Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever...

20
3 Radiolarians, Radiolarites, and Mesozoic Paleogeography of the Circum- Mediterranean Alpine Belts Patrick De Wever Overview Radiolarites are of great importance as bathymetric indicators for paleogeographic reconstructions and geodynamic models. Only recently have we been able to date radiolarites and many age dates are scat- tered through the specialized geologic literature. The inventory of available data from the Mesozoic of the circum-Mediterranean Alpine fold belts reveals two general periods of 'radiolarite sedimentation, both associated with sedimentary and ophiolitic sequences: one period occurred during Triassic and/or Liassic time, the other during Dogger and/or MaIm time. The Triassic-Liassic sections are alloch- tonous. Radiolarites associated with extrusive rocks are considered to be the sedimentary cover of an oceanic crust, either of an open ocean, back-arc basin or small ocean basin. Radiolarites intercalated with other sedimentary rocks belong to nappes with unknown basement rocks, probably of thinned con- tinental crust. Radiolarites deposited during Dogger and MaIm time are of three types and characterize three environments whose common attribute is a basal diachronism and a synchronous top. Radio- larites intercalated with sedimentary sequences occurred in basins that received deposits since Trias- sic time (i.e., Lagonegro, Pindos-Olonos zone) or in regions newly invaded by water masses (i.e., Austro- Alpine zone). Detailed local studies suggest deposi- tion on faulted blocks of a rifting margin. Although the base of radiolarites is not synchronous in differ- ent units, it nevertheless starts around the Dogger and the maximum development was generally dur- ing Oxfordian time. The base of radiolarites asso- ciated with ophiolites is everywhere dated as MaIm but the bases are not exactly synchronous; data are still too few to analyze the details. The sudden disap- pearance of all the radiolarites in the Uppermost Jurassic may be attributed to a drastic change in cir- culation from gyres producing upwelling in the Tethyan basin, to latitudinal, east-to-west circula- tion through Central America which broke down the upwelling regime in much of the tethyan area. Introduction Radiolarites (rhythmically centimeter-bedded cherts alternating with millimeter-bedded shale) are of great importance for paleogeographic reconstruc- tions and geodynamic models because of their bath- ymetric significance and their frequent association with ophiolites. They are a very good marker for the study of margin formation, subsidence, and evolu- tion and are important for dating the oceanic crust. However, direct dating of radiolarite was not pos- sible until recently, since these sedimentary rocks do not bear the fossils commonly used for stratigraphy (e.g., foraminifers, nannofossils). Locally they had been indirectly dated by reworked microfauna included in rare beds of microbreccia (i.e., in the Pindos-Olonos zone, Greece- Dercourt et al., 1973; Thiebault et aI., 1981; De Wever and Thiebault, 1981). Moreover, the petrographic composition of these rocks did not permit use of the usual etching techniques for extracting fossils. In the 1970s, this difficulty was overcome by the discovery of Dumi- trica (1970). His etching technique has been des- cribed and improved by several authors (Pessagno and Newport, 1972; De Wever et aI., 1979a; De Wever, 1982). Radiolarites of circum-Alpine oro- genic belts have since been analyzed paleontologi- cally (Baumgartner et al., 1980; Baumgartner, 1984; Kocher, 1981; Thiebault et aI., 1981; De Wever and

Transcript of Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever...

Page 1: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

3Radiolarians, Radiolarites, and MesozoicPaleogeography of theCircum-Mediterranean Alpine BeltsPatrick De Wever

Overview

Radiolarites are of great importance as bathymetricindicators for paleogeographic reconstructions andgeodynamic models. Only recently have we beenable to date radiolarites and many age dates are scat­tered through the specialized geologic literature.The inventory of available data from the Mesozoic ofthe circum-Mediterranean Alpine fold belts revealstwo general periods of 'radiolarite sedimentation,both associated with sedimentary and ophioliticsequences: one period occurred during Triassicand/or Liassic time, the other during Dogger and/orMaIm time. The Triassic-Liassic sections are alloch­tonous. Radiolarites associated with extrusive rocksare considered to be the sedimentary cover of anoceanic crust, either of an open ocean, back-arcbasin or small ocean basin. Radiolarites intercalatedwith other sedimentary rocks belong to nappes withunknown basement rocks, probably of thinned con­tinental crust. Radiolarites deposited during Doggerand MaIm time are of three types and characterizethree environments whose common attribute is abasal diachronism and a synchronous top. Radio­larites intercalated with sedimentary sequencesoccurred in basins that received deposits since Trias­sic time (i.e., Lagonegro, Pindos-Olonos zone) or inregions newly invaded by water masses (i.e., Austro­Alpine zone). Detailed local studies suggest deposi­tion on faulted blocks of a rifting margin. Althoughthe base of radiolarites is not synchronous in differ­ent units, it nevertheless starts around the Doggerand the maximum development was generally dur­ing Oxfordian time. The base of radiolarites asso­ciated with ophiolites is everywhere dated as MaImbut the bases are not exactly synchronous; data arestill too few to analyze the details. The sudden disap-

pearance of all the radiolarites in the UppermostJurassic may be attributed to a drastic change in cir­culation from gyres producing upwelling in theTethyan basin, to latitudinal, east-to-west circula­tion through Central America which broke down theupwelling regime in much of the tethyan area.

Introduction

Radiolarites (rhythmically centimeter-bedded chertsalternating with millimeter-bedded shale) are ofgreat importance for paleogeographic reconstruc­tions and geodynamic models because of their bath­ymetric significance and their frequent associationwith ophiolites. They are a very good marker for thestudy of margin formation, subsidence, and evolu­tion and are important for dating the oceanic crust.

However, direct dating of radiolarite was not pos­sible until recently, since these sedimentary rocks donot bear the fossils commonly used for stratigraphy(e.g., foraminifers, nannofossils). Locally they hadbeen indirectly dated by reworked microfaunaincluded in rare beds of microbreccia (i.e., in thePindos-Olonos zone, Greece - Dercourt et al., 1973;Thiebault et aI., 1981; De Wever and Thiebault,1981). Moreover, the petrographic composition ofthese rocks did not permit use of the usual etchingtechniques for extracting fossils. In the 1970s, thisdifficulty was overcome by the discovery of Dumi­trica (1970). His etching technique has been des­cribed and improved by several authors (Pessagnoand Newport, 1972; De Wever et aI., 1979a; DeWever, 1982). Radiolarites of circum-Alpine oro­genic belts have since been analyzed paleontologi­cally (Baumgartner et al., 1980; Baumgartner, 1984;Kocher, 1981; Thiebault et aI., 1981; De Wever and

Page 2: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

32 Patrick De Wever

N C C CCD

"~ 0 0~

~ c VQI 0

00 0 0

..... ~ CD

Ir----.-.----\ 3 c

30

6!::

coco.r;

'0CD

co";oou

c"~'Eo....)(

o

6 ~.-c

.5!0'

~Ca

QI CE 0

"~.r;

~ ~

FIGURE 3.1. Synthesis of radiolarites sensustricto (level 3b of Radiolarite Formation inFleury, 1980) age dates. From left to right: syn­thetic lithologic column, radiolarite formation.3a: Pelites de Kasteli member; 3b: radiolaritemember (= radiolarites s.s.); 3c: Calcaires aCal­pionelles member. Age assignments: thickhorizontal line represents the well-documentedage range; thin horizontal line represents the lesswell documented age range. The narrow age rangefor each sample is joined to its neighbor (thin line,stippled area); the same is done for wide ageranges (thick line, blank area). a: Age assign­ments of Dercourt et al. (1973) on the basis ofLucasella cayeuxi (Lucas). Time scale is fromOdin and Kennedy (1982). Sedimentation rates(of lithified sediment, equivalent to the sedimen­tation rate of the silica component- Si02

representing 95-99% of the total rock). Lowerpart: 35 m120 Ma = 1.7 m/Ma. Middle part: 10mil 8 Ma = 0.5 m/Ma. Upper part: 18 m/8 Ma =2.2 m/Ma. Average: 65 m/46 Ma = 1.4 m/Ma.

Caby, 1981; De Wever and Thiebault, 1981; DeWever, 1982, 1984; De Wever and Origlia-Devos,1982a,b; Dumitrica and Mello, 1982; Origilia­Devos, 1983; Baumgartner, 1984; EI Kadiri, 1984;De Wever and Miconnet, 1985; De Wever et al.,1985, 1986b; De Wever and Cordey, 1986.) As thislist of references reveals, age information is recentand dispersed throughout the specialized scientificliterature.

Age-Dating Capabilities withRadiolarians and Determinationof Sedimentation Rates of Radiolarite

During the 1980s, our knowledge of Mesozoic radi­olarian stratigraphy increased a great deal, espe­cially with respect to low-latitude belts. Radiolarianstratigraphy now permits precise dating of otherwiseunfossiliferous siliceous rocks.

As an example, in the Pindos-Olonos zone(Greece) (Fig. 3.1), it is possible to record 18 assem-

blages in a sequence about 60 m thick (Fig. 3.1)representing Bajocian to Tithonian. Age determi­nations in different sections allow calculation ofthe average sedimentation rate (for lithified sedi­ment) for the entire formation (1.4 m/Ma). Thelower part of the Radiolarite Formation shows a rela­tively high sedimentation rate of 3 m/Ma; the upperpart reveals a lower rate. Therefore, using radiolar­ians, variation in the sedimentation rate is detect­able in a sequence. Calculation of sedimentationrates assumes that the sedimentary environmentremained closed to the input or release of silica dur­ing diagenetic processes.

