Realistic Modeling and Simulation of Earthquakes, Soil ...

48
Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion Realistic Modeling and Simulation of Earthquakes, Soil, Structures and their Interaction Boris Jeremi´ c University of California, Davis Duke University 13th September, 2021 Jeremi´ c et al. Real-ESSI

Transcript of Realistic Modeling and Simulation of Earthquakes, Soil ...

Page 1: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Realistic Modeling and Simulation ofEarthquakes, Soil, Structures and their

Interaction

Boris Jeremic

University of California, Davis

Duke University13th September, 2021

Jeremic et al.

Real-ESSI

Page 2: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

OutlineIntroduction

Uncertain Inelastic MechanicsForward PropagationBackward Propagation, Sensitivities

Real-ESSI Simulator

ExamplesSeismic MotionsPlastic Energy DissipationSensitivity Analysis

Conclusion

Jeremic et al.

Real-ESSI

Page 3: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

OutlineIntroduction

Uncertain Inelastic MechanicsForward PropagationBackward Propagation, Sensitivities

Real-ESSI Simulator

ExamplesSeismic MotionsPlastic Energy DissipationSensitivity Analysis

Conclusion

Jeremic et al.

Real-ESSI

Page 4: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Motivation

Improve modeling and simulation for infrastructure objects

Modeling sophistication level, epistemic uncertainty

Parametric, aleatory uncertainty

Goal: Predict and Inform

Expert numerical modeling and simulation tool

Engineer needs to know!

Jeremic et al.

Real-ESSI

Page 5: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Numerical Prediction under Uncertainty

- Modeling, Epistemic Uncertainty

Modeling simplifications

Modeling sophistication for confidence in results

- Parametric, Aleatory Uncertainty

Mui + Cui + K epui = F (t),

Uncertain: mass M, viscous damping C and stiffness K ep

Uncertain loads, F (t)

Results are PDFs and CDFs for σij , εij , ui , ui , ui

Jeremic et al.

Real-ESSI

Page 6: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Modeling, Epistemic Uncertainty- Important (?!) features are simplified, 1C vs 3C, inelasticity

- Modeling simplifications are justifiable if one or two levelhigher sophistication model demonstrates that featuresbeing simplified out are less or not important

Jeremic et al.

Real-ESSI

Page 7: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Parametric, Aleatory Uncertainty

5 10 15 20 25 30 35

5000

10000

15000

20000

25000

30000

SPT N Value

You

ng’s

Mod

ulus

, E (

kPa)

E = (101.125*19.3) N 0.63

−10000 0 10000

0.00002

0.00004

0.00006

0.00008

Residual (w.r.t Mean) Young’s Modulus (kPa)

Nor

mal

ized

Fre

quen

cy

(cf. Phoon and Kulhawy (1999B))

(cf. Wang et al. (2019))

Jeremic et al.

Real-ESSI

Page 8: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Forward Propagation

OutlineIntroduction

Uncertain Inelastic MechanicsForward PropagationBackward Propagation, Sensitivities

Real-ESSI Simulator

ExamplesSeismic MotionsPlastic Energy DissipationSensitivity Analysis

Conclusion

Jeremic et al.

Real-ESSI

Page 9: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Forward Propagation

Forward Uncertain Inelasticity

- Incremental el–pl constitutive equation

∆σij = EEPijkl ∆εkl =

[Eel

ijkl −Eel

ijmnmmnnpqEelpqkl

nrsEelrstumtu − ξ∗h∗

]∆εkl

- Dynamic Finite Elements

Mui + Cui + K epui = F (t)

- Material and loads are uncertain

Jeremic et al.

Real-ESSI

Page 10: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Forward Propagation

Cam Clay with Random G, M and p0

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.01

0.02

0.03

0.04

Time (s)

Strain (%)0 1.62

Std. Deviation Lines

Mean LineDeterministic Line

Mode Line

Stre

ss (M

Pa)

50

30

10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.37

0

0.005

0.01

0.015

0.02

0.025

0.03

Strain (%)

Mean Line

Std. Deviation Lines

Time (s)

0 2.0

Stre

ss (M

Pa)

3050

100

Deterministic LineMode Line

Jeremic et al.

