R-3Oxygen Therapy and Oximetry in the Delivery Room

download R-3Oxygen Therapy and Oximetry in the Delivery Room

of 6

Transcript of R-3Oxygen Therapy and Oximetry in the Delivery Room

  • 7/25/2019 R-3Oxygen Therapy and Oximetry in the Delivery Room

    1/6

    Review

    Oxygen therapy and oximetry in the delivery room

    Yacov Rabi a,b,*, Jennifer A. Dawson c,d,e

    a Division of Neonatology, Department of Paediatrics, University of Calgary, Calgary, Alberta, CanadabAlberta Childrens Hospital Research Institute, Calgary, Alberta, Canadac Newborn Research Centre, The Royal Womens Hospital Melbourne, Melbourne, Australiad The Murdoch Childrens Research Institute, Melbourne, Australiae University of Melbourne, Melbourne, Australia

    Keywords:

    Delivery room

    Heart rate

    Oxygen saturation

    Pulse oximetry

    s u m m a r y

    Pulse oximetry is increasingly being used in the delivery room. Expert recommendations state that

    oxygen therapy during newborn resuscitation should be guided by pulse oximetry. Obtaining accurate

    and stable oxygen saturation and heart rate information from a pulse oximeter in the delivery room can

    be challenging. Understanding the properties of this device is important in overcoming these challenges.

    This article describes several aspects of pulse oximetry use in the delivery room ranging from technical

    issues with the device itself to clinical applications of the technology.

    Crown Copyright 2013 Published by Elsevier Ltd. All rights reserved.

    1. Introduction

    The practice of transmitting light through tissue to measure a

    patients oxygenation is nearly 80 years old. Early iterations of thistechnology could not differentiate oxygen saturations of arterial

    blood from venous blood and tissue. In the early 1970s a Japanese

    biomedical engineer, Takuo Aoyagi, discovered that the pulsatile

    changes in light transmission through tissue could be used to

    measure oxygen saturations[1] and pulse oximetry was born. In

    1978, only 6 years after its discovery, the Minolta Company was the

    rst to broadly market this new piece of technology. It was a major

    breakthrough and quickly adopted into clinical settings.

    Pulse oximetry use in the delivery room has been investigated

    for more than 30 years. The earliest studies were published in 1986.

    Sendak et al. [2] reported on pulse oximetry measurements in a

    case series of four newborns at birth. That year, Harris et al. [3]

    published a study describing continuous oxygen saturations for

    the rst seven minutes after birth in 76 term newborns. A similarstudy published the following year concluded that pulse oximetry

    use in the delivery room was very useful in objectively judging the

    adequacy of resuscitative efforts[4].

    More recently, we have seen renewed interest in this technology

    for use in the delivery room. This was largely prompted by the

    realization of the dangers of hyperoxia during resuscitation and the

    subsequent International Liaison Committee on Resuscitations

    (ILCOR) recommendation that oxygen concentration should be

    titrated during resuscitation [5]. Clinicians now have to consider

    what methods are best for guiding oxygen use in the delivery room.In this article, we review how pulse oximetry works as a prelude to

    understanding its strengths and limitations in the delivery room

    setting.

    2. How does pulse oximetry work?

    Oxygen saturation is the percentage of hemoglobin that is bound

    with oxygen, also called oxyhemoglobin. Oxygenated and deoxy-

    genated hemoglobin absorb light differently, with oxygenated he-

    moglobin maximally absorbing light in the infrared spectrum at

    660 nm compared to deoxyhemoglobin which maximally absorbs

    light in the red spectrum at 910e940 nm. Pulse oximeters calculate

    the ratio of tissue absorptions of red and infrared light to derive the

    oxygen saturation of hemoglobin (SpO2). Two wavelengths of light,660 nm and 910e940 nm, are directed intoa tissuebed and a sensor

    placedon theopposite side of the light source measures the amount

    of light absorbed at both wavelengths. The absorption ratio is then

    compared to reference values obtained from healthy volunteers

    who were made hypoxic with saturations as low as 60e70% under

    controlled conditions. This is why manufacturers only quote the

    accuracy of their devices for oxygen saturations above 60e70%.

    Pulse oximeters also display pulse rate. In a well-perfused per-

    son, each heartbeat results in a pulsatile increase in the blood

    volume of tissue beds. With larger tissue blood volumes, more light

    from the pulse oximeter probe is absorbed causing less light to

    * Corresponding author. Address: Foothills Medical Center, 1403 29 Street NW,

    Room C211, Calgary, Alberta, Canada T2N 2T9. Tel.: 1 403 944 1087; fax: 1 403

    944 4892.

    E-mail address:[email protected](Y. Rabi).

    Contents lists available at ScienceDirect

    Seminars in Fetal & Neonatal Medicine

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . co m / l o c a t e / s i n y

    1744-165X/$e see front matter Crown Copyright 2013 Published by Elsevier Ltd. All rights reserved.

    http://dx.doi.org/10.1016/j.siny.2013.08.007

    Seminars in Fetal & Neonatal Medicine 18 (2013) 330e335

    mailto:[email protected]://www.sciencedirect.com/science/journal/1744165Xhttp://www.elsevier.com/locate/sinyhttp://dx.doi.org/10.1016/j.siny.2013.08.007http://dx.doi.org/10.1016/j.siny.2013.08.007http://dx.doi.org/10.1016/j.siny.2013.08.007http://dx.doi.org/10.1016/j.siny.2013.08.007http://dx.doi.org/10.1016/j.siny.2013.08.007http://dx.doi.org/10.1016/j.siny.2013.08.007http://www.elsevier.com/locate/sinyhttp://www.sciencedirect.com/science/journal/1744165Xhttp://crossmark.crossref.org/dialog/?doi=10.1016/j.siny.2013.08.007&domain=pdfmailto:[email protected]
  • 7/25/2019 R-3Oxygen Therapy and Oximetry in the Delivery Room

    2/6

    reach the sensor. The pulse oximeter measures heart rate by

    detecting this pulsatile change in light absorption.

    The newest generation of pulse oximeters uses multiple wave-

    lengths of light to measure concentrations of other types of he-

    moglobin, including methemoglobin and carboxyhemoglobin.

    Whereas these are of limited clinical signicance for the newborn

    at birth, fetal haemoglobin may be important. Fetal hemoglobin

    binds oxygen more tightly than adult hemoglobin and constitutes

    close to 100% of the hemoglobin in very lowbirth weight babies [6].

    Currently, pulse oximeters cannot detect fetal hemoglobin. The

    practical implications are discussed later in this article.

    Pulse oximeters are calibrated by their manufacturers and

    cannot be adjusted by clinicians. Internal calibration occurs auto-

    matically within the oximeter and, unlike other devices, does not

    require an external reference standard.

    3. Evidence for best practices in using pulse oximetry in the

    delivery room

    The transitional physiology of the newborn at birth differs

    greatly from that encountered in the neonatal intensive care unit

    and provides unique challenges to using pulse oximetry in the de-

    livery room. Poor perfusion, motion and high ambient light can allbe present during resuscitation. Choosing the appropriate settings

    can aid in rapidly obtaining accurate and stable measurements in

    this environment. In addition to choosing the optimal settings on

    the pulse oximeter, the user should consider how and where to

    apply the sensor. Below, we provide evidence-based recommen-

    dations for proper use in the delivery room.

    3.1. .Pulse oximeter

    In an effort to provide stable readings, pulse oximeters display a

    moving average of their measurements over a user-specied time-

    period. Whereas the options vary by manufacturer, the shortest

    available selectable averaging time is typically 2 s. Some pulse

    oximeters do not allow the user to specify the averaging time; thisis set by the device and may vary according to signal quality [7].

    Leone and Finer[8] recommended that oximeters used during

    neonatal resuscitation should be set to the minimal averaging time

    for the SpO2 valuesto allow rapid detection of changes in oxygen

    saturation. The detection of brief and severe periods of desaturation

    is improved with a shorter averaging time (2 s) compared to longer

    averaging times (16 s)[9]. At present, there are no outcome studies

    examining the effects of averaging time. However, given the current

    state of knowledge, we recommend selecting the shortest averaging

    time available when the pulse oximeter is used in thedelivery room.

