Rcs1-Chapter2-Standards

63
1 Reinforced Concrete Structures 1 - Eurocodes RCS 1 Professor Marwan SADEK https://www.researchgate.net/profile/Marwan_Sadek https://fr.slideshare.net/marwansadek00 Email : [email protected] If you detect any mistakes, please let me know at : [email protected]

Transcript of Rcs1-Chapter2-Standards

Page 1: Rcs1-Chapter2-Standards

1

Reinforced Concrete

Structures 1 - Eurocodes

RCS 1

Professor Marwan SADEKhttps://www.researchgate.net/profile/Marwan_Sadek

https://fr.slideshare.net/marwansadek00

Email : [email protected]

If you detect any mistakes, please let me know at : [email protected]

Page 2: Rcs1-Chapter2-Standards

2

PLAN – RCS1

M. SADEK

Ch 1 : Generalities – Reinforced concrete in practice

Ch 2 : Evolution of the standards – Limit states

Ch 3 : Mechanical Characteristics of materials – Constitutive relations

Ch 4 : Durability and Cover

Ch 5 : Beam under simple bending – Ultimate limit state ULS

Ch 6 : Beam under simple bending – serviceability limit state SLS

Ch 7 : Section subjected to pure tension

Page 3: Rcs1-Chapter2-Standards

3

Selected ReferencesFrench BAEL Code (91, 99)

Règles BAEL 91 modifiées 99, Règles techniques de conception et de calcul des ouvrages et constructions en béton armé, Eyrolles, 2000. J. Perchat (2000), Maîtrise du BAEL 91 et des DTU associés, Eyrolles, 2000. J.P. Mougin (2000), BAEL 91 modifié 99 et DTU associés, Eyrolles, 2000.….

EUROCODES H. Thonier (2013), Le projet de béton armé, 7ème édition, SEBTP, 2013. Jean-Armand Calgaro, Paolo Formichi ( 2013) Calcul des actions sur lesbâtiments selon l'Eurocode 1 , Le moniteur, 2013. J. M. Paillé (2009), Calcul des structures en béton, Eyrolles- AFNOR, 2009. Jean Perchat (2013), Traité de béton armé Selon l'Eurocode 2, Le moniteur,2013 (2ème édition) Manual for the design of concrete building structures to Eurocode 2, TheInstitution of Structural Engineers, BCA, 2006. A. J. Bond (2006), How to Design Concrete Structures using Eurocode 2, Theconcrete centre, BCA, 2006.https://usingeurocodes.com/

M. SADEK

Page 4: Rcs1-Chapter2-Standards

4

In addition to Eurocodes, the references that are mainly used to prepare this course material are : Thonier 2013

Perchat 2013

Paillé 2009

Some figures and formulas are taken from

Cours de S. Multon - BETON ARME Eurocode 2 (available on internet)

Cours béton armé de Christian Albouy

M. SADEK

Page 5: Rcs1-Chapter2-Standards

5

CHAPTER 2

Evolution of the STANDARDS – LIMIT STATES

M. SADEK

1. Introduction – Design standards

2. Eurocodes

3. EC0 / Semi –probabilistic methods

4. Limit states

5. Actions – Eurocode 1

6. Combinations of Actions (SLS- ULS)

Annexes

Page 6: Rcs1-Chapter2-Standards

6

Design standards / History

M. SADEK

Admissible stresses : BA45, BA60, CCBA68

( Safety factor applied on the resistance of materials, + use of linear elastic model)

Limit states : BAEL 83, BAEL 91, modifiée 99

other: ACI, BS, SIA

Eurocodes (EC2 –Reinforced & Prestress Concrete) : limit state

concept used in conjunction with a partial factor method

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 7: Rcs1-Chapter2-Standards

7

The EUROCODES

The EN Eurocodes are a series of 10 European Standards, EN

1990 - EN 1999, providing a common approach for the design of

buildings and other civil engineering works and construction

products

Three official languages (English, French, German)

These european standards « EUROCODES » are intended to

harmonize the design regulations inside the European union.

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 8: Rcs1-Chapter2-Standards

8

The clauses of EUROCODES are composed of the Principles and

Application Rules :

The Principles, identified by the letter (P) comprise the general

statements and definitions for which there is no alternative, as well

as requirements and analytical models for which no alternative is

permitted unless specifically stated.

