Ramgarhia Polytechnic - UNITS AND DIMENSIONS PHYSICS... · 2020. 4. 10. · 1 UNITS AND DIMENSIONS...

50
1 UNITS AND DIMENSIONS PHYSICAL QUANTITIES The quantities which can be measured directly or indirectly are called physical quantities. Examples: Length, mass, time, temperature, electric current, speed, density, area TYPES OF PHYSICAL QUANTITIES Physical quantities are of two types: 1. Fundamental or Basic quantities 2. Derived quantities FUNDAMENTAL OR BASIC QUANTITIES Physical quantities which are not related to each other or to other quantities are called fundamental or basic quantities. BOiqk rwSIAW rwSIAW, ijnWH nUM is`Dy jW Ais`Dy qOr 'qy mwipAw jw skdw hY, BOiqk rwSIAW kihMdy hn[ audwhrxW: lMbweI, puMj, smW, qwpmwn, ibjleI krMt, cwl, Gxqw, KyqrPl BOiqk rwSIAW dIAW iksmW: BOiqk rwSIAW do qrWH dIAW huMdIAW hn: 1. mu`FlIAW rwSIAW 2. ivauNqpMn rwSIAW mu`FlIAW rwSIAW BOiqk rwSIAW, ijnWH dw Awps iv`c jW dUjIAW rwSIAW nwl koeI sMbMD nhIN huMdw,nUM mu`FlIAW rwSIAW ikhw jWdw hY[ audwhrxW: lMbweI, puMj, smW, qwpmwn, ibjleI krMt

Transcript of Ramgarhia Polytechnic - UNITS AND DIMENSIONS PHYSICS... · 2020. 4. 10. · 1 UNITS AND DIMENSIONS...

  • 1

    UNITS AND DIMENSIONS

    PHYSICAL QUANTITIES

    The quantities which can be

    measured directly or indirectly

    are called physical quantities.

    Examples: Length, mass,

    time, temperature, electric

    current, speed, density, area

    TYPES OF PHYSICAL

    QUANTITIES

    Physical quantities are of two

    types:

    1. Fundamental or Basic

    quantities

    2. Derived quantities

    FUNDAMENTAL OR BASIC

    QUANTITIES

    Physical quantities which are

    not related to each other or to

    other quantities are called

    fundamental or basic

    quantities.

    BOiqk rwSIAW

    rwSIAW, ijnWH nUM is`Dy jW Ais`Dy qOr 'qy mwipAw jw skdw hY, BOiqk rwSIAW kihMdy hn[

    audwhrxW: lMbweI, puMj, smW, qwpmwn, ibjleI krMt, cwl, Gxqw, KyqrPl

    BOiqk rwSIAW dIAW iksmW:

    BOiqk rwSIAW do qrWH dIAW huMdIAW hn:

    1. mùFlIAW rwSIAW 2. ivauNqpMn rwSIAW

    mu`FlIAW rwSIAW

    BOiqk rwSIAW, ijnWH dw Awps iv`c jW dUjIAW rwSIAW nwl koeI sMbMD nhIN huMdw,nUM mu`FlIAW rwSIAW ikhw jWdw hY[

    audwhrxW: lMbweI, puMj, smW, qwpmwn, ibjleI krMt

  • 2

    DERIVED QUANTITES

    Physical quantities which can

    be obtained from fundamental

    or basic quantities by

    multiplication or division are

    called derived quantities.

    Examples:, area, volume,

    density, weight, force, power,

    energy, pressure, speed

    UNIT

    To measure a physical

    quantity, it is compared with a

    standard of same kind. This

    chosen standard is called unit.

    TYPES OF UNITS

    Units are of two types:

    1. Fundamental or Basic

    units

    2. Derived units

    FUNDAMENTAL OR BASIC

    UNITS

    Units which are not related to

    each other or to other units

    are called fundamental or

    basic units.

    ivauNqpMn rwSIAW

    BOiqk rwSIAW, ijnWH nUM mùFlIAW rwSIAW qoN guxW jW Bwg kr ky pRwpq kIqw jw skdw hY, nUM ivauNqpMn rwSIAW ikhw jWdw hY[

    audwhrxW: KyqrPl, GxPl dbwA, cwl, , Gxqw, Bwr, bl, SkqI, aUrjw

    iekweI

    iksy BOiqk rwSI nUM mwpx leI ies dI ausy iksm dy stYNfrf nwl qulnw kIqI jWdI hY[ies cuxy hoey stYNfrf nUM iekweI kihMdy hn[

    iekweIAW dIAW iksmW

    iekweIAW dIAW do iksmW huMdIAW hn:

    1. mùFlIAW iekweIAW 2. ivauNqpMn iekweIAW

    mu`FlIAW iekweIAW

    iekweIAW, ijnWH dw Awps iv`c jW dUjIAW iekweIAW nwl koeI sMbMD

  • 3

    Examples: units of Length,

    mass, time, temperature,

    electric current,

    DERIVED UNITS

    Units which can be obtained

    from fundamental or basic

    units by multiplication or

    division are called derived

    units.

    Examples: units of, area,

    volume, density, weight, force,

    power, energy, pressure,

    speed

    Area = length x breadth

    = mx m = m2

    m2 is derived unit of area

    Volume = length x breadth x

    height

    = m x m x m = m3

    m3 is derived unit of volume

    Speed = distance / time

    = m/s =ms-1

    ms-1 is derived unit of speed

    nhIN huMdw nUM mu`FlIAW iekweIAW ikhw jWdw hY[audwhrxW: lMbweI, puMj, smW, qwpmwn, ibjleI krMt dIAW iekweIAW

    ivauNqpMn iekweIAW

    iekweIAW, ijnWH nUM mùFlIAW iekweIAW qoN guxW jW Bwg kr ky pRwpq kIqw jw skdw hY, nUM ivauNqpMn iekweIAW ikhw jWdw hY[

    audwhrxW: KyqrPl, GxPl ,dbwA, cwl, , Gxqw, Bwr, bl, SkqI, aUrjw dIAW iekweIAW

    KyqrPl = lMbweI x cOVweI

    = mItr x mItr = mItr2

    mItr2 KyqrPl dI ivauNqpMn iekweI hY[

    GxPl = lMbweI x cOVweI x aucweI = mItr x mItr x mItr = mItr3

    mItr3 GxPl dI ivauNqpMn iekweI hY[

    cwl = dUrI / smW

    = mItr/ sYikMf

    mItr/ sYikMf cwl dI ivauNqpMn iekweI hY

  • 4

    MEASUREMENT OF

    PHYSICAL QUANTITY

    Measurement of physical

    quantity (Q) involves two

    steps:

    a) Selection of unit (u)

    b) Numerical value (n)

    Q = n u

    In system I, Q= n1 u1

    In system II, Q = n2 u2

    Hence, n1 u1 = n2 u2

    Numerical value of a

    quantity is inversely

    proportional to its unit.

    n α 1/u

    CHARACTERISTICS OF

    UNITS

    1. It should be well-defined.

    2. It should be of suitable

    size.

    3. It should be easily

    reproducible.

    4. It should be easily

    accessible.

    5. It should not change with

    time.

    6. It should not change with

    place.

    [BOiqk rwSI dw mwp

    BOiqk rwSI (Q) dw mwp iv`c do stYp huMdy hn: a) iekweI dI cox (u) b) numYrIkl mùl (n)

    Q = n u

    pRxwlI 1 iv`c, Q= n1 u1

    pRxwlI 2 iv`c, Q = n2 u2

    ies leI, n1 u1 = n2 u2

    iksy BOiqk rwSI dw numYrIkl mùl ies dI iekweI dy ault AnupwqI huMdw hY[ n α 1/u

    iekweIAW dIAW ivSySqwvW 1. ieh cMgI qrWH pRIBwiSq hoxw

    cwhIdw hY[ 2. ieh Xog Awkwr dw hoxw

    cwhIdw hY[ 3. ies nUM sOiKAW hI

    punrauqpwdnXog hoxw cwhIdw hY[

    4. ieh sOiKAW hI phuMcXog hoxw cwhIdw hY[

    5. ieh smyN nwl qbdIl nhIN hoxw cwhIdw[

  • 5

    7. It should not be

    perishable.