Real-ESSI

Page 11: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Forward Propagation

Stochastic Elastic-Plastic Finite Element Method- Material uncertainty expanded into stochastic shape funcs.

- Loading uncertainty expanded into stochastic shape funcs.

- Displacement expanded into stochastic shape funcs.

- Jeremic et al. 2011

∑Pdk=0 < Φk Ψ0Ψ0 > K (k) . . .

∑Pdk=0 < Φk ΨP Ψ0 > K (k)∑Pd

k=0 < Φk Ψ0Ψ1 > K (k) . . .∑Pd

k=0 < Φk ΨP Ψ1 > K (k)

.

.

....

.

.

....∑Pd

k=0 < Φk Ψ0ΨP > K (k) . . .∑M

k=0 < Φk ΨP ΨP > K (k)

∆u10...

∆uN0...

∆u1Pu...

∆uNPu

=

∑Pfi=0 fi < Ψ0ζi >∑Pfi=0 fi < Ψ1ζi >∑Pfi=0 fi < Ψ2ζi >

.

.

.∑Pfi=0 fi < ΨPu ζi >

Jeremic et al.

Real-ESSI

Page 12: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Backward Propagation, Sensitivities

OutlineIntroduction

Uncertain Inelastic MechanicsForward PropagationBackward Propagation, Sensitivities

Real-ESSI Simulator

ExamplesSeismic MotionsPlastic Energy DissipationSensitivity Analysis

Conclusion

Jeremic et al.

Real-ESSI

Page 13: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Backward Propagation, Sensitivities

ANOVA Representation

Model with n uncertain inputs (x) and scalar output y :

y = f (x); x ∈ In

The ANalysis Of VAriance representation (Sobol 2001):

f (x1, ...xn) = f0 +n∑

i=1

fi(xi) +∑

1≤i<j≤n

fij(xi , xj) + ...f1,...n(x1, ...xn)

Jeremic et al.

Real-ESSI

Page 14: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Backward Propagation, Sensitivities

Sobol Indices

- Sobol’ indices Si1...is , fractional contributions from randominputs {Xi1 , ...,Xis} to the total variance D: Si1...is = Di1...is/D

- First order indices Si → individual influence of eachuncertain input parameter

- Higher order indices Si1...is → mixed influence from groupsof uncertain input parameters

- Total sensitivity indices, influence of input parameter Xi

Stotali =

∑Si

Di1...is

Jeremic et al.

Real-ESSI

Page 15: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Backward Propagation, Sensitivities

Sobol Indices and Polynomial Chaos

PC expansion of response, in ANOVA form (Sudret 2008)

Multi-dimensional PC bases {Ψj(ξ)} decomposed into productsof single dimension PC chaos bases of different orders

Ψj(ξ) =n∏

i=1

φαi (ξi)

φαi (ξi) is the single dimensional, order αi , polynomial functionof underlying basic random variable ξi .

Jeremic et al.

Real-ESSI

Page 16: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Backward Propagation, Sensitivities

Sobol Sensitivity Analysis

ANOVA→ Sobol’ indices: SPCi1...is

=∑

α∈Si1...isy2αE[Ψ2

α

]/DPC

Total Sobol’ indices: SPC,totalj1...jt

=∑

(i1,...,is)∈Sj1,...,jtSPC

i1...is

Using PC representation of probabilistic model response,Sobol’ sensitivity indices are analytic and inexpensive

Jeremic et al.

Real-ESSI

Page 17: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

OutlineIntroduction

Uncertain Inelastic MechanicsForward PropagationBackward Propagation, Sensitivities

Real-ESSI Simulator

ExamplesSeismic MotionsPlastic Energy DissipationSensitivity Analysis

Conclusion

Jeremic et al.

Real-ESSI

Page 18: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Real-ESSI Simulator SystemThe Real-ESSI, Realistic Modeling and Simulation ofEarthquakes, Soils, Structures and their Interaction Simulator isa software, hardware and documentation system for timedomain, linear and nonlinear, elastic and inelastic, deterministicor probabilistic, 3D, modeling and simulation of:

- statics and dynamics of soil,- statics and dynamics of rock,- statics and dynamics of structures,- statics of soil-structure systems, and- dynamics of earthquake-soil-structure system interaction

Used for:- Design, linear elastic, load combinations, dimensioning- Assessment, nonlinear/inelastic, safety margins

Jeremic et al.

