Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar...

64
IEEE New Hampshire Section Radar Systems Course 1 Parameter Estimation 1/1/2010 IEEE AES Society Radar Systems Engineering Lecture 15 Parameter Estimation And Tracking Part 1 Dr. Robert M. O’Donnell IEEE New Hampshire Section Guest Lecturer

Transcript of Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar...

Page 1: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

IEEE New Hampshire SectionRadar Systems Course 1Parameter Estimation 1/1/2010 IEEE AES Society

Radar Systems Engineering Lecture 15

Parameter Estimation And Tracking

Part 1Dr. Robert M. O’Donnell

IEEE New Hampshire SectionGuest Lecturer

Page 2: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 2Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

PulseCompressionReceiver Clutter Rejection

(Doppler Filtering)A / D

Converter

Block Diagram of Radar System

Antenna

PropagationMedium

TargetRadarCross

Section

Transmitter

General Purpose Computer

Tracking

DataRecording

ParameterEstimation

WaveformGeneration

Detection

PowerAmplifier

T / RSwitch

Signal Processor Computer

Thresholding

User Displays and Radar Control

Photo ImageCourtesy of US Air Force

Page 3: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 3Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Tracking Radars

MOTR MPQ-39

TRADEX

BMEWS

Courtesy of Lockheed Martin.Used with permission.

Courtesy of US Air Force

FPS-16

Courtesy of MIT Lincoln Laboratory, Used with Permission

Courtesy of Raytheon, Used with Permission

Courtesy of FAACourtesy of FAA

FAA ASR

Page 4: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 4Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Introduction

• Observable Estimation

• Single Target Tracking

• Multiple Target Tracking

• Summary

Page 5: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 5Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Radar Parameter Estimation

Radar

Target • Location– Range– Azimuth Angle– Elevation Angle

• Size– Amplitude (RCS)– Radial Extent – Cross Range Extent

• Motion– Radial Velocity (Doppler)– Acceleration – Angular Motion about Center

of Mass– Ballistic Coefficient

Quantities in Blue

Are Usually Measured Directly

Measured Radar Observables

Page 6: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 6Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Accuracy, Precision and Resolution

• Precision:– Repeatability of a measurement

• Accuracy:– The degree of conformity of measurement to

the true value– Bias Error : True value-

Average measured value

• Resolution:– Offset (angle or range) required for two

targets to be recognized as separate targets

Am

plitu

de (d

B)

Angle (deg) Angle (deg)

Am

plitu

de (d

B)

Targets at 0°

and 6° Targets at 0°

and 3°

Example Accuracy vs. Precision

Low Accuracy Low Precision

Low Accuracy High Precision

High Accuracy High Precision

-10 0 10 20 -10 0 10 20

0 0

-10

-20

-30-30

-20

-10

Page 7: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 7Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Introduction

• Observable Estimation– Range– Angle– Doppler– Amplitude of reflected echo from target

• Single Target Tracking

• Multiple Target Tracking

• Summary

Page 8: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 8Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Observable Accuracy

• Observable to be discussed– Range– Angle– Doppler Velocity

• After bias errors are accounted for, noise is the key limiting factor in accurately measuring the above observables

– The exception is angle measurement, where for low angle tracking multipath errors can predominate

• The theoretical rms

error of a measurement is of the form

– Where is a constant between .5 and 1

Mδ M

N/SMkM =δ

k

Page 9: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 9Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Limitations on Range Estimation

• Estimation of the range of a target is based upon using A/D sampled measurements of the round trip time to and from the target

• For time delay measurements , such as range, the value of the constant depends on the shape of the radar pulse’s spectrum and the pulse’s rise time.

• For a rectangular pulse, whose width is

– Which yields

• For a train of pulses it becomes:

2TcR R=

k

N/S2TT ≈δT

N/S2TcR =δ

Adapted from Barton and WardReference 6

( ) ( ) DTPRFN/S2TcR =δ

DT = Dwell Time

Page 10: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 10Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Theoretical vs. Practical Accuracy Limitations

• General– Section 6.3 of Skolnik

reference 1 derives the theoretical limitations for each of the pertinent observables

Time, frequency, and angle

• Range– S/N, pulse shape and width, effective bandwidth, number of

pulses

• Doppler Frequency– S/N, pulse shape, integration time

• Angle– S/N, type of measurement technique, antenna illumination

distribution, antenna size, frequency

Page 11: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 11Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Angle Estimation Issues

