera hecha de hilos paralelos. En el caso (a), todos los palillos pasan, pero en el caso (b) slo aquellos que estn orientados en la direccin de los hilos. Podemos decir entonces que esta coladera es como un polarizador, porque del conjunto de palillos que le llegan con todas las orientaciones posibles slo deja pasar aqullos que tienen una determinada orientacin.

  • Birrifrigencia

    Algunos cristales, como el cuarzo, la calcita y la turmalina, tienen la capacidad de polarizar la luz, gracias a una propiedad muy curiosa: estos cristales tienen dos ndices de refraccin. Esto significa que un solo haz incidente es refractado por el cristal de dos maneras, por lo que salen dos haces separados y se forman dos imgenes. Cada una de stas est hecha con luz polarizada.

  • CANAL DE INFORMACION

    EL CANAL ES UNA

    FIBRA DE VIDRIO

    (PLASTICO).

    CARACTERISTICAS

    PRINCIPALES:

    BAJAS PERDIDAS

    GRAN ANGULO DE

    ACEPTACION

  • Caractersticas de las seales

  • Naturaleza de la luz

    ONDA :

    Velocidad de propagacion

    depende del material y

    geometria del medio.

    l = n/ f

    PARTICULA:

    FOTONES

    W = h.f h:cte. de plank

    POTENCIA : Velocidad a la cual

    la energia se entrega: W = P. t

    onda

    partcula

  • Anlisis ptico

    Al interior de la fibra ptica,

    la luz se propaga segn las

    propiedades pticas de

    sta. Esta propagacin se

    puede modelar por

    diferentes mtodos:

    PTICA GEOMTRICA

    a >>> l

    TEORIA ELECTROMAGNTICA

    a ~ l

  • ptica Geomtrica

    1. EN ESPACIO LIBRE:

    Velocidad de los rayos: c = 3 X 108 m/s

    Factor de propagacin k0 = w/c

    Longitud de onda: l0 = c/f

    2. EN OTRO MEDIO.

    Velocidad de los rayos: n = c/n

    Factor de propagacin k = w/n

    Longitud de onda: l = n/f

    k = k0 .n

    l = l0 / n

  • ptica Geomtrica

    3. Los rayos solo se desvian ante cambios en el medio.

    4. Relacin longitud de onda vs frecuencia

    f

    f=c/l Df=-(c/l2) Dl

    l

  • ptica Geomtrica

    - EN PLANO DE FRONTERA

    ANG. INCIDENTE =

    ANG. REFLEJADO

    - SI ALGUNA POTENCIA

    TRASPASA:

    SEN qt = n1SEN qi n2

  • ptica Geomtrica

    - REFLEXIN TOTAL INTERNA

    Cuando un rayo luminoso incide con un ngulo a, de tal forma que el ngulo de refraccin b llegue a ser 90, se dice que hay reflexin total.

  • Fundamentos de ptica

    E = E0 SEN (wt-kz) E = E0 e-a z SEN (wt-kz)

  • POLARIZACION

    El campo E perpendicular a direccin de propagacin.

    Se dice campo polarizado cuando tiene una nica direccin de propagacin.

    Puede ser x, y combinacin de ellas.

  • POLARIZACIN

    Modo: Diferentes formas en las que las

    ondas pueden viajar. Polarizacin es

    solo una de las diferencias entre los

    modos.

    La mayora de las fibras son no

    polarizadas.

  • R y r

    r = n1 - n2

    n1 + n2

    Reflectancia:

    R = r2

  • Rayo Reflejado

    Angulo de incidencia

    Polarizacin del E relativo al plano de

    incidencia

    Cualquier campo incidente puede

    descomponerse en componentes p y s

    Los coeficientes de reflexin para los

    casos p y s se conocen como Leyes de

    Fresnel de Reflexin

  • REFLECTANCIA

    Aire a vidrio Vidrio a aire

  • ANGULO DE BREWSTER

    CERO REFLEXION : ocurre solo para polarizacin paralela.

    Esto se cumple para un ngulo incidente:

    tan qB = h2 / h1

    No prdidas de reflexin.

  • ANGULO CRITICO

    Opuesto al anterior,

    rango de ngulos en los

    cuales ocurre total

    reflexin.

    rs = 1 y rp = 1

    Esto ocurre cuando

    n22 - n21 sen

    2 qi = 0

    qi > qc,

    n 2 < n1

  • Ecuacin de onda

  • Ecuacin de dispersin

  • BIBLIOGRAFA[1] AGRAWAL, Govind P. Fiber Optic Communication Systems.

    Segunda edicin. New York: Wiley Interscience Publication, 1997, pp 556.

    [2] GREEN, Paul E. Fiber Optic Network. New Jersey: Prentice-Hall, 1993, pp 514.

    [3] SENIOR, John M. Optical Fiber Communications: Principles and Practice. New York: Prentice-Hall, 1992, pp 922.

    [4] PALAIS, Joseph C. Fiber optic communications. 4 ed. New Jersey: Prentice-Hall International, 1998, pp 342.

    [5] RAMASWAMI, Rajiv, SIVARAJAN, Kumar N.. Optical networks. A practical perspective. Ed. Morgan Kaufmann Publishers. Primera edicin. 1998, pp 632.

  • BIBLIOGRAFA[6] STERN,Thomas E. BALA, Krishna. Multiwavelength Optical Networks: A layerd approach. Ed. Addison-Wesley. Primera edicin. 1999, pp 766.

    [7] MUKHERJEE, Biswanath. Optical Communications Networks. Ed. McGraw-Hill. Primera edicin. 1997, pp 576.

    [8] DUQUE, Diego M., VILLA, Juan. WDM: Multiplexacin por Divisin de Longitud de Onda. Monografa Universidad Pontificia Bolivariana. Facultad de Ingeniera Elctrica y Electrnica. 2001.

    [9]Chomycz, Bob. Instalaciones de fibra ptica. Ed. McGraw-Hill. Primera edicin. 2000. pp 225.

    [10] Cursos de Comunicaciones pticas Universidad Politcnica de Valencia