Real-ESSI

Page 19: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Real-ESSI Simulator SystemComponents

- Real-ESSI Pre (gmsh/gmESSI, X2ESSI)- Real-ESSI Program (local, remote, cloud)- Real-ESSI Post (Paraview/pvESSI, Python, Matlab)

Availability- Linux Executables- Amazon Web Services- Docker Container Image

LinuxMS-WindowsMacOS

Real-ESSI documentation and program available athttp://real-essi.us/

Jeremic et al.

Real-ESSI

Page 20: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Real-ESSI Simulation Features

- Static loading stages

- Dynamic loading stages

- Restart, simulation tree

- Solution advancement methods/algorithms,on global and constitutive levels,with and without enforcing equilibrium

- High Performance Computing. Fine grained, template mataprograms, small matrix library. Coarse grained, distributed memory parallel

input

loading stage

increment

iteration

output

Jeremic et al.

Real-ESSI

Page 21: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Real ESSI DSL Examplex

y

P

z

1 model name "SmallTestModel";2 new loading stage "First_static";3 // Nodal Coordinates4 add node # 1 at (0*m, 0*m, 0*m) with 6 dofs;5 add node # 2 at (0*m, 0*in, 1000*mm) with 6 dofs;6 add element # 1 type beam_elastic with7 nodes (1, 2) cross_section=1.0*m^28 elastic_modulus=1.0e5*KN/m^29 shear_modulus=2.0e4*KN/m^2

10 torsion_Jx=2*0.083*m^411 bending_Iy=0.083*m^4 bending_Iz=0.083*m^412 mass_density=2500.0*kg/m^313 xz_plane_vector = (0, −1, 0)14 joint_1_offset = (0.0*m, 0.0*m, 0.0*m)15 joint_2_offset = (0.0*m, 0.0*m, 0.0*m);

Jeremic et al.

Real-ESSI

Page 22: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Real ESSI DSL Example

1 fix node No 1 dofs all;2 add load # 1 to node # 2 type linear Fy=−9*kN;3 define load factor increment 0.01;45 define solver UMFPack;67 define convergence test8 Norm_Displacement_Increment9 tolerance = 1e−5

10 maximum_iterations = 2011 verbose_level = 4;1213 define algorithm Newton;1415 simulate 100 steps using static algorithm;1617 bye;

Jeremic et al.

Real-ESSI

Page 23: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Seismic Motions

OutlineIntroduction

Uncertain Inelastic MechanicsForward PropagationBackward Propagation, Sensitivities

Real-ESSI Simulator

ExamplesSeismic MotionsPlastic Energy DissipationSensitivity Analysis

Conclusion

Jeremic et al.

Real-ESSI

Page 24: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Seismic Motions

Realistic Ground Motions

Jeremic et al.

Real-ESSI

Page 26: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Seismic Motions

6C vs 1C NPP ESSI Response Comparison

(MP4)

Jeremic et al.

Real-ESSI

Page 27: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Seismic Motions

Free Field, Variation in Input Frequency, θ = 60o

(MP4)

Jeremic et al.

Real-ESSI

Page 28: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Seismic Motions

SMR ESSI, Variation in Input Frequency, θ = 60o

(MP4)

Jeremic et al.

Real-ESSI

Page 29: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Seismic Motions

SMR ESSI, 3C vs 3×1C

(OGV)

Jeremic et al.

Real-ESSI

Page 30: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Plastic Energy Dissipation

OutlineIntroduction

Uncertain Inelastic MechanicsForward PropagationBackward Propagation, Sensitivities

Real-ESSI Simulator

ExamplesSeismic MotionsPlastic Energy DissipationSensitivity Analysis

Conclusion

Jeremic et al.

Real-ESSI

Page 31: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Plastic Energy Dissipation

Energy Input and Dissipation

Energy input, static and dynamic forcing

Energy dissipation outside SSI domain:SSI system oscillation radiationReflected wave radiation

Energy dissipation/conversion inside SSI domain:Inelasticity of soil, interfaces, structure, dissipatorsViscous coupling with internal/pore and external fluids

Numerical energy dissipation/production

Jeremic et al.