    8. It should not be affected

    by physical conditions

    like temperature,

    pressure, humidity etc.

    9. It should be accepted all

    over the world.

    SYSTEMS OF UNITS

    There are four systems of

    units-

    1. C.G.S. System: In this

    system, the unit of

    length is centimeter, the

    unit of mass is gram and

    the unit of time is

    second.

    2. F.P.S. System: In this

    system, the unit of

    length is foot, the unit of

    mass is pound and the

    unit of time is second.

    3. M.K.S. System: In this

    system, the unit of

    length is meter, the unit

    of mass is kilogram and

    the unit of time is

    second.

    6. ieh jgwH nwl qbdIl nhIN hoxw cwhIdw[

    7. ieh ^qmXog nhIN hoxw cwhIdw[

    8. ies 'qy BOiqk hwlqW ijvyN qwpmwn, dbwA, is`l Awid dw pRBwv nhIN hoxw cwhIdw[

    9. ieh pUrI dunIAW iv`c svIkwrq hoxw cwhIdw hY[

    iekweIAW dIAW pRxwlIAW

    iekweIAW dIAW cwr pRxwlIAW huMdIAW hn-

    1.sI.jI.AYs.pRxwlI:ies pRxwlI iv`c lMbweI dI iekweI sYNtImItr, puMj dI iekweI grwm Aqy smyN dI iekweI sYikMf huMdI hY[

    2. AYP.pI.AYs.pRxwlI:ies pRxwlI iv`c lMbweI dI iekweI Pu`t, puMj dI iekweI pONf Aqy smyN dI iekweI sYikMf huMdI hY[

    3. AYm.ky.AYs.pRxwlI:ies pRxwlI iv`c lMbweI dI iekweI mItr, puMj dI iekweI iklogrwm Aqy smyN dI iekweI sYikMf huMdI hY[

  • 6

    3. S.I.(System

    International de Units):

    In this system, there are

    seven basic units and two

    supplementary units.

    Basic Units:

    1. metre for length

    2. kilogram for mass

    3. second for time

    4. kelvin for temperature

    5. ampere for electric

    current

    6. candela for luminous

    intensity

    7. mole for amount of

    substance

    Supplementary Units:

    1. radian for plane

    angle.

    2. steradian for solid

    angle

    4. AYs. AweI.:ies pRxwlI iv`c s`q byisk Aqy do pUrk iekweIAW huMdIAW hn[

    byisk iekweIAW: 1. lMbweI leI mItr 2. puMj leI iklogrwm 3. smyN leI sYikMf 4. qwpmwn leI

    kYlivn 5. ibjleI kurMt leI

    AYmpIAr 6. pRkwSmwn qIbrqw

    leI kYNfylw 7. pdwrQ dI mwqrw

    leI mol

    splImYNtrI iekweIAW:

    1. smql kox leI ryfIAn

    2. Tos kox leI strfIAn

  • 7

    ADVANTAGES OF SI

    1. It is a rational System

    of units: In this system

    only one unit is used for

    one physical quantity.

    For example, newton for

    all types of forces, joule

    for all types of energies.

    2. It is coherent system of

    units: In this system all

    the derived units are

    obtained by multiplying

    or dividing basic units,

    without involving any

    numerical factor.

    3. It is closely related to

    C.G.S. system of units.

    4. It is metric system of

    units. In this system

    power of 10 is used.

    AYs AweI dy Pwiedy

    1. ieh iekweIAW dI qrksMgq pRxwlI hY[ies pRxwlI iv`c ie`k rwSI leI ie`ko iekweI dI vrqoN huMdI hY[audwrhx dy qOr 'qy ,bl dIAW swrIAW iksmW leI inaUtn, swrIAW aUrjw dIAW iksmW leI jUL iekweI [

    2. ieh iekweIAW dI susMgq(AnukUl) pRxwlI hY[ies pRxwlI iv`c swrIAW ivauNqpMn iekweIAW byisk iekweIAW nUM guxW jW Bwg kr ky pRwpq kIqw jWdw hY, ibnWH koeI numYrkIl PYktr Swiml kIqy[

    3. ieh pRxwlI iekweIAW dI sI.jI.AYs. pRxwlI nwl nyVlw sMbMD r`KdI hY[

    4. ieh iekweIAW dI mIitRk pRxwlI hY[ies pRxwlI iv`c 10 dI pwvr dI vrqoN huMdI hY[

  • 8

    TABLE 1

    Basic Quantity

    C.G.S. SYSTEM

    M.K.S. SYSTEM

    F.P.S. SYSTEM

    Length centimetre metre Foot

    Mass gram kilogram Pound

    Time second second second

    TABLE 2

    TABLE 3

    S.No.

    Quantity Unit Symbol

    1 Plane Angle radian rad

    2 Solid angle steradian sr

    S.No.

    Quantity Unit Symbol

    1 Length metre m

    2 Mass kilogram kg

    3 Time second s

    4 Temperature kelvin K

    5 Electric Current ampere A

    6 Luminous Intensity

    candela cd

    7 Amount of substance

    mole mol

  • 9

    MULTIPLES SUBMULTIPLES

    PREFIX SYMBOL VALUE

    deci d 10-1

    centi c 10-2

    milli m 10-3

    micro µ 10-6

    nano n 10-9

    pico p 10-12

    femto f 10-15

    atto a 10-18

    SOME OTHER UNITS

    1. Micron (micrometre)= 10-6 m

    2. Angstrom (Å) = 10-10 m ( It is unit of length convenient on

    the atomic scale

    3. Fermi (F) = 10-15 m

    4. Astronomical unit (AU) = 1.496 x 1011m

    5. Light year = 9.46 x 1015m

    6. Parsec = 3.08 x 1016m

    PREFIX SYMBOL VALUE

    Deca da 101

    Hector h 102

    Kilo k 103

    Mega M 106

    Giga G 109

    Tera T 1012

    Peeta P 1015

    Exa E 1018

  • 10

    IMPORTANT CONVERSIONS

    1kg = 1000 g

    1m = 100 cm

    1 cm = 10 mm

    1m = 1000 mm

    1 inch = 2.54 cm

    1 foot =12 inch = 30.48 cm

    1 pound = 453 g

    1 day = 24 h = 86400 s

    1 year = 365 days= 31536000 s

    1 quintal = 100 kg

    1 ton = 10 quintal = 1000 kg

  • 11

    DIMENSIONS OF A

    PHYSICAL QUANTITY

    Dimensions of a physical

    quantity are the powers to

    which the basic units must be

    raised to obtain the derived

    units of that quantity.

    If [M], [L] and [T] denote

    mass, length, time, then

    Area = length x breadth

    = [L] x[L]

    = [L2]

    = [M0L2T0]

    Area has zero dimensions in

    mass, 2 dimensions in length,

    0 dimensions in time.

    Volume = length x breadth x

    height

    =[L] x[L]x [L]

    = [L3]

    = [M0L3T0]

    BOiqk rwSIAW dy AwXwm

    iksy BOiqk rwSI dy AwXwm auh Gwq hn, ijnWH 'qy mùFlIAW iekweIAW nUM auBwirAw jwvy qW jo aus rwSI dIAW ivauNqpMn iekweIAW pRwpq ho skx[

    jy [M], [L] and [T] puMj, lMbweI Aqy smyN nUM drswaux qW

    KyqrPl = lMbweI x cOVweI

    = [L] x[L]

    = [L2]

    = [M0L2T0]

    KyqrPl iv`c puMj dy 0, lMbweI dy 2, smyN dy 0 AwXwm huMdy hn[

    GxPl = lMbweI x cOVweI x aucweI

    =[L] x[L]x [L]

    = [L3]

    =[M0L3T0]

  • 12

    Volume has zero dimensions

    in mass, 3 dimensions in

    length, 0 dimensions in time.

    Speed = Distance / Time

    = [L]/ [T]

    = [LT-1]

    Speed has 1 dimension in

    length, -1 dimension in time.