The sedimentation rates determined with radio­larians for the Pindos-Olonos zone are compatiblewith rates proposed by other authors for other Mes­ozoic bedded chert sections:

2 m/Ma for Franciscan chert (S. Karl, unpublisheddata in Hein and Karl, 1983)

4 m/Ma as average for different Tethyan radiolaritesaccording to Bernoulli (in Garrision and Fischer,1969)

Page 3: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

3. Radiolarites, Circum-Mediterranean Alpine Belts

0.7 to 1.0 m/Ma for East Alpine radiolarite (Garri­son and Fischer, 1969)

1.0 to 5.3 m/Ma (McBride and Thompson, 1970) forpartially lithified chert (novaculites from Texas)

3 to 9 m/Ma for East Alpine radiolarite (Schlagerand Schlager, 1973)

27 to 34 m/Ma for radiolarite in Japan (Iijima et al.,1978)

2.8 m/Ma for bedded cherts from Inuyama region,Japan (Matsuda et al., 1980)

3.3 to 6.2 m/Ma for radiolarite in Northern Italy(Kocher, 1981)

7.5 m/Ma in the Chichibu Chert Formation in Japan(Matsumoto and Iijima, 1983) for the chert bedsand 40 m/Ma for the shale partings

These rates are approximate, because they werenot determined with the same chronostratigraphicscale. Different time length variations used for theJurassic are as follows: Van Hinte (1976), 20 Ma;Odin and Kennedy (1982), 28 Ma; Harland et al.(1982), 25 Ma; Kent and Gradstein (1985), 25 Ma;Westermann (1984), 24 Ma. The maximum differ­ence represents 40 %, and the proposed sedimenta­tion rates have to be considered to be within a 40%range.

More recent (unconsolidated) sediments have highrates of sedimentation; for example, siliceous sedi­ments (carbonate-free) found in Antarctic zonesshow rates of up to 4.8 m/Ma (Brewster, 1980).Some quoted sedimentation rates are up to 40 to 50m/Ma in the east Pacific and even 90 to 235 m/Ma indiatomaceous sediment from the Miocene of Japan(Iijima et al., 1982; Matsumoto and Iijima, 1983),but these correspond to the bulk sedimentation rate(all phases) and not to the sedimentation rate of onlythe silica phase.

According to studies of the variation of porosityand density in diatomaceous rocks (Isaacs et al.,1983), a compaction of 60% was proposed.

Studying a silicified wood within radiolarite of theAdoyama Chert Formation (Honshu, Japan), Iijimaet al. (this volume) also proposed a compaction of60 %. If we apply this factor to the radiolaritesof the Pindos-Olonos zone, the uncompacted ratewould range from 3.5 to 7.5 m/Ma (average 6.2m/Ma). This rate is the same as the average rate pro­posed for the Adoyama Chert Formation (6 m/Ma;Iijima et al., this volume) and to 7.5 m/Ma proposedby Matsumoto and Iijima (1983) for the ChichibuChert Formation.

Because many factors influence the original sed­imentation rate (turbidites, redeposition, input of

33

silica, and dissolution of the silica tests), Barrett(1981) found it more meaningful to report thenumber of events (turbidites) per time unit. If weaccept that a bed represents one turbidite, this calcu­lation reveals an average of 47 events per Ma (thick­ness of the series is 60 m, average bed thickness is 4cm, duration is 32 Ma) for the Pindos-Olonos series(Greece) in contrast to the 100 to 400 events cal­culated by Barrett for Ligurian cherts of northernItaly. One cycle in the Greek Radiolarite Formationrepresents around 21,000 years. This cyclicity cor­responds well to the period of precession in theMilankovitch theory of climate variation (De Wever,1987). Alternatively, it has been proposed that thebedding results from diagenesis. This is suggested bythe observation that diatomites that are massivewhen they are still opal-A acquired a pronouncedrhythmic bedding when they underwent diagenesis(transformed in opal-CT) (Pisciotto and Garrison,1981, pIll). The origin of the bedding is not alwaysclear, and both primary and diagenetic bedding nodoubt occur. The bedding in the rhythmically bed­ded Mesozoic cherts of Austria are clearly primary(Vescei et al., this volume). One would not expectthe bedding in diatomaceous and radiolarian-richdeposits to be the same because of the differenthydrodynamic properties of the two microfossilgroups (Hein and Karl, 1983).

Ages of Tethyan Radiolarite

The inventory of available data from Tethyan radio­larites reveals, in general, two periods of pro­nounced biosiliceous sedimentation, one duringTriassic and/or Liassic time, the other during Dog­ger and/or MaIm time (Fig. 3.2). Both time intervalscontain radiolarites associated with sedimentaryand ophiolite sequences. I will now present a brieflithologic description and ages of the Alpine beltswhere radiolarites have been dated.

Triassic-Liassic Radiolarite

Radiolarite Interbeddedwith Sedimentary Rocks

Pindos-Olonos Zone, Greece

In the Pindos-Olonos zone (one of the externalHellenides nappes, Greece) there exist two series ofradiolarites. The best known is of Jurassic age and isseveral tens of meters thick. The other one, only afew meters thick, belongs to the Drimos Limestone

Page 4: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

FIGURE 3.2. Summary table of radiolarite ages based on radiolariandata presented in this paper. (1) Paleontological data for radiolariteassociated only with sedimentary sequences. (2) Paleontologicaldata for chert from interpillow lava spaces. (3) Paleontological data

~"'"l

0':;>0:;'"

V(1l

~<:(1l"'"l

o

Nltll:lON

St>lNltIH.lA::>c;

6ClNltlSINIt w

NltlNIOltl -f+::-

6ll :IJ

NltINl:lltJ >(J)

Oll (J)

()

NltiJorlt8 c...c

-------t-IOH :IJ

>(J)

(J)NltlNOH.llt8

BS~

NVl/\OllltJ

S~-lv~ os~

NVIOl:lO::lXO

ot>~

Nltl~OIl:l3WWI>l

(S£~) ----------

NltlNOH.ll.l~-Ll~ I oc~

NltISltll:ll:l389U

t> ~l7JC v vvv

l ~00

•No::l"',

CDIC'>C ;0a. r1< m01 n8' m

~

Nltl.l3ltHl:ly' 1901-om: I t>Ol

( Wl ) _~!,.!..~_N'y!.:!:~.H__

Nltll:lnV<J3NIS(S6~) ---------­

NltlHJlt8SN3Jld

(69~) ---------­

NltIJl:lltO.l( ~9~) - - - - - - - - - --

I....: ....Il9~-vH NltlN3lltlt I BH

:;;

~~~~ ~~S:~=i~~S'~~~~~ ~§.tg.~~g~~gZ ~ l/l ~ l/l ~ ~ 6' ~ -< ~ ~ ~ ~~ -< ~. ~~. ~.::. ~ d ~ ~

VI » ~ ~ C'l~. ~ ""0:;A ;0 ~ ~. C'D

~ ~nm

for radiolarite directly overlying ophiolites. (4) Hatching representsan uncertainty about the age either due to a lack of precision of thepaleontological data or due to the structural and/or lithostratigraphicrelations.

n ;0

i;f 01

5' ~'" c,n~ ~n ..,OJ ~

-, z- 01

~I;o :g...., 0 '"- s: lJl

>Z

:;;

l/l Ie - >->IS:::: ""0 CD lJl >::l 0

Q' -g ~ ~~~ ~~ ~ ~.~~ ~~ ~ g o~ 0.., ro z:::Ooo """i OJ m:JI ro U m> ~ ""0 nn-£ ~ (l) m?I::l ..,ro ~ vr

zC)

>;0

-<

nNm;>;ol/lro<>;>;

>

~""0

~

l/l :;~b~ . ., c 3OJ etl.-+crn :J::::rQJn .-+ (tI..,OJ 0., a.-::l-,N 01o >'~ -OC

lJl3_0'-i~,>01r--<

~ mr~ -n~lf)-~ ~.g<g:~~~ ~~Effi-~~~~r=.., tO~: m- til -<~. g ~. n r --

~.§= ~ ~~ ~~~'~Q~'~""O~ ,

""0 > mCl>~ 0=C)O 01

~~ ~m Cn <Dm ,.

iii'

CDIIC C8 z

5' ~~' ~

~""0

~

o Ie$:;>; nn>I;os: 01 l/lOl=:OCU 0

~ ~ ~~~ ~~~ ~5' d:J ~ c·~. ~

; ;~ I I ~»~ ~ --1~Vl

~ ~]:~Vl ~QJ ~.

"';olJlcOl/l

$:'"}> ~.

~~>

os:>z

C::l;:;

>C

~::lo~

00S' cu'

~. ~1}'"lJl n-<::l"c~C)~

ol/l"Tlr'><>

Page 5: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

3. Radiolarites, Circum-Mediterranean Alpine Belts

Formation (Dercourt et al., 1973; Fleury, 1980). Ithas long been considered to be Triassic but hasrecently been dated as Liassic (De Wever andOriglia-Devos, 1982b)

Budva Zone (Yugoslavia)

This zone in Yugoslavia is equivalent to the Pindos­Olonos zone in Greece and contains the same twolevels of radiolarites. The Budva radiolarite-bearingsequences have recently been dated as Liassic(Obradovic and Gorican, this volume; Gorican,1987).

Maliac Series (Greece)

This sequence (one of the internal Hellenidesnappes, Greece) has an unknown basement (pre­sently subducted under the internal zones). Triassicchert has been dated from different sections. Someare associated with only sedimentary rocks (Logis­tion series, lower Ladinian-Carnian; Ferriere,1982). According to Vrielynck (1982), the Maliacseries may be considered to have been deposited onthe lower part of the Pelagonian margin facingtoward the Neo-Tethyan ocean. These data are cur­rently the only paleontological evidence of anoceanic area existing in Triassic time between Eura­sia and Africa-Arabia.

Antalya Nappe Series (Turkey)

In the Isparta-c;ay series, radiolarite-bearing inter­vals are interbedded with limestone yielding halo­bians, conodonts (Poisson, 1977), and radiolarians(De Wever et al., 1979; De Wever, 1982) of Late Tri­assic (Norian) age.

Lagonegro Series (Italy)

In southern Italy (Lucany, Lagonegro region), radi­olarite overlies a cherty limestone sequence (Trias­sic) which is in turn overlain by the clastic GalestriFormation (Neocomian). The first deposition ofthese cherts is diachronous, from Triassic to thesouth (Lagonegro unit) to Upper Jurassic to thenorth (San Fele unit) (De Wever and Miconnet,1985) (Fig. 3.3).

Meliata Unit (Czechoslovakia)

The Meliata unit (Czechoslovakia) belongs to theSlovac edifice. It is an extension of the Bukk unit(Hungary) and represents the termination of theVardar zone (Dercourt et al., 1985a,b). It has beendated as Triassic using radiolarians (Middle Trias-

35

sic: latest Anisian or early Ladinian; Dumitrica andMello, 1982) and conodonts (Kozur and Mock,1973).

Hawasina Nappes (Oman)

In the Hamrat Dum Group, the Wahra Formationand the Lower Zulla and Upper Sid'r Formations allcontain thick sequences of radiolarian-bearing chertinterbedded with clastic sedimentary rocks. Sam­ples from AI Jil cherts (= lower part of the Zulla for­mation in Glennie et al., 1974) yielded radiolarianfauna denoting late Murghabian and Late Triassic(Carnian-Norian) ages (Bourdillon et al., 1987; DeWever, unpublished data). Additional chert samplesfrom the Matbat Formation (upper part of the Zulla+ lower part of Guwayza in Glennie et al., 1974)indicate an Early Jurassic age (Bourdillon et al.1987; De Wever, unpublished data). Several datesmentioned by Blome et al. (1983) are well in accor­dance with those given here. However, the preciselithostratigraphic position of their samples was notgiven, so it is impossible to ascertain whether theyactually correspond to the formations listed here.

Radiolarites Overlying Ophiolites(Triassic-Liassic)

Darno Series (Hungary)

In the Lower Austro-AIpine unit, chert associatedwith ophiolite pillow basalt has been dated as MiddleTriassic (De Wever, 1984).

Rarau Series (Romania)

In transylvanian nappes (Rarau and Persani Moun­tains, eastern Carpathian Mountains, Romania),radiolarite has been dated as Middle Triassic (Ladin­ian; Dumitrica and Mello, 1982).

Diabase-Chert Unit (Yugoslavia)

In the Diabase-Chert Formation from Serbia (Yu­goslavia), radiolarian chert (near pillow basalts)has been dated as Late Triassic (Carnian-Norian)(Obradovic and Gorican, this volume; Gorican,1986).

Porphyrite-Chert Unit (Yugoslavia)

In the Porphyrite-Chert Unit from Serbia (Yugo­slavia), radiolarian cherts near volcanic rocks havebeen dated as Middle Triassic (Anisian-Carnian)(Obradovic and Gorican, this volume; Gorican,1986).

Page 6: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

36 Patrick De Wever

--2000m

- -lOOOm

sSan Fele U.

30km

N