    The sensitivity setting on a pulse oximeter controls the devices

    ability to detect pulsations. A higher sensitivity will increase

    detection of pulsations and therefore is more likely to provide SpO2

    measurements during periods of low perfusion. Studies of pulseoximetry in the delivery room routinely used the highest sensitivity

    setting available [9e13]. Again,in the absence of outcome studies, it

    is reasonable to use a high sensitivity setting in situations where

    the patient is poorly perfused.

    3.2. Application of pulse oximeter probe

    Care must be taken not to apply the probe too tightly. Bucher

    et al. [14]showed that SpO2 measurements became increasingly

    inaccurate with increasing pressure from the pulse oximeter probe

    on the underlying tissue. The authors concluded that this was likely

    due to venous congestion.

    Studies of time to acquisition of a reliable signal with different

    pulse oximeters have con

    rmed manufacturer recommendations

    for the optimal technique for probe application[15e17]. When an

    oximeter is turned on with the probe already connected, it will

    immediately begin taking measurements. If the probeis notapplied

    to the baby, the oximeter measures environmental signals such as

    ambient light or infrared light from a radiant warmer. This can

    cause a delay in obtaining accurate measurements once the probe is

    placed on the patient. To avoid this, the pulse oximeter should be

    turned on rst with the oximeter cable connected. Next, the probe

    is applied to the baby. Once the probe is well-positioned on the

    baby, it is then connected to the oximeter cable (Fig. 1).

    Is the location of probe application clinically important? The

    majority of studies using pulse oximetry in the delivery room have

    placed the probe on the right wrist as this preductal location re-

    ects the saturation of blood that is perfusing the brain. Further-

    more, nomograms of oxygen saturation at birth were created using

    preductal oxygen saturations. If we are to use such nomograms to

    guide the titration of oxygen, as recommended by ILCOR, it is

    important that we also use a preductal probe location. There is a

    large body of evidence documenting that pre- and postductal ox-

    ygen saturations are signicantly different for several minutes after

    birth due to right-to-left shunting of blood.

    Mariani et al. [12] reported that postductal SpO2 was 5e8%

    lower than preductal SpO2 but that this difference decreased after5 min. However, others have shown that this difference persists for

    up to 20 min and ranges from w14% at 3 min to 5% at 17 min[18e

    20]. Furthermore, pulse wave signals aredetectable sooner with the

    probe applied to the hand versus the foot: 1.24 min from the hand

    versus 3.06 min from the foot [18]. For these reasons, we recom-

    mend placing the probe on the right wrist.

    4. Interpreting the quality of signal

    Delivery room resuscitation provides one of the most technically

    challenging environments for obtaining an accurate and stable

    signal from the pulse oximeter. Each model has its own algorithm

    for identifying and displaying signal quality. The user should befamiliar with the indicators of signal quality fortheir model of pulse

    oximeter to determine their condence in the displayed values.

    For example, the user can be condent of a good signal when

    using the Nellcor (OxiMan N600x; Tyco Healthcare, Pleasanton, CA,

    USA) pulse oximeter if they observe a regular plethysmograph with

    pulse search and interference indicators not lit continuously.

    Similarly, a good signal on the Radical pulse oximeter (Masimo,

    Figure 1. Nellcor OxiMax N-600x pulse oximeter (A) with a patient cable (B) to which

    the sensor (C) is connected.

    Y. Rabi, J.A. Dawson / Seminars in Fetal & Neonatal Medicine 18 (2013) 330 e335 331

  • 7/25/2019 R-3Oxygen Therapy and Oximetry in the Delivery Room

    3/6

    Irvine, CA, USA) is indicated by a regular plethysmograph, a high

    signal IQ which represents the condence of the pulse oximeter in

    the oxygen saturation and heart rate displayed with each arterial

    pulse, and a good perfusion index reecting the relationship of

    pulsatile to non-pulsatile blood ow at the sensor site. Other

    manufacturers of pulse oximeters have different methods for

    identifying a good signal.

    It is common practice to manually calculate the heart rate and

    compare it to the heart rate displayed on the pulse oximeter. If the

    heart rate values are similar, the clinician is usually condent in the

    quality of the signal. This seems to be a reasonable practice but the

    reader should be aware that this approach has not been validated.

    5. Challenges in using pulse oximetry in the delivery room

    Pulse oximeters have been tested for validity and reliability by a

    number of researchers who compared SpO2measurements against

    arterial blood under a variety of conditions [21,22]. These studies

    were generally conducted with rst or second generation oximeters.

    In a study of preterm newborns, SpO2measurements were accurate

    at arterial oxygen saturations of >93% [23]. However, at arterial

    saturations of 80% fewer than half of SpO2 measurements were

    within 3% of the arterial oxygen saturation. These lower oxygensaturation values are normal in therst few minutes after birth.

    Other major challenges to obtaining accurate pulse oximetry

    measurements in the delivery room are motion, low perfusion and

    ambient light. Pulse oximeters identify arterial blood by detecting

    pulsations. Motion artefact can occur with patient movement

    resulting in irregular venous blood ow that can be interpreted as

    pulsatile ow. This can confuse the pulse oximeter and lead to

    inaccurate measurements. Different manufacturers have developed

    various strategies for dealing with this problem and have met with

    some success. In a review article examining the performance of

    new-generation motion-tolerant pulse oximeters, Giulinao and

    Higgins[24]concluded that newer pulse oximeters have superior

    performance.

    Newborns often have poorly perfused extremities immediatelyafter birth. As the pulse oximeter is dependent upon identifying a

    pulse to perform its calculations, this can present a challenge. If the

    option is available, we recommend selecting a high sensitivity

    setting for delivery room applications.

    Fluorescent lights, bright lights common to surgical suites and

    even light produced by radiant warmers can adversely affect

    measurements [25e27]. If ambient light is excessive, the pulse

    oximeter probe should be shielded with an opaque wrap [28,29].

    At 26 weeks, the fetus has nearly 100% fetal hemoglobin [6].

    Even at term, fetal hemoglobin represents about 70% of total he-

    moglobin. At present, pulseoximeters do not measure or correct for

    fetal hemoglobin which differs slightly in its light absorption

    characteristics from adult hemoglobin[30,31]. Some investigators

    have demonstrated that by not correcting for fetal hemoglobinconcentration, pulse oximetry overestimates the true oxygen

    saturation of arterial blood by 3e6% [32e34]. There is another,

    equally compelling, body of evidence from different investigators

    showing that fetal hemoglobin has a trivial effect on the accuracy of

    pulse oximetry SpO2 measurements [22,35e37]. Whereas studies

    appear to agree that fetal hemoglobin does affect the accuracy of

    pulse oximetry SpO2 measurements, there is disagreement over

    whether the effect is clinically signicant.

    6. Does pulse oximetry provide useful information in the

    delivery room?

    For pulse oximetry to be useful in the delivery room, it must

    provide reliable information soon after delivery. Pulse oximeter

    performance for SpO2and HR measurements in the delivery room

    has been evaluated in several studies.

    6.1. Oxygen saturation

    Before the introduction of pulse oximeters intothe delivery room,

    clinicians relied upon assessment of colour to determine the babys

    oxygenation status. We now understand that clinical assessment of

    colour is an inaccurate and imprecise sign of oxygenation[38].

    Many studies have shown that pulse oximetry can be used to

    measure oxygen saturations in the delivery room for both term and

    preterm babies. The majority of these studies focused on doc-

    umenting normal oxygen saturations in stable babies over the rst

    minutes after birth[10,11,13,19,20,39].

    How soon after birth can pulse oximetry provide reliable SpO2measurements? In experienced hands, a probe can be applied to a

    baby within 15e20 s of birth[11,15,17]. Kamlin et al.[11]reported a

    53% success rate in obtaining stable SpO2measurements by 1 min.