    DIMENSIONAL FORMULA

    Dimensional formula of a

    physical quantity is defined as

    the expression which shows

    which basic unit enters into

    the derived units of that

    quantity and with what

    powers.

    Dimensional formula for area

    is [M0L2T0]. This shows that

    length enters in the derived

    units of area with power of 2.

    DIMENSIONL EQUATION

    Dimensional equation of a

    physical quantity is defined as

    the equation obtained by

    GxPl iv`c puMj dy 0 ,lMbweI dy 3, smyN dy 0 AwXwm huMdy hn[

    cwl = dUrI / smW

    = [L]/ [T]

    = [LT-1]=[M0L1T-1]

    cwl iv`c puMj dy 0 , lMbweI dy 1, smyN dy -1 AwXwm huMdy hn[

    AwXwm sUqr

    iksy BOiqk rwSI dw AwXwm sUqr auh hY jo drswauuNdw hY ik aus rwSI dIAW ivauNqpMn iekweIAW iv`c ikhVI mu`FlI iekweI AwauNdI hY Aqy iks Gwq nwl[

    KyqrPl dw AwXwm sUqr hY [M0L2T0]. ieh drswauNdw hY ik KyqrPl dIAW ivauNqpMn iekweIAW iv`c lMbweI 2 dI Gwq nwl AwauNdI hY[

    AwXwm smIkrn

    iksy BOiqk rwSI dI smIkrn auh smIkrn hY, jo rwSI nUM ies dy AwXwm sUqr dy brwbr krn nwl pRwpq huMdI hY, nUM AwXwm smIkrn

  • 13

    equating quantity with its

    dimensional formula .

    Dimensional equation for area

    is

    Area = [M0L2T0]

    ikhw jWdw hY[

    KyqrPl dI AwXwm smIkrn hY

    KyqrPl = [M0L2T0]

  • 14

    LIST OF DIMENSIONAL

    FORMULAE

    1. Area = length x breadth

    = [L] x[L]

    = [L2]

    = [M0L2T0]

    2. Volume=length x breadth

    x height

    =[L] x[L]x [L]

    = [L3]

    =[M0L3T0]

    3. Density = mass/ volume

    =[M]/ [L3]

    =[ML-3]

    =[M1L-3T0]

    4. Speed = Distance / Time

    = [L]/ [T]

    = [LT-1]

    = [M0 L1T-1]

    5. Velocity=displacement/ti

    me

    = [L]/ [T]

    AwXwm sUqrW dI sUcI

    1. KyqrPl = lMbweI x cOVweI = [L] x[L]

    = [L2]

    = [M0L2T0]

    2. GxPl = lMbweI x cOVweI x aucweI = [L] x[L]x [L]

    = [L3]

    =[M0L3T0]

    3. Gxqw = puMj / GxPl

    =[M]/ [L3]

    =[ML-3]

    =[M1L-3T0]

    4. cwl = dUrI /smW = [L]/ [T]

    = [LT-1]

    = [M0 L1T-1]

    5. vyg = ivsQwpn / smW = [L]/ [T]

    = [LT-1]

  • 15

    = [M0 L1T-1]

    6. Acceleration=velocity/time

    = [LT-1]/ [T]

    = [LT-2]

    = [M0 L1T-2]

    7. Momentum=mass x

    velocity

    = [M] X [LT-1]

    =[M LT-1]

    =[M1 L1T-1]

    8. Force = mass x

    acceleration

    = [M] X [LT-2]

    =[M LT-2]

    =[M1 L1T-2]

    9. Work = force x distance

    = [M1 L1T-2] x[L]

    = [M1 L2T-2]

    10. Power = work / time

    = [M1 L2T-2]/ [T]

    = [M1 L2T-3]

    11. Energy = work

    = [M1 L2T-2]

    12. Pressure = Force / Area

    = [M1 L1T-2]/[L2]

    = [M0 L1T-1]

    6. pRvyg = vyg / smW = [LT-1]/ [T]

    = [LT-2]

    = [M0 L1T-2]

    7. sMvyg = puMj x vyg

    = [M] X [LT-1]

    =[M LT-1]

    =[M1 L1T-1]

    8. bl = puMj x pRvyg

    = [M] X [LT-2]

    =[M LT-2]

    =[M1 L1T-2]

    9. kMm = bl x dUrI = [M1 L1T-2] x[L]

    = [M1 L2T-2]

    10. SkqI = kMm /smW = [M1 L2T-2]/ [T]

    = [M1 L2T-3]

    11. aUrjw = kMm = [M1 L2T-2]

    12. dbwA = bl / KyqrPl

    = [M1 L1T-2]/[L2]

    =[M1 L-1T-2]

  • 16

    =[M1 L-1T-2]

    13. Surface Tension =

    Force / length

    = [M1 L1T-2]/[L]

    =[M1 L0T-2]

    14. Gravitational

    Constant(G)

    F = G m1 xm2 / d2

    G= F d2 / m1 x m2

    = [M1L1T-2][L2]/ [M]x[M]

    = [M-1 L3T-2]

    15. Coefficient of

    viscosity (η)

    F = η Av /d

    η = F d / A v

    = [M1L1T-2]x[L]/ [L2] x [LT-1]

    = [M1L-1T-1]

    16. Angle = arc /radius

    = [L] /[L]

    = [L0]

    = [M0L0T0]

    17. Angular

    Displacement = angle

    covered = [M0L0T0]

    13. sqHw qxwA = bl / lMbweI = [M1 L1T-2]/[L]

    = [M1 L0T-2]

    14. grUqvI siQr AMk (G) F = G m1 xm2 / d2

    G= F d2 / m1 x m2

    =[M1L1T-2][L2]/

    [M]x[M]

    = [M-1 L3T-2]

    15. icpicpwiht dw guxWk (η)

    F = η Av /d

    η = F d / A v

    =[M1L1T-2]x[L]/ [L2] x [LT-1]

    = [M1L-1T-1]

    16. kox = cwp / ArD ivAws = [L] /[L]

    = [L0]

    = [M0L0T0]

    17. koxI ivsQwpn = kox= [M0L0T0]

  • 17

    18. Angular velocity =

    angular displacement /

    time

    = [L0] /[T]

    = [L0T-1]

    = [M0L0T-1]

    19. Angular

    Acceleration = angular

    velocity / time

    = [L0T-1] /[T]

    = [L0T-2]

    = [M0L0T-2]

    20. Torque = Force x ┴

    distance

    = [M1 L1T-2] x[L]

    = [M1 L2T-2]

    21. Angular momentum

    = momentum x ┴

    distance

    = [M1 L1T-1] x [L]

    = [M1 L2T-1]

    22. Time Period = time

    for one vibration

    = [T]

    = [M0L0T1]

    18. koxI vyg = koxI ivsQwpn / smW = [L0] /[T]

    = [L0T-1]

    = [M0L0T-1]

    19. koxI pRvyg = koxI vyg / smW = [L0T-1] /[T]

    = [L0T-2]

    = [M0L0T-2]

    20. tOrk = bl x ┴ dUrI = [M1 L1T-2] x[L]

    = [M1 L2T-2]

    21. koxI sMvyg = sMvyg x ┴ dUrI = [M1 L1T-1] x [L]

    = [M1 L2T-1]

    22. AwivRqI kwl = [T]

    = [M0L0T1]

  • 18

    23. Frequency = 1 /

    Time period

    = 1/ [T]

    = [T-1]

    = [M0L0T-1]

    24. Planck's Constant

    (h)

    Energy, E = h ν

    h = E / v

    = [M1 L2T-2] / [T-1]

    =[M1 L2T-1]

    25. Impulse = Force x

    time

    = [M1 L1T-2] x [T]

    = [M1 L1T-1]

    26. Stress = Force /

    area = [M1 L1T-2]/[L2]

    =[M1 L-1T-2]

    27. Strain = Change in

    dimensions (length,

    volume) / original

    dimensions

    = [L]/[L] = [L0]

    = [M0L0T0]

    23. AwivRqI = 1 / AwivRqI kwl

    = 1/ [T]

    = [T-1]

    = [M0L0T-1]

