Random walks on barycentric subdivisions and Strichartz ...teplyaev/cornell4/Dan.pdf · If iis even...

25
Random walks on barycentric subdivisions and Strichartz hexacarpet M. Begue 1 , *D. J. Kelleher 2 , A. Nelson 2 , H. Panzo 2 , R. Pellico 2 , A. Teplyaev 2 1 Department of Mathematics University of Maryland 2 Department of Mathematics University of Connecticut Fractals 4 — AMS Eastern Sectional Meeting — Fall 2011 D. J. Kelleher Hexacarpet

Transcript of Random walks on barycentric subdivisions and Strichartz ...teplyaev/cornell4/Dan.pdf · If iis even...

  • Random walks on barycentric subdivisions andStrichartz hexacarpet

    M. Begue1, *D. J. Kelleher2, A. Nelson2, H. Panzo2,R. Pellico2, A. Teplyaev2

    1Department of MathematicsUniversity of Maryland

    2Department of MathematicsUniversity of Connecticut

    Fractals 4 — AMS Eastern Sectional Meeting — Fall 2011

    D. J. Kelleher Hexacarpet

  • Acknowledgments

    M. Begue, G. Khan, DJK, D. Raisingh, UConn FractalsREU 2011.

    Research supported in part by NSF grant DMS-0505622.

    D. J. Kelleher Hexacarpet

  • Barycentric subdivision

    We start off with a simplicial complex,

    Take each 1-simplex (line segment) and add a vertex at themidpoint.

    Take each 2-simplex (triangle) add a vertex at thebarycenter (average of corners), ad an edge connecting thebarycenter to each vertex adjacent to the original2-simplex.

    . . . proceed inductively.

    D. J. Kelleher Hexacarpet

  • Start off with a simplex

    D. J. Kelleher Hexacarpet

  • Add midpoints to 1-simplexes

    D. J. Kelleher Hexacarpet

  • Add edges to 2-simpleces

    D. J. Kelleher Hexacarpet

  • ...proceed inductively

    D. J. Kelleher Hexacarpet

  • We approximate the hexacarpet with a graph that has asvertices the faces of the nth barycentric subdivision, which areconnect if the faces share and edge. (the second level is picturedabove)

    D. J. Kelleher Hexacarpet

  • This is what the 4th level approximation looks like.

    D. J. Kelleher Hexacarpet

  • To get a fractal out of this, we looks at the symbolic dynamicsystemLet X = {0, 1, . . . , 5} where x is any element in X∗ andv ∈ {0, 5}ω. Suppose i is odd and j = i+ 1 mod 6. Then,

    xi3v ∼ xj3v and xi4v ∼ xj4v. (1)

    If i is even (j is still i+ 1 mod 6), then

    xi1v ∼ xj1v and xi2v ∼ xj2v. (2)

    This produces a fractal with Cantor boundaries and hexagonalsymmetries. We call it the hexacarpet.

    D. J. Kelleher Hexacarpet

  • (a) (ϕ2, ϕ3) (b) (ϕ2, ϕ4) (c) (ϕ2, ϕ5)

    (d) (ϕ2, ϕ6) (e) (ϕ3, ϕ4) (f) (ϕ3, ϕ5)

    (g) (ϕ3, ϕ6) (h) (ϕ4, ϕ5) (i) (ϕ4, ϕ6)

    Figure 6.1. Two-dimensional eigenfunction coordinateseigfpics

    12

    D. J. Kelleher Hexacarpet

  • (a) (ϕ2, ϕ3, ϕ4) (b) (ϕ2, ϕ3, ϕ5) (c) (ϕ2, ϕ3, ϕ6)

    (d) (ϕ2, ϕ3, ϕ7) (e) (ϕ2, ϕ4, ϕ5) (f) (ϕ2, ϕ4, ϕ6)

    (g) (ϕ2, ϕ5, ϕ6) (h) (ϕ3, ϕ5, ϕ6) (i) (ϕ4, ϕ5, ϕ6)

    Figure 6.2. Three-dimensional eigenfunction coordinates3Deigfpics

    13

    D. J. Kelleher Hexacarpet

  • Level n

    c 1 2 3 4 5 6 7

    1

    2 1.2801 1.3086 1.3085 1.3069 1.3067 1.3065 1.3064

    3 1.2801 1.3086 1.3079 1.3075 1.3066 1.3065 1.3064

    4 1.1761 1.3011 1.3105 1.3064 1.3068 1.3065 1.3065

    5 1.1761 1.3011 1.3089 1.3074 1.3073 1.3065 1.3065

    6 1.0146 1.2732 1.3098 1.3015 1.3067 1.3065 1.3064

    7 1.2801 1.3114 1.3055 1.3071 1.3066 1.3065

    8 1.2801 1.3079 1.3086 1.3075 1.3067 1.3065

    9 1.2542 1.3191 1.2929 1.3056 1.3065 1.3065

    10 1.2542 1.3017 1.3089 1.3069 1.3066 1.3065

    11 1.2461 1.3051 1.3063 1.3048 1.3065 1.3065

    12 1.2461 1.3019 1.3075 1.3068 1.3066 1.3065

    13 1.1969 1.6014 1.0590 1.3068 1.3066 1.3065

    14 1.1969 1.2972 1.3063 1.3078 1.3066 1.3065

    15 1.2026 1.3059 1.3020 1.3060 1.3066 1.3065

    Table: Hexacarpet estimates for resistance coefficient c given by16

    λnj

    λn+1j.