The Application Rules are generally recognized rules which

comply with the Principles and satisfy their requirements.

NOTE :The Eurocodes are applicable for the design of new structures, but the principles, the basicrequirements and the application rules of EN1990 are applicable for the structural appraisal ofexisting construction, in developing the design of repairs and alterations or in assessing changesof use.

The EUROCODES

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 9: Rcs1-Chapter2-Standards

9M. SADEK

EUROCODES establish fundamental requirements in order to reach an appropriate

level of performance in terms of structural reliability mainly :

The structural SAFETY OF PEOPLE

The SERVICEABILITY and FUNCTIONING of the structure

The STRUCTURAL INTEGRITY in accidental situations

The DURABILITY, with regard to environmental conditions

The EUROCODES

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 10: Rcs1-Chapter2-Standards

LIST OF EUROCODES

Nb of StandardsBasis of structural design EC 0 2ACTIONS EC 1 10CONCRETE EC 2 4STEEL EC 3 20COMPOSITE EC 4 3TIMBER EC 5 3MASONARY EC 6 4GEOTECHNIC EC 7 2EARTHQUAKE EC 8 6ALUMINIUM EC 9 5

NOTA : The 10 Eurocodes constitute a group of 59 parts ( 30 until 2005)

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 11: Rcs1-Chapter2-Standards

Links between EUROCODES

Structural safety, service-

ability and durability

Actions on structures

Design and detailing

Geotechnics & Earthquake

EN 1991

EN 1990

EN 1992 EN 1993 EN 1994

EN 1995 EN 1996 EN 1999

EN 1997 EN 1998

The EUROCODES

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 12: Rcs1-Chapter2-Standards

12M. SADEK

Typical Layout

• National Title Page

• National Foreword

• EUROCODE – MAIN TEXT

• NORMATIVE ANNEXES

• INFORMATIVE ANNEXES

• NATIONAL ANNEX

(Professional rules)

European STANDARD

French Standard

NATIONAL STANDARDS IMPLEMENTING EUROCODES

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 13: Rcs1-Chapter2-Standards

13M. SADEK

EUROCODE 2 French Standard NF EN 1992

DESIGN OF CONCRETE STRUCTURES:

EN 1992-1-1 : General rules, and rules for buildings (2005)

FNA - French National Annex (2007)

Professional recommendations (2007)

EN 1992-1-2 : Structural fire design

EN 1992-2 : Reinforced and prestressed concrete bridges

EN 1992-3 : Liquid retaining and containing structures

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 14: Rcs1-Chapter2-Standards

14M. SADEK

The EUROCODES for the design of RC buidings

EUROCODE Part D’EUROCODE TITRE ET/OU OBJET

EN 1990 – Basis of structural designMain part

Fundamental requirements. Design principle at Limit states using the partial factor method.

AnnexeA1 Combinations of actions – application for buildings

EN 1991 : Eurocode 1 – Actions on structures

Part 1-1 Densities, self-weight, imposed loads for buildings

Part 1-2 Actions on structures exposed to fire.

Part 1-3 General actions - Snow loads

Part 1-4 General actions - Wind actions

Part 1-5 General actions - Thermal actions

Part 1-6 General actions - Actions during execution.

Part 1-7 General actions - Accidental Actions

EN 1992 : Eurocode 2 – Design of concrete structures Part 1-1 General rules, and rules for buildings

Part 1-2 Structural fire design

EN 1997 : Eurocode 7 – Geotechnical design Part 1 General rules - Design of foundation

EN 1998 : Eurocode 8 – Design of structures for earthquake resistance

Part 1 General rules, seismic actions and rules for buildings.

Part 5 Foundations, retaining structures and geotechnical aspects

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 15: Rcs1-Chapter2-Standards

15M. SADEK

L’EUROCODE 0 : BASIS OF STRUCTURAL DESIGN

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 16: Rcs1-Chapter2-Standards

16M. SADEK

L’EUROCODE 0 : BASIS OF STRUCTURAL DESIGN

Several factors are likely to affect the safety of a construction

• Definition of the applied actions (Actions)

• Properties of the materials

• Definition of the internal forces (Effect of actions)

• Methods and design assumptions

• Execution method / qualification of employees

Safety

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 17: Rcs1-Chapter2-Standards

17M. SADEK

Origin of Probabilism

A limit state could be reached due to combined effect of several random factors

of uncertainties. The basic idea of probabilism is to limit the probability of

reaching a limit state by taking into account the random character of :

Uncertainty in material property

Uncertainty in representative values of actions

Model uncertainty in actions and action effects (internal forces M,

N, T ..)