    24. plYNk siQr AMk(h) aUrjw , E = h ν

    h = E / v

    = [M1 L2T-2] / [T-1]

    =[M1 L2T-1]

    25. Awvyg = bl x smW

    = [M1 L1T-2] x [T]

    = [M1 L1T-1]

    26. qxwA = bl /KyqrPl

    = [M1 L1T-2]/[L2]

    =[M1 L-1T-2]

    27. stryn = AwXwmW iv`c qbdIlI/ Asl AwXwm = [L]/[L] = [L0]

    = [M0L0T0]

  • 19

    28. Modulus of

    Elasticity

    = Stress /Strain =[M1 L-1T-2]/ [M0L0T0]

    =[M1 L-1T-2]

    29. Moment of Inertia =

    mass x (┴ distance )2

    = [M] x [L]

    = [ML2]

    = [ML2T0]

    28. Lckqw dw mwfUls = strYs / stryn =[M1 L-1T-2]/ [M0L0T0]

    =[M1 L-1T-2]

    29. jVHqw dw mumYNt = puMj x (┴ dUrI )2 = [M] x [L]

    = [ML2]

    = [ML2T0]

  • 20

    DIMENSIONAL QUANTITIES

    The quantities which have

    certain dimensions are called

    dimensional quantities.

    Examples: Length, mass,

    time, area, volume, density,

    speed, force, power

    DIMENSIONLESS

    QUANTITIES

    The quantities which have no

    dimensions are called

    dimensionless quantities.

    Examples: Angle, strain,

    DIMENSIONAL CONTANTS

    The constants which have

    certain dimensions are called

    dimensional constants.

    Examples: Gravitational

    constant, Planck's constant,

    Coefficient of viscosity

    DIMENSIONLESS

    CONSTANTS

    The constants which have no

    dimensions are called

    dimensionless constants.

    Examples: 1,2,3...... π, e,

    AwXwmI rwSIAW

    rwSIAW ijnHW dy koeI nw koeI AwXwm huMdy hn, nUM AwXwmI rwSIAW ikhw jWdw hY[ audwhrxW: lMbweI, puMj, smW, KyqrPl, GxPl, Gxqw, cwl, bl, SkqI AwXwmhIx rwSIAW rwSIAW ijnHW dy koeI AwXwm nhIN huMdy, nUM AwXwmhIx rwSIAW ikhw jWdw hY[ audwhrxW: kox, stryn AwXwmI siQr AMk siQr AMk ijnHW dy koeI nw koeI AwXwm huMdy hn, nUM AwXwmI siQr AMk ikhw jWdw hY[ audwhrxW: gurUqvI siQr AMk, plYNk siQr AMk, AwXwmhIx siQr AMk

    siQr AMk ijnHW dy koeI AwXwm nhIN huMdy, nUM AwXwmhIx siQr AMk ikhw jWdw hY[

    audwhrxW:

    1,2,3...... π, e,

  • 21

    PAIRS OF PHYSICAL

    QUANTITIES HAVING SAME

    DIMENSIONS

    1. Speed and Velocity

    2. Frequency and Angular

    velocity

    3. Work, Energy, Torque

    4. Pressure , Stress,

    Modulus of Elasticity

    5. Impulse and Momentum

    6. Angular Momentum and

    Planck's constant

    BOiqk rwSIAW dy joVy ijnWH dy AwXwm ie`ko ijhy hn

    1. cwl Aqy vyg 2. AwivRqI Aqy koxI vyg 3. kMm, aUrjw , tOrk 4. dbwA, strY`s, lckqw

    dw mwfUls 5. Awvyg Aqy sMvyg 6. koxI sMvyg Aqy plYNk

    siQr AMk

  • 22

    PRINCIPLE OF

    HOMOGENEITY OF

    DIMENSIONS

    It states that dimensions of

    each term in a physical

    relation must be the same.

    Explanation:

    v = u + a t

    Dimensions of v = [M0 L1T-1]

    Dimensions of u = [M0 L1T-1]

    Dimensions of a = [M0 L1T-2]

    Dimensions of t = [M0 L0T1]

    Dimensions of a t = [M0 L1T-2]

    x [M0 L0T1] = [M0 L1T-1]

    Hence, the dimensions of

    each term in the physical

    relation are the same.

    AwXwmW dI iekswrqw dw isDWq

    iksy vI BOiqk smIkrn iv`c hryk trm dy AwXwm ie`ko ijhy hoxy cwhIdy hn[ ivAwiKAw: v = u + a t

    v dy AwXwm = [M0 L1T-1]

    u dy AwXwm = [M0 L1T-1]

    a dy AwXwm = [M0 L1T-2]

    t dy AwXwm = [M0 L0T1]

    a t dy AwXwm = [M0 L1T-2] x [M0 L0T1] = [M0 L1T-1]

    ies qrWH , BOiqk smIkrn iv`c hryk trm dy AwXwm ie`ko ijhy hn[

  • 23

    Q. If x = at +bt2 + c, where x

    is distance and t is time,

    what are dimensions of

    constants a, b and c.

    Ans. Given, x = at +bt2 + c

    According to principle of

    homogeneity of dimensions,

    dimensions of each term must

    be the same.

    Dimensions of x = Dimensions

    of at

    [x] = [at]

    [a] = [x] /[t] = [L] /[T] = [LT-1]

    Dimensions of x = Dimensions

    of bt2

    [x] = [bt2]

    [b] = [x] /[t2] = [L] /[T2] = [LT-2]

    Dimensions of x = Dimensions

    of c

    [x] = [c]

    [c = [x] = [L]

    Q. If v = at +bt2 , where v is

    velocity and t is time , what

    are dimensions of

    constants a and b.

    pR. jy x = at +bt2 + c, ij`Qy x dUrI Aqy t smW hY, siQr AMkW a, b Aqy c dy AwXwm kI hn?

    h`l . id`qw hY, x = at +bt2 + c

    AwXwm dI iekswrqw dy inXm Anuswr hryk trm dy AwXwm ie`ko ijhy hoxy cwhIdy hn[

    x dy AwXwm = at dy AwXwm

    [x] = [at]

    [a] = [x] /[t] = [L] /[T] = [LT-1]

    x dy AwXwm = bt2 dy AwXwm

    [x] = [bt2]

    [b] = [x] /[t2] = [L] /[T2] = [LT-2]

    x dy AwXwm = c dy AwXwm

    [x] = [c]

    [c = [x] = [L]

    pR. jy v = at +bt2, ij`Qy v vyg Aqy t smW hY, siQr AMkW a Aqy b dy AwXwm kI hn?

  • 24

    Ans. Given, v = at +bt2

    According to principle of

    homogeneity of dimensions,

    dimensions of each term must

    be the same.

    Dimensions of v = Dimensions

    of at

    [v] = [at]

    [a] = [v] /[t] = [LT-1] /[T] = [LT-2]

    Dimensions of v = Dimensions

    of bt2

    [v] = [bt2]

    [b] = [v] /[T2] = [LT-1] /[T2] =

    [LT-3]

    Q. The Vander Waal gas equation

    is (P+ a/V2)(V-b) = RT. Find the

    dimensions of 'a' and 'b' by using

    dimensional analysis

    Sol. Given equation is

    (P+ a/V2)(V-b) = RT

    According to principle of

    homogeneity of dimensions,

    dimensions of each term must

    be the same.