~~~n:::~~~~===------pjQr~Abric;i~~--------'-iii=--IOII. Pignola - Abriola UnitSasso diCastaldo Unit

Armizzone UnitLagonegro Unit

o,

FIGURE 3.3. Reconstruction of Lagonegro (southern Italy)for Norian time (from De Wever and Miconnet, 1985).(A) Hypothetical rock basement (partly provided detritusto the basin). (B) Basement cover and Scythian platform.(C) Primary dolomite (partly provided detritus to thebasin). (D) Monte Facito Formation (probable thrusting

level). (E-G) Calcaires a Silex Formation (cherty lime­stone). E-San Fele Unit, massive dolomite; F-Pignola­Abriola Unit, bedded dolomite and dolomitic limestone;G-Sasso di Castalda, Armizzone and Lagonegro Units.(H) Radiolarite belonging to Armizzone and Lagonegro(and Sasso di Castalda ?) Units.

Maliac Series (Greece)

Triassic cherts associated with basalts from theMaliac series (internal Hellenides nappes, Greece)have unknown basement rocks (presently sub­ducted under the inner zones). Chert occurs betweenpillow lavas and has been dated as Late Triassic(Tourla series, Norian; De Wever, 1982; Ferriere,1982).

Mid-Upper Jurassic Radiolarites

During this time period, radiolarite is common. Asin the previous examples, it is associated with sedi­mentary and volcanic sequences.

older in basinal deposits (from Bajocian or Batho­nian, Lombardy Basin, Umbria) and younger onplateau deposits (mid-Oxfordian, Trento plateau)(Baumgartner et al., 1980; Kocher, 1981; Baumgart­ner, 1984; Conti et al., 1985; Conti, 1986). Radi­olarites are synchronously capped by Maiolicalimestone (Govi, 1965; Luthi, 1973).

Lagonegro Series (Lucany, Italy)

As noted above (Fig. 3.3), these series have adiachronous base (from Triassic to Oxfordian), buttheir top is synchronous (Before Neocomian time)(De Wever and Miconnet, 1985).

Sciacca Series (Sicily, Italy)

Radiolarites Within Sedimentary Sequences

"Chaines Calcaires" (Rif, Morocco)

The base of this formation is diachronous based onradiolarian dates, from Bajocian or Bathonian toCallovian or Oxfordian within different structuralunits (Fig. 3.4), the oldest being to the south (exter­nal zones) (De Wever et al., 1985). The top of thischert formation is synchronous in all structuralunits, Kimmeridgian or early Tithonian.

Southern Alps (Lombardy, Tuscany,and Umbria, Italy)

Radiolarite sections are well known in northernItaly, where their bases are diachronous. Bases are

The base of this series is unknown, because it is cutby an overthrust fault, but the top has been preciselydated with ammonites, calpionellids, nannofossils,and radiolarians as the exact boundary betweenKimmeridgian and Tithonian (De Wever et al.,1986b).

Pindos-Olonos Series (Greece)

Radiolarite has been studied in several sections fromnorthern and southern Greece (Fig. 3.1). The basesof the sections are dated as Bajocian or Bathonian(Thiebault et al., 1981; De Wever and Thiebault,1981; De Wever and Cordey, 1986), and the top isTithonian (De Wever and Origlia-Devos, 1982a; DeWever and Cordey, 1986) except in southernmost

Page 7: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

3. Radiolarites, Circum-Mediterranean Alpine Belts 37

000 9

~.2n~iJ 3

l---~~I 4

6 5

!f±J 6

0 7

~8

N

Om--

Om--

000

*

Ie,

.Ie 0 m

e Om--

000

0006

Outer" Dorsole Colcoire"

INNER PART

MALM

i'o

\I

D_O_M_E_R_IA_N_-_T_O_A_R_C_IA_N;-- \"---'=""'e 0 m __

--::=:::=x:~~~\,3! \

\'4

CD HETTANGIAN

® SINEMURIAN-CARIXIAN

@) DOGGER

OUTER PART

==== unit 1========~ unit 2~~======== unit 3 =========

®

s

FIGURE 3.4. Paleogeographic evolution of the Chrafateklippes and the external "Dorsale Calcaire" (Rif,Morocco) zone during Jurassic time (from De Wever etal., 1985). (1) Turbidite; (2) radiolarites; (3) "calcaires a

filaments"; (4) black shale; (5) Ammonitico Rosso; (6)cherty limestone; (7) massive limestone; (8) dolomiticmassive limestone; (9) horizontal grading.

Page 8: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

38

Peloponnesus, where a few outer units contain radio­larites as young as the Late Cretaceous. However,during Tithonian time, some thick, coarse clasticintervals are interbedded (Thiebault et aI., 1981; DeWever and Thiebault, 1981).

Budva Series (Yugoslavia)

A series equivalent to the Pindos-Olonos seriesexists in Montenegro (Yugoslavia), where it hasbeen dated as Middle Jurassic to Late Jurassic(Obradovic and Gorican, this volume; Gorican,1987).

Pelagonian Series (Internal Hellenides,Strimbes, Greece)

Radiolarites from Pelagonian series (Othrys, con­tinental Greece) have been dated as Kimmeridgian­Tithonian with radiolarians (det. Origlia-Devos inFerriere, 1982, p 930)

Pelagonian Series (Asklepeion Nappe,Angelokastron Cherts, InternalHellenides, Greece)

Radiolarites have been dated in the Peloponnesus.Their first occurrence is Bathonian (AsklepeionNappe-Baumgartner, 1984) or late Oxfordian (An­gelokastron Chert and Ayios Nikolaos Formation­Baumgartner, 1984; they correspond to the Epidaurezone and Trapezona zone ofVrielynck, 1978, 1980,1982 at this time period).

Pelagonian Series (Evvoia, Greece)

Radiolarite from northern Evvoia has been datedwith radiolarians as Oxfordian or Kimmeridgian,except the latest Kimmeridgian (Baumgartner,1984; Ferriere et aI., 1986). This radiolarite wasdated as MaIm or Neocomian (Baumgartner andBernoulli, 1976), but more recent information per­mits us to restrict the age as mentioned above.

Upper Austro-Alpine Series in Hungary(Bakony and Gerecze Nappes)

In the upper Austro-Alpine nappes of Hungary(Bakony and Gerecze Hills), the base of the radi­olarite section is late Bajocian or Bathonian (inKozoskut, Lokut, Bakonycsernye sections - FUlop,1969, 1976; De Wever, unpublished data) but else­where is Bathonian (Gyenespuszta-Galacz, 1970,1976, 1980; De Wever, unpublished data). Theradiolarite-bearing formation is overlain in someplaces by a coarse clastic section of Oxfordian age

Patrick De Wever

(Lokut and Tata Hills), but in other places radiolaritepersists to the Kimmeridgian (Cszernye Hills) oreven to the Kimmeridgian-Tithonian boundary(Margit Hill-De Wever, unpublished data).

Upper Austro-Alpine SeriesCzechoslovakia (Silica Nappe)

Radiolarite (equivalent to the series of the SlovakKarst) is dated as Callovian or Oxfordian (Dumitricaand Mello, 1982).

Hawasina Nappes (Oman)

In the Hamrat Duru Group, the Wahra Formation,the Lower Zulla and Upper Sid'r Formations all con­tain thick sequences of radiolarian-bearing chertinterbedded with clastic sedimentary rocks (turbi­dites). Radiolarian fauna obtained from the Sid'rchert indicate a Late Jurassic to Neocomian age(Bourdillon et aI., 1987; De Wever, unpublisheddata). Several dates have been mentioned by Blomeet aL (1983) and by Baumgartner (1984,) for the AlAridh Formation. Their dates are in accordancewith those given here. However, they did not pro­vide precise lithostratigraphic positions for theirsamples, so it is impossible to ascertain whether theycorrespond to the stratigraphic levels analyzed here.

Autochtonous Unit (Oman)

Overlying the Sahtan Group (shallow-water Jurassiclimestone) is the Kahmah Group, which yieldedradiolarians in chert at the base of the sectioninterbedded with limestone (with Calpionellids).The chert was dated as late Tithonian or early Berri­asian (Bourdillon et al., 1987; De Wever, unpub­lished data).

Radiolarite Overlying Oceanic Crust

Good outcrops of ophiolite-hosted radiolarite arerare because of metamorphism. Nevertheless, somesignificant data already exist.