Real-ESSI

Page 32: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Plastic Energy Dissipation

Plastic Energy DissipationSingle elastic-plastic element under cyclic shear loading

Difference between plastic work and plastic dissipation

Jeremic et al.

Real-ESSI

Page 33: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Plastic Energy Dissipation

Energy Dissipation Control

0 2 4 6 8 10Time [s]

0

250

500

750

1000

1250

1500

1750

2000En

ergy

[MJ]

Kinetic EnergyStrain EnergyPlastic Free EnergyPlastic DissipationViscous DampingNumerical DampingInput Work

Jeremic et al.

Real-ESSI

Page 34: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Plastic Energy Dissipation

Inelastic Modeling of Soil Structure Systems

- Soil, inelastic, elastic-plasticDry, single phaseUnsaturated, partially saturatedFully saturated

- Contact/Interface/Joint, inelastic: dry or saturatedAxial, hard and soft, gap open/closeShear, friction, nonlinear

- Structure, inelastic, damage, cracksInelastic fiber beamInelastic layer shellInelastic 3D solid element

Jeremic et al.

Real-ESSI

Page 35: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Plastic Energy Dissipation

Acceleration Traces, Elastic vs Inelastic

150 100 50 0 50 100 150Width [m]

150

100

50

0

50

100

Depth

[m

]

A

B

C

D

E

F

G

1g

8

10

12

14

16

18

20

22

24

Tim

e [s]

150 100 50 0 50 100 150Width [m]

150

100

50

0

50

100

Depth

[m

]

A

B

C

D

E

F

G

1g

8

10

12

14

16

18

20

22

24

Tim

e [s]

Elastic Inelastic

Jeremic et al.

Real-ESSI

Page 36: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Plastic Energy Dissipation

Displacement Traces, Elastic vs Inelastic

150 100 50 0 50 100 150Width [m]

150

100

50

0

50

100

Depth

[m

]

A

B

C

D

E

F

G

20cm

8

10

12

14

16

18

20

22

24

Tim

e [s]

150 100 50 0 50 100 150Width [m]

150

100

50

0

50

100

Depth

[m

]

A

B

C

D

E

F

G

20cm

8

10

12

14

16

18

20

22

24

Tim

e [s]

Elastic Inelastic

Jeremic et al.

Real-ESSI

Page 37: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Plastic Energy Dissipation

NPP: Energy Dissipation

(MP4)

Jeremic et al.

Real-ESSI

Page 38: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Plastic Energy Dissipation

Energy Dissipation for Design

140 m

51

m

32 m

16

m

40 m12 m

2 mA

A

Soil

Damping Layers

DRM Layer

Contact

ReinforcedConcrete

Frame

Section A-A

Cover Concrete

Core Concrete

Steel Rebar10

66

mm

610 mm

Jeremic et al.

Real-ESSI

Page 40: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Sensitivity Analysis

OutlineIntroduction

Uncertain Inelastic MechanicsForward PropagationBackward Propagation, Sensitivities

Real-ESSI Simulator

ExamplesSeismic MotionsPlastic Energy DissipationSensitivity Analysis

Conclusion

Jeremic et al.

Real-ESSI

Page 41: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Sensitivity Analysis

Stochastic Site Response

- Uncertain material:uncertain random field,marginally lognormaldistribution,exponential correlationlength 10m

- Uncertain seismicrock motions:seismic scenarioM=7, R=50km

Jeremic et al.

Real-ESSI

Page 42: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Sensitivity Analysis

Stochastic Material Parameters

Lognormal distributed random field with PC Dim. 3 Order 2

Jeremic et al.