Prob

abili

ty D

ensi

ty F

unct

ion

Angle of ArrivalBiasedEstimators

UnbiasedEstimators

TargetLocation

LOW SNR

HIGH SNR

CALIBRATIONERRORS

MULTIPATHERRORS

Courtesy of MIT Lincoln Laboratory, Used with Permission

Page 12: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 12Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Limitation on Angle Estimation

Sources of Error

Signal to NoiseRatio

Monopulse

vs.Conical Scan

Servo Noise

AmplitudeFluctuationsR

MS

Ang

ular

Tra

ckin

g Er

ror

(RM

S)

Relative Radar Range

Total ErrorMonopulse Receiver Noise

(monopulse)

AmplitudeFluctuationsServo

Noise

Receiver Noise(conical scan)

Total ErrorConical

Scan

0.3

0.001

0.03

0.01

0.03

0.1

1 3 10 30 100

300 1000

Glint

N/S7. DB3θ

≈δθAdapted from Skolnik

Reference 1

Page 13: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 13Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Angular Accuracy with ASR Radar

• Angular beam splitting with Track While Scan Radar

– ~10 : 1 splitting measuredToradar

1/16 nmi

Target DetectionsFrom 4 CPI’s

1 Beamw

idth

Accuracy of 100 tracks

Azimuth Error (deg)

Sample Tracker Output

Num

ber o

f Tra

cks

0.0 0.2 0.4

Average Error 0.14°10 nmi

20 nmi

Track Used

Page 14: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 14Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Doppler Estimation

Doppler Frequency-50

-40

-30

-20

-10

0

-50

-40

-30

-20

-10

0

Doppler Frequency

Filte

r Res

pons

e [d

B]

fd

=2vr

λDoppler Frequency

Radial Velocity

Wavelength

• Filter-bank spans entire radar system Doppler frequency band

• Detections are isolated within a single Doppler filter

• Use two closely spaced frequency filters offset from the center frequency of the Doppler filter containing the detection

• Doppler estimation procedure is similar to angle estimation with angle and frequency interchanged

Detect Estimate

Courtesy of MIT Lincoln Laboratory, Used with Permission

Page 15: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 15Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Radar Cross Section Measurement Accuracy

• Measurement of the radar cross section (RCS) of a target in a test environment was discussed in detail in the lecture on Radar Cross Section (Lecture10)

• When one wants to measure the RCS of a target, the radar needs to be calibrated

– How do A/D counts relate to RCS values?

• This calibration process is usually accomplished by launching a balloon with a sphere (RCS independent of orientation) attached by a lengthy tether and measuring the amplitude in A/D counts and the range of the balloon

Page 16: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 16Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Radar Cross Section Measurement Accuracy

• The calibration process (continued)– Measurement is performed in the far field– A radiosonde

is usually balloon launched separately to measure the pressure, temperature, etc. (index of refraction of the atmosphere vs. height) so that propagation effects, such as, ducting, multipath, etc., may be taken into account properly and accurately

• High power radars could use spherical satellites to perform the same function as the balloon borne sphere

• RCS accuracy is usually limited by the ability to measure atmospheric (properties) losses as a function of the sphere’s range and elevation angle

Page 17: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 17Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Introduction

• Observable Estimation

• Single Target Tracking– Angle tracking techniques

Amplitude monopulse Phase comparison monopulse Sequential lobing Conical scanning

– Range tracking– Servo systems

• Multiple Target Tracking

• Summary

Courtesy of MIT Lincoln Laboratory.Used with permission

TRADEX

FPS-16

Courtesy of US Air Force

Page 18: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 18Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Single Target Tracking -

General

• Usually after a target is initially detected, the radar is asked

to:

– Continue to detect the target as it moves through the radar’s coverage

– Associate the different detections with the specific target “All these detections are from the same target” Use range, angle, Doppler measurements

– Use these detections to develop a continually more accurate estimate of the targets observables

Position, velocity, etc– Predict where the target will be is the future

• These are the functions of a “Tracker”

Page 19: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 19Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Basics of Continuous Angle Tracking

• For radars with a dish antenna, the purpose of the tracking function is to keep the antenna beam axis aligned with a selected target.

