Random Forests: One Tool for All Your...

72
Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions Random Forests: One Tool for All Your Problems Neil Houlsby and Novi Quadrianto RCC 4th July 2013 Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge Random Forests: One Tool for All Your Problems

Transcript of Random Forests: One Tool for All Your...

Page 1: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Random Forests: One Tool for All Your Problems

Neil Houlsby and Novi Quadrianto

RCC4th July 2013

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 2: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Motivation

• This talk: random forest

• A forest is an ensemble of trees. The trees are all slightlydifferent from one another.

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 3: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Motivation

Why should you care about random forest?

• Random forests do what humans do in making importantdecisions

For example: a scientific paper reviewing process

Properties:

I The more people, thebetter the decision is

I The more diverse the set ofpeople, the better

I It is an embarrassinglyparallel process

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 4: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Motivation

Why should you care about random forest?

• Random forests do what humans do in making importantdecisions

For example: a scientific paper reviewing process

Properties:

I The more people, thebetter the decision is

I The more diverse the set ofpeople, the better

I It is an embarrassinglyparallel process

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 5: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Motivation

Why should you care about random forest?

• Random forests do what humans do in making importantdecisions

For example: a scientific paper reviewing process

Properties:

I The more people, thebetter the decision is

I The more diverse the set ofpeople, the better

I It is an embarrassinglyparallel process

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 6: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Motivation

Why should you care about random forest?

• Random forests do what humans do in making importantdecisions

For example: a scientific paper reviewing process

Properties:

I The more people, thebetter the decision is

I The more diverse the set ofpeople, the better

I It is an embarrassinglyparallel process

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 7: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Motivation

Why should you care about random forest?

• ”Everbody” in Cambridge talks about it

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 8: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Motivation

Why should you care about random forest?

• One tool for all your learning problemsI classificationI regressionI density estimationI manifold learningI semi-supervised learningI . . .

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 9: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Motivation

Why should you care about random forest?

• Did I mention random forest achieve state-of-the-artperformance and a workhorse in some of industrialapplications?

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 10: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Industrial Application: Semantic Segmentation in Kinect

Success stories of random forest from Kinect for MicrosoftXbox 360

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 11: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Industrial Application: Semantic Segmentation in Kinect

Task: Classification

input: depth frame output: body part

• input space X = {images}• output space Y ={l.hand, r.hand, head, l.shoulder, r.shoulder, . . . }: 31body parts

J. Shotton et al., Real-Time Human Pose Recognition in Parts from Single Depth Images, CVPR 2011.

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 12: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

References

• A. Criminisi, J. Shotton, E. Konukoglu, Decision forests:

A unified framework for classification,

regression, density estimation, manifold learning

and semi-supervised learning, Foundations and

Trends in Computer Graphics and Vision, 2012(available online as an MSR technical report)

• G. Biau, L. Devroye, and G. Lugosi, Consistency of

Random Forests and Other Averaging Classifiers,JMLR, 2008 (statistical properties of random forest)

• G. Biau, Analysis of a random forests model, JMLR,2012 (statistical properties of random forest)

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 13: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

A Decision Tree

• datapoint v ∈ Rd (d can be large)

• data injected at root of tree, encounters three node types

• testing: descend tree O(logK) binary choices

• training: optimise the node parameters using data

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 14: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Training a Tree I

• training set S0• node j splits the data Sj = SLj ∪ SRj• each node (weak learner) has parameters: θ = {φ,ψ, τ}

I φ(v) feature selection functionI ψ decision parametersI τ decision thresholds

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 15: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Training a Tree II

• decision function: h(v,θj) ∈ {0, 1}• during training optimize energy function:

θ∗j = arg maxθj

Ij(Sj ,SLj ,SRj ,θj)

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 16: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Training a Tree III

Energy function usually some measure of ‘information gain’.