    Dimensions of P =

    Dimensions of a/V2

    h`l . id`qw hY, v = at +bt2

    AwXwm dI iekswrqw dy inXm Anuswr hryk trm dy AwXwm ie`ko ijhy hoxy cwhIdy hn[

    v dy AwXwm = at dy AwXwm

    [v] = [at]

    [a] = [v] /[t] = [LT-1] /[T] = [LT-2]

    v dy AwXwm = bt2 dy AwXwm

    [v] = [bt2]

    [b] = [v] /[T2] = [LT-1]/ [T2]

    = [LT-3]

    pR. (P+ a/V2)(V-b) = RT vWfr vwl gYs smIkrn hY[ AwXwmI ivSlySx dI vrqoN nwl 'a" Aqy 'b' dy AwXwm pqw kro [

    h`l : id`qI smIkrn hY :

    (P+ a/V2)(V-b) = RT

    AwXwm dI iekswrqw dy inXm Anuswr hryk trm dy AwXwm ie`ko ijhy hoxy cwhIdy hn[

    P dy AwXwm = a/V2 dy AwXwm

  • 25

    [a/V2] = [P]

    [a] = [P V2] = [ M1L-1T-2][L3]2

    = [ M1L5T-2]

    Dimensions of b = Dimensions of

    V

    [b] =[V] = [ L3]

    [a/V2] = [P]

    [a] = [P V2] = [ M1L-1T-2][L3]2

    = [M1L5T-2]

    b dy AwXwm = V dy AwXwm

    [b] =[V] = [ L3]

  • 26

    APPLICATIONS OF

    DIMENSIONAL EQUATIONS

    1. Checking the

    correctness of a physical

    relation

    2. Conversion of units from

    one system of units into

    another system

    3. Derivation of equations

    1. Checking the

    correctness of a

    physical relation

    The method of dimensions

    can be used to check the

    correctness of a physical

    relation or formula. For this

    principle of homogeneity of

    dimensions is used. If the

    dimensions of each term in

    the given relation are the

    same, relation is correct. If not

    same, the relation is not

    correct.

    AwXwmI smIkrnW dy aupXog

    1. iksy BOiqk rwSI dI shIkrqw jWc krnw

    2. iekweIAW dI ie`k pRxwlI qoN dUjI pRxwlI 'c qbdIl krnw

    3. smIkrnW dw ivauNqpMn krnw

    1. iksy BOiqk rwSI dI shIkrqw jWc krnw

    AwXwmW dy FMg nUM iksy BOiqk smIkrn jW PwrmUly dI shI hox dI jWc leI vriqAw jw skdw hY[ies mksd leI AwXwmW dI iekswrqw dy inXm dI vrqoN kIqI jWdI hY[jy kr id`qI hoeI smIkrn jW PwrmUly iv`c hryk trm dy AwXwm ie`ko ijhy hox qW smIkrn shI hY[jy kr ie`ko ijhy nhIN hn qW smIkrn shI nhIN hovygI[

  • 27

  • 28

    Example1. Check the

    correctness of the relation v

    = u + a t.

    Dimensions of v = [M0 L1T-1]

    Dimensions of u = [M0 L1T-1]

    Dimensions of a = [M0 L1T-2]

    Dimensions of t = [M0 L0T1]

    Dimensions of a t = [M0 L1T-2]

    x [M0 L0T1] = [M0 L1T-1]

    Since the dimensions of each

    term in the physical relation

    are the same, the equation is

    correct.

    Example2. Check the

    correctness of the relation s

    = u t + ½ a t2.

    Dimensions of s = [M0 L1T0]

    Dimensions of ut = [M0 L1T-1]x

    [M0 L0T1]= [M0 L1T0]

    Dimensions of ½ a t2 =[M0

    L1T-2]x [M0 L0T1]2 = [M0 L1T0]

    Since the dimensions of each

    term in the physical relation

    are the same, the equation is

    correct.

    audwhrx 1. smIkrn v = u + a t dI shIhox dI jWc kro[

    v dy AwXwm = [M0 L1T-1]

    u dy AwXwm = [M0 L1T-1]

    a dy AwXwm = [M0 L1T-2]

    t dy AwXwm = [M0 L0T1]

    a t dy AwXwm = [M0 L1T-2] x [M0 L0T1] = [M0 L1T-1]

    ikauN ik BOiqk smIkrn iv`c hryk trm dy AwXwm ie`ko ijhy hn ies leI smIkrn shI hY[

    audwhrx 2. smIkrn s = u t + ½ a t2 dI shIhox dI jWc kro[

    s dy AwXwm = [M0 L1T0]

    ut dy AwXwm = [M0 L1T-1] x [M0 L0T1]= [M0 L1T0]

    ½ a t2 dy AwXwm = [M0 L1T-2] x [M0 L0T1]2 = [M0 L1T0]

    ikauN ik BOiqk smIkrn iv`c hryk trm dy AwXwm ie`ko ijhy hn ies leI smIkrn shI hY[

  • 29

    2. Conversion of units from

    one system to another

    Dimensional equations can be

    used to convert units of a

    physical quantity from one

    system of units to another.

    We know, a physical quantity

    can be expressed as

    Q = n U

    In system of units I,

    Q = n1 U1

    In system of units II

    Q = n2 U2

    Hence, n2 U2 = n1 U1

    Or n2 = n1 U1 / U2 ....(1)

    Now, U1 = [M1xL1y T1z]

    U2 = [M2xL2y T2z]

    From (1)

    n2 = n1 [M1xL1y T1z] / [M2xL2y

    T2z]

    = n1[M1xL1y T1z / M2xL2y T2z]

    n2=n1[M1/M2]x[L1/L2]y[T1/T]z

    3. ie`k pRxwlI qoN dUjI pRxwlI iv`c iekweIAW qbdIl krnw

    AwXwmI smIkrnW nUM iksy BOiqk rwSI dIAW iekweIAW nUM ie`k pRxwlI qoN dUjI pRxwlI iv`c qbdIl krn leI vriqAw jw skdw hY[

    AsIN jwxdy hW ik iksy BOiqk rwSI nUM ies qrWH iliKAw jw skdw hY-

    Q = n U

    iekweIAW dI pRxwlI 1 iv`c,

    Q = n1 U1

    iekweIAW dI pRxwlI 2 iv`c

    Q = n2 U2

    ies leI, n2 U2 = n1 U1

    Or n2 = n1 U1 / U2 ....(1)

    hux, U1 = [M1xL1y T1z]

    U2 = [M2xL2y T2z]

    (1) qoN

    n2=n1 [M1xL1y T1z] / [M2xL2y T2z]

    = n1[M1xL1y T1z / M2xL2y T2z]

    n2=n1[M1/M2]x[L1/L2]y[T1/T]z

  • 30

    Example: Convert 1 newton

    into dyne using method of

    dimensions.

    Solution: newton is SI unit of

    force. dyne is unit of force in

    CGS system.

    n1 = 1

    n2 =?

    Dimensional formula of force

    = [M1L1T-2]

    Hence, x =1 , y= 1 , z = -2

    SI CGS System

    M1 = 1 kg M2 = 1 g

    L1 = 1 m L2 = 1 cm

    T1 = 1 s T2 = 1 s

    n2= n1[M1/M2]x[L1/L2]y[T1/T]z

    =1[1kg/1g]1[1m/1 cm]1[1s/1s]-2

    =1[1000g/1g]1[100cm/1

    cm]1[1s/1s]-2

    = 1 x 1000 x 100 x1

    = 100000 = 105

    Hence, 1 newton = 105 dyne

    audwhrx :AwXwmW dy qrIky dI vrqoN nwl 1 inaUtn nUM fweIn iv`c bdlo[

    h`l: inaUtn bl dI AYs. AweI. iekweI hY[fweIn sI.jI.AYs. pRxwlI iv`c bl dI iekweI hY[

    n1 = 1

    n2 =?

    bl dw AwXwmI sUqr hY

    = [M1L1T-2]

    ies leI, x =1 , y= 1 , z = -2

    AYs AweI sIjIAYspRxwlI

    M1 = 1 kg M2 = 1 g

    L1 = 1 m L2 = 1 cm

    T1 = 1 s T2 = 1 s

    n2= n1[M1/M2]x[L1/L2]y[T1/T]z

    =1[1kg/1g]1[1m/1 cm]1[1s/1s]-2

    =1[1000g/1g]1[100cm/1

    cm]1[1s/1s]-2

    = 1 x 1000 x 100 x1

    = 100000 = 105

    ies leI, 1 inaUtn= 105 fweIn

  • 31

    Example: Convert 1 joule

    into erg using method of

    dimensions.

    Solution: joule is SI unit of

    work. erg is unit of work in

    CGS system.

    n1 = 1

    n2 =?