    In another study, the median time to achieve stable SpO2 mea-

    surements was 82 s in healthy newborns 35 weeks of gestation

    [13]. In a recent study of preterm babies

  • 7/25/2019 R-3Oxygen Therapy and Oximetry in the Delivery Room

    4/6

    the delivery room. This allows clinicians to focus on other aspects of

    resuscitation without having to stop and auscultate or palpate the

    heart rate. Though evidenceof any inuence on importantoutcomes

    is lacking, many experts recommend continuous oxygen saturation

    monitoring [5,43,51,52] and targeting normal oxygen saturation

    values[53].

    8. Can we target oxygen saturation ranges in the delivery

    room?

    Neonatal intensive care units generally have specic SpO2target

    ranges for babies receiving supplemental oxygen. However, re-

    searchers have shown that it is difcult for staff to comply with

    such target ranges[54e56]. In the delivery room it is likely to be

    even more difcult to keep SpO2 measurement within a target

    range when SpO2rises rapidly in the rst minutes.

    We now understand that in the rst minutes after birth it is

    normal for babies to have a low SpO2. There is the potential for

    oxygen to be administered needlessly if clinicians are not aware

    that babies are normally blue in the rst minutes after birth and it

    may take several minutes for SpO2to reach the normalpostnatal

    range [53]. When oxygen is administered, its use should betitrated to achieve normal time-based oxygen saturation values.

    ILCOR recommends targeting the middle quartile of oxygen

    saturation values observed in healthy babies transitioned in room

    air [5]. Although there is no evidence that this approach affects

    outcomes, given the current state of knowledge, it seems

    reasonable.

    Prospective studies of preterm resuscitation in the delivery

    room that targeted an oxygen saturation value or range met with

    modest success in achieving these targets. Escrig et al. [57] tar-

    geted an SpO2 of 85% in conjunction with heart rate >100 bpm to

    guide oxygen titration. They were able to use oxygen saturation to

    guide the titration of oxygen though they did not report on the

    amount of time on the SpO2target, perhaps because it was a single

    value. The ROAR study (Room air vs Oxygen Administration forResuscitation of preterm infants) targeted a static SpO2 target

    range of 85e92%. The primary outcome was the proportion of the

    total resuscitation time the babys SpO2 remained in the target

    range. They compared three groups. The high oxygen group

    received a static concentration of 100% oxygen while the moderate

    and low oxygen groups had the oxygen concentration titrated

    starting from either 100% or 21%, respectively. The moderate ox-

    ygen group spent 21% of the total resuscitation time in the target

    range compared to 11% in the high oxygen group and 16% in the

    low oxygen group[58].

    Goos et al. [59]measured the extent to which observed SpO 2levels matched the European Resuscitation Council (ERC) oxygen

    saturation targets during resuscitation of babies 30 weeks of

    gestation. During the initial 10 min after birth, SpO2 values wereabove the ERC target for 44% (IQR: 12e66) of the time and below

    the ERC target for 51% (IQR: 27e82) of the time. Gandhi et al.[60]

    have described a system intended to facilitate maintaining SpO2values between the 10th and 50th percentiles of the normal target

    range. Their Transitional Oxygen Targeting System (TOTS) plots

    real-time SpO2 values in relation to the 10th and 50th percentile

    SpO2 curves from a nomogram. This provides clinicians with a

    visual representation of a babys SpO2 pattern in relation to the

    SpO2 target range. Babies managed with this system spent a

    greater proportion of total resuscitation time (52%) within the

    target range compared to a control group (37%) [60]. Further

    studies are needed to determine whether targeting normal oxygen

    saturations during resuscitation affects clinically meaningful long-

    term outcomes.

    9. Does pulse oximetry use in the delivery room affect

    outcomes?

    The question of whether pulse oximetry affects outcomes has

    long been debated in the adult, pediatric and neonatal intensive

    care settings. Concerns over frequent alarms and low condence in

    measurements, especially with earlier models, led some to

    disparagingly refer to pulse oximeters as random number gener-

    ators. Fortunately, the performance of newer generation pulse

    oximeters has successfully addressed these issues to a large extent.

    Research focus has shifted from validating the technology to

    determining how the technology can be put to best use to improve

    outcomes.

    A few recent studies quantied the amount of oxygen given to

    babies during resuscitation where continuous pulse oximetry was

    used. Preterm babies initially resuscitated with 30% oxygen were

    estimated to have received 465.6 ml/kg of pure oxygen in com-

    parison to babies initially resuscitated with 90% oxygen who

    received 864 ml/kg of pure oxygen [57]. Another study reported

    that preterm babies resuscitated with an oxygen titration protocol

    that started with room air received w37% less pure oxygen by

    volume than babies resuscitated with a staticconcentration of 100%

    oxygen[58]. Using pulse oximetry to guide oxygen titration mayhelp reduce the oxidative stress we impose on sick newborns at

    birth, though this still awaits conrmation.

    Pulse oximetry is simply a measurement tool, hence its use will

    not directly inuence outcomes. Rather, its potential lies in

    providing information about the safety and effectiveness of in-

    terventions and guiding decision-making. As an example, three

    randomized controlled studies all using pulse oximetry showed

    that oropharyngeal suctioning has a negative effect on oxygenation

    [61e63]. ODonnell et al. [64] measured the effects of attempted

    endotracheal intubation on SpO2in the delivery room and showed

    that SpO2 frequently fell during intubation attempts. During in-

    terventions such as oropharyngeal suction or endotracheal intu-

    bation, pulse oximetry is able to show clinicians the effect of the

    intervention on a babys SpO2in real time.Kopotic and Lindner[65]studied babies at risk for respiratory

    failure. Half the babies were managed without pulse oximetry

    and compared with the other half managed with pulse oximetry.

    Babies managed with oximetry were less likely to be admitted to

    the nursery (32% vs 52%). In another study by Deckardt et al.,

    respiratory care was based on the baby s clinical state and SpO2measurements [66]. Oxygen was started at 100% and adjusted to

    achieve an SpO2 between 80% and 92%. Using pulse oximetry

    they were able to reduce the fraction of inspired oxygen (FiO 2)

    from 1.0 to 0.40. The Deckardt et al.[66]and Kopotic and Lindner

    [65] studies, although unmasked and non-randomized, suggest

    that pulse oximetry can be effective in guiding oxygen admin-

    istration to improve short-term outcomes, such as admission to

    nursery and the use of oxygen or continuous positive airwaypressure. We are not aware of any studies assessing the effect of

    using SpO2 measurements to guide treatment decisions imme-

    diately after birth on long-term outcomes.

    There may be lasting effects from short exposure to oxygen in

    the delivery room. There is evidence to support concerns

    regarding exposure to oxygen in the delivery room and an asso-

    ciation with an increased risk for the development of childhood

    cancers. Spector et al. reviewed data from a large prospective

    cohort of>50 000 children enrolled in the National Collaborative

    Perinatal Project (NCPP) and described a higher risk of cancer in

    children exposed to more than 3 min of oxygen in the delivery

    room than in children without oxygen exposure (hazard ratio:

    2.87) [67]. The authors speculate that reactive oxygen species

    could damage DNA and increase susceptibility to developing

    Y. Rabi, J.A. Dawson / Seminars in Fetal & Neonatal Medicine 18 (2013) 330 e335 333

  • 7/25/2019 R-3Oxygen Therapy and Oximetry in the Delivery Room

    5/6

    cancer. In a similar study, the odds ratio for developing childhood

    cancer following exposure to oxygen at delivery was 2.57 and

    increased to 3.54 if manual ventilation lasted more than 3 min

    [68]. Both studies point to a potential dose response with higher

    risks of cancer associated with longer exposure to oxygen [67,68].

    Whereas there is a clear biologic relationship between oxygen

    exposure and the formation of cancerous cells in vitro, it remains

    unclear whether it was the oxygen exposure and/or the babiesunderlying conditions that contributed to the increased risk in

    these studies.

    10. Conclusions

    Pulse oximetry is a useful adjunct to clinical assessment in the

    delivery room but clinicians attending newly born infants should

    have a good understanding of normal fetal-to-neonatal transition.