θ∗j = arg maxθj

Ij(Sj ,SLj ,SRj ,θj),

Ij = H(S)−∑

i∈{L,R}

|Sij ||Sj |

H(Sj)

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 17: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Weak Learner

• stump/linear boundary

h(v,θj) = [τ1 > φ(v) ·ψ > τ2]

• conic section (2D)

h(v,θj) =[τ1 > φ

T(v)ψφ(v) > τ2]

• usually τ1 = +∞ or τ2 = −∞Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 18: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Trees to Forests

• forest: ensemble of trees, introduce randomness in training

• two approaches: subsample training data (bagging), Randomised NodeOptimisation

• RNO:

I denote T is all possible parameter settings θ = {φ,ψ, τ}I at each node sample a finite set from possible parameters Tj ⊂ TI define ‘randomness’ ρ = |Tj |I ρ = 1 max decorrelation & data-independent ρ = |T | identical trees

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 19: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Prediction and Ensembling

• p(c|v), e.g. class, continuous output

• probabilistic (e.g. histogram), point estimate

• combine predictions:

p(c|v) =1

T

T∑t=1

pt(c|v), or p(c|v) =1

Z

T∏t=1

pt(c|v)

• product less robust to noise/overconfident trees – trees notindependent

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 20: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Summary of Parameters

• tree parameters:I stopping criteria/tree depth DI tree randomness ρI node test parameters: weak learner model h(v,θ), feature

selector function φ(v)I training objective function Ij(Sj ,SLj ,SRj ,θj)I leaf prediction model pt(c|v)

• forest parametersI forest size TI ensemble model

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 21: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Classification

• choose: H(S) = Shannon entropy, pt(c|v) = empiricaldistribution leaf, linear ensemble averaging

• properties:I naturally handles multi-classI probabilistic outputI in practice have good generalisation and efficiencyI max margin - like behaviourI parameter tuning: sensitivity, efficiency/accuracy trade off

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 22: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

The Effect of Forest Size

• axis aligned weak learner, depth D = 2

• all trees classify training data perfectly

• larger forests, better generalisation, more uncertainty furtherfrom training data (parallel training)

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 23: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

The Effect of Tree Depth

• multiclass, T = 200, conicweak learner

• high uncertainty away fromdata, max-margin like effects

• depth governs predictiveconfidence andunder/over-fitting

• larger D requires morecomputational time

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 24: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Weak Learner and Randomness

• weak learner: computational/accuracy trade-off

• increased D (or T ) can compensate for ‘overly-simple’ weaklearner

• increased randomness (smaller ρ) decreases tree correlation,removes artifacts, lower confidence

each column different weak learner (L to R: stump, linear, conic),top D = 5, bottom D = 13, left: ρ = 500, right: ρ = 5

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 25: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Max-margin Properties I

• simple scenario: two classes,d = 2, D = 2, T is large,stump weak learner, RNO,ρ→ |T |

• assumption: equally optimalparameters are chosenuniformly

I forest posterior prediction(linear ensembling ofpt(c|x)) changes linearlybetween classes

• assume equal loss → maxmargin decision boundary

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 26: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Max-margin Properties II

• assume separability in x1 plane:

h(v|θj) = [φ(v) > τ ], φ(v) = x1

• in the limit assume uniform distributions of equally optimalplanes:

limρ→|T |,T→∞

p(c = c1|x1) =x1 − x′1

∆, ∀x1 ∈ [x′1, x

′′1]

where x′1, x′2 are the ‘support vectors’, and ∆ is the ‘gap’

• optimising the separating lineτ∗ = arg min

τ|p(c = c1|x1 = τ)− p(c = c2|x1 = τ)| yields:

limρ→|T |,T→∞

τ∗ = x′1 + ∆/2

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 27: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Max-margin Properties III

• adding randomness has a similar effect to ‘slack variables’ inSVMs

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 28: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Max-margin Properties IV

• bagging does not yield maximum margin separation

• but training is faster

combining bagging (50%) with random selection of optimalparameters

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 29: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Empirical Evaluations

• evaluation on many datasets using accuracy, RMSE, and AUC 1

• figure: average (over metrics) cumulative score over datasets of

increasing dimensionality

I scores normalised (subtract median), positive gradient indicates

better than average performance as dim increases

1Caruana, R. et al. An Empirical Evaluation of Supervised Learning in High Dimensions (ICML 2008)

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 30: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Regression Forests

• rename output c ∈ {1, . . . , C} to y ∈ R, to model simply replace:I leaf prediction model, p(y|v) (point-wise or probabilistic)I assume underlying linear regressionI training objective function (Gaussian prediction):