• Illustration at left – Two overlapping beams -

target is to the right of antenna boresight

• Illustration at right – Two overlapping beams -

target is to the right of antenna boresight

. Target is located at boresight

position.

Beam ABeam A Beam B Beam B

Angle

AaBa

AaBa

0θ T0 θ=θTθ Angle

Boresight Boresight Target DirectionTarget Direction

BA aa <

BA aa =

Adapted from SkolnikReference 1

Page 20: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 20Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Introduction

• Observable Estimation

• Single Target Tracking– Angle tracking techniques

Amplitude monopulse Phase comparison monopulse Sequential lobing Conical scanning

– Range tracking– Servo systems

• Multiple Target Tracking

• Summary

Page 21: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 21Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Amplitude Comparison Monopulse

• Amplitude Comparison Monopulse

Method: – Use pairs of slightly offset beams to determine the location of

the target relative to the antenna boresight

(error signal)– Use this information to re-steer the antenna (or beam) to keep

the target very close to the antenna boresight

• For dish antennas, two offset receive beams are generated by using two feeds slightly displaced in opposite directions from the focus of a parabolic reflector

• The sum and difference of the two squinted beams are used to generate the error signal

• Each channel (sum, azimuth difference, and elevation difference) requires a separate receiver

Page 22: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 22Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Monopulse

Antenna Patterns and Error Signals

θ θθ

Overlapping Antenna Patterns

DifferencePattern

SumPattern

Error Signal vs. Angle

Angle

Erro

r Sig

nal

)(cosSignalError ΔΣ φ−φΣΔ

=

Δ Σ

Adapted from SkolnikReference 1

Page 23: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 23Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Four Horn Monopulse

Block Diagram

A

DC

B

Antenna Feed

Sum

Hybrid Junction

A

D

C

B

ReceiverAzimuth Diffe

rence

T/R Device

Transmitter

Elevation Difference

SumΣ

Σ

Σ

Δ

Δ Σ Δ

Front

ElevationDifference

Sum

AzimuthDifference

Adapted from SkolnikReference 1

Page 24: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 24Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Two Dimensional-

Four Horn Monopulse

B DA C

B DA C

B+A –

(C+D)

B DA C

A+B+C+D

Sum beamΣ

Elevation difference beamΔ EL

Azimuth difference beamΔ AZ

B DA C

B+D –

(A+C)

Radar

AntennaFeed

AntennaDish

Σ

= Sum channel signal Δ

= Difference channel signal φ

= phase difference between Σ

and

Δ• Error signal e =

Note that the lower feeds generate the

upper beams

| Δ

| cos

φ

| Σ

|

A

C

B

D

Page 25: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 25Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Monopulse

Error Pattern

Off-Axis Angle0

0

1.0

1.0

-1.0-1.0

0.5

0.5

- 0.5

-0.5

Volta

ge P

atte

rn

Sum =

Difference = Δ

Σ

)(cos ΔΣ φ−φΣΔ

Page 26: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 26Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Functional Diagram of Monopulse

Radar

MicrowaveCombining

Network

Duplexer

Transmitter

AntennaDrive

Servos

CoordinateTransformation

AzimuthDifferenceReceiver

SumReceiver

ElevationDifferenceReceiver

ElevationMonopulseProcessor

AzimuthMonopulseProcessor

From Antenna

Feed Horns

D

C

B

AZΔ

)(cos)el&az(Error ΔΣ φ−φΣΔ

=

AntennaMechanical

Drive

For Detection and Range Measurement

ELΔ

Azimuth

Elevation

Adapted from ShermanReference 5

Page 27: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 27Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Microwave Combining Network (Four Horn Monopulse

Feed)

HybridJunction

1

HybridJunction

2

HybridJunction

4

HybridJunction

φ

B

A C

D

C

A

D

B

Arrangement Of Horns

90°

-90°

1

11

1

2

3

4

2

2

2

3

33

44

4

jB

-jC

2/)BA( −

2/)BA(j +

2/)DC(j −−

2/)DC( +

[ ])DB()CA(2/1 +−+[ ])DC()BA(2/1 −−−

Diagonal Difference(terminated, not used)

Elevation Difference

Azimuth Difference

Sum

[ ]DCBA2/1 +++[ ])BA()DC(2/1 +−+

Adapted from ShermanReference 5

Page 28: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 28Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Three Types of Hybrid Junctions

3 dBDirectional

CouplerPort D

Port C

Port B

Port A

Primary Waveguide

Secondary Waveguide

Waves Add

Waves Cancel

4/gλ

Magic -

T

4/3 gλ

4gλ

4gλ

4gλ

PortD

PortA

PortC

PortB

ab

HybridRing Junctionor “Rat-Race”

Courtesy of Courtesy of CobhamCobham

Sensor Systems.Sensor Systems.Used with permission.Used with permission.