Series of the Ligurian Ophiolitic Nappe (Queyrasand Corsica, France; Liguria and Elba, Italy)

The metaradiolarite, which overlies the ophioliteand ophiolitic breccia of the Chabriere series (baseof the "Schistes Lustres"), has been dated in sectionsfrom France as late Oxfordian or early Kimmer­idgian (De Wever and Caby, 1981) and on rocksfrom Italy (Traversiera) as middle-upper Callovian(De Wever et aI., 1987a).

Page 9: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

3. Radiolarites, Circum-Mediterranean Alpine Belts

Nonmetamorphosed radiolarite from Elba overly­ing pillow lava (Monte Campannelo-Nisporta, Vol­terraio) or ophicalcite (San Felo Namia) has beendated as middle Oxfordian or early Kimmeridgian(Baumgartner, 1984; Conti and Marcucci, 1986).This age is the same as that determined in othersections (Murlo, Southern Toscany-Conti andMarcucci, 1986; San Colombano and kIn 59,Corsica - De Wever et aI., 1987b). The shalebetween ophicalcite and radiolarite has been datedat Rocchetta di Vara (eastern Ligurides) (Baum­gartner, 1984) as middle Callovian or basal Oxford­ian, and the basal part of the chert sequences is datedas late Oxfordian or early Kimmeridgian (Contiet aI., 1985; Conti and Marcucci, 1986). In thesection at II Conventino (Monti Rignosi, easternTuscany), the radiolarian assemblage gives a lateCallovian or early Kimmeridgian age (Conti andMarcucci, 1986). The onset of deposition of theMonte Alpe Chert gives an upper age limit for basaltextrusion in each section. The age of sedimentationoverlying Ligurian ocean crust was therefore notsynchronous.

Subpelagonian Nappe Series (MigdhalitsaUnit, Argolis, Greece)

Radiolarite from the Migdhalitsa unit (Baumgartner,1984; Fanary Wildflysch ofVrielynck, 1982) overly­ing pillow basalt of the Ophiolite Suite (Akros Hill)is dated near its contact with basalt as middle Callo­vian or early Oxfordian (Baumgartner, 1984)

Subpelagonian Nappe Series (Evvoia, Greece)

Chert samples from interpillow space of the ophiolitein northern Evvoia are dated as Oxfordian (Baum­gartner, 1984; Ferriere et aI., 1986).

Subpelagonian Nappe Series (Thessaly, Greece)

Oxfordian and/or Tithonian age was obtained for ra­diolarite overlying ophiolite at Theopetra (De Weverin Ardaens, 1978; Ferriere, 1982), but the rocksdated were not from the base of the section.

Diabase-Chert Formation, Serbian Units(Internal Dinarides, Yugoslavia)

In the Diabase-Chert Formation from western Ser­bia (Yugoslavia), Upper Jurassic chert (Callovianand/or early Kimmeridgian) containing radiolarianshas been identified (Obradovic and Gorican, thisvolume; Gorican, 1986, p 58).

39

Bukk Ophiolitic Nappe (Bukk Massif, Hungary)

The Bukk may be considered as a Neo-Tethyan sphe­nochasm between Apulia and Europe (Dercourt etaI., 1984a,b, 1985a,b). A Bajocian and/or Batho­nian age was obtained (Kozur, 1984) for the upperpart of the radiolarite occurring in the wildflyschoverlying ophiolites in the Bukk Massif (northeastHungary) (Geyssant and Lepvrier, 1984).

Bucovinian Nappe (Romania)

Pojorim radiolarite (crystalline Mesozoic zone ofsoutheastern Carpathian Mountains) has long beenconsidered to be of Middle Triassic age (Bancila andPapiu, 1953) but is now known to be of Callovianand/or Oxfordian age (Mutihac, 1968; Cioflica etaI., 1981; Dumitrica, unpublished data), as are mostradiolarites of this zone.

Metalliferous Mountains (Southern ApuseniMountains, Romania)

The Dro<;ea-Cris Unit (of the Cris Nappe) containsradiolarite dated as Oxfordian (Dumitrica in Bleahuet aI., 1981) overlying basalt. The Curechiu-Smnijaunit has radiolarite dated as Oxfordian-Tithonian(Dumitrica in Bleahu et aI., 1981) overlying ophio­lite and tuffs.

The Capllnas-Techereu Nappe (well developed inMetalliferous Mountains) has radiolarite dated aslate Callovian to late MaIm (Dumitrica, unpublisheddata) interlayered with volcanic rocks, both of whichoverlie ophiolite with a radiometric age of 180 Ma.This ophiolite volcanism was thus probably activebefore the Jurassic until the Callovian.

Marmaros Unit (Klippen Zone, USSR)

Radiolarite from the Marmaros unit associated withophiolites of the northeast Eastern Carpathians hasbeen dated as Oxfordian and Kimmeridgian (Tik­homirova, 1983, 1984).

Summary

All Triassic and Liassic radiolarite sections associ­ated with sedimentary rocks are parts of allochto­nous sequences. These radiolarites belong to nappeswith unknown basement rocks, probably thinnedcontinental crust (Dercourt et aI., 1985a,b; Ricou etaI., 1985)(Fig. 3.5).

Radiolarite interbedded with sedimentary se­quences exists in basins that have received depositssince Triassic time (Lagonegro, Pindos-Olonos

Page 10: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

olarite; (3) limestone; (4) flysch; (5) breccia; (6) emergent land(on any type of crust); (7) oceanic crust; (8) thin continentalcrust (basin); (9) thick continental crust (platform); (10) activespreading ridge; (11) spreading ridge when dying out.

FIGURE 3.5. Location ofradiolarite outcrops that were dated byradiolarian assemblages. Paleogeographic map from Dercourtet al. (1985a) map No.1 (Pliensbachian) is used for this report.(A) Radiolarite associated with sedimentary sequences; (B)radiolarite associated with ophiolites. (1) Volcanism; (2) radi-

Liassic

'90"---<---...

2-><,/ j

:' i\i"

"

_.-;:.//",\~HaWaSinri

~(~H\"

.~ A

• B

= 2

'52' 3

..... 4

'.' 5

U 6

~7

DB0 9

::::::: 10

:7-.:;':';-'; 11

~

~'"1

n':><;"

u(l>

~<:(l>'"1

Page 11: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

3. Radiolarites, Circum-Mediterranean Alpine Belts

zone, ... ) or in regions newly invaded by majortransgressive water masses (Le., Austro-Alpinezone, Inner Maghrebides). Detailed local studies(Rif, Morocco; Lagonegro, southern Italy; southernAlps, northern Italy) suggest deposition on faultedblocks of a rifting margin. Although the base of theradiolarite is not synchronous in different units, itnevertheless generally starts around the Dogger. Themaximum development of biosiliceous sedimenta­tion occurred during Oxfordian time. Their disap­pearance occurs synchronously near the Tithonian(Fig. 3.6).

All allochtonous radiolarites associated with vol­canic rocks have been presumed to be the sedimen­tary cover of oceanic crust, either of an open-oceanbasin crust or of a smaller ocean basin.

The base of radiolarite-bearing sequences (exclud­ing mudstone locally known as umbers in Cyprusand Oman) associated with ophiolite is everywheredated as MaIm, but it is not exactly synchronous;data are still too few for a precise analysis.

The above descriptions consider only true radio­larites, as defined in the Introduction. Other radio­larian dates have recently been obtained from chertnodules in circum-Mediterranean Alpine fold beltsbut are not considered in this paper because radio­larians were extracted from rock types other thanradiolarite sensu stricto. Two sets of results are nev­ertheless mentioned because of their geodynamicimplications. They are as follows: radiolarian­bearing rocks associated with the Samail ophiolite,Oman, and the Troodos ophiolite, Cyprus, yielded aradiolarian fauna dated as Cretaceous: Turonian inCyprus (Blome and Irwin, 1985): Campanian inOman (Schaaf and Thomas, 1986; De Wever et al.,1988); and Albian-Cenomanian, Cenomanian­Turonian, and Santonian-Campanian in Oman(Beurrier et al., 1987; Bourdillon et al., 1987).Dated rocks are red mudstone or umbers (not radio­larite).

Work is in progress on the radiolarian stratigra­phy of other regions: (1) to the east in the Sam­khet Karabagh (Lesser Caucasus, Georgia, USSR),where the Jurassic Lesser Caucasus radiolaritesequences have been dated as Callovian (to Bar­remian?) with the Kimmeridgian missing (Vishnev­skaya, 1984), and (2) in the Klippen Belt of thePienninnic sequences of the Csorstyn and Kysucaregions (Birkenmayer, 1977). With these new datait will be possible to date the distension of thismargin.

41

Diachronism/synchronismof Radiolarites

Diachronism characterized the earliest radiolaritesedimentation, whereas synchronism characterizesthe latest radiolarite sedimentation. In early studiesof radiolarites, it appeared that the main radiolaritesequences belonged to the Jurassic, confirming theclassic hypothesis on the age of these deposits. Suc­ceeding work dated the base and the top of radio­larite sections more precisely and revealed that thebases were not always of the same age. Detailedstudies of the Dogger and MaIm radiolarites indifferent regions documented a diachronism for theearliest radiolarite sedimentation and a synchronismfor the top of the sections.

The age variations correspond to different tiltedblocks of a continental margin. In some places, agevariations correspond to a stretching from the oceantoward the craton (Rif, Morocco; Lagonegro, Italy).Such a margin may have corresponded to thedevelopment of a transform fault zone (Lemoine,1985; Dercourt et al., 1984a, b) between the open­ing Atlantic Ocean and the subducting Neo-Tethys tothe south of the Alboran-Kabyly-Calabria block (DeWever et al., 1985). Radiolarite basins in northernMorocco migrated northward during Middle to LateJurassic time, suggesting sedimentation on tiltedfault blocks (Fig. 3.4) with progressive northwardformation of listric faults (Lemoine, 1982, 1985;Lemoine et al., 1981; De Wever et al., 1985).

The diachronism of the first radiolarite deposits inLagonegro (De Wever and Miconnet, 1985) andArgolis (Baumgartner, 1985) represent the samekind of phenomenon-deposition on tilted blocks ofan actively forming margin.