Ij(Sj ,SLj ,SRj ,θj) =∑v∈Sj

log(|Λy(v|)−∑

i∈{L,R}

∑v∈Si

j

log(|Λy(v|)

where Λy(v) is the predictive covariance matrix at v

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 31: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Comparison to Gaussian Processes

note: comparison only to a ‘vanilla’ GP with SE kernel

property GPs RFs

interpolation/ more uncertainty further from dataextrapolation kernel dependent weak learner dependent

predictions smoothly varying posterior meanuni-modal multi-modal

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 32: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Comparison to Gaussian Processes - Ambiguous Output

• neither model is appropriate, RF yields larger uncertaintyI use maximum marginal likelihood hyper-parameter

optimization

• better modelled with density estimation

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 33: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Application: Semantic Parsing of 3D CT Scans

left: 2D slice, center: 3D reconstruction, right: automatically localised

kidney

• task: localize anatomical structures in a 3D scan• uses

I transmitting relevant parts of scan in low bandwidth networksI tracking radiation doseI efficient labelling/navigation/browsing of scansI image registration

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 34: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Semantic Parsing of 3D CT Scans – RF Regression

• regression from voxel to relative location of bounding box

p→ b(p),

where p = (x, y, z) ∈ R3,

b(p) = (dL(p), dR(p), dA(p), dP (p), dH(p), dF (p)) ∈ R6

• each voxel ‘votes’ on the location of the box

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 35: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Semantic Parsing of 3D CT Scans – Features

• single feature dimension: average intensityin a 3D box at location q (relative to p):

xi =1

Bi

∑qi∈Bi

J(q)

• feature vector v(p) = (x1, . . . , xd) ∈ Rd

• d can be unbounded – when trainingsample dimensions at random, computeon demand

features box (not tobe confused with

target)

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 36: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Semantic Parsing of 3D CT Scans – Model

• multivariate Gaussian probabilistic-constant model

• axis-aligned weak learner:

h(v,θj) = [φ(v,Bj) > τj ],

where φ(v,Bj) = xj

• i.e. threshold on average intensity in a single feature box Bj

• optimise node parameters θj = (Bj , τj) ∈ R7 with standarddifferential entropy criteria

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 37: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Semantic Parsing of 3D CT Scans – Results

localisation of right kidney, red = prediction, blue = ground truth

• error ≈ 5mm

• robust to large variability in shape, position etc. of kidney

• note missing left lung in one case (RHS)

• localisation of 25 structures, single core ≈ 4s

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 38: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Semantic Parsing of 3D CT Scans – Feature Discovery

• each node represents a cluster of points• predictive confidence identifies salient features

green regions = feature boxes of parent nodes’ tests for leaf nodeswith high predictive confidence

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 39: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Density Estimation

The Problem:

• Given a set of unlabelled observations, estimate theprobability density function that generates the data

The Solution: Density forests

• Density forests are ensembles of clustering trees

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 40: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Density Forests

• choose:I H(S) = 1

2 log((2πe)d|Λ(S)|) (i.e. a differential entropy of ad-variate Gaussian with d× d covariance matrix Λ)

I pt(v) =Gaussian distribution over a bounded domainI linear ensemble averaging

• properties: a density forest is a generalisation of GMMs butI multiple hard clusterings are created (one per tree), instead of

a single soft clusteringI each input data is explained by multiple clusters, instead of a

single linear combination of Gaussians

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 41: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Density Forests

• choose:I H(S) = 1

2 log((2πe)d|Λ(S)|) (i.e. a differential entropy of ad-variate Gaussian with d× d covariance matrix Λ)

I pt(v) =Gaussian distribution over a bounded domainI linear ensemble averaging

• properties: a density forest is a generalisation of GMMs butI multiple hard clusterings are created (one per tree), instead of

a single soft clusteringI each input data is explained by multiple clusters, instead of a

single linear combination of Gaussians

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 42: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Density Forests

The prediction model

pt(v) =πl(v)

ZtN (v|µl(v),Λl(v)); πl(v) =

|Sl||S0|

The partition function Zt

Zt =

∫ (∑l

πlN (v|µl,Λl)p(l|v)

)dv; p(l|v) = I[v ∈ l(v)]

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 43: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Density Forests

Approximating the partition function

Zt =

∫ (πl(v)N (v|µl(v),Λl(v))

)dv

• compute via cumulative multivariate normal for axis-alignedweak learners

• compute via grid-based numerical integration

Zt ≈ ∆∑i

πl(vi)N (vi|µl(vi),Λl(vi))

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 44: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Density Forests – effect of model parameters

Effect of tree depth D

T = 200, weak learner = axis-aligned, predictor = multivariate Gaussian

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 45: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Density Forests – effect of model parameters

Effect of forest size T

Interesting: even if individual trees heavily over-fit (at D = 6),increasing forest size T produces smoother densities.Always: set T to sufficiently large value.