Page 29: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 29Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Hybrid Junctions for Monopulse

Radars

• A signal input at port A divides equally in amplitude and phase between ports C and D, but does not appear at port B

– Port B cannot support that propagation mode• A signal input to port B divides equally but with opposite

phases between ports C and D– Does not appear at port A

• If inputs are applied simultaneously to ports A and B, their sum will appear at port C and the difference at the D

Photograph of C -

Band Magic -

T (Ridged waveguide)

A

D

C

Σ

Magic -

T

Courtesy of Courtesy of CobhamCobham

Sensor Systems.Sensor Systems.Used with permission.Used with permission.

Page 30: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 30Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Hybrid Junctions Used in Monopulse Radar

HybridRing Junctionor “Rat-Race”

• A signal input at port A reaches output port D

by two separate paths, which have the same path length ( 3λ/4)

– The two paths reinforce at port D

• An input signal at port B reaches output port D through paths differing by one wavelength ( 5λ/4 and λ/4)

– The two paths reinforce at port D

• Paths from A to D and B to D differ by 1/2 wavelength– Signal at port A -

signal at port B will appear at port D

• If signals of the same phase are entered at A and , the outputs C and D are the sum (Σ)

and difference (Δ).

4/3 gλ

4gλ

4gλ

4gλ

PortD

PortA

PortC

PortB

ab

Page 31: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 31Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

• This coupler is made by aligning two rectangular waveguides with their walls touching

• Microwave energy from one of the waveguides is coupled to the other by means of appropriate holes or slots between the two waveguides

– Because of the quarter wave spacing between the two slots, this configuration is frequency sensitive

– A 90 degree phase shift has to be inserted in either port A or B in order to provide the sum and difference at ports C and D

Hybrid Junctions Used in Monopulse Radar

3 dBDirectional

CouplerPort D

Port C

Port B

Port A

Primary Waveguide

Secondary Waveguide

Waves Add

Waves Cancel

4/gλ

Page 32: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 32Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Monopulse

Processor

)(cos ΔΣ φ−φΣΔ

Computer

2QQIIRe

Σ

ΣΔ+ΣΔ=⎟

⎠⎞

⎜⎝⎛

ΣΔ

2Q

2I Σ+Σ=Σ

2Q

2I Δ+Δ=Δ

2QIIQIm

Σ

ΣΔ−ΣΔ=⎟

⎠⎞

⎜⎝⎛

ΣΔ

ΣA/D

A/D

A/D

A/D

90°PhaseShift

ReferenceOscillator

Δ

Adapted from ShermanReference 5

Page 33: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 33Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

S Band Monopulse Feed with X Band Center Feed

From S and X Band Transmitters

Four Horn Monopulse

S band Feed

(X band Feed at center)

Output

Front Viewof

Output

Side View

Courtesy of MIT Lincoln Laboratory, Used with Permission

Page 34: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 34Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Twelve Horn Monopulse

Feed

Photograph of 12 Horn Monopulse

FeedCourtesy of MIT Lincoln Laboratory, Used with Permission

Page 35: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 35Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Glint (Angle Noise)

• Glint, or angle noise, is a fluctuation or error in the angle measurement caused by the radar’s energy reflecting from a complex target with multiple scattering centers

– It causes a distortion of the echo wavefront– The result of having a non-uniform wavefront

from a complex target, when the radar was designed to process a planar echo wavefront, is an error in the measurement of the angle of arrival

– The measured angle of arrival can often cause the boresight of the tracking antenna to point outside the angular extent of the target, which can cause the radar to break track

• Glint can be a major source of error when making angle measurements

– Short range where angular extent of target is large

• Problem for all tracking radars with closed loop angle tracking– Monopulse, conical scan, sequential lobing

Page 36: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 36Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Low Angle Tracking

• The target is illuminated via two paths (direct and reflection)