In other places, age variations correspond to thedifference noted between basins and plateaus or sea­mounts such as the Lombardian basin and Trentoplateau, northern Italy (Baumgartner, 1984) andBakony Hills, Hungary (Galacz, 1984; Galacz et al.,1985; De Wever, unpublished data). The first radio­larite deposits are not synchronous, but their maxi­mum extent of development is generally during theOxfordian.

Disappearance of Radiolarites

It is now accepted that most radiolarites were notdeposited in wide-open basins or on continental

Page 12: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

FIGURE 3.6. Location of radiolarite outcrops that were dated bytheir radiolarian assemblage as MaIm. Paleogeographic mapfrom Dercourt et al. (l985a) map No.2 (Callovian) is used for

'90,",,0'~""""'"

"'<""';;"

-+:>.N

~""1(S.;;>:;"

o~

~<:~""1

".~

:::::: 10

';-:7:';-: 11

D6~7

D8D94

• B

<e> A

'.' 5

~ 3

this report. (A) Radiolarite associated with sedimentarysequences; (B) radiolarite associated with ophiolites. Legend issame as for Figure 3.5.

? 40_

----!.~

i 't- I

~"""""'2~ (' ('

)~)"",/' /

\ i\~i i

i // i

Maim

'0.

l<l~:

\\~~\

\\

Page 13: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

3. Radiolarites, Circum-Mediterranean Alpine Belts

slopes but in elongate basins (gutters) or small basinswith restricted oceanic circulation (Steinberg et aI.,1977; Marcoux and Ricou, 1979; Jenkyns and Win­terer, 1982; Iijima and Utada, 1983). These rela­tively confined basins represent gulfs rich in organicmatter such as in the modern Gulf of California (Cal­vert, 1966; Nelson and Goering, 1978; Schrader etaI., 1980; De Wever and Thiebault, 1981), Red Sea(Goll, 1969), and marginal seas such as the Sea ofJapan (Steinberg et aI., 1977), Sea of Okhotsk, andBering Sea (Jenkyns and Winterer, 1982).

Areas of intense upwelling provide three condi­tions which enhance the deposition and preservationof radiolarian-rich sediments: (1) high nutrient levelsin upwelling regimes promote higher phytoplanktonproductivity, in turn causing higher rates of radiolar­ian productivity and deposition of radiolarian-richdeposits. Increased rates of radiolarian depositiondecrease the rate of dissolution of siliceous skeletonson burial: (2) increased rates of production oforganic matter beneath upwelling zones elevate theCCD, which removes calcareous organisms thatdilute the radiolarian-rich sediment: and (3) highorganic content prevents the dissolution of silica bycoating the tests (Kastner, Scripps Institution ofOceanography, personal communication, 1986).

The general geometry of the Tethys during Juras­sic time (an eastwardly open triangle) promotedupwelling on the western side and led to the develop­ment of a clockwise gyre (De Wever and Thiebault,1981; Thiebault et aI., 1986). This triangular basinwas present from the creation of the neo-Tethys inTriassic time. During the Jurassic, the basin openedand enlarged or spread to the west. This basin evolu­tion fits well with the progressive onset of radiolaritesedimentation from east to west from Triassic toJurassic time. In addition to the cause cited byJenkyns and Winterer (1982), the absence of radio­larites in the Atlantic can be explained by the lack ofupwelling in this basin and the large distance of thisbasin from areas of upwelling.

In Tithonian times, radiolarian sedimentationsuddenly stopped and was replaced by carbonatesedimentation (e.g., Oberalm in Northern Alps,Maiolica in Southern Alps (Lombardian zone),Biancona in Venetian Alps, Calpionellids Limestonein Elba, Calcare Rupestre in Appennines (Umbria,Marches), Vigla limestone in Greece (Ionian zone),"Calcaires aCalpionelles" in Greece (Pindos-Olonoszone), Lattimusa in Sicily).

Although this change was widespread, its causeneed not have been a major one, because only slight

43

biophysical changes in the seas can produce strongmodifications in the planktonic life (see EI Ninoeffects; 5- to 20-fold reduction of primary produc­tivity-McGowan, 1984; Barber and Chavez, 1983;Pisias et al., 1986), and because slight changes inproduction of silica have an exaggerated result in sil­ica sedimentation (Fig. 3.7) (Renz, 1976; De Wever,1982).

This abrupt change in sedimentation may haveoccurred worldwide, but outside Tethys (Japan, Cal­ifornia, Mexico), radiolarite sedimentation gradu­ally gave way to terrigenous clastic sedimentation.

Modifications in oceanic circulation could haveresulted from tectonism associated with the InnerHellenide zones (De Wever and Thiebault, 1981),but this mountain range did not totally close theTethyan triangular basin. Moreover, such a closurewould have increased the quantity of anoxic sedi­ment, which is not found; rather, anoxic depositsaccumulated in isolated basins (Valaisan, Caucasus)since the MaIm. In any case, there were shallowseas in this region from Triassic time. This tec­tonism was probably not extensive enough to mod­ify the oceanographic conditions as far away asMorocco.

Several characteristics we know about the Tethyshelp to explain the disappearance of radiolarite sed­imentation.

The Tethys opened in a westward direction since Tri­assic time (Aubouin and Tardy, 1980).

East-west exchanges of waters occurred betweenNorth and South America from Callovian time, asis attested to by the migration of ammonites (Rein­eckeidae from Pacific to Tethys-Cariou, 1984;Cariou et aI., 1985; or Parasenia from Tethysto Pacific-Enay and Mangold, 1982). Theseexchanges involved surface water masses, neverdeep water masses.

In the Latest Jurassic, a new current formed in theAtlantic, as is evidenced by the arrival of Pygopein Greenland (Enay, 1980).

Oceanic conditions existed from Pamir to Mexico(Dercourt et aI., 1984a, 1985a).

The exchange of deep water masses began duringTithonian or Berriasian time somewhere betweenNorth and South America (Berggren and Hol­lister, 1974; Thiede, 1979; Kennett, 1982). Anoceanic communication has been illustrated byPindell (1985) between Tethys and Pacific(between the Yucatan block and Mexico) whichsignificantly affected circulation.

Page 14: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

44 Patrick De Wever

....~

r<l

E"­.".:

QlUc::o."c::::J

.Qex

1000000

800000

600000

400000

200000

19 21 23 23 10

66

33 3327

Number of species

8.11.30

FIGURE 3.7. Comparison between biocenosis and than­tocenosis. (A) Radiolarian fauna caught on both sides ofthe equator in the Pacific Ocean. (B) Radiolarian fauna

The sudden disappearance of all the radiolarites inthe Latest Jurassic could be explained by a drasticchange in circulation due to a latitudinal flowthrough Central America. Such a new communica­tion drastically changed the current pattern from agyre in the Tethyan triangular basin (and its asso­ciated upwelling) to a latitudinal current and cantherefore explain the disappearance of radiolaritesedimentation (De Wever et al., 1986a). This latitu­dinal current could have, at least locally, flowed fromeast to west, as suggested by Thiebault et al. (1986).

This hypothesis accords well with the long dura­tion of radiolarite sedimentation of the east Arabianmargin of the Tethys Sea (Oman). In Oman, radio­larite sedimentation continued until the Late Creta­ceous, because this area remained under the influ­ence of the upwelling conditions (De Wever andBourdillon, 1987; De Wever et al., 1988; De Wever,unpublished data). When the current patternchanged to latitudinal circulation rather than a gyre,there was a sudden deepening of the basin recordedin the sedimentary rocks of the Autochtonous Unitin Oman. Sedimentation became progressively shal­lower again during Neocomian time. This initial

dredged on the sea floor in the same localities. The shift ofthe maximum abundance is a result of equatorial gyres.

deepening could have resulted from a "flush" effectat the beginning of the latitudinal current. In Japan,being farther east, where radiolarites were notdiluted by clastic sedimentation, this modificationin currents had no effect, and radiolarite sedimenta­tion persisted until Neocomian time.

The new circulation pattern affected most of thezones: the oldest rifted platforms (Austro-Alpine,southern Alps) as well as the troughs (Lagonegro,Pindos-Olonos zone, Budva zone). We have there­fore to interpret the paleogeography and/or paleo­bathymetry ofthe areas where radiolarite depositionpersisted after the installation of latitudinal currents(i.e., southernmost Pindos zone, Greece) as con­fined basins. The regions where radiolarites existedthrough the Cretaceous were regions sheltered fromthe new latitudinal current (Oman, Japan).

Acknowledgments. This work has been supported bythe CNRS (UA 319, ATP GGO No. 98 1039) andUNESCO lUGS (project IGCP 187). I am indebtedto A. Kemp (University of Southampton, U.K.) and1. Tauxe for their help with the English and to R.Garrison (University of California at Santa Cruz), 1.

Page 15: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

3. Radiolarites, Circum-Mediterranean Alpine Belts

Dercourt (University of Paris), J. Obradovic (Uni­versity of Belgrade and J.R. Hein (USGS, MenloPark, CA) for reading the manuscript.

References

Ardaens E (1978) Geologie de la chaine du Vardoussia,comparaison avec Ie Massif du Koziakas (Grece contin­nentale). These 3e cycle, Lille, France, 234 pp.

Aubouin J, Tardy M (1980) L'Amerique alpine: Ledomaine Caraibe et ses liaisons avec les cordilleres nordet sud americaines: Introduction. In: Geologie desChaines Alpines Issues qe la Tethys, Colloque C5,26eme Congres Geologique International, Paris, pp14-17.

Bancila I, Papiu VC (1953) Jaspurile triasice de la Pojor­ita. Academia Republicii Popular Romine, Buletin Stii­nific Sectia de Stiinte Biologice, Agronomice,Geologice si Geografice, Bucharest, 54:665-694.

Barber RT, Chavez FP (1983) Biological consequences ofEl Nino. Science 222: 1203-1210.

Barrett TJ (1981) Stratigraphy and sedimentology ofJurassic bedded chert overlying ophiolites in the northAppennines, Italy. Sedimentology 29:353-373.

Bassoullet JP, Fourcade E, Peybernes B (1985) Paleobio­geographie des "grands" Foraminiferes benthiques desmarges neotethysiennes au Jurassique et au Cretaceinferieur. Bulletin de la Societe Geologique de France,Paris, 8:699-713.