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 46: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Density Forests – comparisons with GMM

Interesting: the use of randomness (density forests or GMMs)improves results

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 47: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Density Forests – sampling from densities

1. Sample uniformly 1, . . . , T do select a tree in the forest

2. Start at the root node, then randomly generate the childrenindex with probability proportional to number of trainingpoints in edge (edge thickness)

3. Repeat step 2 until a leaf is reached

4. At the leaf, sample a point from the domain bounded Gaussian

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 48: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Density Forests – sampling from densities

Top row: learned densities from 100 training dataBottom row: 10, 000 random points from the density forests

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 49: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Density Forests – regressing non-functional relations

The Problem:

• For a given value of input x, there may be multiple values ofoutput y

The Solution:

• Estimate p(x, y) via density forests, subsequently compute therequired conditional

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 50: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Density Forests – regressing non-functional relations

Restriction:axis-aligned as the weak learner modelNeil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 51: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Density Forests – regressing non-functional relations

Tree density: pt(x, y) = πlZtN (x, y|µl,Λl)

with µl = (µx, µy); Λl =

[σ2xx σ2xyσ2xy σ2yy

]Tree conditional: pt(y|x = x∗) =

1

Zt,x∗

∑l∈Lt,x∗

[yBl ≤ y < yTl ]πlN (y|µy|x,l,Λy|x,l)

with µy|x,l=µy+σ2xy

σ2yy

(x∗−µx);Λy|x,l = σ2yy−σ4xy

σ2xx

The partition function: Zt,x∗ =∑l∈Lt,x∗

πl(φt,l(yTl |x = x∗)− φt,l(yBl |x = x∗))

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 52: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Density Forests – regressing non-functional relations

Multi-modality captured!

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 53: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Manifold Learning

The Problem:

• Given a set of k unlabelled observations {v1,v2, . . . ,vk} with vi ∈ Rd,

find a smooth mapping f : Rd → Rd′ with d′ << d and preserves theobservations’ relative distances.

The Solution: Manifold forests

• Manifold forests build on density forests

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 54: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Manifold Forests – for non-linear dimensionality reduction

Recall: Each tree in a density forest defines a clustering of theinput pointsThe affinity model: For each clustering tree t we can compute anassociation matrix W t

ij = exp(−Dt(vi,vj)), with the distance D:Mahalanobis

Dt(vi,vj) =

{d>ij(Λ

tl(vi)

)−1dij if l(vi) = l(vj)

∞ otherwise; dij = vi − vj

Gaussian

Dt(vi,vj) =

{d>ijdij

ε2if l(vi) = l(vj)

∞ otherwise

Binary

Dt(vi,vj) =

{0 if l(vi) = l(vj)∞ otherwise

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 55: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Manifold Forests – for non-linear dimensionality reduction

The ensemble model: The affinity matrix for the entire forest is

W =1

T

T∑t=1

W t

The mapping function: Laplacian eigen-maps

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 56: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Manifold Forests – effect of model parameters

Effect of forest size T

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 57: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Manifold Forests – effect of model parameters

Effect of affinity model D(·, ·)

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 58: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Semi-supervised Learning

The Problem:• Given a set of both labelled and unlabelled observations,

associate a class label to all unlabelled data

The Solution: Semi-supervised forests• SS forest is a collection of trees that have been trained based

on a mixed information gain function with two components, asupervised and an unsupervised

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 59: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Semi-supervised Forests

Forest training: via mixed information gains I = Iu + αIs Transduction: bylabel propagation on each tree (assigning class labels to already availableunlabelled data points)

c(vu) = c

(argminvl∈L

D(vu,vl)

