Railway Substructure

16
MidCon(nent Research Forum 2012 September 6 Keene, Su, Fra+a, & Tinjum University of WisconsinMadison Slide 1 UW – Madison Geological and Geotechnical Engineering Geological Engineering Transporta1on Geotechnics Civil & Environmental Engineering Use of Free-Free Resonant Column Testing for Characterizing Infrastructure Materials Andrew Keene, Zhipeng Su, Dante Fratta, and James Tinjum

description

Railway Substructure

Transcript of Railway Substructure

Page 1: Railway Substructure

Mid-­‐Con(nent  Research  Forum  2012  September  6  Keene,  Su,  Fra+a,  &  Tinjum  University  of  Wisconsin-­‐Madison    Slide  1  

UW – Madison  Geological and

Geotechnical Engineering    

Geological  Engineering  Transporta1on  Geotechnics  Civil  &  Environmental  Engineering  

Use of Free-Free Resonant Column Testing for Characterizing Infrastructure Materials

Andrew Keene, Zhipeng Su, Dante Fratta, and James Tinjum

Page 2: Railway Substructure

Mid-­‐Con(nent  Research  Forum  2012  September  6  Keene,  Su,  Fra+a,  &  Tinjum  University  of  Wisconsin-­‐Madison    Slide  2  

Outline 1.  Background

•  Resilient modulus testing •  Free-free resonant column testing

2.  Materials 3.  Methods

•  Seismic modulus test development

4.  Results •  Fitting parameters •  Summary seismic/resilient modulus •  Curing detection

5.  Conclusion

Page 3: Railway Substructure

Mid-­‐Con(nent  Research  Forum  2012  September  6  Keene,  Su,  Fra+a,  &  Tinjum  University  of  Wisconsin-­‐Madison    Slide  3  

Background: Resilient Modulus

  Resilient Modulus (Mr) Test

where εr is the recoverable elastic strain and σd is the deviator stress

L

σd ε  r= δe/L Mr = σd / εr

δe

Section 10.3.3.9 NCHRP 1-28A (2004)

Example:

Page 4: Railway Substructure

Mid-­‐Con(nent  Research  Forum  2012  September  6  Keene,  Su,  Fra+a,  &  Tinjum  University  of  Wisconsin-­‐Madison    Slide  4  

Background: Resilient Modulus

k1 and k2 = fitting parameters θ = bulk stress θ = σ1+2(σ3)=1 pr = reference stress

Power Function:

k2

k1

σ1

σ3 σ3

log (bulk stress)

log

(res

ilien

t mod

ulus

)

1

Summary Resilient Modulus, SMr

σ1

σ3 σ3

(Huang 2004; Moosazedh & Witczak 1981)

(σc=35 kPa)

Page 5: Railway Substructure

Mid-­‐Con(nent  Research  Forum  2012  September  6  Keene,  Su,  Fra+a,  &  Tinjum  University  of  Wisconsin-­‐Madison    Slide  5  

Constrained Modulus

Background: Free-Free Resonant Column VP

Length, L Density, ρ

P- Wave Velocity

Accelerometer Impact Hammer

(Pucci 2010; Kalinski & Thummaluru 2005; Meng 2003)

Page 6: Railway Substructure

Mid-­‐Con(nent  Research  Forum  2012  September  6  Keene,  Su,  Fra+a,  &  Tinjum  University  of  Wisconsin-­‐Madison    Slide  6  

Materials   Natural Aggregate and Recycled Base Course

•  Minnesota DOT Class 5 natural aggregate •  Natural base course aggregates from Senegal Africa •  Recycled Concrete Aggregates (RCA) •  Recycled Asphalt Pavement (RAP) •  Recycled Asphalt Shingles (RAS) with Bottom Ash (BA)

  Railroad Substructure Materials •  Ballast •  Subballast

  Stabilized Infrastructure Materials •  Polyurethane-Stabilized Ballast (PSB) •  Rigid-Polyurethane Foam (RPF) •  Cement-Stabilized Silt

Page 7: Railway Substructure

Mid-­‐Con(nent  Research  Forum  2012  September  6  Keene,  Su,  Fra+a,  &  Tinjum  University  of  Wisconsin-­‐Madison    Slide  7  