    Different models of pulse oximeter have differences in calibration

    and algorithms for detecting and managing artefact, and demon-

    strating signal quality. Therefore, it is important for clinicians

    managing babies in the delivery room to understand the charac-

    teristics of the pulse oximeter that they use and to be aware of

    indicators that measurements might be unreliable. Titrating oxygen

    administration to SpO2measurements is reasonable at the currenttime. However, there are no randomized trials measuring the

    impact of using different SpO2 targets in the delivery room on long-

    term outcomes.

    Funding sources

    J.A. Dawson is a recipient of a National Health and Medical

    Research Council (NHMRC) Post Doctoral Fellowship and is sup-

    ported by the Victorian Governments Operational Infrastructure

    Support Program.

    Conict of interest statement

    Y. Rabi has a patent in Japan and patent pending applications in

    the USA and European Union, for technology to help guide oxygen

    titration in the delivery room. He has a revenue sharing agreement

    with Masimo Corp. for distribution of this technology.

    References

    [1] Aoyagi T, Miyasaka K. Pulse oximetry: its invention, contribution to medicine,and future tasks. Anesth Analg 2002;94(1 Suppl):S1e3.

    [2] Sendak MJ, Harris AP, Donham RT. Use of pulse oximetry to assess arterialoxygen saturation during newborn resuscitation. Crit Care Med 1986;14:739e40.

    [3] Harris AP, Sendak MJ, Donham RT. Changes in arterial oxygen saturationimmediately after birth in the human neonate. J Pediatr 1986;109:117e9.

    [4] House JT, Schultetus RR, Gravenstein N. Continuous neonatal evaluation in thedelivery room by pulse oximetry. J Clin Monit 1987;3:96e100.

    [5] Perlman JM, Wyllie J, Kattwinkel J, Atkins DL, Chameides L, Goldsmith JP, et al.Part 11: Neonatal resuscitation: 2010 International Consensus on Cardiopul-monary Resuscitation and Emergency Cardiovascular Care Science WithTreatment Recommendations. Circulation 2010 Oct 19;122(16 Suppl 2):S516e38.

    [6] Bard H. The postnatal decline of hemoglobin F synthesis in normal full-terminfants. J Clin Invest 1975;55:395e8.

    [7] Nellcor Puritan Bennett, Inc.. OxiMaxN-600signal processing. In: http://www.nellcor.com/_Catalog/PDF/Product/N600SignalProcessing.pdf; 2005.

    [8] Leone TA, Finer NN. Neonatal resuscitation: beyond the basics. NeoReviews2005;6:e177e83.

    [9] Ahmed SJ, Rich W, Finer NN. The effect of averaging time on oximetry valuesin the premature infant. Pediatrics 2010;125:e115e21.

    [10] Altuncu E, Ozek E, Bilgen H, Topuzoglu A, Kavuncuoglu S. Percentiles of ox-ygen saturations in healthy term newborns in the rst minutes of life. Eur JPediatr 2008;167:687e8.

    [11] Kamlin CO, ODonnell CP, Davis PG, Morley CJ. Oxygen saturation in healthyinfants immediately after birth. J Pediatr 2006;148:585e9.

    [12] Mariani G, Dik PB, Ezquer A, Aguirre A, Esteban ML, Perez C, et al. Pre-ductaland post-ductal O2 saturation in healthy term neonates after birth. J Pediatr2007;150:418e21.

    [13] Rabi Y, Yee W, Chen SY, Singhal N. Oxygen saturation trends immediatelyafter birth. J Pediatr 2006;148:590e4.

    [14] Bucher HU, Keel M, Wolf M, von Siebenthal K, Duc G. Artifactual pulse-oximetry estimation in neonates. Lancet 1994;343(8906):1135e6.

    [15] ODonnell CPF, Kamlin COF, Davis PG, Morley CJ. Feasibility of and delay in

    obtaining pulse oximetry during neonatal resuscitation. J Pediatr 2005;147:698e9.

    [16] ODonnell CPF, Kamlin COF, Davis PG, Morley CJ. Obtaining pulse oximetrydata in neonates: a randomised crossover study of sensor application tech-niques. Archs Dis Childh Fetal Neonat Ed 2005;90:F84e5.

    [17] Saraswat A, Simionato L, Dawson J, Thio M, Kamlin C, Owen L, et al. Deter-mining the best method of nellcor pulse oximeter sensor application in ne-onates. Acta Paediatr 2012;101:484e7.

    [18] Meier-Stauss P, Bucher HU, Hrlimann R, Knig V, Huch R. Pulse oximetryused for documenting oxygen saturation and right-to-left shunting immedi-ately after birth. Eur J Pediatr 1990;149:851e5.

    [19] Toth B, Becker A, Seelbach-Gobel B. Oxygen saturation in healthy newborninfants immediately after birth measured by pulse oximetry. Arch GynecolObstet 2002;266:105e7.

    [20] Zubarioglu U, Uslu S, Can E, Bulbul A, Nuhoglu A. Oxygen saturation levelsduring the rst minutes of life in healthy term neonates. Tohoku J Exp Med2011;224:273e9.

    [21] Barrington KJ, Finer NN, Ryan CA. Evaluation of pulse oximetry as a contin-

    uous monitoring technique in the neonatal intensive care unit. Crit Care Med1988;16:147e53.

    [22] Ramanathan R, Durand M, Larrazabal C. Pulse oximetry in very low birthweight infants with acute and chronic lung disease. Pediatrics 1987;79:612e7.

    [23] Rosychuk RJ, Hudson-Mason A, Eklund D, Lacaze-Masmonteil T. Discrepanciesbetween arterial oxygen saturation and functional oxygen saturationmeasured with pulse oximetry in very preterm infants. Neonatology2012;101:14e9.

    [24] Giuliano KK, Higgins TL. New-generation pulse oximetry in the care of criti-cally ill patients. Am J Crit Care 2005;14:26e37.

    [25] Amar D, Neidzwski J, Wald A, Finck AD. Fluorescent light interferes with pulseoximetry. J Clin Monit 1989;5:135e6.

    [26] Block Jr FE. Interference in a pulse oximeter from a beroptic light source.J Clin Monit 1987;3:210e1.

    [27] Costarino AT, Davis DA, Keon TP. Falsely normal saturation reading with thepulse oximeter. Anesthesiology 1987;67:830e1.

    [28] Fouzas S, Priftis KN, Anthracopoulos MB. Pulse oximetry in pediatric practice.

    Pediatrics 2011;128:740e

    52.

    Practice points

    Pulse oximetry can accurately measure oxygen satura-tions and heart rate during delivery room resuscitation.

    Pulse oximeters have user-modifiable settings thataffect the ability to obtain stable measurements in thedelivery room.

    Acquiring stable readings of oxygen saturation andheart rate within 2 min of birth is feasible in clinicalpractice.

    Pulse oximetry provides real-time information impor-tant for decision-making (e.g. oxygen titration) duringresuscitation.

    Research directions

    Creation of new oxygen saturation nomograms forbabies who have had delayed cord clampingperformed.

    Determine whether targeting normal oxygen satura-tions during resuscitation affects clinically importantoutcomes.

    Determine the optimal approach to titrating oxygenduring resuscitation (i.e. starting FiO2, frequency of FiO2adjustments, magnitude of FiO2 adjustments).