    D. J. Kelleher Hexacarpet

  • Higher dimensions

    We can perform a construction analogous to the hexacarpet onthe 3-simplex. This time, our approximating graphs havetetrahedra as verteces, connected if they share a face.

    0.20.4

    0.60.8

    1

    −0.4

    −0.2

    0

    0.2

    0.4

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0

    0.2

    0.4

    0.6

    0.8

    1

    −0.4

    −0.2

    0

    0.2

    0.4

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Figure: First and second level graph approximations to the3-simplectic sponge.

    D. J. Kelleher Hexacarpet

  • Eigenfunction Video - Level 4

    D. J. Kelleher Hexacarpet

    eigf234movie.mp4Media File (video/mp4)

  • Eigenfunction Pictures - Level 4

    D. J. Kelleher Hexacarpet

  • Numerics

    Original Shape Triangle Tetrahedron

    Subdivisions (N) 6 24

    Hausdorff dimensionlog(6)

    log(2)≈ 2.58 log(24)

    log(2)≈ 4.585

    Resistance scaling (ρ) 1.304 2.035

    Spectral dimension 1.74 2.45

    D. J. Kelleher Hexacarpet

  • Prospects

    For each of the barycentric fractals

    1 there exists a unique self-similar local regular conservativeDirichlet form E with resistance scaling factor ρ and theLaplacian scaling factor τ = 6ρ.

    2 the simple random walks on the repeated barycentricsubdivisions of a triangle, with the time renormalized byτn, converge to the diffusion process, which is thecontinuous symmetric strong Markov processcorresponding to the Dirichlet form E .

    3 the spectral zeta function has a meromorphic continuationto C.

    D. J. Kelleher Hexacarpet

  • Prospects

    For each of the barycentric fractals

    1 there exists a unique self-similar local regular conservativeDirichlet form E with resistance scaling factor ρ and theLaplacian scaling factor τ = 6ρ.

    2 the simple random walks on the repeated barycentricsubdivisions of a triangle, with the time renormalized byτn, converge to the diffusion process, which is thecontinuous symmetric strong Markov processcorresponding to the Dirichlet form E .

    3 the spectral zeta function has a meromorphic continuationto C.

    D. J. Kelleher Hexacarpet

  • Prospects

    For each of the barycentric fractals

    1 there exists a unique self-similar local regular conservativeDirichlet form E with resistance scaling factor ρ and theLaplacian scaling factor τ = 6ρ.

    2 the simple random walks on the repeated barycentricsubdivisions of a triangle, with the time renormalized byτn, converge to the diffusion process, which is thecontinuous symmetric strong Markov processcorresponding to the Dirichlet form E .

    3 the spectral zeta function has a meromorphic continuationto C.

    D. J. Kelleher Hexacarpet

  • Heat kernel estimates

    Barlow and Bass used a probabilaistical interperation,comparing transition density of a random walk to the diffusionof heat, to prove, in some cases, that the heat kernel can beapproximated for time 0 < t ≤ 1

    p(t, x, y) ≈ tds/2exp

    (−cR(x, y)

    dwdw−1

    t1

    dw−1

    )

    Where R is the effective resistance metric, and

    dh = Hausdorff dimension

    ds = Spectral dimension

    dw =2dhds

    = Walk “dimension” ≤ 2

    D. J. Kelleher Hexacarpet

  • Heat kernel

    p(t, x, y) ≈ tds/2exp

    (−cR(x, y)

    dwdw−1

    t1

    dw−1

    )

    Where R is the effective resistance metric, and

    dh = Hausdorff dimension

    ds = Spectral dimension

    dw =2dhds

    = Walk “dimension” ≤ 2

    However, the Hexacarpet and higher dimensional analogues donot quite fit this frame. There may be some logarithmiccorrections...

    D. J. Kelleher Hexacarpet

  • If we look at the graph approximation, the inner “circle” of thegraph has length 3 · 2n at the nth level. The perimeter of thisgraph will have 3n2n length.How do we resize the graph?

    D. J. Kelleher Hexacarpet

  • Another fractal

    What if we consider the triangle, and then perform barycentricsubdivision. This time, we keep the simplicial complex, butrenormalize each triangle to be equilateral.

    In the case of the first subdivision, we get a hexagon.

    D. J. Kelleher Hexacarpet

  • If we renormalize so that each line segment has length 2−n onthe nth level, the induced geodesic metric converges to a metricon the triangle.

    1 The Hausdorff (and self-similarity) dimension of this objectis log2(6) ≈ 2.58.

    2 Topologically we still have the same object! i.e. the limit ishomeomorphic to the Euclidean triangle.

    3 The distance from a vertex of an nth level simplex to theany point on the opposite side is 2−n.

    4 There are infinitely many geodesics between points.

    The same construction can be done when starting with anyn-simplex.

    D. J. Kelleher Hexacarpet