Model uncertainty in structural resistance

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 18: Rcs1-Chapter2-Standards

18M. SADEK

L’EUROCODE 0 : BASIS OF STRUCTURAL DESIGN

SEMI-PROBABILISTIC Method in conjunction with Partial factor

of safety (Actions, resistance, effects)

LIMIT STATE CONCEPT

The design method at « Limit State » apply the partial factor ofsafety on the material Resistance and on the Actions (and theireffect)

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 19: Rcs1-Chapter2-Standards

19M. SADEK

Check using the PARTIAL FACTOR METHOD

Fd : design value of the Action

Fk : Characteristic value of the Action

Frep : Representative value of the Action

f : partial factor for the Action accounting for model uncertainties and

dimensional variations

ψ = ψ0, ψ1 ou ψ2 (factors of combinations)

1) Design values of actions (Fd)

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 20: Rcs1-Chapter2-Standards

20M. SADEK

2) Design Value of the effect of the action (Ed)

ad : Design values of geometrical data

Sd : Partial factor associated with the uncertainty of the action and/or

action effect model

Check using the PARTIAL FACTOR METHOD

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 21: Rcs1-Chapter2-Standards

21M. SADEK

Check using the method of partial factors

3) Design value of a material property (Xd)

Xk : Characteristic value of a material property

: mean value of the conversion factor that take in account the scale

effect, humidity, temperature ..

m : Partial factor for a material property

(ex : 1.5 the concrete, 1.2 pour the steel)

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 22: Rcs1-Chapter2-Standards

22M. SADEK

Semi – Probabilistic Method

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 23: Rcs1-Chapter2-Standards

23M. SADEK

INDICATIVE DESIGN WORKING LIFE

DESIGN WORKINGLIFE CATEGORY

Indicative design

working life (years)

FNA EXAMPLES

1 10 10Temporary structures

2 10-25 25 Replaceable structural parts, e.g. gantry girders,

3 15-30 25Agriculture and similar structures

4 50 50 Buildings structures and other common structures

5 100100 Monumental building structures, bridges and other civil

engineering structures

The design working life should be specified. Table 2.1 of EN 1990 proposes:

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 24: Rcs1-Chapter2-Standards

24M. SADEK

PRINCIPLE OF

LIMIT STATE DESIGN

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 25: Rcs1-Chapter2-Standards

25M. SADEK

PRINCIPLE OF LIMIT STATE DESIGN

A limit state is a condition of a structure beyond which it no

longer fulfills the relevant design criteria.

Ultimate Limit State (ULS)

Serviceability Limit State (SLS)

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 26: Rcs1-Chapter2-Standards

26

Ultime Limit State (ULS)

M. SADEK

Maximum capacity of the structure (people and structural safety)

Exceeding ULS Immediate Collapse

Based on Eurocodes, We distinguish the following ULS:

1. Loss of static equilibrium of the structure or any part (EQU)

2. Internal failure or excessive deformation of the structure or structural

members (STR)

3. Failure or excessive deformation of the ground (GEO)

4. Fatigue failure (FAT)

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 27: Rcs1-Chapter2-Standards

27

Ultime Limit State (ULS)

M. SADEK

1. Loss of static equilibrium (EQU)

Ex : Sliding or Overturning of a retaining Wall : earth pressure,

friction …

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 28: Rcs1-Chapter2-Standards

28

Ultime Limit State (ULS)

M. SADEK

2. Structural failure (STR)

2.a) Résistance of materials:

Failure of one or several structural elements even if the global

equilibrium is ok (beam subjected to bending or shear..)

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 29: Rcs1-Chapter2-Standards

29

Ultime Limit State (ULS)

M. SADEK

2. Structural failure(STR)

2.b) Elastic instabilities : Buckling of columns, lateral torsional

buckling of beams

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 30: Rcs1-Chapter2-Standards

30

Serviceability Limit State - SLS

M. SADEK

The SLS are associated with conditions of normal use. They concern

the functioning of the structure, confort of people.

Strain, vibration, cracking..

