RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

14
RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED Edited by Martin Döttling, Nokia Siemens Networks, Germany Werner Mohr, Nokia Siemens Networks, Germany Afif Osseiran, Ericsson Research, Sweden ©WILEY A John Wiley and Sons, Ltd., Publication

Transcript of RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

Page 1: RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

Edited by

Martin Döttling, Nokia Siemens Networks, Germany

Werner Mohr, Nokia Siemens Networks, Germany

Afif Osseiran, Ericsson Research, Sweden

©WILEY A John Wiley and Sons, Ltd., Publication

Page 2: RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

Contents

About the Editors xxi

Preface xxv

Acknowledgements xxix

Abbreviations xxxi

List of Contributors xliii

1 Introduction 1 1.1 Development and Status of Mobile and Wireless Communications 1 1.2 Expectations of Data Traffic Growth 3 1.3 Development Towards IMT-Advanced 4 1.4 Global Research Activities 6 1.5 WINNER Project 8 1.6 Future Work 9

References 10

2 Usage Scenarios and Technical Requirements 13 2.1 Introduction 13 2.2 Key Scenario Elements 13

2.2.7 Environment Type and Coverage Range 15 2.2.2 Terminal Type 15 2.2.3 User Density and Traffic Parameters 16 2.2.4 User Mobility 16 2.2.5 Deployment Scenarios 18

2.2.5.1 Wide Area 18 2.2.5.2 Metropolitan Area 19 2.2.5.3 Local Area 19

2.3 Service Classes and Service Requirements 20 2.3.1 Overview of Beyond-3G Applications 20 2.3.2 Requirements for Service Provisioning 20 2.3.3 Mapping of Service Requirements to RAN Requirements 20 2.3.4 Traffic Models 20

2.3.4.1 Internet Applications 22 2.3.4.2 Voice over IP 23

Page 3: RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

viii Contents

2.3.4.3 Video Telephony 23 2.3.4.4 Streaming 23 2.3.4.5 File Transfer 24 2.3.4.6 Interactive Applications 24

2.4 Requirements for System Capabilities 24 2.4.1 Generalised Mobility Support within WINNER 25 2.4.2 Generalised Mobility Support between WINNER and Legacy Networks 25 2.4.3 Measurement Requirements for the WINNER System 26 2.4.4 Support for QoS Mechanisms and Prioritisation of Flows 28

2.5 Terminal Requirements 28 2.6 Performance Requirements 29

2.6.1 Coverage 30 2.6.2 Data Rate 30

2.6.2.1 Definition of User Throughput 30 2.6.2.2 Peak Data Rate 31 2.6.2.3 Sustainable Data Rate 31

2.6.3 Allowable Error Rate 31 2.6.4 Delay 31

2.6.4.1 Definition of User-Plane Packet Delay 31 2.6.4.2 Achievable User-Plane Packet Delay 32

2.6.5 Spectral Efficiency 32 2.6.6 Maximum Terminal Speed 34

2.7 Spectrum Requirements 34 2.7.7 WINNER Spectrum Range 34 2.7.2 Utilisation of Current Mobile Service Bands 34 2.7.3 Spectrum Fragmentation 34 2.7.4 Coexistence with Other Systems 35 2.7.5 Sharing Spectrum between WINNER RANs 35 2.7.6 Sharing Spectrum between Cell Layers of a WINNER System 35 2.7.7 System Bandwidth 36

2.8 Dependency of Requirements 36 2.9 Conclusion 36

Acknowledgements 37 References 38

3 WINNER II Channel Models 39 3.1 Introduction 39 3.2 Modelling Considerations 40

3.2.1 Propagation Scenarios 40 3.2.1.1 Al: Indoor Office 41 3.2.1.2 Bl: Urban Microcell 42 3.2.1.3 B4: Outdoor to Indoor 43 3.2.1.4 CI: Suburban Macrocell 43 3.2.1.5 C2: Urban Macrocell 43 3.2.1.6 Dl: Rural Macrocell 43

Page 4: RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

Contents ix

3.2.1.7 B2 and C3: Bad Urban Conditions 43 3.2.2 Evolution of Channel Models from 2G to 4G 44 3.2.3 Selection of Channel-modelling Approach 46 3.2.4 Modelling Process 47 3.2.5 Network Layout 48 3.2.6 Measurements 50