Baumgartner PO (1984) A middle Jurassic-early Creta­ceous low-lattitude radiolarian zonation based on uni­tary associations and age of Tethyan radiolarites.Eclogae Geologicae Helveticae, Bale, 77(3) :729-837.

Baumgartner PO (1985) Jurassic Sedimentary Evolutionand Nappe Emplacement in the Argolis Peninsula(Peloponnesus, Greece). Memoire de la Societe Helve­tique des Sciences Naturelles, 99, Bale, 111 pp.

Baumgartner PO, Bernoulli D (1976) Stratigraphy andradiolarian fauna in a late Jurassic-early Cretaceoussection near Achladi (Evvoia, eastern Greece). EclogaeGeologicae Helveticae, 69(3): 1027-1061.

Baumgartner PO, De Wever P, Kocher RN (1980) Correla­tion of Tethyan late Jurassic-early Cretaceous events.Cahiers de Micropaleontologie, Paris, 2:23-85.

Berggren WA, Hollister CD (1974) Paleogeography,paleobiogeography and the history of the circulation inthe Atlantic Ocean. In: Hay WW (ed) Studies in Paleo­Oceanography. Section of Economic Paleontologistsand Mineralogists, Tulsa, OK, 20: 126-186.

Bertrand J, Delaloye M (1976) Datation par la methodeK-Ar de diverses ophiolites du flysch des Gets (HauteSavoie, France). Eclogae Geologicae Helveticae, Bale,69:335-341

Beurrier M, Bourdillon-de Grissac C, De Wever, PLescuyer JL (1987) Biostratigraphie des radiolaritesassociees aux volcanites ophiolitiques de la nappe de

45

Samail (Sultanat d'Oman): Consequences tectogene­tiques. Comptes Rendus de 11\.cademie des Sciences,Paris 304:907-910.

Birkenmayer K (1977) Jurassic and Cretaceous lithostrati­graphic units of the Pieniny Klippen belt Carpathians,Poland. Studia Geologica Polonica, Wydawnictwa Geo­logiczne, Varsovie, XLV:2-115.

Bleahu M, Lupu M, Patrulius D, Bordea S, Stefan A,Panin S (1981) The structure of the Apuseni Mountains.Institut de Geologie et Geophysique, Guidebook Series,Bucharest, 23, 107 pp.

Blome CD Irwin WP (1985) Equivalent radiolarian agesfrom ophiolitic terranes of Cyprus and Oman. Geology13:401-404.

Blome CD, Tippit P, Garrison RE, Bernoulli D, Smew­ing D (1983) Radiolarian Biostratigraphy of HawasinaComplex, Northern Oman. American Association ofPetroleum Geologists, abstracts of Annual Convention,Dallas, p. 37.

Bourdillon- de Grissac C, De Wever P, Bechennec F(1987) Nouvelles donnees biostratigraphiques des Mon­tagnes d'Oman du Permien au Cretace, a partir des Radi­olaires et Foraminiferes. Seance special. SocieteGeologique de France, Paris. "Geologie de rOman",Paris, abstracts, p 10.

Brewster NA (1980) Cenozoic biogenic silica sedimenta­tion in the Antarctic Ocean. Bulletin of the GeologicalSociety of America, Boulder, Part 1, 91:337-347.

Calvert SE (1966) Accumulation of diatomaceous silica inthe sediments of the Gulf of California. Bulletin of theGeological Society of America, Boulder, 77:569-596.

Cariou E (1984) Les Reineckeiidae (Ammonitina, Callo­vien) de la Tethys occidentale: Systematique, dimor­phisme et evolution. Etude a partir des gisements deCentre-Ouest de la France. Documents du Laboratoirede Geologie, Lyon, France, h.s. 8, 559 pp.

Cariou E, Contini D, Domrnergues JL, Enay R, GeyssantJR, Mangold C, Thierry J (1985) Biogeographie desAmmonites et evolution structurale de la Tethys aucours du Jurassique. Bulletin de la Societe Geologiquede France, Paris, 8:679-697.

Cioflica G, Savu H, Nicolae I, Lupu M, Vlad S (1981)Alpine Ophiolitic Complexes in South Carpathians andSouth Apuseni Mountains. Institut de Geologie etGeophysique, Guidebook Series, Bucharest, 18, 80 pp.

Conti M (1986) New data on the biostratigraphy of theTuscan cherts at Monte Cetona (southern Tuscany,Italy). In: De Wever P (ed), Eurorad IV, MarineMicropaleontology, Amsterdam, Vol 11, No. 1-3,pp.107-112.

Conti M, Marcucci M (1986) The onset of radiolariandeposition in the ophiolite sequences of the northernApennines. In: De Wever P (ed) Eurorad IV, Marine Mi­cropaleontology, Amsterdam, Vol 11, No. 1-3, pp129-138.

Conti M, Marcucci M, Passerini P (1985) Radiolariancherts and ophiolites in the northern Apennine and Cor-

Page 16: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

46

sica: Age, correlations and tectonic frame of siliceousdeposition. Ofioliti (Florence) 10(2/3):203-224.

Danelian T, De Wever P, Cordey F, Kito N (1987) Radi­olaires jurassiques de Corse (France). Geobios (Lyon)(submitted).

Dercourt J, Flament JM, Fleury JJ, Meilliez F (1973)Stratigraphie des couches situees sous les Radiolaritesde la zone du Pinde-Olonos (Grece): Le Trias superieuret Ie Jurassique inferieur. Annales Geologiques des PaysHelleniques (Athenes) XXV:397-406.

Dercourt J, Geyssant J, Lepvrier C, Bergerat F, Bignot G,Cros P, De Wever P, Geczy B, Guernet C, Lachkar G(1984a) Hungarian mountains in Alpine framework.Acta Geologica Hungarica, Akademia Kiado Budapest3-4:213-221.

Dercourt J, Ricou LE, Le Pichon X, Boulin J, Biju-DuvalB, Lepvrier C, Geyssant J, Zonenshain LP, Kazwin VG,Knipper AL, Sborshchikov 1M, Sorokhtin OG (1984b)Geologic evolution ofthe Tethys convergence zone fromLiassic to present between the Atlantic and Pamir.27eme Congres Geologique International, Moscow,(1984),204pp.

Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, LePichon X, Knipper A, Grandjacquet C, Sorocktin 0,Geyssant J, Lepvrier C, Sborshchikov IV, Boulin J, Biju­Duval B, Sibuet JC, Savostin, Westphal M, Lauer JP(1985a) Presentation de 9 cartes paleogeographiques au1/20,000,000 s'etendant de ll\tlantique au Pamir pour laperiode du Lias al'actuel. Bulletin de la Societe Geolo­gique de France, Paris, 8:637-652.

Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, LePichon X, Knipper A, Grandjacquet C, Sborshchikov1M, Geyssant J, Lepvrier C, Pechersky DH, Boulin J,Sibuet JC, Savostin, Sorocktin 0, Westphal M, Baz­henov ML, Lauer JP, Biju-Duval B (1985b) Geologicalevolution of the Tethys belt from the Atlantic to thePamirs since the Lias. Tectonophysics (Amsterdam)123:241-315.

De Wever P (1982) Radiolaires du Trias et du Lias de laTethys (Systematique, Stratigraphie). Societe Geolo­gique du Nord, Lille, Publication 7, 599 pp.

De Wever P (1984) Triassic radiolarians from the Darnoarea, Hungary. Acta Geologica Hungarica, AkademiaKiado (Budapest) 3-4:295-306.

De Wever P (1987) Radiolarites rubanees et variations del'orbite terrestre. Bulletin de la Societe Geologique deFrance, Paris, 8(III) :5, pp 957-960.

De Wever P, Bourdillon-de Grissac C (1987) Nouvellesdonnees biostratigraphiques des Montagnes d'Oman, duPermien au Cretace, apartir des Radiolaires et Foramin­ireres. Seance Specialisee de la Societe Geologique deFrance, "Oman", Paris, abstract, p. 10.

De Wever P, Bourdillon-de Grissac C, Beurrier M (1988)Radiolaires Senoniens de la Nappe de Samail (Oman).Revue de Micropaleontologie, Paris, (In press).

De Wever P, Caby R (1981) Datation de la base des schis­tes lustres postophiolithiques par des radiolaires (Ox-

Patrick De Wever

fordien superieur-Kimmeridgien moyen) dans les AlpesCottiennes (Saint Veran, France). Comptes Rendus dell\cademie des Sciences, (Paris) 292(2):467-472.

De Wever P, Cordey F (1986) Datation directe par lesradiolaires de la base et de la pertie mediane des radiolar­ites s.s. de la serie du Pinde-Olonos (en Grece continen­tale). In: De Wever P (ed) Eurorad IV. Marine Micro­paleontology, Amsterdam, Vol 11, nl-3, pp 113-127.

De Wever P, Dercourt J (1985) Les radiolaires triassico­jurassiques marqueurs stratigraphiques et paleogeograp­hiques dans les chaines alpines perimediterraneennes:une revue. Bulletin de la Societe Geologique de France,Paris, 8:653-662.

De Wever P, Miconnet P (1985) Datations directes desradiolarites du Bassin du Lagonegro (Lucanie, ItalieMeridionale). Implications et consequences. RevistaEspanola de Micropaleontologia, (Madrid) XXll(3):373-402.

De Wever P, Origlia-Devos I (1982a) Datations nouvellespar les radiolaires de la serie des radiolarites s.1. duPinde-Olonos, Grece. Comptes Rendus de ll\cademiedes Sciences, (Paris) 294(2):399-404.

De Wever P, Origlia-Devos I (1982b) Datation par lesradiolaires des niveaux siliceux du Lias de la serie duPinde-Onolos (Formation de Drimos, Peloponnese etGrece continentale). Comptes Rendus de ll\cademie desSciences, (Paris) 294(2): 1191-1198

De Wever P, Thiebault F (1981) Les radiolaires d'ageJurassique superieur aCretace superieur dans les radio­larites du Pinde-Olonos (Presqu'ile de Koroni, Pelopon­nese meridional, Grece). Geobios (Lyon) 14(5):577-609.

De Wever P, Riedel WR, et al. (1979a) Eurorad 1978:Recherches actuelles sur les radiolaires en Europe.Annales de la Societe Geologique du Nord (Lille)XVCIll(4): 205- 222.