We distinguish the following SLS:

1. Stress limitation (Steel & Concrete)

2. Crack control (crack width)

3. Deflection control

Other : Vibration, Thermal or sound insulation…

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 31: Rcs1-Chapter2-Standards

31M. SADEK

1. Stress limitation in Steel and Concrete: In order to limit the

longitudinal cracks, micro cracks or high creep ..

Serviceability Limit State - SLS1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 32: Rcs1-Chapter2-Standards

32M. SADEK

2. Crack Control : Cracks should not be unsightly or wide

enough to lead to durability problems. It depends on several

parameters (steel-concrete bond, minimum cover..)

Definition of Exposure Classwmax 0.4, 0.3 ou 0.2 mm

Serviceability Limit State - SLS1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 33: Rcs1-Chapter2-Standards

33M. SADEK

3. Deflection control (Appropriate limiting values of deflection)

Serviceability Limit State - SLS1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 34: Rcs1-Chapter2-Standards

34

ACTIONS (LOADS)

Eurocode 1

M. SADEK

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 35: Rcs1-Chapter2-Standards

35

ACTIONS (Loads)(EN 1991 – Part 1)

M. SADEK

Forces induced by the applied loads and/or imposed deformation

to a construction.

Different sources :

Permanent load

Variable Load (Live load)

Climate load

Imposed deformation : Temperature variation,

soil settlement ..

Earthquake, Fire

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 36: Rcs1-Chapter2-Standards

36

ACTIONS (Loads)

M. SADEK

Fk : Characteristic value of an Action

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 37: Rcs1-Chapter2-Standards

37

Classification of Actions

M. SADEK

1. Permanent Loads

2. Variable loads

3. Accidental loads

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 38: Rcs1-Chapter2-Standards

38M. SADEK

1. Permanent loads (characteristic value Gk : low variability ,

represented by mean value, see Annex A for densities)

Self Weight of the structure

Weight of equipments : cladding, machines in industries

Weight, earth pressure, liquid pressure (constant level)

NOTE: In some cases, the variation in permanent load should be taken in account

(when the difference becomes significant)

Ex : asphalt pavement layer (± 20 %)

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 39: Rcs1-Chapter2-Standards

39M. SADEK

2. Variable loads

imposed loads (or Live load) in a building or a bridge (Q)

Climatic Action : Wind (W), Snow (S))

Uniform or differential variation of temperature (T ou T)

Moving loads (Trucks, trains ..)

..

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 40: Rcs1-Chapter2-Standards

40M. SADEK

3. Accidental Action FA

Non common, quick

Only at ULS

Accident of a truck on a bridge

Fire

Earthquake (E)

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 41: Rcs1-Chapter2-Standards

41M. SADEK

Characteristic values of Imposed Loads (NF-EN 1991-1-1, 6.3)The Residential, social, commercial and administration areas in buildings are classified in Four categories (Table 6.1)

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 42: Rcs1-Chapter2-Standards

42M. SADEK

Imposed loads in buildings (NF-EN 1991-1-1, 6.3)

qk (uniformly distributed load –general effect)

Qk (concentrated load impact on 50x50 mm²-local effect)

EC1

Example : Imposed loads on floors, balconies and stairs in buildings (Table 6.2)

FNA

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 43: Rcs1-Chapter2-Standards

43M. SADEK

Imposed loads in buildings (NF-EN 1991-1-1, 6.3)

Example : : Imposed loads on floors, balconies and stairs in buildings

Additional load due to partition

movable partitions with a self-weight ≤ 1,0 kN/m wall length : qk = 0,5 kN/m²

movable partitions with a self-weight ≤ 2,0 kN/m wall length : qk = 0,8 kN/m²

movable partitions with a self-weight ≤ 3,0 kN/m wall length : qk = 1,2 kN/m²

In lebanon : It is recommended to take an additional load of partitions :

150 to 200 daN/m²

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 44: Rcs1-Chapter2-Standards

44M. SADEK

Imposed loads in buildings (NF-EN 1991-1-1, 6.3)

Other aspects (see annexes)

Storage

Parking

Horizontal reduction factor

Vertical reduction factor

..