    Dimensional formula of work=

    [M1L2T-2]

    Hence, x =1 , y= 2 , z = -2

    SI CGS System

    M1 = 1 kg M2 = 1 g

    L1 = 1 m L2 = 1 cm

    T1 = 1 s T2 = 1 s

    n2= n1[M1/M2]x[L1/L2]y[T1/T]z

    =1[1kg/1g]1[1m/1 cm]2[1s/1s]-2

    =1[1000g/1g]1[100cm/1

    cm]2[1s/1s]-2

    = 1 x 1000 x (100)2 x1

    = 10000000 = 107

    Hence, 1 joule = 107 erg

    audwhrx :AwXwmW dy qrIky dI vrqoN nwl 1 inaUtn nUM fweIn iv`c bdlo[

    h`l: jUl kMm dI AYs. AweI. iekweI hY[Arg sI.jI.AYs. pRxwlI iv`c kMm dI iekweI hY[

    n1 = 1

    n2 =?

    kMm dw AwXwmI sUqr hY

    = [M1L2T-2]

    ies leI, x =1 , y= 2 , z = -2

    AYs AweI sIjIAYspRxwlI

    M1 = 1 kg M2 = 1 g

    L1 = 1 m L2 = 1 cm

    T1 = 1 s T2 = 1 s

    n2= n1[M1/M2]x[L1/L2]y[T1/T]z

    =1[1kg/1g]1[1m/1 cm]2[1s/1s]-2

    =1[1000g/1g]1[100cm/1

    cm]2[1s/1s]-2

    = 1 x 1000 x (100)2 x1

    = 10000000 = 107

    ies leI, 1 jUl= 107 Arg

  • 32

    Example : Convert density

    of 13.6 g/cm3 into kg/m3

    using method of

    dimensions.

    Solution: g/cm3 is unit of

    density in CGS system and

    kg/m3 is SI unit of density.

    n1 = 13.6

    n2 =?

    Dimensional formula of

    density = [M1L-3T0]

    Hence, x =1 , y= -3 , z = 0

    CGSSystem SI

    M1 = 1 g M2 = 1 kg

    L1 = 1 cm L2 = 1 m

    T1 = 1 s T2 = 1 s

    n2= n1[M1/M2]x[L1/L2]y[T1/T]z

    =13.6[1g/1kg]1[1cm/1m]-

    3[1s/1s]0

    =13.6[1g/1000g]1[1cm/100

    cm]2[1s/1s]0

    = 13.6 x (1/1000)1 x (1/100)-3

    x1

    audwhrx: AwXwmW dy qrIky dI vrqoN nwl 13.6 g/cm3 dI Gxqw nMU kg/m3 iv`c bdlo[

    h`l : g/cm3 Gxqw dw sI.jI.AYs pRxwlI iv`c and kg/m3 AYs AweI iv`c iekweI hY[

    n1 = 13.6

    n2 =?

    Gxqw dw AwXwm sUqr= [M1L-3T0]

    ies leI, x =1 , y= -3 , z = 0

    CGSSystem SI

    M1 = 1 g M2 = 1 kg

    L1 = 1 cm L2 = 1 m

    T1 = 1 s T2 = 1 s

    n2= n1[M1/M2]x[L1/L2]y[T1/T]z

    =13.6[1g/1kg]1[1cm/1m]-

    3[1s/1s]0

    =13.6[1g/1000g]1[1cm/100

    cm]2[1s/1s]0

    = 13.6 x (1/1000)1 x (1/100)-3

    x1

  • 33

    =13.6 (1/1000) x (100)3x1

    = 13.6 x1/1000 x 1000000

    =13.6 x1000 = 13600

    Hence, 13.6 g/cm3 = 13600

    kg/m3

    =13.6 (1/1000) x (100)3x1

    = 13.6 x1/1000 x 1000000

    =13.6 x1000 = 13600

    ies leI, 13.6 g/cm3 = 13600 kg/m3

  • 34

    III. Derivation of relations

    The method of dimensions

    can be used to derive the

    relation for a quantity.

    Example: Weight (W) of a

    body depends on its mass

    (m) and acceleration due to

    gravity (g). Derive relation

    for W.

    Solution:

    Suppose W α mx gy

    W = k mx gy ……(1)

    Dimensions of W =[M1L1T-2]

    Dimensions of m = [M1L0T0]

    Dimensions of g = [M0L1T-2]

    Put these values in eq. (1),

    [M1L1T-2] =[M1L0T0]x[M0L1T-2]y

    =[MxL0T0][M0LyT-2y]

    III. smIkrnW ivauNqpMn krnw

    AwXwm dy qrIky nwl iksy rwSI leI smIkrn ivauNqpMn kIqI jw skdI hY[

    audwhrx: iksy vsqU dw Bwr (W ) ies dy puMj (m) Aqy gurUqvI pRvyg (g) qy inrBr krdw hY[W leI sMbMD ivauNqpMn kro[

    h`l :

    mMn lE, W α mx gy

    W = k mx gy ……(1)

    W dy AwXwm=[M1L1T-2]

    m dy AwXwm = [M1L0T0]

    g dy AwXwm = [M0L1T-2]

    ieh kImqW (1) iv`c Bro

    [M1L1T-2] =[M1L0T0]x[M0L1T-2]y

    =[MxL0T0][M0LyT-2y]

  • 35

    [M1L1T-2] =[MxLyT-2y] …(2)

    Compare powers of M,L and

    T on both sides of (2)

    x = 1 ………(3)

    y = 1 ………(4)

    -2y = -2 …….(5)

    Put values of x and y in eq.

    (1),

    W = k m1 g1

    = kmg

    Take k=1,

    W = mg

    This is the required equation.

    Example2. Time period (T)

    of a simple pendulum may

    depend on mass (m) of its

    bob, length (l) of the

    pendulum and acceleration

    due to gravity (g).Derive

    relation for T.

    Solution:

    [M1L1T-2] =[MxLyT-2y] …(2)

    (2) dIAW dono pwsy M,L Aqy T dIAW pwvrW dI qulnw kro

    x = 1 ………(3)

    y = 1 ………(4)

    -2y = -2 …….(5)

    (1) iv`c x Aqy y dIAW kImqW Bro

    W = k m1 g1

    = kmg

    k=1 lE

    W = mg

    ieh loVINdI smIkrn hY.

    audwhrx 2. ie`k swDwrn pYNfUlm dw foln kwl (T) ies dy bOb dy puMj (m), pYNfUlm dI lMbweI (l) Aqy gurUqvI pRvyg (g) 'qy inrBr kr skdw hY[T vwsqy sMbMD ivauNqpMn kro[

    h`l :

  • 36

    Suppose mMn lE

    T α mx ly gz T α mx ly gz

    Or T = k mx ly gz ….(1) Or T = k mx ly gz ….(1)

    Dimensions of T = [M0L0T1] T dy AwXwm = [M0L0T1]

    Dimensions of m = [M1L0T0] m dy AwXwm = [M1L0T0]

    Dimensions of l = [M0L1T0] l dy AwXwm = [M0L1T0]

    Dimensions of g = [M0L1T-2] g dy AwXwm = [M0L1T-2]

    Put these values in eq.(1) ieh kImqW smIkrn (1) iv`c Bro

    [M0L0T1]=[M1L0T0]x[M0L1T0]y[M0L1T-2]z [M0L0T1]=[M1L0T0]x [M0L1T0]y [M0L1T-2]z

    =[MxL0T0] [M0LyT0] [M0LzT-2z] =[MxL0T0] [M0LyT0] [M0LzT-2z]

    [M0L0T1] =[MxLy+zT-2z] ……(2) [M0L0T1] =[MxLy+zT-2z] ……(2)

    Compare powers of M, L and T on both sides M , L Aqy T dIAW pwvrW dI qulnw kro

    x =0 ……..(3) x =0 ……..(3)

    y + z = 0 ……(4) y + z = 0 ……(4)

    -2z = 1 …….(5) -2z = 1 …….(5)

    From (5), 2z =-1 or z = -1/2 (5) qoN 2z =-1 or z = -1/2

    From (4) y -1/2 = 0 or y = ½ (4) qoN y -1/2 = 0 or y = ½

    Put these values in eq. (1) ieh kImqW smIkrn (1) iv`c Bro

    T = k m0 l1/2 g-1/2 T = k m0 l1/2 g-1/2

    = k x 1 l1/2 / g1/2 = k x 1 l1/2 / g1/2

  • 37

    = k (l/g)1/2 = k (l/g)1/2

    = k√l/g = k√l/g

    Take k= 2 π Take k= 2 π

    T = 2 π√l/g T = 2 π√l/g

  • 38

    LIMITATIONS OF

    DIMENSIONAL ANALYSIS

    1. The method of

    dimensions does not

    give the value of

    dimensionless constant

    (k). It has to be

    calculated by some other

    method.