3.2.6.1 Measurement Tools 50 3.2.6.2 Channel Measurements 55

3.3 Channel-Modelling Approach 59 3.3.1 WINNER Generic Channel Model 63

3.3.1.1 Modelled Parameters 63 3.3.1.2 Correlations Between Large-Scale Parameters 64

3.3.2 Channel Segments, Drops and Time Evolution 68 3.3.3 Nomadic Channel Condition 70

3.4 Channel Models and Parameters 70 3.4.1 Applicability 71

3.4.1.1 Environment Dependence 71 3.4.1.2 Frequency Dependence 71

3.4.2 Generation of Channel Coefficients 71 3.4.3 WINNER Path-loss Models 75

3.4.3.1 Frequency Dependencies of WINNER Path-loss Models 75 3.4.3.2 Transitions Between LOS and NLOS Conditions Ц

3.4.4 Values for Generic Channel Models 77 3.5 Channel Model Usage 81

3.5.1 System-level Description 81 3.5.1.1 Coordinate System 81 3.5.1.2 Single User (Handover) Multicell Simulation 81 3.5.1.3 Multi-user Multicell Simulation 84

3.5.2 SPACE-TIME Concept in Simulations 84 3.5.3 Bandwidth and Frequency Dependence 85

3.5.3.1 Frequency Sampling 85 3.5.3.2 Bandwidth Downscaling in the Delay Domain 85 3.5.3.3 Bandwidth Downscaling in the Frequency Domain 85 3.5.3.4 FDD Modelling 86

3.5.4 Approximation of Channel Models 86 3.5.4.1 Reduced Complexity Models 86 3.5.4.2 Comparison of Complexity of Modelling Methods 87

3.6 Conclusion 89 Acknowledgements 90 References 90

4 System Concept and Architecture 93 4.1 Introduction 93 4.2 Design Principles and Main Characteristics 94 4.3 Logical Node Architecture 96

Page 5: RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

X Contents

4.3.1 Overview 96 4.3.2 Pool Concept and Micro Mobility 98 4.3.3 Equipment Sharing 101 4.3.4 Multicast and Broadcast Service Support 102 4.3.5 Multiband Transmission from Different BSs 103 4.3.6 Logical Nodes 104

4.3.6.1 Gateway Nodes: GWJPALN and GW.CLN 104 4.3.6.2 Base Station Node: BSiN 106 4.3.6.3 Relay Node: RNLN 107 4.3.6.4 User Terminal: UTLN 108 4.3.6.5 RRMserverLN 108 4.3.6.6 SpectrumServerLN 108

4.4 Protocol and Service Architecture 109 4.4.1 Overview 109 4.4.2 Layer 3: Radio Resource Control 110 4.4.3 Layer 2 112

4.4.3.1 IP Convergence Layer 114 4.4.3.2 Radio Link Control Layer 114 4.4.3.3 Medium Access Control Layer 115

4.4.4 Layer 1: Physical 125 4.4.4.1 Control Signalling 126 4.4.4.2 Physical Channels and Mappings to Transport Channels 128 4.4.4.3 Synchronisation Pilots 131

4.5 Conclusion 132 Acknowledgements 132 References 132

5 Modulation and Coding Techniques 135 5.1 Introduction 135 5.2 Basic Modulation and Coding Scheme 136 5.3 Coding Schemes 137

5.3.1 Low-density Parity-check Codes 137 5.3.1.1 Encoding of BLDPC Codes 139 5.3.1.2 Decoding Methods 141 5.3.1.3 Scheduling Algorithms 144 5.3.1.4 Lifting Process of LDPC Codes 145 5.3.1.5 Rate-Compatible Puncturing Codes 146 5.5.7.6 SNR Mismatch Impact on LDPC Codes 149

5.3.2 Duo-Binary Turbo Codes 151 5.3.3 Low-Rate Convolutional Codes for Control Channel 152 5.3.4 Comparison of Coding Schemes 154

5.3.4.1 Performance Comparison 154 5.3.4.2 Performance-Complexity Trade-Off 154 5.3.4.3 Domain of Suitability 157 5.3.4.4 Implementation Issues: Flexibility, Parallelization and Throughput 158