    Y. Rabi, J.A. Dawson / Seminars in Fetal & Neonatal Medicine 18 (2013) 330e335334

    http://refhub.elsevier.com/S1744-165X(13)00070-X/sref1http://refhub.elsevier.com/S1744-165X(13)00070-X/sref1http://refhub.elsevier.com/S1744-165X(13)00070-X/sref1http://refhub.elsevier.com/S1744-165X(13)00070-X/sref1http://refhub.elsevier.com/S1744-165X(13)00070-X/sref2http://refhub.elsevier.com/S1744-165X(13)00070-X/sref2http://refhub.elsevier.com/S1744-165X(13)00070-X/sref2http://refhub.elsevier.com/S1744-165X(13)00070-X/sref2http://refhub.elsevier.com/S1744-165X(13)00070-X/sref3http://refhub.elsevier.com/S1744-165X(13)00070-X/sref3http://refhub.elsevier.com/S1744-165X(13)00070-X/sref3http://refhub.elsevier.com/S1744-165X(13)00070-X/sref4http://refhub.elsevier.com/S1744-165X(13)00070-X/sref4http://refhub.elsevier.com/S1744-165X(13)00070-X/sref4http://refhub.elsevier.com/S1744-165X(13)00070-X/sref5http://refhub.elsevier.com/S1744-165X(13)00070-X/sref5http://refhub.elsevier.com/S1744-165X(13)00070-X/sref5http://refhub.elsevier.com/S1744-165X(13)00070-X/sref5http://refhub.elsevier.com/S1744-165X(13)00070-X/sref5http://refhub.elsevier.com/S1744-165X(13)00070-X/sref5http://refhub.elsevier.com/S1744-165X(13)00070-X/sref5http://refhub.elsevier.com/S1744-165X(13)00070-X/sref6http://refhub.elsevier.com/S1744-165X(13)00070-X/sref6http://refhub.elsevier.com/S1744-165X(13)00070-X/sref6http://www.nellcor.com/_Catalog/PDF/Product/N600SignalProcessing.pdfhttp://www.nellcor.com/_Catalog/PDF/Product/N600SignalProcessing.pdfhttp://refhub.elsevier.com/S1744-165X(13)00070-X/sref8http://refhub.elsevier.com/S1744-165X(13)00070-X/sref8http://refhub.elsevier.com/S1744-165X(13)00070-X/sref8http://refhub.elsevier.com/S1744-165X(13)00070-X/sref9http://refhub.elsevier.com/S1744-165X(13)00070-X/sref9http://refhub.elsevier.com/S1744-165X(13)00070-X/sref9http://refhub.elsevier.com/S1744-165X(13)00070-X/sref10http://refhub.elsevier.com/S1744-165X(13)00070-X/sref10http://refhub.elsevier.com/S1744-165X(13)00070-X/sref10http://refhub.elsevier.com/S1744-165X(13)00070-X/sref10http://refhub.elsevier.com/S1744-165X(13)00070-X/sref10http://refhub.elsevier.com/S1744-165X(13)00070-X/sref10http://refhub.elsevier.com/S1744-165X(13)00070-X/sref10http://refhub.elsevier.com/S1744-165X(13)00070-X/sref11http://refhub.elsevier.com/S1744-165X(13)00070-X/sref11http://refhub.elsevier.com/S1744-165X(13)00070-X/sref11http://refhub.elsevier.com/S1744-165X(13)00070-X/sref11http://refhub.elsevier.com/S1744-165X(13)00070-X/sref11http://refhub.elsevier.com/S1744-165X(13)00070-X/sref12http://refhub.elsevier.com/S1744-165X(13)00070-X/sref12http://refhub.elsevier.com/S1744-165X(13)00070-X/sref12http://refhub.elsevier.com/S1744-165X(13)00070-X/sref12http://refhub.elsevier.com/S1744-165X(13)00070-X/sref12http://refhub.elsevier.com/S1744-165X(13)00070-X/sref12http://refhub.elsevier.com/S1744-165X(13)00070-X/sref12http://refhub.elsevier.com/S1744-165X(13)00070-X/sref13http://refhub.elsevier.com/S1744-165X(13)00070-X/sref13http://refhub.elsevier.com/S1744-165X(13)00070-X/sref13http://refhub.elsevier.com/S1744-165X(13)00070-X/sref13http://refhub.elsevier.com/S1744-165X(13)00070-X/sref14http://refhub.elsevier.com/S1744-165X(13)00070-X/sref14http://refhub.elsevier.com/S1744-165X(13)00070-X/sref14http://refhub.elsevier.com/S1744-165X(13)00070-X/sref15http://refhub.elsevier.com/S1744-165X(13)00070-X/sref15http://refhub.elsevier.com/S1744-165X(13)00070-X/sref15http://refhub.elsevier.com/S1744-165X(13)00070-X/sref15http://refhub.elsevier.com/S1744-165X(13)00070-X/sref15http://refhub.elsevier.com/S1744-165X(13)00070-X/sref15http://refhub.elsevier.com/S1744-165X(13)00070-X/sref15http://refhub.elsevier.com/S1744-165X(13)00070-X/sref16http://refhub.elsevier.com/S1744-165X(13)00070-X/sref16http://refhub.elsevier.com/S1744-165X(13)00070-X/sref16http://refhub.elsevier.com/S1744-165X(13)00070-X/sref16http://refhub.elsevier.com/S1744-165X(13)00070-X/sref16http://refhub.elsevier.com/S1744-165X(13)00070-X/sref16http://refhub.elsevier.com/S1744-165X(13)00070-X/sref17http://refhub.elsevier.com/S1744-165X(13)00070-X/sref17http://refhub.elsevier.com/S1744-165X(13)00070-X/sref17http://refhub.elsevier.com/S1744-165X(13)00070-X/sref17http://refhub.elsevier.com/S1744-165X(13)00070-X/sref18http://refhub.elsevier.com/S1744-165X(13)00070-X/sref18http://refhub.elsevier.com/S1744-165X(13)00070-X/sref18http://refhub.elsevier.com/S1744-165X(13)00070-X/sref18http://refhub.elsevier.com/S1744-165X(13)00070-X/sref19http://refhub.elsevier.com/S1744-165X(13)00070-X/sref19http://refhub.elsevier.com/S1744-165X(13)00070-X/sref19http://refhub.elsevier.com/S1744-165X(13)00070-X/sref19http://refhub.elsevier.com/S1744-165X(13)00070-X/sref19http://refhub.elsevier.com/S1744-165X(13)00070-X/sref20http://refhub.elsevier.com/S1744-165X(13)00070-X/sref20http://refhub.elsevier.com/S1744-165X(13)00070-X/sref20http://refhub.elsevier.com/S1744-165X(13)00070-X/sref20http://refhub.elsevier.com/S1744-165X(13)00070-X/sref20http://refhub.elsevier.com/S1744-165X(13)00070-X/sref20http://refhub.elsevier.com/S1744-165X(13)00070-X/sref21http://refhub.elsevier.com/S1744-165X(13)00070-X/sref21http://refhub.elsevier.com/S1744-165X(13)00070-X/sref21http://refhub.elsevier.com/S1744-165X(13)00070-X/sref21http://refhub.elsevier.com/S1744-165X(13)00070-X/sref22http://refhub.elsevier.com/S1744-165X(13)00070-X/sref22http://refhub.elsevier.com/S1744-165X(13)00070-X/sref22http://refhub.elsevier.com/S1744-165X(13)00070-X/sref22http://refhub.elsevier.com/S1744-165X(13)00070-X/sref22http://refhub.elsevier.com/S1744-165X(13)00070-X/sref23http://refhub.elsevier.com/S1744-165X(13)00070-X/sref23http://refhub.elsevier.com/S1744-165X(13)00070-X/sref23http://refhub.elsevier.com/S1744-165X(13)00070-X/sref23http://refhub.elsevier.com/S1744-165X(13)00070-X/sref23http://refhub.elsevier.com/S1744-165X(13)00070-X/sref24http://refhub.elsevier.com/S1744-165X(13)00070-X/sref24http://refhub.elsevier.com/S1744-165X(13)00070-X/sref24http://refhub.elsevier.com/S1744-165X(13)00070-X/sref25http://refhub.elsevier.com/S1744-165X(13)00070-X/sref25http://refhub.elsevier.com/S1744-165X(13)00070-X/sref25http://refhub.elsevier.com/S1744-165X(13)00070