); ∀vu ∈ U

with geodesic distance

D(vu,vl) = minΓ∈{Γ}

L(Γ)−1∑i=0

d(si, si+1)

and local (Mahalanobis) distances

d(si, si+1) =1

2(d>ijΛ

−1l(vi)

dij + d>ijΛ−1l(vj)dij); dij = si − sj

n.b. averaging over the forest yields probabilistic transduction

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 60: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Semi-supervised Forests

Induction: wanting a generic classification function for previouslyunseen test points• each semi-supervised tree and newly labelled data points

defines a class posterior pt(c|v)• the forest class posterior is just the linear ensemble

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 61: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Semi-supervised Forests – effect of model parameters

Effect of forest size T

• S-shaped decision boundary

• greater uncertainty further from the labelled data

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 62: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Semi-supervised Forests – comparisons with SVM andTSVM

bottom: more noise in locations of unlabelled data

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 63: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Consistency Results

Despite growing interest and practical use, there hasbeen little exploration of the statistical properties of

random forests, and little is known about themathematical forces driving the algorithm, (Biau, 2012)

Most theoretical studies have concentrated on isolated parts orstylized versions of the algorithm:

• Breiman, Consistency for a simple model of random forests,Tech. Report, 2004

• Biau, Devroye, and Lugosi, Consistency of Random Forestsand Other Averaging Classifiers, JMLR, 2008

• Biau, Analysis of a Random Forests Model, JMLR, 2012

• Denil, Matheson, and de Freitas, Consistency of OnlineRandom Forests, ICML, 2013

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 64: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Consistency Results

• Let gn be a binary-valued function from n data points

• As n varies, we obtain a sequence of classifiers {gn}• The sequence {gn} is consistent (i.e. the probability of error of gt

converges in probability to the Bayes risk) if

L(gn) = Pr(gn(X,Z) 6= Y |Dn)→ L∗, as t→∞

Main results of Biau, Devroye, and Lugosi, 2008

• averaged classifiers are consistent whenever the base classifiers are →Denil, Matheson, and de Freitas, 2013 built on this

• The tool: connections to locally weighted average classifiers

• purely random forest (data independent) is consistent

• bagging preserves consistency of the base rule and it may even createconsistent rules from inconsistent ones

• some greedily grown random forests, including Breiman’s random forestare inconsistent

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 65: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Consistency Results

Main results of Biau, 2012

• Biau, 2012 achieves the closest match between theory andpractice, with just one caveat: it requires a second data setwhich is not used to fit the leaf predictors in order to makedecisions about variable importance when growing the trees

• greedily grown random forests with extra samples is consistentand the rate of convergence depends only on the number ofstrong variables and not on the dimension of the ambientspace

• The variance of the forest is of the order kn/(n(log kn)S/2d).Letting kn = n, the variance is of the order 1/(log n)S/2d,that still goes to 0 as n grows. Insight on why random forestsare still able to do a good job, despite the fact that individualtrees are not pruned.

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 66: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Consistency Results

Main results of Biau, 2012

• Biau, 2012 achieves the closest match between theory andpractice, with just one caveat: it requires a second data setwhich is not used to fit the leaf predictors in order to makedecisions about variable importance when growing the trees

• greedily grown random forests with extra samples is consistentand the rate of convergence depends only on the number ofstrong variables and not on the dimension of the ambientspace

• The variance of the forest is of the order kn/(n(log kn)S/2d).Letting kn = n, the variance is of the order 1/(log n)S/2d,that still goes to 0 as n grows. Insight on why random forestsare still able to do a good job, despite the fact that individualtrees are not pruned.

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 67: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Consistency Results

Main results of Biau, 2012

• Biau, 2012 achieves the closest match between theory andpractice, with just one caveat: it requires a second data setwhich is not used to fit the leaf predictors in order to makedecisions about variable importance when growing the trees

• greedily grown random forests with extra samples is consistentand the rate of convergence depends only on the number ofstrong variables and not on the dimension of the ambientspace

• The variance of the forest is of the order kn/(n(log kn)S/2d).Letting kn = n, the variance is of the order 1/(log n)S/2d,that still goes to 0 as n grows. Insight on why random forestsare still able to do a good job, despite the fact that individualtrees are not pruned.

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 68: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Consistency Results

From theory back to practise (Biau, 2012)

Observation: as n grows, the probability of cuts does concentrateon the informative dimensions only.