• Error in measured elevation angle occurs because of glint– At low grazing angles, reflection coefficient close to -1

• Tracking of targets at low elevation angles can produce significant errors in the elevation angle and can cause loss of track

• The surface reflected signal is sometimes called the multi-path

signal

and the glint error due to this geometry a multi-path error

Radar

Direct path

Multipath Ray

Target

Page 37: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 37Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Measured Low Angle Tracking Error

Track Time (Minutes)

Aircraft Tracked by S-Band Phased Array radar (FPS-16 provided “Truth)

Elev

atio

n Er

ror (

Deg

rees

)

0

2

1

-1

-2

Azimuth (deg) 32.5 30.7 30.4

30.3 30.3

30.2 Elevation (deg) 3.0 2.4 2.0 1.7 1.4 1.3Range (km) 19.9 24.3 28.9 33.5 38.1 42.7

Adapted from SkolnikReference 1

Page 38: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 38Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Introduction

• Observable Estimation

• Single Target Tracking– Angle tracking techniques

Amplitude monopulse Phase comparison monopulse Sequential lobing Conical scanning

– Range tracking– Servo systems

• Multiple Target Tracking

• Summary

Page 39: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 39Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Phase Comparison Monopulse

Two antennas radiating identical beams in the same direction

Geometry of the signals at the two antennas when received from a

target at an angle θ

The phase difference of the signals received from the two antennas is :

θλ

π=φΔ sind2

d

d

d

θ

Also known as “interferometer radar”

Page 40: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 40Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

• Amplitude Comparison Monopulse– Common phase center, beams squinted away from axis– Target produces signal with same phase but different amplitudes

(On axis amplitudes equal)

• Phase Comparison Monopulse– Beams parallel and identical– Lateral displacement of phase center much greater than – Target produces signal with same amplitude but different phase

(On axis phases equal)– Grating lobes and high sidelobes a problem

Comparison of Monopulse

Antenna Beams

Axis

Axis

λ

Page 41: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 41Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Angle Estimation with Antenna Arrays

Wavefr

onts

Antenna Array

ReceivedPhasefront

θ

Direction ofPropagation

• Received signal varies in phase across array

• Phase rate of change related to direction of propagation

• Estimating phase rate of change indicates direction of propagation

– Angle-Of-Arrival (AOA)– Direction-Of Arrival (DOA)

Courtesy of MIT Lincoln Laboratory, Used with Permission

Page 42: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 42Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Introduction

• Observable Estimation

• Single Target Tracking– Angle tracking techniques

Amplitude monopulse Phase comparison monopulse Sequential lobing Conical scanning

– Range tracking– Servo systems

• Multiple Target Tracking

• Summary

Page 43: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 43Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Sequential Lobing

Angle Measurement

• The Sequential Lobing

angle tracking technique time shares a single antenna beam to obtain the angle measurement in a sequential manner

V1

= voltage from upper

beam (lobe)V2

= voltage from lower

beam (lobe)

If V1

-V2

> 0 Antenna pointing to highIf V1

-V2

< 0 Antenna pointing to lowIf V1

-V2

= 0 Antenna pointed at target

Beam 1

Beam 2

Antenna pointed at target

Adapted from ShermanReference 5

Page 44: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 44Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Sequential Lobing

Angle Measurement

• The differences in echo signals between the two switched beams is a measure of the angular displacement of the target from the switching axis

– The beam with the larger signal is closer to the target– A control loop is used to redirect the beam track locations

to equalize the beam response– When the echo signals in the two beam positions are equal,

the target is on axis

Antenna Patterns

Position 1

Time

Position 2Center ofBeam 2

Center ofBeam 1

SwitchingAxis

Target Position

Page 45: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 45Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Introduction

• Observable Estimation

• Single Target Tracking– Angle tracking techniques

Amplitude monopulse Phase comparison monopulse Sequential lobing Conical scanning

– Range tracking– Servo systems

• Multiple Target Tracking

• Summary

Page 46: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 46Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Conical Scan Tracking Concept

• The angle between the axis of rotation and the axis of the antenna beam is the squint angle

• Because of the rotation of the squinted beam and the targets offset from the rotation axis, the amplitude of the echo signal will be

modulated at a frequency equal to the beam rotation

Typical Conical Scan Pattern

(8 Beam Positions per Scan)