De Wever P, Sanfilippo A, Riedel WR, Gruber B (1979b)Triassic radiolarians from Greece, Sicily, and Turkey.Micropaleontology 25(1):75-110.

De Wever P, Duee G, EI Kadiri KH (1985) Les seriesstratigraphiques des klippes de Chrafate (Rif septen­trional , Maroc). Temoins d'une marge continentale sub­sidente au cours du Jurassique-Cretace. Bulletin de laSociete Geologique de France, Paris, 8:363-379.

De Wever P, Fourcade E, Ricou LE (1986a) La disparitiondes radiolarites tethysiennes au Jurassique terminal:L'effet d'un bouleversement de la circulation oceanique.Comptes Rendus de ll\cademie des Sciences, (Paris)302:665-670.

De Wever P, Geyssant JR, Azema J, Devos I, Duee G,Manivit H, Vrielynck B (1986b) La coupe de SantaAnna (zone de Sciacca, Sicile): Une synthese biostra­tigraphique des apports des macro-, micro-, et nannofos­siles du Jurassique superieur et Cretace inferieur. Revuede Micropaleontologie, (Paris) 29(3):141-186.

De Wever P, Baumgartner PO, Polino R (1987a) Datationsdes metaradiolarites des Schistes Lustres (Alpes

Page 17: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

3. Radiolarites, Circum-Mediterranean Alpine Belts

Occidentales). Implications. Comptes Rendus de l~ca­

demie des Sciences (Paris) 305:487-491.De Wever P, Danelian T, Durand Delga M, Cordey F, Kito

N (1987b) Datations des radiolarites post-ophiolitiquesde Corse alpine par les radiolaires. Comptes Rendus de11\cademie des Sciences (Paris) 305:893-900.

Dumitrica P (1970) Cryptocephalic and cryptothoracicNassellaria in some Mesozoic deposits of Romania.Revue Roumaine de Geologie, de Geophysique et deGeographie, Serie Geologie (Bucharest) 14:45-124.

Dumitrica P, Mello J (1982) On the age of the MeliataGroup and the Silica Nappe radiolarites (localitiesDrzkovce and Bohunovo, Slovak Karst, CSSR). GeolPrace Spravy (Bratislava) 77: 17-28.

EI Kadiri K (1984) Les radiolarites jurassiques des klippesde Chrafate (Rif septentrional, Maroc): Stratigraphie,taxonomie. These 3e cycle, Pau, Vol 1, 112 pp : Vol 2,347 pp.

Enay R (1980) Paleobiogeographie et Ammonites juras­siques: "Rythmes fauniques" et variations du niveaumarin; voies d'echanges, migrations et domaines bio­geographiques. In: Livre Jubilaire de la Societe Geo­logique de France, 1830-1980. Memoire hors serie,Societe geologique de France, Paris, Vol 10, pp 261­281.

Enay R, Mangold C (1982) Dynamique biogeographiqueet evolution des faunes dl\mmonites du Jurassique.Bulletin de la Societe Geologique de France, Paris,7: 1025- 1046.

Ferriere J (1982) Paleogeographie et tectoniques super­posees dans les Hellenides internes: Les massifs del'Othrys et du Pelion (Grece continentale). SocieteGeologique du Nord, Lille, publication 8, 970 pp.

Ferriere J, Bertrand J, Simantov J, De Wever P (1986)Comparaison entre des formations volcano-detritiques("Melanges") du MaIm des Hellenides internes (Othrys,Eubee); implications geodynamiques. Annales Geolo­giques des Pays Helleniques, (Athenes) (in press).

Fleury 11 (1980) Les zones de Gavrovo-Tripolitza et duPinde-Olonos (Grece continentale et Peloponnese duNord). Evolution d'une plateforme et d'un bassin dansleur cadre alpin. Societe Geologique du Nord, Lille,publication 4, 651 pp.

FUlop J (1969) Excursion Geologique dans les MontagnesCentrales de Transdanubie, Mecsek et de Villany. Col­loque sur Ie Jurassique Mediterraneen. Institut Geolo­gique de Hongrie, Budapest, 63 pp.

FUlop J (1976) The Mesozoic Basemant Horst Blocks ofTata. Geologica Hungarica, Serie Geologica, Budapest,Vol 16, 228 pp.

Ga1<icz A (1970) Biostratigraphic investigation ofthe mid­dle Jurassic of Gyenespuszta northern Bakony, Trans­danubian Central Mountains, Hungary. Annales del'Universite des Sciences de Rolando E6tv6s; SectionGeologie (Budapest) XIII: 109-128.

Gahicz A (1976) Bajocian (middle Jurassic) sections fromthe northern Bakony (Hungary). Annales de l'Universite

47

des Sciences de Rolando E6tv6s; Section Geologie(Budapest) XVIII: 177-191.

Ga1<icz A (1980) Gyenespusztai Bajoci es Bath Ammonite­sek (Bakony Hegyseg). Geologica Hungarica, SeriePalaeontologica, Budapest, Vol 9, 227 pp.

Gahicz A (1984) Jurassic of Hungary: A review. ActaGeologica Hungarica, Akademia Kiad6 (Budapest)27(3-4):359-377.

Ga1<icz A, Horvath F, Voros A (1985) Sedimentary andstructural evolution of the Bakony Mountains (Trans­danubian Central Range, Hungary): Paleogeographicimplication. Acta Geologica Hungarica, AkademiaKiad628(1-2):85-100.

Garrison RE, Fischer AG (1969) Deep-water limestonesof the Alpine Jurassic. In: Friedman GM (ed) Deposi­tional Environments in Carbonate Rocks. Society ofEconomic Paleontologists and Mineralogists, Tulsa,OK, Spec. Pub. 14, pp. 20-54.

Geyssant J Lepvrier C (1984) Microtectonic features ofthe Bukk Mountains (Hungary). Acta Geologica Hun­garica, Akademia Kiad6 (Budapest) 3-4:403-408.

Glennie KW, Boeuf MGA, Hughes-Clarke MW, MoodyStuart M, Pilaar WFH, Reinhardt BM (1974) Geologyof the Oman mountains. Verhandelingen van het Konin­klijk Nederlands Geologisch Mijnbouwkundig Genoot­schap, Gravenhage, Transaction 31, 3, 430 pp.

Goll RM (1969) Radiolaria: The history of a brief inva­sion. In: Degens ET, Ross DA (eds) Hot Brines andRecent Heavy Metal Deposits in the Red Sea. Springer,New York, pp. 306-312.

Gorican S. (1986) In: Yugoslav Committee For IGCP(1986) Guide-Book with abstracts for the Third Inter­national Conference on Siliceous Deposits, IGCP 187Beograd, Yugoslavia. 112 pp.

Gorican S (1987) Jurassic and Cretaceous radiolariansfrom the Budva Zone (Montenegro, SW Yugoslavia).Revue de Micropaleontologie, (Paris) 30(3): 177-196.

Govi M (1965) Osservazioni stratigrafiche suI Titonianodi M. Marzio e di Laveno (Varese). Bolotino de laSocieta Geologica dell Italiana, Rome, 84: 151-168.

Harland WB, Cox AV, Llewellyn PG, Picton CAG, SmithAG, Walters R (1982) A Geologic Time Scale, Cam­bridge University Press, Cambridge, u.K., 128 pp.

Hein JR, Karl SM (1983) Comparisons between open­ocean and continental margin chert sequences. In:Iijima A, Hein JR, Siever R (eds) Siliceous Deposits inthe Pacific Region. Developments in Sedimentology,36, Elsevier, Amsterdam, pp 25-43.

Iijima A, Utada N (1983) Recent development in thesedimentology of siliceous deposits in Japan. In: IijimaA, Hein JR, Siever R (eds) Siliceous Deposits in thePacific Region. Developments in Sedimentology, 36,Elsevier, Amsterdam, pp 45-64.

Iijima A, Kakuwa Y, Yamazaki K, Yanagimoto Y (1978)Shallow-sea organic origin of the Triassic bedded chertin central Japan. Journal of the Faculty of Science,University of Tokyo 11(19):369-400.

Page 18: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

48

Iijima A, Tada R, Matsumoto R (1982) Sedimentary pet­rographic study of the Neogene System in Hokkaido. In:Tanai T (ed) Biostratigraphy of the Neogene System inHokkaido. Hokkaido University Press, Sapporo, pp67-74.

Iijima A, Kakuwa Y, Matsuda H (1988) Silicified woodfrom the Adoyama Chert, Kuzuh, Central Honshu andits bearing on compaction and depositional environ­ment of radiolarian bedded chert. In: Hein JR, Obra­dovie J (eds) Siliceous Deposits ofthe Tethys and PacificRegions, Springer-Verlag, New York.

Isaacs CM, Pisciotto KA, Garrison RE (1983) Facies anddiagenesis of the Miocene Monterey Formation, Cali­fornia: A summary. In: Iijima A, Hein JR, Siever R (eds)Siliceous Deposits in the Pacific Region. Developmentsin Sedimentology, 36, Elsevier, Amsterdam, pp 247­282.

Jenkyns HG, Winterer EL (1982) Palaeoceanography ofMesozoic ribbon radiolarites. Earth and Planetary Sci­ences Letters, (Amsterdam) 60:351-375.

Kennett J (1982) Marine Geology. Prentice-Hall, London813 pp.

Kent DV, Gradstein FM (1985) A Cretaceous and Jurassicgeochronology. Geological Society of American Bulle­tin, (Boulder) 96:1419-1427.

Kocher RN (1981) Biochronostratigraphische untersu­chungen oberjurassischer radiolarienfuehrender ges­teine, insbesondere der sudalpen. Dissertation of Eid­genoessischen Technische Hochschule Nr 6809,Zurich, 185pp.

Kozur H (1984) Jurassic radiolarians from the BukkMountains and some remarks on the tectonic position ofthe area. Acta Geologica Hungarica Akademia Kaido(Budapest) 3-4:307-319.

Kozur H, Mock R (1973) Zum Alter und zur tektonischenStellung der Meliata-Serie des Slowakischen Karstes.Geologicky Zbornik Geologica Carpathica (Bratislava)24(2):365-374.

Lemoine M (1982) Rifting and early drifting: Mesozoiccentral Atlantic and Ligurian Tethys. In: Sheridan RE,Gradstein FM, et aI., (eds) Initial Reports of the DeepSea Drilling Project 76. U.S. Government PrintingOffice, Washington, pp 885-894.