5.4 Link Adaptation 160

Page 6: RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

Contents xi

5.5 Link Level Aspects of H-ARQ 162 5.5.1 Incremental Redundancy Scheme 162 5.5.2 Throughput and Delay Analysis 163

5.6 Conclusions 165 References 166

6 Link Level Procedures 169 6.1 Introduction 169 6.2 Pilot Design 169

6.2.1 Types of Pilot 171 6.2.2 Reference Pilot Design 172

6.2.2.1 ln-band Pilot Patterns 172 6.2.2.2 Uplink Super-Frame Pilot Preamble 177 6.2.2.3 Case Study for the Reference Pilot Design 177

6.2.3 Capacity-Achieving Pilot Design 179 6.3 Channel Estimation 179

6.3.1 Channel Estimation Reference Design 180 6.3.2 Pilot-Aided Channel Estimation 181 6.3.3 Iterative Channel Estimation 182

6.3.3.1 Channel Estimation for Single-Input, Single-Output Scenarios 182 6.3.3.2 Channel Estimation for Multiple-Input, Multiple-Output Scenarios 185

6.3.4 Channel Prediction 190 6.4 Radio Frequency Impairments 192

6.4.1 HPA Non-Einearities 192 6.4.2 Phase Noise 195

6.4.2.1 Phase Noise Model 196 6.4.2.2 Phase Noise Suppression in OFDM with Spatial Multiplexing 196 6.4.2.3 Phase Noise Suppression for DFT-Precoded OFDM (Serial Modulation) 198

6.5 Measurements and Signalling 200 6.6 Link Level Synchronisation 201

6.6.1 Synchronisation Preamble Design 201 6.6.2 Synchronisation in a Licensed Band 202

6.6.2.1 Coarse Symbol Timing Synchronisation 202 6.6.2.2 Frequency Offset Estimation 203

6.6.3 Synchronisation in Shared Spectrum 204 6.7 Network Synchronisation 205

6.7.1 Firefly Synchronisation 205 6.7.1.1 Mathematical Model 206 6.7.1.2 Synchronisation of Coupled Oscillators 206 6.7.1.3 Refractory Period 207

6.7.2 Synchronisation Rules 207 6.7.3 Compensating for Propagation Delays: Timing Advance 209 6.7.4 Imposing a Global Time Reference on Firefly Synchronisation 210

6.8 Conclusion 211 6.8.1 Pilot Design 211 6.8.2 Channel Estimation 211

Page 7: RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

Xll Contents

6.8.3 RF Imperfections 212 6.8.4 Link Layer Synchronisation 212 6.8.5 Self-Organised Network Synchronisation 212 Acknowledgements 213 References 213

7 Advanced Antennas Concept for 4G 219 7.1 Introduction 219 7.2 Multiple Antennas Concept 221

7.2.1 Generic Transmitter 221 7.2.1.1 Per Stream Rate Control 226 7.2.1.2 Space-Time Block Code 227 7.2.1.3 SDMA 228

7.2.2 Control Signalling 228 7.3 Spatial Adaptation 229

7.3.1 Single Stream Per User 230 7.3.2 Multiple Streams Per User 231

7.4 Spatial Schemes 231 7.4.1 Receive Diversity 231 7.4.2 Beamforming 232

7.4.2.1 Signal Model 233 7.4.2.2 Results 235

7.4.3 Diversity and Spatial Multiplexing 237 7.4.4 Beamforming and Spatial Multiplexing 241

7.4.4.7 Clustered Array Structure 243 7.4.4.2 tfeswto 243

7.4.5 Linear MU-MIMO: SMMSE and RBD 247 7.4.5.7 System Models 249 7.4.5.2 Aerate 250

7.5 Interference Mitigation 250 7.6 Pilots, Feedback and Measurements 253

7.6~.i М о и 253 7.6.2 Feedback 255 7.6.3 Measurements 257

7.7 MIMO Aspects in Relaying 258 7.7.1 Cooperative Relaying 260

7.7.1.1 Cooperative Diversity Relaying 261 7.7.1.2 Two-Dimensional Cyclic Prefix 262

7.7.2 Distributed Antenna Systems 264 7.7.2.1 Distributed MIMO Configuration 265 7.7.2.2 Performance of Linear MU-MIMO Precoding 266

7.8 Conclusion 269 7.<S.i Beamforming 269 7.8.2 Diversity and Linear Dispersion Codes 270 7.6.3 Multi-User MIMO Precoding 271

