Recollimation Shock, Transverse Waves and the Whip in BL Lacertae

22
1 Recollimation Shock, Transverse Waves and the Whip in BL Lacertae M.H. Cohen Caltech Granada 13 vi 2013

description

Recollimation Shock, Transverse Waves and the Whip in BL Lacertae. M.H. Cohen Caltech. M onitoring O f J ets in A ctive Galaxies with V LBA E xperiments. MOJAVE Collaborators. M. Lister (P.I.), J. Richards (Purdue) - PowerPoint PPT Presentation

Transcript of Recollimation Shock, Transverse Waves and the Whip in BL Lacertae

Page 1: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

1

Recollimation Shock, Transverse Waves and the Whip in BL Lacertae

M.H. Cohen Caltech

Granada 13 vi 2013

Page 2: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

2

• M. Lister (P.I.), J. Richards (Purdue)

• T. Arshakian (Univ. of Cologne, Germany)

• M. and H. Aller (Michigan)

• M. Cohen, T. Hovatta, (Caltech)

• D. Homan (Denison)

• M. Kadler, M. Böck (U. Wurzburg, Germany)

• K. Kellermann (NRAO)

• Y. Kovalev (ASC Lebedev, Russia)

• A. Lobanov, T. Savolainen, J. A. Zensus (MPIfR, Germany)

• D. Meier (JPL)

• A. Pushkarev (Crimean Observatory, Ukraine)

• E. Ros (Valencia, Spain)

MOJAVE Collaborators Monitoring

Of

Jets in

Active Galaxies with

VLBA

Experiments

Very Long Baseline Array

The MOJAVE Program is supported NASA Fermi Grant NNX08AV67G

2Granada 13 vi 2013

Page 3: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

3

BL Lac Topics

3

• Components, Ridge Line• Recollimation Shock• PA Variations: Wobble• Transverse Waves• Wave Speeds• Relaxation in 2010: Wiggle• Conclusions

Granada 13 vi 2013

Page 4: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

4

Components

Granada 13 vi 2013 4

• Components are a small number of elliptical Gaussians that sum to the image. They usually are circular.• A component is often a bright spot in the image.• Components are tracked in time, if the cadence of observations is fast enough.

Page 5: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

5

Ridge Line

Granada 13 vi 2013 5

• BL Lac is elongated and has a ridge.

• Most components move downstream• along the ridge (±0.1 mas)

Page 6: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

Granada 10 vi 2013Granada 13 vi 2013 6

Ridge Line and Components

2006.862005.71

Page 7: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

7

Several New Components per YearMax Speed 10.6c

Granada 13 vi 2013

Page 8: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

BL Lac Component Tracks

8Granada 13 vi 2013

quasi-stationaryrecollimation shock

Page 9: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

99

Recollimation Shock

• Component 7 = recollimation shock

• Analogy to M87, 3C120

• Simulation (Lind et al 1999, ...) shows a‘magnetic chamber’ and fast cpts ejected into a ‘nose cone’ (not full 3D RMHD) (Meier p715)

• Need strong toroidal component in the magnetic field

Granada 13 vi 2013

Page 10: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

10

z vmax dist from core

• 3C 120 0.033 5.3c ~ 5 mas 3.1 * 80 mas ~ 3x107 rg

• M 87 .00436 4.3 ** >= 106 rg • BL Lac .0686 10.6 # ~ 106 rg

* downstream from C1 Agudo et al 2012** downstream from HST1 Cheung et al 2007# downstream from cpt 7 MOJAVE

10

Recollimation Shock II

Granada 13 vi 2013

Page 11: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

Granada 10 vi 2013Granada 13 vi 2013 11

BL LacPosition Angle vs Epoch

Page 12: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

Granada 10 vi 2013Granada 13 vi 2013 12

V ≈ 1.15 mas yr-1

≈ 4.8 c

Transverse Wave 2004 - 2007

A

B

A

B

Page 13: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

Shifted Ridge Lines

Granada 15 vi 2013 13

Page 14: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

Transverse Waves 1999-2000

14Granada 15 vi 2013

V ≈ 0.80 mas yr-1

≈ 3.3 c

Page 15: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

15

Transverse Wave 2000-2001

Granada 13 vi 2013 15

Page 16: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

16

Component 16 Advected with the Transverse Wave

Granada 13 vi 2013 16

Page 17: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

17

Several New Components per YearMax Speed 10.6c

Granada 13 vi 2013

Page 18: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

BL Lac Component Tracks

18Granada 13 vi 2013

quasi-stationaryrecollimation shock

CenterlinePA=166o

Page 19: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

BL Lac 2010.8-2012.8wiggle

19Granada 15 vi 2013

PA ≈ 171o

Page 20: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

Granada 10 vi 2013Granada 13 vi 2013 20

• Strong quasi-stationary component is identified as a recollimation shock.• Distance from core ~ 106 rg

• Superluminal components appear to come from or through the recollimation shock.

BL LacConclusions I

Page 21: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

BL LacConclusions II

Granada 13 vi 2013 21

• Jet supports transverse waves.• Waves have superluminal speed.• Waves are correlated with swings in the inner PA.• Components are advected with the transverse motion.• Jet acts more like a rope than a water hose.• When wave activity dies down, a stable wiggle appears.

Page 22: Recollimation Shock, Transverse Waves and the  Whip in BL Lacertae

Granada 13 vi 2013 22

These observations support a model in which the jet contains a strong toroidal magnetic field. Transverse waves (Alfven?) are excited by PA swings of the nozzle, and propagate superluminally downstream, as large-scale wiggles on the ridge line. The superluminal components (fast MHD waves?) stay on the ridge, and can be advected transversely. In 2009 the waves died down, and a small-scale stationary wiggle appeared on the jet.

Conclusions III