Real-ESSI

Page 43: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Sensitivity Analysis

Stochastic Seismic Motion Development

- UCERF3 (Field et al. 2014)- Stochastic motions (Boore 2003)- Polynomial Chaos Karhunen-Loève expansion- Probabilistic DRM (Bielak et al. 2003, Wang et al. 2021)

Date of download: 9/30/2018 Copyright 2014

From: Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)—The Time‐Independent Model

Bulletin of the Seismological Society of America. 2014;104(3):1122-1180. doi:10.1785/0120130164

3D perspective view of California, showing the 2606 fault sections (black rectangles) of UCERF Fault Model 3.1 (FM 3.1). Colors indicate the long‐term rate at which each area participates in M≥6.7 earthquakes, averaged over all 720 UCERF3 logic‐tree branches for FM 3.1 and including aftershocks. The entire colored area represents the UCERF model region, which comprises California and a buffer zone. The white boxes define the San Francisco Bay area and Los Angeles regions used in various calculations, and the white line crossing the state is our definition of northern versus southern California. The Cascadia megathrust is not shown on this map; it and the Mendocino transform fault (which is shown) extend beyond the UCERF model region.

Figure Legend:

High  Frequency  Simula4on  

The  high  frequency  simula5on  approach  is  based  on  the  “stochas5c”  method  first  introduced  for  point  sources  by  Boore  (1993).  The  extension  to  finite-­‐faults  is  described  by  Frankel  (1995),  Beresnev  and  Atkinson  (1997)  ,  and  Hartzell  et  al.  (1999),  among  many  others.    The  representa5on  is  constructed  in  the  frequency  domain  and  aims  to  match  the  w2  amplitude  spectrum  as  described  by  Brune  (1970).  

Deno5ng  A(f)  as  the  Fourier  transform  of  the  ground  accelera5on  waveform  a(t)  observed  at  a  par5cular  site  for  a  specified  fault  rupture,  this  can  then  be  represented  as  the  summa5on  of  the  individual  responses  Ai(f)  from  each  subfault,  where  N

High  Frequency  Representa1on  Theorem  

F  {a(t)}  =  A(f)  =  Si=1,N  Ai(f)  

The  accelera5on  spectrum  for  the  ith  subfault

Ai(f)  =  Sj=1,M  Cij  Si(f)  Gij(f)  P(f)  Wi*(f)  

where  the  summa5on  j=1,M  accounts  for  different  possible  ray  paths  (e.g.,  direct,  Moho-­‐reflected),  and  

Cij    radia5on  scale  factor  Si(f)    subfault  source  amplitude  spectrum  Gij(f)  path  term  P(f)    site  anenua5on  term  Wi

*(f)   (modified  from  Boore,  1983)  

Jeremic et al.

Real-ESSI

Page 44: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Sensitivity Analysis

Stochastic Seismic Motions

Jeremic et al.

Real-ESSI

Page 45: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Sensitivity Analysis

Sensitivity Analysis

Total variance in PGA, in this case (!), dominated by uncertainground motions

49% from uncertain rock motions at depth

2% from uncertain soil

49% from interaction of uncertain rock motions anduncertain soil

Jeremic et al.

Real-ESSI

Page 46: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

OutlineIntroduction

Uncertain Inelastic MechanicsForward PropagationBackward Propagation, Sensitivities

Real-ESSI Simulator

ExamplesSeismic MotionsPlastic Energy DissipationSensitivity Analysis

Conclusion

Jeremic et al.

Real-ESSI

Page 47: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Appropriate Quotes

François-Marie Arouet, Voltaire: "Le doute n’est pas unecondition agréable, mais la certitude est absurde."

Max Planck: "A new scientific truth does not triumph byconvincing its opponents and making them see the light,but rather because its opponents eventually die, and a newgeneration grows up that is familiar with it."

Niklaus Wirth: "Software is getting slower more rapidlythan hardware becomes faster."

Jeremic et al.

Real-ESSI

Page 48: Realistic Modeling and Simulation of Earthquakes, Soil ...

Introduction Uncertain Inelastic Mechanics Real-ESSI Simulator Examples Conclusion

Summary

- Numerical modeling to predict and inform

- Education and Training is the key !

- Collaborators: Feng, Yang, Behbehani, Lacour, Sinha,Wang, Wang, Pisanó, Abell, Tafazzoli, Jie, Preisig,Tasiopoulou, Watanabe, Luo, Cheng, Yang.

- Funding from and collaboration with the US-NSF, US-DOE,US-NRC, US-FEMA/ATC, CNSC-CCSN,CH-ENSI/Basler&Hofmann, UN-IAEA, and Shimizu Corp.is greatly appreciated,

http://sokocalo.engr.ucdavis.edu/~jeremic

Jeremic et al.

Real-ESSI