Page 8: RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

Contents xiii

7.8.4 Distributed Antenna Systems and Cooperative Relaying 271 Acknowledgements 271 References 271

8 Layer-2 Relays for IMT-Advanced Cellular Networks 277 8.1 Introduction 277

8.1.1 Rationale for Relays in Cellular Networks 277 8.1.2 Organization of this Chapter 280

8.2 Motivation for Layer-2 Relays and Prior Work 280 8.3 Relay-based Deployments 282

8.3.1 RN Deployment Concepts 283 8.3.1.1 Relaying for Coverage Improvement 284 8.3.1.2 Relaying for Capacity Optimization at Outer Cell Regions 285 8.3.1.3 Relaying to Cover Shadowed Areas 285

8.3.2 Sub-cell Capacity of a Relay-enhanced Cell 286 8.3.2.1 Multi-hop Throughput in Cellular Deployment 287 8.3.2.2 Sub-cell Capacity Served by an RN 287 8.3.2.3 Capacity of a Multi-hop Connection under Delay Constraint 289

8.3.3 WINNER Test Scenarios 291 8.3.3.1 Base Urban Coverage Test Scenario 291 8.3.3.2 Metropolitan Area Test Scenario 292

8.3.4 Cost Efficiency of RNs 293 8.4 Design Choices for Relay-based Cellular Networks 295

8.4.1 Half-duplex Saves Costs and Improves Deployment Flexibility 296 8.4.2 Decode-and-Forward Relaying Exploits Adaptive Modulation and Coding 296 8.4.3 Fixed Relays in MCN Assist Fast and Cheap Network Roll-out 296 8.4.4 Flexible Radio Resource Management Adapts to the Environment 297

8.4.4.1 Static Load-based Resource Partitioning 299 8.4.4.2 Dynamic-resource Sharing in Wide Area Deployment with Beamforming 300 8.4.4.3 Soft Frequency Re-use and Static Load-based Resource Partitioning 302

8.4.5 MIMO Techniques Boost Capacity 302 8.4.6 Cooperative Relaying Boosts Performance 304

8.5 System and Network Aspects 306 8.5.1 Relaying by the WINNER MAC Protocol 308 8.5.2 Cell Broadcast and Resource A llocation 308 8.5.3 Radio Resource Partitioning 310 8.5.4 Relay ARQ 311

8.6 System-level Performance Evaluation 312 8.6.1 Scenario and Traffic Modelling 312 8.6.2 System Model 313 8.6.3 Resource Partitioning 315 8.6.4 Uplink Power Control and Resource Allocation 316 8.6.5 Simulation Results 317

8.6.5.1 Baseline Resource Partitioning 318 8.6.5.2 Downlink Performance of Infinite Buffer and Optimum Resource Partitioning 319

Page 9: RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

Contents

8.7 Conclusion 319 Acknowledgements 321 References 321

9 Multiple Access Schemes and Inter-cell Interference Mitigation Techniques 325 9.1 Introduction 325 9.2 Multiple Access Schemes 326

9.2.1 Classic Multiple Access Schemes 326 9.2.1.1 Frequency Division Multiple Access 326 9.2.1.2 Time Division Multiple Access 327 9.2.1.3 Code Division Multiple Access 328

9.2.2 Multi-carrier Multiple Access Schemes 328 9.2.2.1 Orthogonal Frequency Division Multiple Access 328 9.2.2.2 Multi-Carrier Code Division Multiple Access 329

9.2.3 WINNER Multiple Access and Medium Access Control Concept 330 9.2.3.1 Chunk-wise Adaptive TDMA/OFDMA 332 9.2.3.2 Block Interleaved and Block Equidistant Frequency Division

Multiple Access 336 9.2.3.3 Configuration of Non-Frequency-Adaptive Multiple Access Schemes 340 9.2.3.4 Co-existence and Switching 343

9.2.4 MAC Transmission Control 346 9.2.4.1 Transmission Control Sequences for Downlinks 346 9.2.4.2 Transmission Control Sequences for Uplinks 347 9.2.4.3 Transmission and Retransmission Delays 348

9.3 Inter-cell Interference Mitigation Schemes 349 9.3.1 Modelling Inter-cell Interference 350

9.3.1.1 Link-Level Model 350 9.3.1.2 System-Level Model 351

9.3.2 Inter-cell Interference Averaging Techniques 351 9.3.2.1 Inter-cell Interference Cancellation 352 9.3.2.2 Dynamic Channel Allocation and Scheduling 357