R² = 0.92

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800

β-ex

pone

nt

α-coefficient (m/s)

VS,VP,σ3  

σ3  σ3  

0

500

1,000

1,500

2,000

2,500

3,000

0 50 100 150 200

Con

stra

ined

Mod

ulus

, M (k

Pa)

Confining Pressure (kPa)

Summary  Seismic  Modulus,  SMS  

Methods: Constrained (Seismic) Modulus

σ3  =  σc  

VP  

Power  Func(on:  

Constrained Modulus

Vs  

(Pucci 2010; Kalinski & Thummaluru 2005; Meng 2003)

Page 8: Railway Substructure

Mid-­‐Con(nent  Research  Forum  2012  September  6  Keene,  Su,  Fra+a,  &  Tinjum  University  of  Wisconsin-­‐Madison    Slide  8  

k2 = -8·10-6 x k1 + 0.63 R² = 0.87

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

K2-

expo

nent

K1-coefficient

Class 5 TxRCA-1_Day TxRCA-7_Day Subballast CaRAP CaRCA BAS GNB GRB MiRCA NjRCA RAS-25%, BA-75% PSB-C3 PSB-C6

Results: Resilient Modulus Fitting Parameters

(Moosazedh & Witczak 1981)

•  RCA = Recycled Concrete Aggregates

•  RAP = Recycled Asphalt Pavement

•  Tx = Texas

•  Ca = California •  Mi = Michigan •  Nj = New Jersey •  PSB = Polyurethane Stabilized-

Ballast

•  RAS = Recycled Asphalt Singles •  BA = Bottom Ash •  BAS, GNB, GRB are unbound

base course materials from Senegal Africa

Fine-grained soils

Coarse-grained and stabilized soils

Page 9: Railway Substructure

Mid-­‐Con(nent  Research  Forum  2012  September  6  Keene,  Su,  Fra+a,  &  Tinjum  University  of  Wisconsin-­‐Madison    Slide  9  

β = -0.0008·∙α + 0.47 R² = 0.86

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500 600 700

β-ex

pone

nt

α-coefficient (m/s)

Class 5 TxRCA TxRCA-7_Day Subballast Clean Ballast BAS GNB GRB CaRCA NjRCA NjRCA-7_Day Ottawa Sand CaRAP RPF-2 RPF-3

Results: P-wave Velocity Fitting Parameters

VS

VP

(Pucci 2010; Kalinski & Thummaluru 2005; Meng 2003)

•  RCA = Recycled Concrete Aggregates

•  RAP = Recycled Asphalt Pavement

•  Tx = Texas •  Ca = California •  Mi = Michigan

•  Nj = New Jersey •  PSB = Polyurethane

Stabilized-Ballast •  RPF = Rigid-

Polyurethane Foam

•  BAS, GNB, GRB are unbound base course materials from Senegal Africa

Fine-grained soils

Coarse-grained and stabilized Soils

Page 10: Railway Substructure

Mid-­‐Con(nent  Research  Forum  2012  September  6  Keene,  Su,  Fra+a,  &  Tinjum  University  of  Wisconsin-­‐Madison    Slide  10  

Results: Material Comparison

R² = 0.90

R² = 1.00

R² = 0.86

R² = 0.99

0

200

400

600

800

1,000

1,200

1,400

0

200

400

600

800

1,000

1,200

1,400

0 20 40 60 80 100 120 140 160

Res

ilien

t Mod

ulus

, MR (M

Pa)

Con

stra

ined

Mod

ulus

, M (M

Pa)

Confining Pressure σ3 (kPa)

σ3 = 35 kPa

TxRCA – M

Class 5 – M

Class 5– MR

TxRCA – MR

Page 11: Railway Substructure

Mid-­‐Con(nent  Research  Forum  2012  September  6  Keene,  Su,  Fra+a,  &  Tinjum  University  of  Wisconsin-­‐Madison    Slide  11  

R² = 0.95

R² = 0.99

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1,000 1,200 1,400 1,600

Res

ilien

t Mod

ulus

(MPa

)

Confining Pressure σ3 (kPa)