Scan Pattern

BeamRotation

Target Axis

RotationAxis

Beam Axis

Antenna Pattern

Squint Angle

Page 47: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 47Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Conical Scan Pulse Trains

• The amplitude of the modulation

is proportional to the angular distance between the target direction and the rotation axis

– Beam displacement

• The phase of the modulation

relative to the beam scanning position contains the direction information

– Angle error

Received Pulse Trainwith

Conical-Scan Modulation

Rec

eive

d Pu

lse

Am

plitu

de

Time

Envelope of Received Pulses

Received Pulses

Page 48: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 48Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Block Diagram of Conical Scan Radar

RangeGateDuplexer Receiver

Transmitter

ElevationServo

Amplifier

ElevationServoMotor

AzimuthServo

Amplifier

ElevationAngle

Error Detector

AzimithAngle

Error Detector

AzimuthServoMotor

ReferenceGenerator

To Rotary JointOn Antenna

In Pedestal

tf2sin sπtf2cos sπ Error

SignalScanMotor

Page 49: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 49Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Beam-Splitting

At typical detection threshold levels (~13 dB) the resolution cell can be approximately split by a factor of ten; i.e. 10:1 antenna beam splitting

-10 0 10 20 300

0.2

0.4

0.6

0.8

1

Conical Scan , 1 pulseMonopulse, 1 pulseConical Scan, 4 pulsesMonopulse, 4 pulses

Signal-to-noise ratio [dB]

Erro

r/Bea

mw

idth

SNR = 13 dB

10:1 Beam splitting

Legend

Courtesy of MIT Lincoln Laboratory, Used with Permission

Page 50: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 50Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Angle Estimation with Scanning Radar (Multiple Pulse Angle Estimation)

Scan Angle

Target

Pow

er

AntennaPattern

(e.g. azimuth)

Scan Angle

Target

Pow

er

Antenna Pattern Antenna Pattern

Scan Angle

DeclaredTarget

Pow

er

Scanned Output Power

DetectionThreshold

DetectionThreshold

Courtesy US Dept of Commerce

Airport Surveillance Radar Courtesy of MIT Lincoln Laboratory, Used with Permission

Page 51: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 51Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Angle Estimation with Scanning Radar (Multiple Pulse Angle Estimation)

Scan Angle

Target

Pow

er AntennaPattern

Scan Angle

Target

Pow

er

Antenna Pattern Antenna Pattern

Scan Angle

DeclaredTarget

Pow

er

Scanned Output Power

DetectionThreshold

• For a “track-while scan”

radar, the target angle is measured by:

– Fitting the return angle data from different angles to the known antenna pattern, or

– Using the highest amplitude target return as the measured target angle location

DetectionThreshold

Courtesy of MIT Lincoln Laboratory, Used with Permission

Page 52: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 52Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Angle Estimation with Array Antennas

• Phased array radars are well suited for monopulse

tracking

– Amplitude Comparison Monopulse Radiating elements can be combined in 3 ways Sum, azimuth difference, and elevation difference

patterns– Phase Comparison Monopulse

Use top and bottom half of array for elevation Use right and left half of array for azimuth

• Lens arrays (e.g. MOTR) would use amplitude monopulse

– Four-port feed horn would be same as for dish reflector

MOTR

BMEWS

Courtesy of MIT Lincoln Laboratory, Used with Permission

Page 53: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 53Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Introduction

• Observable Estimation

• Single Target Tracking– Angle tracking techniques

Amplitude monopulse Phase comparison monopulse Sequential lobing Conical scanning

– Range tracking– Servo systems

• Multiple Target Tracking

• Summary

Page 54: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 54Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Split Gate Range Tracking

EarlyGate

Signal

Difference Signal betweenEarly and Late Range Gates

Late Gate

Early Gate

Echo Pulse

LateGate

Signal

• Two gates are generated; one is an early gate, the other is a late gate.

• In this example, the portion of the signal in the early gate is less than that of the late gate.

• The signals in the two gates are integrated and subtracted to produce the difference error signal.

• The sign of the difference indicates the direction the two gates have to be moved in order to have the pair straddle the echo pulse

• The amplitude of the difference determines how far the pair of gates are from the centroid.