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 69: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Consistency Results

From theory back to practise (Biau, 2012)

Observation: the overall performance of the alternative method(via extra sample) is very similar to the original Breiman’s method.

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 70: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

What else to do with random forests?

• forests for structured prediction (S. Nowozin, et al.,Decisiontree fields, ICCV, 2011)

I Structured problem:

I Forests + Field model: I Some results:

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 71: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

What else to do with random forests?

• Bayesian random forests (shameless plug: N. Quadrianto andZ. Ghahramani, A very simple Bayesian random

forest)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

height = 161

1

2

3456789101112131415161718192021222324252627

282930

31

3233343536

3738394041424344454647

48495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144

145

146

147

148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180

181182183

184185186187188189190191192193194195196197198199200201202

203204205

206

207

208209210

211

212

213214

215

216

217

218219220221222223

224225226

227228

229230231

232233

234235236237238239240241242243244245246247248249250251252

253254

255

256

257

258259260

261262263

264

265266267268269270271272273

274

275276277

278

279

280281

282

283284

285286287288289

290291

292

293294295296

297

298

299

300301

302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334

335336337

338

339

340

341

342

343344345346347

348

349

350

351

352353354

355356357358359360361362363364365366367368369370371372373374375376377378379380381382

383

384385386

387

388389390391392393394395396397398399400401402

403

404

405

406

407

408409410411412

413414415416417418419

420421422423424

425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473

474

475

476

477

478479480481482

483484485

486487

488489490

491492493494

495496497498499500501502503504505506507508509510511

512513514515

516

517518

519

520521

522523524

525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674

675

676677678679680681682683684685686687688689690

691

692

693

694695696

697698699

700

701

702703704705

706707708709710711712713714

715

716717718719720721722723724725726

727728729730731

732

733

734735736

737738

739

740

741

742743744745746747748749750751752753754755756757758759760761

762763

764

765

766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847

848849

850851852

853

854855856

857858

859

860

861

862863

864865866

867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944

945

946947948949950951952953954955956

957958959960

961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991

992993994

995

996

997

9989991000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013101410151016101710181019102010211022102310241025102610271028102910301031