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 45: Rcs1-Chapter2-Standards

45

Combinations of Actions (EC0)

M. SADEK

The assessment of internal forces (N, T, M) is done on the basis of

load combination

Combination ULS

Combination SLS

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 46: Rcs1-Chapter2-Standards

46M. SADEK

Characteristic value of a permanent action Gk

Gk,sup Characteristic value of unfavourable Permanent action for the design of a

given element (Earth pressure on a retaining wall)

Gk,inf Characteristic value of favourable Permanent action for the design of a

given element (Earth pressure on a retaining wall) (soil Self weight on a

retaining wall)

Characteristic Value of the Action

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 47: Rcs1-Chapter2-Standards

47M. SADEK

Characteristic value of a single variable action Qk

Combination value, 0Qk

Frequent value, 1Qk

Quasi-permanent value 2Qk

Characteristic Value of the Action

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 48: Rcs1-Chapter2-Standards

48M. SADEK

Table A1.1 / EN1990 – Recommended values of factors for buildings

Characteristic Value of the Action1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 49: Rcs1-Chapter2-Standards

49

Combinations of Actions ULS (STR)

M. SADEK

1. Fundamental Combination

To simplify, for buildings

When considering the critical variable action

When considering leading and accompanying variable Actions

G : Partial factor for permanent actions G =1.35 if G unfavourable, 1, if favourable

Q,1 : Partial factor for variable action , Q,1 =1.5 for leading and accompanying variable Action

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 50: Rcs1-Chapter2-Standards

50M. SADEK

2) Accidental Combination

Combinations of Actions ULS (STR)

3) Seismic Combination

Ad : design value of an accidentel action

1,1 : if fire

AEd :design value of action due to Earthquake ground motion

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 51: Rcs1-Chapter2-Standards

51M. SADEK

1) Characteristic Combination :

Combinations of Actions SLS

2) Frequent Combination :

3) Quasi-permanent Combination

1. Introduction 2. Eurocodes 3. EC0/Semi probabilism 4. Limit States 5. Actions 6. Combinations of Actions

Page 52: Rcs1-Chapter2-Standards

52

Annexes

M. SADEK

Page 53: Rcs1-Chapter2-Standards

53M. SADEK

Selected Parts of ANNEX A (EC1 – part 1.1)Construction materials -Tables A1 A12

Table A.1 - Concrete and mortar

Page 54: Rcs1-Chapter2-Standards

54M. SADEK

Selected Parts of ANNEX A (EC1 – part 1.1)Construction materials -Tables A1 A12

TableA.2 - Masonry

Page 55: Rcs1-Chapter2-Standards

55M. SADEK

ANNEX A (EC1 – part 1.1)

Table A.3 - Timber Table A.4 - Metals

Page 56: Rcs1-Chapter2-Standards

56M. SADEK

ANNEXE A (EC1 – Part 1.1)Table A.7 - Stored Materials

Page 57: Rcs1-Chapter2-Standards

57M. SADEK

Extracted parts (EC1 – part 1.1 - 6.3)

Storage Areas, Parking

Reduction Factors

Page 58: Rcs1-Chapter2-Standards

58M. SADEK

Extracted from (EC1 – Part 1.1) Characteristic values of imposed load

Page 59: Rcs1-Chapter2-Standards

59M. SADEK

Extracted from (EC1 – Part 1.1 - 6.3)

Characteristic values of imposed load

Page 60: Rcs1-Chapter2-Standards

60M. SADEK

Characteristic values of imposed load

The recommended value for the horizontal reduction factor for floors and roofs :

French National Annex

Page 61: Rcs1-Chapter2-Standards

61M. SADEK

Characteristic values of imposed load

The recommended value for the vertical reduction factor for columns

and walls

N : is the number of storeys (> 2) above the loaded structural elements from the same category

French National Annex

Page 62: Rcs1-Chapter2-Standards

62M. SADEK

Reminder about Units

Length en (m)

1 m = 100 cm

(precision in R.C: 1 cm / sometimes 0.5 cm)

(in steel structures : 1 mm)

Force (N)

10 N = 1 daN = 1 kg (kgf )

1 MN = 103 kN = 100 T (Tf)

Pressure /Stress (Pa)

1 Pa = 1 N/m²

1 MPa = 106 Pa = 1 N/mm²

1 MPa = 10 bars = 100 T/m²

1 bar = 1 kg/cm²

Page 63: Rcs1-Chapter2-Standards

63M. SADEK

Exercices

Load / m² on a slab

Combinations of actions SLS , ULS

Numerical example / Determination of maximum forces

Total load / Load on columns

Load on beam (/ m)