-X/sref26http://refhub.elsevier.com/S1744-165X(13)00070-X/sref26http://refhub.elsevier.com/S1744-165X(13)00070-X/sref26http://refhub.elsevier.com/S1744-165X(13)00070-X/sref26http://refhub.elsevier.com/S1744-165X(13)00070-X/sref26http://refhub.elsevier.com/S1744-165X(13)00070-X/sref27http://refhub.elsevier.com/S1744-165X(13)00070-X/sref27http://refhub.elsevier.com/S1744-165X(13)00070-X/sref27http://refhub.elsevier.com/S1744-165X(13)00070-X/sref27http://refhub.elsevier.com/S1744-165X(13)00070-X/sref28http://refhub.elsevier.com/S1744-165X(13)00070-X/sref28http://refhub.elsevier.com/S1744-165X(13)00070-X/sref28http://refhub.elsevier.com/S1744-165X(13)00070-X/sref28http://refhub.elsevier.com/S1744-165X(13)00070-X/sref28http://refhub.elsevier.com/S1744-165X(13)00070-X/sref28http://refhub.elsevier.com/S1744-165X(13)00070-X/sref27http://refhub.elsevier.com/S1744-165X(13)00070-X/sref27http://refhub.elsevier.com/S1744-165X(13)00070-X/sref27http://refhub.elsevier.com/S1744-165X(13)00070-X/sref26http://refhub.elsevier.com/S1744-165X(13)00070-X/sref26http://refhub.elsevier.com/S1744-165X(13)00070-X/sref26http://refhub.elsevier.com/S1744-165X(13)00070-X/sref25http://refhub.elsevier.com/S1744-165X(13)00070-X/sref25http://refhub.elsevier.com/S1744-165X(13)00070-X/sref25http://refhub.elsevier.com/S1744-165X(13)00070-X/sref24http://refhub.elsevier.com/S1744-165X(13)00070-X/sref24http://refhub.elsevier.com/S1744-165X(13)00070-X/sref24http://refhub.elsevier.com/S1744-165X(13)00070-X/sref23http://refhub.elsevier.com/S1744-165X(13)00070-X/sref23http://refhub.elsevier.com/S1744-165X(13)00070-X/sref23http://refhub.elsevier.com/S1744-165X(13)00070-X/sref23http://refhub.elsevier.com/S1744-165X(13)00070-X/sref23http://refhub.elsevier.com/S1744-165X(13)00070-X/sref22http://refhub.elsevier.com/S1744-165X(13)00070-X/sref22http://refhub.elsevier.com/S1744-165X(13)00070-X/sref22http://refhub.elsevier.com/S1744-165X(13)00070-X/sref22http://refhub.elsevier.com/S1744-165X(13)00070-X/sref21http://refhub.elsevier.com/S1744-165X(13)00070-X/sref21http://refhub.elsevier.com/S1744-165X(13)00070-X/sref21http://refhub.elsevier.com/S1744-165X(13)00070-X/sref21http://refhub.elsevier.com/S1744-165X(13)00070-X/sref20http://refhub.elsevier.com/S1744-165X(13)00070-X/sref20http://refhub.elsevier.com/S1744-165X(13)00070-X/sref20http://refhub.elsevier.com/S1744-165X(13)00070-X/sref20http://refhub.elsevier.com/S1744-165X(13)00070-X/sref19http://refhub.elsevier.com/S1744-165X(13)00070-X/sref19http://refhub.elsevier.com/S1744-165X(13)00070-X/sref19http://refhub.elsevier.com/S1744-165X(13)00070-X/sref19http://refhub.elsevier.com/S1744-165X(13)00070-X/sref18http://refhub.elsevier.com/S1744-165X(13)00070-X/sref18http://refhub.elsevier.com/S1744-165X(13)00070-X/sref18http://refhub.elsevier.com/S1744-165X(13)00070-X/sref18http://refhub.elsevier.com/S1744-165X(13)00070-X/sref17http://refhub.elsevier.com/S1744-165X(13)00070-X/sref17http://refhub.elsevier.com/S1744-165X(13)00070-X/sref17http://refhub.elsevier.com/S1744-165X(13)00070-X/sref17http://refhub.elsevier.com/S1744-165X(13)00070-X/sref16http://refhub.elsevier.com/S1744-165X(13)00070-X/sref16http://refhub.elsevier.com/S1744-165X(13)00070-X/sref16http://refhub.elsevier.com/S1744-165X(13)00070-X/sref16http://refhub.elsevier.com/S1744-165X(13)00070-X/sref15http://refhub.elsevier.com/S1744-165X(13)00070-X/sref15http://refhub.elsevier.com/S1744-165X(13)00070-X/sref15http://refhub.elsevier.com/S1744-165X(13)00070-X/sref15http://refhub.elsevier.com/S1744-165X(13)00070-X/sref14http://refhub.elsevier.com/S1744-165X(13)00070-X/sref14http://refhub.elsevier.com/S1744-165X(13)00070-X/sref14http://refhub.elsevier.com/S1744-165X(13)00070-X/sref13http://refhub.elsevier.com/S1744-165X(13)00070-X/sref13http://refhub.elsevier.com/S1744-165X(13)00070-X/sref13http://refhub.elsevier.com/S1744-165X(13)00070-X/sref12http://refhub.elsevier.com/S1744-165X(13)00070-X/sref12http://refhub.elsevier.com/S1744-165X(13)00070-X/sref12http://refhub.elsevier.com/S1744-165X(13)00070-X/sref12http://refhub.elsevier.com/S1744-165X(13)00070-X/sref12http://refhub.elsevier.com/S1744-165X(13)00070-X/sref11http://refhub.elsevier.com/S1744-165X(13)00070-X/sref11http://refhub.elsevier.com/S1744-165X(13)00070-X/sref11http://refhub.elsevier.com/S1744-165X(13)00070-X/sref10http://refhub.elsevier.com/S1744-165X(13)00070-X/sref10http://refhub.elsevier.com/S1744-165X(13)00070-X/sref10http://refhub.elsevier.com/S1744-165X(13)00070-X/sref10http://refhub.elsevier.com/S1744-165X(13)00070-X/sref9http://refhub.elsevier.com/S1744-165X(13)00070-X/sref9http://refhub.elsevier.com/S1744-165X(13)00070-X/sref9http://refhub.elsevier.com/S1744-165X(13)00070-X/sref8http://refhub.elsevier.com/S1744-165X(13)00070-X/sref8http://refhub.elsevier.com/S1744-165X(13)00070-X/sref8http://www.nellcor.com/_Catalog/PDF/Product/N600SignalProcessing.pdfhttp://www.nellcor.com/_Catalog/PDF/Product/N600SignalProcessing.pdfhttp://refhub.elsevier.com/S1744-165X(13)00070-X/sref6http://refhub.elsevier.com/S1744-165X(13)00070-X/sref6http://refhub.elsevier.com/S1744-165X(13)00070-X/sref6http://refhub.elsevier.com/S1744-165X(13)00070-X/sref5http://refhub.elsevier.com/S1744-165X(13)00070-X/sref5http://refhub.elsevier.com/S1744-165X(13)00070-X/sref5http://refhub.elsevier.com/S1744-165X(13)00070-X/sref5http://refhub.elsevier.com/S1744-165X(13)00070-X/sref5http://refhub.elsevier.com/S1744-165X(13)00070-X/sref5http://refhub.elsevier.com/S1744-165X(13)00070-X/sref4http://refhub.elsevier.com/S1744-165X(13)00070-X/sref4http://refhub.elsevier.com/S1744-165X(13)00070-X/sref4http://refhub.elsevier.com/S1744-165X(13)00070-X/sref3http://refhub.elsevier.com/S1744-165X(13)00070-X/sref3http://refhub.elsevier.com/S1744-165X(13)00070-X/sref3http://refhub.elsevier.com/S1744-165X(13)00070-X/sref2http://refhub.elsevier.com/S1744-165X(13)00070-X/sref2http://refhub.elsevier.com/S1744-165X(13)00070-X/sref2http://refhub.elsevier.com/S1744-165X(13)00070-X/sref2http://refhub.elsevier.com/S1744-165X(13)00070-X/sref1http://refhub.elsevier.com/S1744-165X(13)00070-X/sref1http://refhub.elsevier.com/S1744-165X(13)00070-X/sref1
  • 7/25/2019 R-3Oxygen Therapy and Oximetry in the Delivery Room