    2. The method of

    dimensions cannot be

    used to derive relations if

    the factors on which

    quantity depends are not

    known.

    3. The method of

    dimensions cannot be

    used to derive relations if

    the quantity depends on

    more than three factors.

    4. The method of

    dimensions cannot be

    used to derive relations

    which involve

    dimensionless factors

    like sin , cos, log etc.

    AwXwmI ivSlySx dIAW KwmIAW

    1. AwXwm dw qrIkw AwXwmhIx siQr AMk dy mùl bwry nhIN d`sdw[ies nUM iksy hor FMg nwl pqw krnw pYNdw hY[

    2. AwXwm dw qrIkw PwrmUly ivauNqpMn krn leI nhIN vriqAw jw skdw jy kwrk ijnHW 'qy rwSI inrBr krdI hY, pqw nw hox[

    3. AwXwm dw qrIkw PwrmUly ivauNqpMn krn leI nhIN vriqAw jw skdw jy rwSI iqMn qoN v`D kwrkW 'qy inrBr krdI hY[

    4. AwXwm dw qrIkw PwrmUly ivauNqpMn krn leI nhIN vriqAw jw skdw ijnHW iv`c AwXwmhIx kwrk ijvyN sin , cos, log Awid hox[

  • 39

    ERRORS qrùtIAW

    The difference between actual

    value and measured value of

    a physical quantity is called

    error.

    iksy BOiqk rwSI dI Asl mùl Aqy mwpy mu`l 'c Prk nUM qrùtI ikhw jWdw hY[

    TYPES OF ERRORS

    Errors are of three types:

    1. Systematic Errors

    2. Random Errors

    3. Gross Errors

    1. Systematic Errors:

    Errors which are due to

    known reasons (causes) and

    which are always of same

    sign or type are called

    systematic errors.

    (a) Instrumental Errors:

    Errors which are due to some

    defect in the measuring

    instrument are called

    instrumental errors.

    (b) Environmental

    Errors

    qru`tIAW dIAW iksmW

    qru`tIAW iqMn iksmW dIAW huMdIAW hn:

    1. kRmbD qru`tIAW 2. byqrqIb qru`tIAW 3. grOs qru`tIAW

    1. kRmb`D qru`tIAW

    qru`tIAW ijhVIAW jwxU kwrnW kr ky Aqy hmySW ie`ko icMn /iksm dIAW huMdIAW hn, nUM kRmb`̀D qru`tIAW ikhw jWdw hY[

    (a) XMqirk qru`tIAW: qru`tIAW jo mwpx vwly XMqr iv`c iksy nuks kwrn huMdIAW hn , nUM XMqirk qru`tIAW ikhw jWdw hY[

    (A) vwqwvrnI qru`tIAW:

  • 40

    Errors which arise due to

    changes in atmospheric

    conditions like temperature,

    pressure are called

    environmental errors.

    (c) Errors Due to

    imperfection

    Minimization of Systematic

    Errors:

    Because reasons of

    systematic errors are known,

    these errors can be minimized

    by applying proper correction.

    Random Errors:

    The errors which are due to

    unknown reasons and which

    are not always of the same

    sign or type are called random

    errors.

    Minimization of Random

    Errors:

    These errors can be

    minimized by repeating the

    experiment a number of times

    and then taking arithmetic

    mean of all the observations.

    qru`tIAW jo vwqwvrnI hwlqW ijvyN qwpmwn, dbwA Awid kwrn hoNd iv`c AwauNdIAW hn ,nUM vwqwvrnI qru`tIAW ikhw jWdw hY[

    (d) gYrsMpUrnqw kwrn qru`tIAW

    kRmbD qru`tIAW nUM G`t krnw:

    ikauN ik kRmb`D qru`tIAW dy kwrn pqw huMdy hn, ies leI iehnW qr`utIAW nUM Xog soD lgw ky G`t kIqw jw skdw hY[

    byqrqIb qru`tIAW

    qru`tIAW ijhVIAW nw jwxU kwrnW kr ky Aqy hmySW ie`ko icMn /iksm dIAW nhIN huMdIAW hn, nUM byqrqIb qru`tIAW ikhw jWdw hY[

    byqrqIb qru`tIAW nUM G`t krnw

    iehnW qru`tIAW nUM pRXog nUM keI vwr duhrw ky Aqy swrIAW pRyKxW dw gixqk AOsq lY ky G`t kIqw jw skdw hY[

  • 41

    Gross Errors

    The errors which arise due to

    human mistakes are called

    gross errors.

    Minimization of Gross

    Errors:

    These errors can be

    minimized by doing the

    experiment very carefully.

    ABSOLUTE ERROR

    The magnitude of the

    difference between the true

    value and measured value of

    a physical quantity is called

    absolute error.

    This is denoted by | Δa |.

    RELATIVE ERROR

    The error obtained by dividing

    absolute error by actual value

    is called relative error.

    Relative error = Δamean/ amean

    PERCENTAGE ERROR

    The error obtained by taking

    percentage of relative error is

    called percentage error.

    grOs qru`tIAW

    ieh qru`tIAW mnu`KI glqIAW kwrn hoNd iv`c AwauNdIAW hn[

    grOs qru`tIAW nUM G`t krnw

    ieh qru`tIAW pRXog nUM iDAwn nwl krn nwl G`t kIqIAW jw skdw hY[

    inrpyK qru`tI

    iksy BOiqk rwSI dI Asl mùl Aqy mwpy gey mu`l iv`c Prk dI mwqrw nUM inrpyK qru`tI ikhw jWdw hY[

    ies nUM | Δa | nwl drswieAw jWdw hY[

    swpyKI qru`tI

    qru`tI jo inrpyK qru`tI nUM Asl mùl nwl Bwg krn 'qy pRwpq huMdI hY nUM swpyKI qru`tI ikhw jWdw hY[

    swpyKI qru`tI = Δamean/ amean

    pRqISq qru`tI

    qru`tI jo swpyKI qru`tI dI pRqISqqw lYx nwl pRwpq huMdI hY nUM pRqISq qru`tI ikhw jWdw hY[

    pRqISq qru`tI δa = (Δamean/amean) × 100%

  • 42

    Percentage error, δa = (Δamean/amean)×100%

    SIGNIFICANT FIGURES

    The digits which are used to express the result with proper

    accuracy are called significant figures.

    Rules for Significant Figures:

    1. All non-zero digits are significant.

    Example: The number of significant figures in 463298 is 6.

    2. All zeros between nonzero digits are also significant.

    Example: The number of significant figures in 6032 is 4.

    3. The zeros after the decimal point and before non-zero digit

    are not significant.

    Example: The number of significant figures in 0.007 is 1.

    4. The zeros to the right of decimal point and also right of

    nonzero digits are significant.

    Example: The number of significant figures in 0.2370 is 4.

    5. Zeros after non zero digit are not significant.

    The number of significant figures in 100000000 is 1.