Page 55: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 55Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Multi Target Tracking in Range, Angle, and Doppler

• Single target angle trackers (Dish radars) can be configured to track other targets in the radar beam

– Useful for radars with moderate to wide beamwidths– Favorable geometry helpful

• TRADEX and several other radars have multi-target trackers– Primary target is kept on boresight with standard monopulse

angle tracker

– Up to 10 other targets, in radar beamwidth, are tracked in range

• Some other radars track in Doppler and in range along with tracking in angle

Page 56: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 56Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Introduction

• Observable Estimation

• Single Target Tracking– Angle tracking techniques

Amplitude monopulse Phase comparison monopulse Sequential lobing Conical scanning

– Range tracking– Servo systems

• Multiple Target Tracking

• Summary

Page 57: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 57Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Antenna Servo Systems

• The automatic tracking of a target in angle employs a servo system that utilizes the angle error signals to maintain the pointing of the antenna in the direction of the target

• The servo system introduces lag in the tracking that results in error

– The lag error depends on the target trajectory Straight line, gradual turn, rapid maneuver

• Type II Servo System often used in tracking radar– No steady state error when target velocity constant– Known as “zero velocity error system”

• The effect of velocity and acceleration on a servo system can be described by the frequency response of the tracking loop

Page 58: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 58Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Servo Bandwidth

• The tracking bandwidth of a servo system is that of a low pass filter

• The bandwidth should be narrow to: Minimize the effects of noise,or jitter, Reject unwanted signal components

Conical scan frequency or jet engine modulation Provide a smoothed output of the desired measured parameters

• The bandwidth should be wide to: Follow rapid changes in the target trajectory or in the vehicle

carrying the radar• The choice of servo bandwidth is usually a compromise

– Sensitivity vs. tracking of maneuvering target• Tracking bandwidth may be made variable or adaptive

Far range -

angle rates low, low S/N (narrow bandwidth) Short range -

angle rates large (wide bandwidth) Shorter ranges -

Glint can be an issue (narrow bandwidth)

Page 59: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 59Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Bounds on Servo Resonant Frequency

• The tracking bandwidth of a mechanical tracker should be small compared to the lowest natural frequency of the antenna and its structural foundation

– This prevents the antenna from oscillating at its resonant frequency

Serv

o R

eson

ant F

requ

ency

(Hz)

Antenna Diameter (ft)1 3 10 30 100 300

10

1

30

3

100

APG-66

SCR-584

FPS-16

FPQ-10

FPQ-6FPS-49

Goldstone

Haystack

Page 60: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 60Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Summary –

Part 1

• A detailed description of the different radar observables and their estimation was presented

– Observables -

Range, angle, and Doppler velocity– Radar cross section issues were presented in a previous lecture– Resolution, precision and accuracy were discussed

• The different techniques for single target angle tracking were discussed in detail, as well as their implementation

– Amplitude monopulse– Phase comparison monopulse– Sequential lobing– Conical scanning

• Range tracking techniques, as well as other related subjects were presented

Page 61: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 61Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Homework Problems

• From Skolnik, Reference 1

– Problems 4.1, 4.3, 4.5, 4.9, 4.11, and 4.15

Page 62: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 62Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

References

1.

Skolnik, M., Introduction to Radar Systems, McGraw-Hill, New York, 3rd

Ed., 20012. Barton, D. K., Modern Radar System Analysis, Norwood,

Mass., Artech

House, 19883. Skolnik, M., Editor in Chief, Radar Handbook, New York,

McGraw-Hill, 3rd

Ed., 20084. Skolnik, M., Editor in Chief, Radar Handbook, New York,

McGraw-Hill, 2nd

Ed., 19905. Sherman, S. M., Monopulse Principles and Techniques,

Norwood, Mass., Artech

House, 19846. Barton, D. K. and Ward, H. R, Handbook of Radar

Measurements, Norwood, Mass., Artech

House, 1984

Page 63: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 63Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Acknowledgements

• Dr Katherine A. Rink• Dr Eli Brookner, Raytheon Co.

Page 64: Radar Systems Engineering Lecture 15 Parameter Estimation ...aess.cs.unh.edu/Radar 2010 PDFs/Radar 2009 A_15 Parameter... · Radar Systems Engineering Lecture 15 Parameter Estimation

Radar Systems Course 64Parameter Estimation 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Part 2

• Introduction

• Observable Estimation

• Single Target Tracking

• Multiple Target Tracking

• Summary