    6/6

    [29] Ralston AC, Webb RK, Runciman WB. Potential errors in pulse oximetry. III:Effects of interferences, dyes, dyshaemoglobins and other pigments. Anaes-thesia 1991;46:291e5.

    [30] Fogh-Anderson N, Siggaard-Anderson O, Lundsgaard FC, Wimberley PD.Spectrophotometric determination of hemoglobin pigments in neonatalblood. Clin Chim Acta 1987;166:291e6.

    [31] Pologe JA, Raley DM. Effects of fetal hemoglobin on pulse oximetry. J Perinatol1987;7:324e6.

    [32] Jennis MS, Peabody JL. Pulse oximetry: an alternative method for theassessment of oxygenation in newborn infants. Pediatrics 1987;79:524e8.

    [33] Shiao SY, Ou CN. Validation of oxygen saturation monitoring in neonates. Am JCrit Care 2007;16:168e78.

    [34] Whyte RK, Jangaard KA, Dooley KC. From oxygen content to pulse oximetry:completing the picture in the newborn. Acta Anaesthesiol Scand Suppl1995;107:95e100.

    [35] Anderson JV. The accuracy of pulse oximetry in neonates: effects of fetalhemoglobin and bilirubin. J Perinatol 1987;7:323.

    [36] Durand M, Ramanathan R. Pulse oximetry for continuous oxygen monitoringin sick newborn infants. J Pediatr 1986;109:1052e6.

    [37] Rajadurai VS, Walker AM, Yu VY, Oates A. Effect of fetal haemoglobin on theaccuracy of pulse oximetry in preterm infants. J Paediatr Child Health1992;28:43e6.

    [38] ODonnell CP, Kamlin CO, Davis PG, Carlin JB, Morley CJ. Clinical assessment ofinfant colour at delivery. Arch Dis Child Fetal Neonatal Ed 2007;92:F465e7.

    [39] Hulsoore R, Shrivastav J, Dwivedi R. Normal oxygen saturation trend inhealthy term newborns within 30 minutes of birth. Indian J Pediatr 2011;78:817e20.

    [40] Ghandi B, Rich W, Finer N. Time to achieve stable pulse oximetry values inVLBW infants in the delivery room. Resuscitation 2013;84:970e3.

    [41] Kratky E, Pichler G, Rehak T, Avian A, Pocivalnik M, Mller W, et al. Regionalcerebral oxygen saturation in newborn infants in the rst 15 min of life aftervaginal delivery. Physiological Measurement 2012:33.

    [42] Dawson JA, Morley CJ. Monitoring oxygen saturation and heart rate in theearly neonatal period. Semin Fetal Neonatal Med 2010;15:203e7.

    [43] Nolan JP, Soar J, Zideman DA, Biarent D, Bossaert LL, Deakin C, et al. EuropeanResuscitation Council Guidelines for Resuscitation 2010. Section 1. Executivesummary. Resuscitation 2010;81:1219e76.

    [44] Perlman JM, Wyllie J, Kattwinkel J, Atkins DL, Chameides L, Goldsmith JP, et al.Neonatal Resuscitation: 2010 International Consensus on CardiopulmonaryResuscitation and Emergency Cardiovascular Care Science With TreatmentRecommendations. Pediatrics 2010;126:e1319e44.

    [45] Kamlin CO, Dawson JA, ODonnell CP, Morley CJ, Donath SM, Sekhon J, et al.Accuracy of pulse oximetry measurement of heart rate of newborn infants inthe delivery room. J Pediatr 2008;152:756e60.

    [46] Dawson JA, Kamlin CO, Wong C, Te Pas AB, Vento M, Cole TJ, et al. Changes inheart rate in the rst minutes after birth. Arch Dis Child Fetal Neonatal Ed2010 May;95:F177e81.

    [47] Katheria A, Rich W, Finer N. Obtaining a continuous heart rate during neonatalresuscitation: EKG vs pulse oximetry. Baltimore: Pediatric Academic Societies;2012 [E-Pas2012:2855.4].

    [48] Mizumoto H, Tomotaki S, Shibata H, et al. Electrocardiogram shows reliableheart rates much earlier than pulse oximetry during neonatal resuscitation.Pediatr Int 2012;54:205e7.

    [49] Urlesberger B, Kratky E, Rehak T, Pocivalnik M, Avian A, Czihak J, et al.Regional oxygen saturation of the brain during birth transition of term

    infants: comparison between elective cesarean and vaginal deliveries. JPediatr 2011;159:404e8.

    [50] Wang CL, Anderson C, Leone TA, Rich W, Govindaswami B, Finer NN. Resus-citation of preterm neonates by using room air or 100% oxygen. Pediatrics2008;121:1083e9.

    [51] Australian Resuscitation Council. Neonatal guidelines 13.1e13.10. AustralianResuscitation Council; 2010.http://www.resus.org.au/.

    [52] Kattwinkel J, Perlman JM, Aziz K, Colby C, Fairchild K, Gallagher J, et al.Neonatal resuscitation: 2010 American Heart Association guidelines for car-diopulmonary resuscitation and emergency cardiovascular care. Pediatrics

    2010;126:e1400e

    13.[53] Dawson JA, Kamlin CO, Vento M, Wong C, Cole TJ, Donath SM, et al. Dening

    the reference range for oxygen saturation for infants after birth. Pediatrics2010;125:e1340e7.

    [54] Clucas L, Doyle LW, Dawson J, Donath S, Davis PG. Compliance with alarmlimits for pulse oximetry in very preterm infants. Pediatrics 2007;119:1056e60.

    [55] Hagadorn JI, Furey AM, Nghiem TH, Schmid CH, Phelps DL, Pillers DA, et al.Achieved versus intended pulse oximeter saturation in infants born less than28 weeks gestation: the AVIOx study. Pediatrics 2006;118:1574e82.

    [56] Sink DW, Hope SA, Hagadorn JI. Nurse:patient ratio and achievement of ox-ygen saturation goals in premature infants. Arch Dis Child Fetal Neonatal Ed2011;96:F93e8.

    [57] Escrig R, Luis A, Izquierdo I, Villar G, Gimeno A, Senz P, et al. Achievementof target oxygen saturation in extremely low gestational neonates resus-citated with different oxygen concentrations: a prospective randomizedclinical trial. Pedatrics 2008;121:875e81.

    [58] Rabi Y, Singhal N, Nettel-Aguirre A. Room-air versus oxygen administrationduring resuscitation of preterm infants: the ROAR Study. Pedatrics 2011;128:E374

    e81.

    [59] Goos TG, Rook D, van der Eijk AC, Kroon AA, Pichler G, Urlesberger B, et al.Observing the resuscitation of very preterm infants: are we able to follow theoxygen saturation targets? Resuscitation 2013;84:1108e13.

    [60] Gandhi B, Rich W, Finer N. Achieving targeted pulse oximetry values in pre-term infants in the delivery room. J Pediatr 2013;163:412e5.

    [61] Carrasco M, Martell M, Estol PC. Oronasopharyngeal suction at birth: effectson arterial oxygen saturation. J Pediatr 1997;130:832e4.

    [62] Gungor S, Teksoz E, Ceyhan T, Kurt E, Goktolga U, Baser I. Oronasopharyngealsuction versus no suction in normal, term and vaginally born infants: a pro-spective randomised controlled trial. Aust NZ J Obstet Gynaecol 2005;45:453e6.

    [63] Waltman PA, Brewer JM, Rogers BP, May WL. Building evidence for practice: apilot study of newborn bulb suctioning at birth. J Midwifery Womens Health2004;49:32e8.

    [64] ODonnell CPF, Kamlin CO, Davis PG, Morley CJ. Endotracheal intubation at-tempts during neonatal resuscitation: success rates, duration, and adverseeffects. Pediatrics 2006;117:e16e21.