TxRCA

Class 5

Results: Modulus Comparisons

10 kPa

130 kPa

σ3

More Stiff Less Stiff

Page 12: Railway Substructure

Mid-­‐Con(nent  Research  Forum  2012  September  6  Keene,  Su,  Fra+a,  &  Tinjum  University  of  Wisconsin-­‐Madison    Slide  12  

Results: Modulus Comparison

SMR = 0.39 ·∙  SMS R² = 0.85

0

100

200

300

400

0 100 200 300 400 500 600 700 800 900

Res

ilien

t Mod

ulus

, SM

R (M

Pa)

Constrained Modulus, SMS (MPa)

σ3 = representative confining pressure at 35 kPa

Page 13: Railway Substructure

Mid-­‐Con(nent  Research  Forum  2012  September  6  Keene,  Su,  Fra+a,  &  Tinjum  University  of  Wisconsin-­‐Madison    Slide  13  

Results: TxRCA – Curing

M = 179· σ30.55

R² = 0.89

M = 41·∙  σ30.83

R² = 0.99

0

500

1,000

1,500

2,000

2,500

0 10 20 30 40 50 60 70 80

Con

stra

ined

Mod

ulus

, M (k

Pa)

Confining Pressure, σ3 (kPa)

TxRCA 7Day

TxRCA 1Day

σ3 = confining pressure (kPa); M = constrained modulus (kPa)

Page 14: Railway Substructure

Mid-­‐Con(nent  Research  Forum  2012  September  6  Keene,  Su,  Fra+a,  &  Tinjum  University  of  Wisconsin-­‐Madison    Slide  14  

Results: Silt Cement – Curing fn = 1408· σ3

0.051 R² = 0.88

fn = 1076· σ30.048

R² = 0.93

fn = 463· σ30.21

R² = 0.99

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

0 10 20 30 40 50 60 70 80

Nat

ural

Fre

qenc

y, f n

(Hz)

Confining Pressure (kPa)

28 Day 7 DAy 1 Day

σ3 = confining pressure; fn = natural frequency (Hz)

Page 15: Railway Substructure

Mid-­‐Con(nent  Research  Forum  2012  September  6  Keene,  Su,  Fra+a,  &  Tinjum  University  of  Wisconsin-­‐Madison    Slide  15  

Conclusions

  Effects of Confining Pressure •  Mr vs. σconf

•  M vs. σconf

  Mr and VP Fitting Parameters   Mr vs. M

  SMr vs. SMS

  Curing •  M vs. σconf RCA re-cementation effects •  Natural frequency vs. σconf cement soil

Page 16: Railway Substructure

Mid-­‐Con(nent  Research  Forum  2012  September  6  Keene,  Su,  Fra+a,  &  Tinjum  University  of  Wisconsin-­‐Madison    Slide  16  

Questions? Acknowledgements

  Center for Freight Infrastructure Research and Education (CFIRE)

  Minnesota Department of Transportation

  Recycled Materials Resource Center (RMRC)

  Uretek USA Inc.

  Professors: •  Tuncer Edil

•  Craig Benson

References

Huang, Y.H. (2004). Pavement Analysis and Design – Second Addition. Pearson Prentice Hall, Upper Saddle River, New Jersey.

Kalinski, M.E. & Thummaluru, M.S.R. (2005). “A New Free-Free Resonant Column Device for Measurement of Gmax and Dmin at Higher Confining Stresses.” ASTM Geotechnical Testing Journal, Vol. 28, No. 2.

Menq, F. Y. (2003). “Dynamic Properties of Sandy and Gravelly Soils.” PhD thesis, Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, 2010.

Moosazedh, J. & Witczak, M. (1981). “Prediction of Subgrade Moduli for Soil that Exhibits Nonlinear Behavior.” Journal of Transportation Research Board, No.810, Washington, D.C., pp. 10-17.

National Cooperative Highway Research Program, NCHRP. (2004). Laboratory Determination of Resilient Modulus for Flexible Pavement Design. Research Results Digest, Transportation Research Board.

Pucci, M. J. (2010). “Development of a Multi-Measurement Confined Free-Free Resonant Column Device and Initial Studies.” MS thesis, Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, 2010.