Lemoine M (1985) Structuration jurassique des Alpesoccidentales et palinspastique de la Tethys ligure. Bulle­tin de la Societe Geologique de France, Paris,8(1):127-138.

Lemoine M, Gidon M, Barfety JC (1981) Les massifscristallins externes des Alpes occidentales: D'anciensblocs bascules nes au Lias lors du rifting tethysien.Comptes Rendus de ll\cademie des Sciences, (Paris)292(II):917-920.

Lemoine M, Bas T, Arnaud-Vanneau A, Arnaud H,Dumont T, Gidon M, Bourbon M, Graciansky (de) PC,Rudkiewicz JL, Megard-Galli J, Tricart P (1986) Thecontinental margin of the Mesozoic Tethys in the west­ern Alps. Marine and Petroleum Geologists, 3: 179-199.

Patrick De Wever

Luthi S (1973) Stratigraphie und Sedimentologie des MteNudo Beckens (Vol I). Unpublished Diplomarbeit, Eid­genoessischen Technische Hochschule, Zurich..,

Marcoux J, Ricou LE (1979) Classification des ophioliteset radiolarites alpino-mediterraneennes d'apres leurcontexte paleogeographique et structural. Implicationssur leur signification geodynamique. Bulletin de laSociete Geologique de France, Paris, 7:643-652.

Matsuda T, Isozaki Y, Yao A (1980) Stratigraphic relationof Triassic-Jurassic system in Inuyama district, MinoBelt. Abstract Paper, 87th Annual Meeting of the Geo­logical Society of Japan, p. 105.

Matsumoto R, Iijima A (1983) Chemical sedimentologyof some Permo-Jurassic and Tertiary bedded cherts inCentral Honshu, Japan. In: Iijima A, Hein JR, Siever R(eds) Siliceous Deposits in the Pacific Region. Develop­ments in Sedimentology. Elsevier, Amsterdam, Vol 36,pp 175-191.

Me Bride EF, Thompson A (1970) The Caballos Novacu­lite, Marathon Region, Texas. Geological Society ofAmerica, Boulder, Special Paper 122, 129 pp.

McGowan JA (1984) The California El Nino 1983.Oceanus (Woods Hole) 27(2)48-51.

Mutihac V (1968) Structura Geologica a Compartimen­tului Nordic din Sinclinalul Marginal Extern (CarpatiiOrientali). Edition Academiei, Bucharest, 127 pp.

Nelson DM, Goering 11 (1978) Assimilation of silicic acidby phytoplankton in the Baja California and northwestAfrica upwelling systems. Limnology and Oceanogra­phy, (Lawrence) 23(3):508-517.

Odin SG, Kennedy WJ (1982) Mise ajour de l'echelle destemps mesozo"iques. Comptes Rendus de ll\cademie desSciences, Paris, 294(II):383-386.

Obradovie J, Gorican S (1988) Siliceous deposits in Yugo­slavia: Occurrences, types and ages. In: Hein JR, Obra­dovie J (eds) Siliceous Deposits ofthe Tethys and PacificRegions. Springer-Verlag, New York, pp 51-64.

Origlia-Devos I (1983) Radiolaires du Jurassique super­ieur-Cretace inferieur: Taxonomie et revision strati­graphique (Zone du Pinde-Olonos, Grece; Zone deSciacca, Italie; Complexe de Nicoya, Costa Rica, etForages du DSDP). These 3eme cycle, Paris, 83-53,328 pp.

Pessagno EA Jr, Newport RL (1972) A new technique forextracting radiolaria from radiolarian cherts. Micro­paleontology 18(2):231-234.

Pichon JF (1977) Une transversale dans la zone pela­gonienne, depuis les collines de Krapa (SW) jusqu'aumassif du Vermion (NE). Les premieres series trans­gressives sur les ophiolites. VIeme Colloquium on theGeology of the Aegean Region, Athenes (1977), Vol 1,pp 163-171.

Pindell JL (1985) Alleghenian reconstruction and subse­quent evolution of the Gulf of Mexico, Bahamas andproto-Caribbean. Tectonics (Amsterdam) 4(1): 1-39.

Pisciotto KA, Garrison RE (1981) Lithofacies and deposi­tional environments of the Monterey Formation, Cal-

Page 19: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).

3. Radiolarites, Circum-Mediterranean Alpine Belts

ifornia. In: Garrison RE et al. (eds) The MontereyFormation and Related Siliceous Rocks of California.Pacific Section of the Society of Economic Paleon­togists and Mineralogists, Tulsa, OK, pp 97-122.

Pisias NG, Murray DW, Roelofs AK (1986) Radiolarianand silicoflagellate response to oceanographic changesassociated with the 1983 El Nino. Nature 320:259-262.

Poisson A (1977) Recherches geologiques dans les Tauridesoccidentales (Turquie). These, Orsay, France, 795 pp.

Renz OW (1976) The distribution and ecology of radiolariain the Central Pacific plankton and surface sediments.Bulletin ofScripps Institution ofOceanography, La Jolla,University of California Press, Berkeley, 22, 267 pp.

Ricou LE, Zonenshain LP, Dercourt J, Kazmin VG, LePichon X, Knipper AL, Grandjacquet C, Sborshchikov1M, Geyssant J, Lepvrier C, Pechersky DM, Boulin J,Sibuet JC, Savostin LA, Sorokhtin 0, Westphal M, Baz­henov ML, Lauer JP, Biju-Duval B (1985) Methodespour l'etablissement de neuf cartes paleogeographiquesde l}\tlantique au Pamir depuis Ie Lias. Bulletin de laSociete Geologique de France, Paris, 8:625-635.

Ricou LE, Dercourt J, Geyssant J, Grandjacquet C, Lep­vrier C, Biju-Duval B (1986) Geological constraints onthe Alpine evolution of the Mediterranean Tethys. Tec­tonophysics (Amsterdam) 123:83-122.

Schaaf A, Thomas V (1986) Les radiolaires campaniensdu Wadi Ragmi (nappe de Semail, Oman): Un nouveaurepere chronologique de l'obduction omanaise. Com­ptes Rendus de l'Academie des Sciences, Paris,303(11): 1593-1598.

Schlager W, Schlager M (1973) Clastic sediments associ­ated with radiolarites (Tauglboden-Schichten, upperJurassic, eastern Alps). Sedimentology (Amsterdam)20:65-89.

Schrader HW, Kelts K, Curray J, Moore D (1980) Lami­nated diatomaceous sediments from the GuayamasBasin slope (Central Gulf of California): 250,000 yearclimatic record. Science 207:1207-1209.

Steinberg M, Desprairies A, Fogelgesang JF, Martin A,Caron D, Blanchet R (1977) Radiolarites et sedimentshypersiliceux oceaniques: Une comparaison. Sedimen­tology (Amsterdam) 24(4):547-563.

Thiebault F, De Wever P, Fleury JJ, Bassoullet JP (1981)Precisions sur la serie stratigraphique de la nappe duPinde de la presqu'ile de Koroni (Peloponnese meridi­onale, Grece): Vage des radiolarites (Dogger-Cretacesuperieur). Annales de la Societe Geologique du Nord(Lille) C:91-105.

49

Thiebault F, De Wever P, Raoult JF (1986) Marqueursmineralogiques et geochimiques au passage Jurassique­Cretace dans la serie du Pinde-Olonos en Peloponnesemeridional (Grece). Revue de Geologie Dynamique etde Geographie Physique, (Paris) 27(5):351-362.

Thiede J (1979) Paleogeography and paleobathymetry ofthe Mesozoic and Cenozoic North Atlantic Ocean.Geojournal (Wiesbaden) 3(3):263-272.

Tikhomirova LB (1983) Pozdneyurskiye-rannemelovyieradiolyarii Karpat (na territorii SSSR). Voprosy Mikro­paleontologii, (Moscow) 26:72-86.

Tikhomirova LB (1984) The upper Jurassic and Creta­ceous radiolarian of the Mediterranean paleogeographyregion (the Carpathians and the Lesser Caucasus). Mor­fologii, Ekologii i Evolutioni Radiolarii, Eurorad IV.Academia Nauk SSR, Leningrad, pp 159-171.

Tippit PR, Pessagno EA Jr, Smewing JD (1983) The bio­stratigraphy of sediments in the volcanic unit of theSemail ophiolites. Journal of Geophysical Research,86(B4):2756-2762.

Van Hinte JE (1976) Jurassic time scale. Bulletin of Amer­ican Association of Petroleum Geologists, Tulsa, 60:489-497.

Vecsei A, Frisch W, Pirzer M, Wetzel A (1988) Origin andtectonic significance of radiolarian chert in the Aus­troalpine rifted continental margin. In: Hein JR, Obra­dovie J (eds) Siliceous Deposits ofthe Tethys and PacificRegions. Springer-Verlag, New York, pp 65-80.

Vishnevskaya V (1984) Radiolariti kak Analogy Sovre­menih Radiolarievih Ilov. Nauka, Moscow, 120 pp.

Vrielynck B (1978) Donnees nouvelles sur les zonesinternes du peloponnese. Grece. Les massifs al'est de laplaine d}\rgos. These 3e Cycle, Lille, 134 pp.

Vrielynck B (1980) Donnees nouvelles sur les zonesinternes du peloponnese. Les massifs al'est de la plained}\rgos; Grece. Annales Geologiques des Pays Helle­niques (Athenes) XXIX:440-462.

Vrielynck B (1982) Evolution paleogeographique et struc­turale de la presqu'ile d}\rgolide (Grece) Revue deGeologie Dynamique et de Geographie Physique,(Paris) 23:277-288.

Westermann GE (1984) Gauging the duration of stages: Anew approach for the Jurassic. Episodes (Ottawa) 7:2,26-28.

Yugoslav Committee for IGCP 86 Guide-Book withAbstracts for the Third International Conference onSiliceous Deposits, IGCP 187, Belgrade, Yugoslavia,112 pp.

Page 20: Radiolarians, Radiolarites, and Mesozoic Paleogeography of ...geologie.mnhn.fr/PDW/De Wever 1989.pdf · ded Mesozoic cherts ofAustria are clearly primary (Vescei et al., this volume).