1032

10331034103510361037103810391040104110421043104410451046104710481049

1050105110521053

10541055105610571058

10591060106110621063

1064

1065

1066

1067

1068

10691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139

1140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194

11951196

1197

1198

119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237

1238123912401241

1242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284

12851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322

1323

1324

1325

13261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390

139113921393

1394

139513961397

139813991400

1401

14021403140414051406

1407

14081409141014111412

1413

141414151416

1417

14181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440

14411442

1443144414451446144714481449

14501451

1452

1453

1454

14551456

1457

14581459

14601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494

1495

1496

1497

1498149915001501150215031504150515061507150815091510

1511

151215131514151515161517151815191520152115221523152415251526

15271528

1529

1530

15311532153315341535

1536153715381539154015411542

15431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577

1578157915801581

15821583

158415851586158715881589159015911592159315941595159615971598

15991600

1601

16021603

1604

160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724

1725

1726

17271728

1729

173017311732

1733

173417351736

1737

17381739

1740

1741174217431744174517461747

1748

17491750

1751

1752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046

20472048

2049

2050

20512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082

20832084

20852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116

2117

2118

2119

21202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247

224822492250

22512252225322542255

2256

2257

22582259

2260

226122622263

2264

2265

226622672268

2269

2270

2271

227222732274

2275

2276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306

2307

2308

2309

2310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352

2353

2354

2355

2356

23572358

2359

23602361

2362236323642365236623672368

23692370

237123722373237423752376237723782379

2380

23812382238323842385238623872388238923902391239223932394239523962397

2398

239924002401240224032404240524062407

2408

2409

24102411

2412

24132414

2415

2416

24172418

2419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443

24442445

2446

244724482449

2450

24512452

2453

2454

2455

2456

24572458

245924602461246224632464246524662467

2468

2469

2470

2471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531

25322533

2534

25352536

253725382539

254025412542

254325442545

25462547254825492550

25512552255325542555

2556

255725582559

2560

2561256225632564256525662567256825692570257125722573

257425752576

2577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607

2608260926102611

2612

2613

2614

26152616

2617

261826192620262126222623262426252626

2627

26282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713

2714

2715

27162717

2718

271927202721

2722

2723

2724

2725

2726

272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834

28352836

2837283828392840284128422843284428452846284728482849

2850

28512852285328542855

2856

2857285828592860286128622863286428652866

2867

2868

2869

287028712872

2873

287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915

291629172918

29192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953

2954

2955

29562957

2958

29592960

2961296229632964296529662967

29682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990

2991

2992

29932994

2995

299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271

327232733274

3275327632773278327932803281328232833284328532863287

32883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328

3329333033313332

33333334333533363337333833393340334133423343

3344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401

3402

34033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443

34443445

3446

3447

3448

344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526

3527

3528

3529

3530353135323533353435353536353735383539354035413542354335443545354635473548

3549

35503551355235533554

3555

3556355735583559356035613562

3563

3564

3565

3566

35673568356935703571

357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598

3599360036013602360336043605360636073608

3609361036113612361336143615

36163617

3618

36193620

3621

3622

362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670

3671

3672367336743675367636773678

367936803681

3682

36833684

368536863687368836893690369136923693

3694

3695

36963697

3698369937003701370237033704

37053706

3707

3708

3709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790

3791

3792

3793

3794

379537963797

3798

3799

3800

3801

3802

3803

38043805380638073808

38093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846

3847

384838493850

3851

3852

38533854

38553856385738583859

3860

3861

38623863

3864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005

4006

400740084009401040114012401340144015

4016

4017

4018

4019

4020

4021

4022

4023

40244025402640274028

40294030

4031

4032

4033

403440354036

40374038403940404041404240434044404540464047

4048

40494050405140524053

40544055

4056

405740584059

4060

4061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088

408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169

4170

41714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223

4224

4225

42264227

4228

42294230423142324233

42344235423642374238

42394240

424142424243424442454246424742484249

42504251

4252

4253

4254

4255

4256

42574258

4259

4260

4261426242634264426542664267

42684269427042714272

4273

4274

4275

427642774278

4279428042814282428342844285

4286

4287

4288

4289

429042914292

429342944295

4296

429742984299

4300

43014302430343044305

43064307

430843094310

431143124313

431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379

4380

4381

4382

438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487

448844894490

4491

4492449344944495

449644974498

4499

4500

45014502

4503

45044505450645074508

4509

45104511

451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568

4569

4570

4571

457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619

46204621

462246234624

4625

4626

4627

4628

4629

463046314632

4633

4634

4635

4636

4637

4638

46394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727

47284729

4730

47314732

47334734473547364737473847394740474147424743474447454746474747484749

475047514752

47534754475547564757

47584759476047614762476347644765476647674768476947704771477247734774477547764777

4778477947804781478247834784478547864787

478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889

4890

4891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960

4961

4962

4963

49644965

4966

4967

49684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008

50095010501150125013

5014

5015

5016

5017501850195020502150225023

5024

50255026

5027502850295030503150325033503450355036503750385039

50405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068

50695070

5071

50725073

5074

50755076507750785079508050815082508350845085508650875088

5089

5090

5091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211

Tree Samples with λ = 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

height = 14

12

3

45

6

7

8

9

10

11121314

151617

18

19

20212223

242526

272829303132

3334

35

36373839

40414243

444546

47

48

4950515253545556

57

58

59

606162

63

64

6566

67686970

7172737475

Tree Samples with λ = 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

height = 8

1

2

3

4

5

6 7

8

9

10

11

12

13

14 1516

17

18

19

2021 22

23

24

25

26

27

28

29

30 3132 33

Tree Samples with λ = 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

height = 3

1

2

3 4

5

6

7

8 9

Tree Samples with λ = 0.5

• forests for ranking (S. Clemencon, M. Depecker, N. Vayatis,Ranking forests, JMLR, 2013)

• . . .

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems

Page 72: Random Forests: One Tool for All Your Problemscbl.eng.cam.ac.uk/pub/Intranet/MLG/ReadingGroup/RCC_July_2013.pdf · Random Forests: One Tool for All Your Problems Neil Houlsby and

Motivations Generic Model Supervised Learning (Un & Semi)-supervised Learning Statistical Properties Future Directions

Thank You

Thank you for your attention.

Neil Houlsby and Novi Quadrianto Department of Engineering, University of Cambridge

Random Forests: One Tool for All Your Problems