9.3.3 Inter-cell Interference Avoidance Techniques 360 9.3.3.1 Resource Management by Restriction of Transmit Power 360 9.3.3.2 Self-adaptive Re-use Partitioning 362

9.3.3.3 Cost-function-based Scheduling 363 9.3.3.4 Simulation Results 364

9.3.4 Inter-cell Interference Mitigation Techniques Based on Smart Antennas 365 9.3.4.1 Beamforming Techniques 365 9.3.4.2 Transmit Diversity Techniques 368 9.3.4.3 Receive Diversity and Interference Suppression Techniques 370 9.3.4.4 Simulation Results 370

9.4 Conclusion 372 Acknowledgements 373 References 373

Page 10: RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

Contents XV

10 Radio Resource Control and System Level Functions 377 10.1 Introduction 377 10.2 IPCL Layer 378

10.2.1 Transfer of User Data Between IPCL Entities 378 10.2.1.1 IPCL Header Compression 379 10.2.1.2 IPCL Data Ciphering and Ciphering Keys 380

10.2.2 IPCL and Handover 381 10.2.2.1 In-Sequence Delivery of Upper Layer PDUs 382 10.2.2.2 Duplicate Detection of Lower Layer SDUs 382

10.3 Radio Resource Control 383 10.3.1 RRC States 383

10.3.1.1 UT Detached State 383 10.3.1.2 UT Idle State 384 10.3.1.3 UT Active State 384

10.3.2 Mobility Management in Idle Mode 385 10.3.2.1 Paging 385 10.3.2.2 Tracking Area 385

10.3.3 Mobility Management in Active Mode 386 10.3.3.1 Micro Mobility 386 10.3.3.2 Macro Mobility 388 10.3.3.3 Intramode Handover 389 10.3.3.4 Intermode Handover 390 10.3.3.5 Intersystem Handover 392 10.3.3.6 Inter GW Handover and Load Balancing 393

10.3.4 Flow Admission Control 394 10.3.5 Congestion Avoidance Control 396

10.3.5.1 Admission Control: Two-Stage Approach 396 10.3.5.2 Flow Control 401

10.3.6 Load and Congestion Control 404 10.4 Centralised, Distributed and Hybrid RRM Architecture 406

10.4.1 Distributed RRM 406 10.4.2 Centralised RRM 406 10.4.3 Hybrid RRM 407

10.5 System-Level Performance Results 407 10.5.1 Intersystem Handover 407 10.5.2 Intermode Handover 409

10.5.2.1 Simulation Setup 409 10.5.2.2 Intramode and Intermode Handover Algorithms 410

10.5.3 Intermode Handover Results 412 10.5.3.1 Intermode Handover Triggered by Residual Throughput 412 10.5.3.2 Intermode Handover Triggered by UT Velocity 414

10.6 Conclusion 414 Acknowledgements 415 References 416

Page 11: RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

Contents

11 Sharing and Flexible Spectrum Use Capabilities 419 11.1 Introduction 419 11.2 Spectrum Technologies Framework 420

11.2.1 Sharing and Co-existence Functions 421 11.2.1.1 Vertical Sharing 1: WINNER Is the Primary System All 11.2.1.2 Vertical Sharing 2: WINNER Is the Secondary System 421 11.2.1.3 Horizontal Sharing with Coordination 422 11.2.1.4 Horizontal Sharing Without Coordination 422

11.2.2 Spectrum Assignment Functions 423 11.2.2.1 Long-term Assignment 423 11.2.2.2 Short-term Assignment 424

11.2.3 Generic Spectrum Functions 424 11.2.3.1 WINNER Spectrum Manager 424 11.2.3.2 Spectrum Register 424

11.3 Detailed Design of a Spectrum Assignment Negotiation Mechanism 425 11.3.1 Long-term Spectrum Assignment 425 11.3.2 Short-term Spectrum Assignment 427 11.3.3 Interactions between Long-term and Short-term Spectrum Assignment 429 11.3.4 Registration of Nodes with Spectrum Manager 430 11.3.5 Specific Short-term Spectrum Assignment Algorithms 430

11.3.5.1 Negotiated Amount of Resources Exchanged 431 11.3.5.2 Matching Amount of Resources Exchanged 431 11.3.5.3 Surplus of Resources Exchanged 431