  • 43

    mh`qvpUrx AMk

    AMk, jo iksy irjlt nUM Xog Su`Dqw nwl pRgt krn leI vrqy jWdy hn, nUM mh`qvpUrx AMk ikhw jWdw hY[

    mh`qvpUrx AMkW leI inXm

    1. swry gYr-isPr AMk mh`qvpUrx huMdy hn[ audwhrx: 463298 iv`c 6 mh`qvpUrx AMk hn[

    2. gYr-isPr AMkW ivckwr AwauNdIAW swrIAW isPrW vI mh`qvpUrx huMdIAW hn[ audwhrx: 6032 iv`c 4 mh`qvpUrx AMk hn[

    3. dSmlv ibMdU dy s`jy pwsy pr gYr-isPr AMk dy K`by pwsy isPrW mh`qvpUrx nhIN huMdIAW hn[ audwhrx: 0.007 iv`c 1 mh`qvpUrx AMk hY[

    4. dSmlv ibMdU dy s`jy pwsy Aqy gYr-isPr AMk dy s`jy pwsy isPrW mh`qvpUrx huMdIAW hn[ audwhrx: 0.2370 iv`c 4 mh`qvpUrx AMk hn[

    5. gYr-isPr AMkW dy s`jy pwsy isPrW mh`qvpUrx nhIN huMdIAW[ audwhrx: 100000 iv`c 1 mh`qvpUrx AMk hY[

  • 44

    QUESTIONS FROM PREVIOUS

    EXAMINATIONS

    SECTION A

    Fill in the blanks:

    1. Dimensional formula of potential energy is......

    [May'19]

    2. S.I. unit of Planck's constant is .............

    [May'19]

    3. Dimensional formula of pressure is........... [Nov'18]

    4. Dimensional formula of force is ............

    [Nov'18]

    5. The dimensional formula of energy is ....... [May'18]

    6. Number of fundamental and base units in S.I. system is ....

    [May'18]

    7. Dimensional formula of Gravitation constant is ........

    [May'17]

    8. Energy and power have ......................dimensions.

    [Nov'16]

    9. SI unit of temperature is..............

    [May'16]

    10. 1 nanometer is equal to ...................

    [May'15]

    11. The dimensional formula of compressibility is .........

    [Nov'14]

    12. Number of significant figures in 0.345200 are ..........

    [Nov'14]

    13. A physical quantity can be completely measured if we know the

    numerical value and its ...............

    [Dec'14]

    14. The dimensional formula of torque is ...........

    [May'13]

    15. The dimensional formula of kinetic energy is ..........

    [Dec'12]

  • 45

    16. The dimensional formula of pressure is ...............

    [May'11]

    17. Plane angle and solid angle are the two ........... units in SI

    system. [Dec'10]

    18. If zero of vernier scale and main scale do not coincide the type

    of error is called..........

    [Dec'10]

    State True or Force:

    1. One Fermi is equal to 10-15 m. [May'18][May '19][May'13]

    2. Arithmetic mean of all the absolute errors is called mean absolute

    error. [Nov'18]

    3. Dimensional formula of work and energy is not same. [Nov'18]

    4. The equation v2 + u2 = 2as is dimensionally correct.

    [Nov'16]

    5. SI unit of pressure is dyne/cm2. [Nov'14]

    6. One nanometre is equal to 10-9 m.

    [Dec'14]

    7. Young's modulus has the same dimension as pressure.

    [May'12]

    8. SI unit of compressibility is Nm-1.

    [Dec'12]

    9. SI is coherent systems of units. [May,11]

    10. Dimensions of work and torque are same.

    [Dec'10]

    Multiple Choice questions:

    1. The significant figures in 0.09 are

    a) 1 b) 2 c) 3 d) 4 [May'19]

    2. Dimensional formula of angular velocity is same as that of

    a) Linear velocity b) acceleration c) frequency d) speed

    [Nov '18]

    3. The significant figures in 96.000 are

    a) 3 b)4 c) 5 d) 6 [May'18]

  • 46

    4. How many significant figures are there in 40.00?

    a) 1 b) 2 c) 3 d) 4 [Nov'16]

    5. The significant figures in 0.07805 is

    a) 3 b) 4 c) 5 d) 6 [May'16]

    6. Which of the following is dimensionless constant/quantity?

    a) Young's modulus b) Poisson ratio c) Bulk modulus d) Modulus

    of rigidity [Dec'14]

    7. The significant figures in 0.09806 is

    a) 3 b) 4 c) 5 d)6 [May'13]

    8. The formula P= (x2-b)/at relates power (P) distance (d) and time

    (t) . The dimensional formula of 'a' is

    a) [ML1T2] b) [M1L1T-2] c) [M1L0T2] d) [M1L2T-2] [May '12]

    9. How many significant figures are there in 30.00?

    a) 1 b) 2 c) 3 d) 4 [May'11]

    10. The wavelength associated with a particle of mass 'm' and

    moving with velocity v is given by λ = h/mv where h is Planck's

    constant. The dimensional formula of 'h' is

    a) ML2T b) M1L-1T-1 c) ML1T-1 d) ML2T-1

    [Dec 11]

    11. Dimensional formula for density is

    a) [ML3T] b) [ML-3T0] C) [M3LT3] d) [MLT]

    [Dec'10]

    SECTION B

    1. Convert 1 newton of force into dyne using dimensional

    analysis. [May'19][May'18][Dec'10]

    2. What is meant by error? Define systematic and random

    error.

    [May'19]

    3. The Vander Waal gas equation is (P+ a/V2)(V-b) = RT. Find

    the dimensions of 'a' and 'b' by using dimensional analysis.

    [May'19]

    4. Check the accuracy of the relation v2-u2=2as

    [Nov'18]

    5. Check the accuracy of the relation s= ut +1/2 at2.

    [Nov'18]

  • 47

    6. What are significant figures? Give rules for finding significant

    figures. [May'17]

    7. Check the correctness of relation t = 2 π √l/g where l is

    length and g is acceleration due to gravity.

    [Nov'16]

    8. State and prove principle of homogeneity of Dimensions.

    [May'16]

    9. Derive the expression for centripetal force (F) acting on a

    body of mass (m) moving with velocity (v) in a circle of radius

    (r) using dimensional analysis.

    [Nov'14]

    10. What is meant by error? Define systematic and random

    errors. [Nov'14]

    11. Write six pairs of physical quantities which have same

    dimensions. [Dec'14]

    12. Using method of dimensions, convert 1 joule into ergs.

    [May'12]

    13. What is a unit? Give different systems of units.

    [Dec'12]

    14. Check the correctness of the relation, v = u + at by the

    method of dimensions.

    [May'11]

    15. What are limitations of dimensional analysis.

    [Dec'10]

    SECTION C

    1. Check the correctness of relation t = 2 π√l/g where l is length

    and g is acceleration due to gravity.

    [May'19]

    2. A body of mass m is moving with uniform speed v in a circle of

    radius r. Find an expression for centripetal force F by method of

    dimensions. [Nov'18]

    3. a) Check the correctness of the relation t = 2 π √l/g where t is

    time period of pendulum, l is length and g is acceleration due to

    gravity.

    b) Explain different systems of units. [May'18]

  • 48

    4. The density of mercury is 13.6 gm/cm3. Convert its value into

    kg/m3. [Nov'14] [Dec '12]

    5. a) The wavelength λ associated with a moving particles

    depends upon its mass m, velocity v and Planck's constant h.

    Show dimensionally that λ α h/mv .

    c) The maximum error in the measurement of mass and length

    are 3% and 2% respectively. Find the maximum error in the

    measurement of density.

    [Nov'16]

    6. The wavelength of a moving electron depends upon its mass

    m, its velocity v and Planck's constant h. Prove that λ α h/mv.

    [May'16][Dec'10]

    7. Define fundamental and derived units. [Dec'14]

    8. What are significant figures? Give rules for finding significant

    figures with examples.

    [May'13]

    9. a) Write five pairs of physical quantities which have same

    dimensions.

    b) Deduce the dimensions of gravitational constant. [Dec'13]

    10. Define

    (a) Instrumental error

    (b) Error due to imperfect theory or formulae

    (c) Random error. Give example of each type. How can the

    above error be removed or minimised.

    [May'12]

    11. Prove that 1 joule = 107 ergs using dimensional equation.

    [May'11]

    12. The frequency of vibration (n) of a stretched string depends

    upon the load applied T, length l, and its mass per unit length u.

    Find dimensionally the formula of frequency. [Dec '11]

    13. The Pressure P exerted by a liquid column depends on its

    height h, density d and acceleration due to gravity g. Derive an

    expression for P with the help of dimensions.

    [Dec'10]

  • 49

  • 50