11.4 Spectrum Assignment Enabling Mechanisms 431 11.4.1 Multi-band Scheduler 431

11.4.1.1 Hybrid ARQ Context Transfer 434 11.4.1.2 MBS and Spectrum Sharing 435

11.4.2 Communication Between Base Stations 435 11.4.2.1 Trends in BS-to-BS Communication and Site Sharing 435 11.4.2.2 Requirements for BS-to-BS Communication 436 11.4.2.3 Possibilities for Inter-BS Communication 437 11.4.2.4 Summary of BS-to-BS Communication Technologies 440

11.5 WINNER Sharing with FSS 440 11.5.1 Dimensioning of Hard Exclusion Zones 442

11.5.1.1 Typical FSS Parameters Considered for the Simulation 442 11.5.1.2 Results 442

11.5.2 Mitigated Exclusion Zone Calculation 444 11.5.3 Advanced Mitigation Techniques 445

11.5.3.1 Utilisation of Information Describing the FSS Usage in a Database 446 11.5.3.2 Utilisation of Spectrum Beacon Channel 446 11.5.3.3 Multi-antenna Technologies 446

11.6 Performance Evaluation of Spectrum Assignment Mechanisms 447 11.6.1 Performance Assessment of Long-term Spectrum Assignment 447

11.6.1.1 Considered Scenarios 447 11.6.1.2 Gradual Spectral Deployment of WINNER RANs 449

11.6.2 Performance Assessment of Short-term Spectrum Assignment 451

Page 12: RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

Contents xvu

11.6.2.1 Evaluation of Inter-cell Interference Issues for ST Spectrum Assignment 451 11.6.2.2 Cell-Pair Selection Algorithms for ST Assignment 453 11.6.2.3 Impact of Cell-Selection Algorithms on ST Performance Assignment 453

11.7 Conclusion 455 Acknowledgements 456 References 456

12 ITU-R Spectrum Demand Calculation for IMT-Advanced 459 12.1 Introduction 459 12.2 ITU-R Work on Spectrum Requirements of IMT-Advanced 460

12.2.1 Background and Role of ITU-R 460 12.2.2 ITU-R Preparations for WRC-07 461 12.2.3 WINNER Contributions to ITU-R 463

12.3 ITU-R Spectrum Calculation Methodology 464 12.3.1 Methodology Flow and Definitions 464

12.3.1.1 Services 464 12.3.1.2 Environments 467 12.3.1.3 Radio Access Technique Groups 467

12.3.2 Traffic Calculation and Distribution 468 12.3.3 Capacity Requirement Calculation 469 12.3.4 Spectrum Requirement Calculation 470 12.3.5 Summary of Methodology All

12.4 Software Implementation of Methodology 472 12.4.1 Description and Use of Software Tool 472 12.4.2 Inputs to Software Tool 474 12.4.3 Intermediate Calculations and Outputs from Software Tool 475

12.5 Estimated Spectrum Requirements of IMT-Advanced 477 12.6 Conclusion 478

Acknowledgements 479 References 479

13 System Model, Test Scenarios, and Performance Evaluation 481 13.1 Introduction 481 13.2 Performance Assessment of Wireless Networks 482 13.3 Interface between Link and System Simulations 483 13.4 Test Scenarios 484

13.4.1 Test Environments 485 13.4.2 Deployment Assumptions 485

13.4.2.1 Base Station 489 13.4.2.2 User Terminal 489 13.4.2.3 Relay Node 489 13.4.2.4 Network Layout 489 13.4.2.5 Channel Modelling 492

13.4.3 Basic OFDM Parameters and Frame Dimensions 492 13.5 Spectral Efficiency and Number of Satisfied Users under QoS Constraints 493 13.6 End-to-End Performance Evaluation 495

Page 13: RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

XVll l Contents

13.6.1 Base Coverage Urban Scenario 495 13.6.1.1 Frequency-domain Link Adaptation Gains 495 13.6.1.2 Spectral Efficiency and Maximum Number of Satisfied Users 498 13.6.1.3 Improving Cell Edge Performance and Indoor Coverage by Relaying 501 13.6.1.4 Dynamic Resource Allocation in Relay-Enhanced Cells 503 13.6.1.5 Cooperative Relaying 504 13.6.1.6 Multicast/Broadcast Services in Relay-Enhanced Cells 504 13.6.1.7 Impact of Traffic and Packet Modelling on Spectral Efficiency 508

13.6.2 Microcellular Scenario 513 13.6.2.1 Indoor Coverage Improvement by Relay Deployments 513 13.6.2.2 Soft Frequency Re-use 514 13.6.2.3 Soft and Fractional Frequency Re-use and Re-use One 516

13.6.3 Local Area Scenarios 517 13.7 Conclusion 521

Acknowledgements 521 References 522

14 Cost Assessment and Optimisation for WINNER Deployments 525 14.1 Introduction 525 14.2 Cost Assessment Framework and Assumptions 526

14.2.1 General Cost Assessment Procedure 526 14.2.2 Types of Cost Assessment 527 14.2.3 Challenges in Cost Assessment 528

14.2.3.1 Spectrum Sharing 528 14.2.3.2 Roaming Agreements 529 14.2.3.3 Infrastructure Sharing 529 14.2.3.4 Third-party Network Ownership, Operation and Maintenance 529 14.2.3.5 New Business Entities 529 14.2.3.6 Summary 530

14.2.4 WINNER: Assumptions and Technology Options 530 14.3 Cost Components 530

14.3.1 Classification of Cost Components 531 14.3.2 RAN CAPEX Costs 532

14.3.2.1 Base Station Equipment 532 14.3.2.2 Relay Equipment 533 14.3.2.3 Base Station Deployment 533 14.3.2.4 Relay Deployment 534 14.3.2.5 Base Station Site Acquisition 534 14.3.2.6 Relay Site Acquisition 534 14.3.2.7 Gateways 534 14.3.2.8 Centralised RRMServers 535 14.3.2.9 RAN Connectivity 535

14.3.2.10 Initial Radio Planning and Network Optimisation 535 14.3.3 RAN ОРЕХ Costs 535

14.3.3.1 Base Station Site Rent and Maintenance 536

Page 14: RADIO TECHNOLOGIES AND CONCEPTS FOR IMT-ADVANCED

Contents xix

14.3.3.2 Relay Site Rent and Maintenance 536 14.3.3.3 Rent for RAN Connectivity 536 14.3.3.4 Power 537 14.3.3.5 Network Operation and Maintenance 537 14.3.3.6 Software and Firmware Updates 537

14.3.4 Example Cost Figures 537 14.3.4.1 Breakdown of Macro BS Equipment Costs 538 14.3.4.2 Transformation of ОРЕХ into CAPEX Costs 539

14.4 Cost Assessment Models 540 14.4.1 Previous Work 540 14.4.2 Background and Principles 541 14.4.3 Network Deployment 541

14.4.3.1 Traffic Modelling 542 14.4.3.2 RAP Deployment Strategies 543 14.4.3.3 Radio Propagation Models 544 14.4.3.4 Radio and Resource Assignment Model 546

14.4.4 Cost Calculation 549 14.4.4.1 Relay-Specific Cost Evaluation Issues 549 14.4.4.2 Deployment Representation by Indifference Maps 550

14.5 Reference Deployment Scenarios and Cost Assessments 555 14.5.1 Deployment Simulations and Assumptions 555 14.5.2 Case Studies 1 and 2: WA Urban, Relay Nodes vs Micro BS 555

14.5.2.1 Simulation Scenario Description 555 14.5.2.2 Cost-optimal Deployment and Total Deployment Cost ofRNs 557 14.5.2.3 Cost-optimal Deployment and Total Deployment Cost of Micro BSs 559 14.5.2.4 Incumbent vs Greenfield Deployment Costs 560

14.5.3 Case Studies 3 and 4: WA Rural, Relay Nodes vs Micro BS 560 14.5.3.1 Simulation Scenario Description 560 14.5.3.2 Cost-optimal Deployment and Total Deployment Cost 561

14.5.4 Case Studies 5 and 6: WA Urban, Relay Nodes vs Micro BS, Intelligent BS Deployment 562

14.5.5 Case Studies 7 and 8: MIMO Assessment 564 14.5.5.1 Deployment Cost Comparison between SISO and MIMO Systems 564 14.5.5.2 Performance Improvement from the Use of Multiple Antennas 565 14.5.5.3 Deployment Evaluation 565 14.5.5.4 Cost Assessment of the Multi-antenna Configurations 566

14.6 Conclusion 566 Acknowledgements 567 References 567

Index 569