    [65] Kopotic RJ, Lindner W. Assessing high-risk infants in the delivery room withpulse oximetry. Anaesth Analg 2002;94:S31e6.[66] Deckardt R, Schneider KT, Graeff H. Monitoring arterial oxygen saturation in

    the neonate. J Perinat Med 1987;15:357e60.[67] Spector LG, Klebanoff MA, Feusner JH, Georgieff MK, Ross JA. Childhood cancer

    following neonatal oxygen supplementation. J Pediatr 2005;147:27e31.[68] Naumburg E,BelloccoR, Cnattingius S,JonzonA,EkbomA. Supplementaryoxygen

    and risk of childhood lymphatic leukaemia. Acta Paediatr 2002;91:1328e33.

    Y. Rabi, J.A. Dawson / Seminars in Fetal & Neonatal Medicine 18 (2013) 330 e335 335

    http://refhub.elsevier.com/S1744-165X(13)00070-X/sref29http://refhub.elsevier.com/S1744-165X(13)00070-X/sref29http://refhub.elsevier.com/S1744-165X(13)00070-X/sref29http://refhub.elsevier.com/S1744-165X(13)00070-X/sref29http://refhub.elsevier.com/S1744-165X(13)00070-X/sref30http://refhub.elsevier.com/S1744-165X(13)00070-X/sref30http://refhub.elsevier.com/S1744-165X(13)00070-X/sref30http://refhub.elsevier.com/S1744-165X(13)00070-X/sref30http://refhub.elsevier.com/S1744-165X(13)00070-X/sref31http://refhub.elsevier.com/S1744-165X(13)00070-X/sref31http://refhub.elsevier.com/S1744-165X(13)00070-X/sref31http://refhub.elsevier.com/S1744-165X(13)00070-X/sref32http://refhub.elsevier.com/S1744-165X(13)00070-X/sref32http://refhub.elsevier.com/S1744-165X(13)00070-X/sref32http://refhub.elsevier.com/S1744-165X(13)00070-X/sref33http://refhub.elsevier.com/S1744-165X(13)00070-X/sref33http://refhub.elsevier.com/S1744-165X(13)00070-X/sref33http://refhub.elsevier.com/S1744-165X(13)00070-X/sref34http://refhub.elsevier.com/S1744-165X(13)00070-X/sref34http://refhub.elsevier.com/S1744-165X(13)00070-X/sref34http://refhub.elsevier.com/S1744-165X(13)00070-X/sref34http://refhub.elsevier.com/S1744-165X(13)00070-X/sref35http://refhub.elsevier.com/S1744-165X(13)00070-X/sref35http://refhub.elsevier.com/S1744-165X(13)00070-X/sref35http://refhub.elsevier.com/S1744-165X(13)00070-X/sref36http://refhub.elsevier.com/S1744-165X(13)00070-X/sref36http://refhub.elsevier.com/S1744-165X(13)00070-X/sref36http://refhub.elsevier.com/S1744-165X(13)00070-X/sref37http://refhub.elsevier.com/S1744-165X(13)00070-X/sref37http://refhub.elsevier.com/S1744-165X(13)00070-X/sref37http://refhub.elsevier.com/S1744-165X(13)00070-X/sref37http://refhub.elsevier.com/S1744-165X(13)00070-X/sref38http://refhub.elsevier.com/S1744-165X(13)00070-X/sref38http://refhub.elsevier.com/S1744-165X(13)00070-X/sref38http://refhub.elsevier.com/S1744-165X(13)00070-X/sref38http://refhub.elsevier.com/S1744-165X(13)00070-X/sref38http://refhub.elsevier.com/S1744-165X(13)00070-X/sref39http://refhub.elsevier.com/S1744-165X(13)00070-X/sref39http://refhub.elsevier.com/S1744-165X(13)00070-X/sref39http://refhub.elsevier.com/S1744-165X(13)00070-X/sref39http://refhub.elsevier.com/S1744-165X(13)00070-X/sref40http://refhub.elsevier.com/S1744-165X(13)00070-X/sref40http://refhub.elsevier.com/S1744-165X(13)00070-X/sref40http://refhub.elsevier.com/S1744-165X(13)00070-X/sref41http://refhub.elsevier.com/S1744-165X(13)00070-X/sref41http://refhub.elsevier.com/S1744-165X(13)00070-X/sref41http://refhub.elsevier.com/S1744-165X(13)00070-X/sref41http://refhub.elsevier.com/S1744-165X(13)00070-X/sref41http://refhub.elsevier.com/S1744-165X(13)00070-X/sref41http://refhub.elsevier.com/S1744-165X(13)00070-X/sref42http://refhub.elsevier.com/S1744-165X(13)00070-X/sref42http://refhub.elsevier.com/S1744-165X(13)00070-X/sref42http://refhub.elsevier.com/S1744-165X(13)00070-X/sref43http://refhub.elsevier.com/S1744-165X(13)00070-X/sref43http://refhub.elsevier.com/S1744-165X(13)00070-X/sref43http://refhub.elsevier.com/S1744-165X(13)00070-X/sref43http://refhub.elsevier.com/S1744-165X(13)00070-X/sref44http://refhub.elsevier.com/S1744-165X(13)00070-X/sref44http://refhub.elsevier.com/S1744-165X(13)00070-X/sref44http://refhub.elsevier.com/S1744-165X(13)00070-X/sref44http://refhub.elsevier.com/S1744-165X(13)00070-X/sref44http://refhub.elsevier.com/S1744-165X(13)00070-X/sref45http://refhub.elsevier.com/S1744-165X(13)00070-X/sref45http://refhub.elsevier.com/S1744-165X(13)00070-X/sref45http://refhub.elsevier.com/S1744-165X(13)00070-X/sref45http://refhub.elsevier.com/S1744-165X(13)00070-X/sref45http://refhub.elsevier.com/S1744-165X(13)00070-X/sref45http://refhub.elsevier.com/S1744-165X(13)00070-X/sref46http://refhub.elsevier.com/S1744-165X(13)00070-X/sref46http://refhub.elsevier.com/S1744-165X(13)00070-X/sref46http://refhub.elsevier.com/S1744-165X(13)00070-X/sref46http://refhub.elsevier.com/S1744-165X(13)00070-X/sref46http://refhub.elsevier.com/S1744-165X(13)00070-X/sref46http://refhub.elsevier.com/S1744-165X(13)00070-X/sref47http://refhub.elsevier.com/S1744-165X(13)00070-X/sref47http://refhub.elsevier.com/S1744-165X(13)00070-X/sref47http://refhub.elsevier.com/S1744-165X(13)00070-X/sref48http://refhub.elsevier.com/S1744-165X(13)00070-X/sref48http://refhub.elsevier.com/S1744-165X(13)00070-X/sref48http://refhub.elsevier.com/S1744-165X(13)00070-X/sref48http://refhub.elsevier.com/S1744-165X(13)00070-X/sref49http://refhub.elsevier.com/S1744-165X(13)00070-X/sref49http://refhub.elsevier.com/S1744-165X(13)00070-X/sref49http://refhub.elsevier.com/S1744-165X(13)00070-X/sref49http://refhub.elsevier.com/S1744-165X(13)00070-X/sref49http://refhub.elsevier.com/S1744-165X(13)00070-X/sref50http://refhub.elsevier.com/S1744-165X(13)00070-X/sref50http://refhub.elsevier.com/S1744-165X(13)00070-X/sref50http://refhub.elsevier.com/S1744-165X(13)00070-X/sref50http://www.resus.org.au/http://refhub.elsevier.com/S1744-165X(13)00070-X/sref52http://refhub.elsevier.com/S1744-165X(13)00070-X/sref52http://refhub.elsevier.com/S1744-165X(13)00070-X/sref52http://refhub.elsevier.com/S1744-165X(13)00070-X/sref52http://refhub.elsevier.com/S1744-165X(13)00070-X/sref52http://refhub.elsevier.com/S1744-165X(13)00070-X/sref52http://refhub.elsevier.com/S1744-165X(13)00070-X/sref53http://refhub.elsevier.com/S1744-165X(13)00070-X/sref53http://refhub.elsevier.com/S1744-165X(13)00070-X/sref53http://refhub.elsevier.com/S1744-165X(13)00070-X/sref53http://refhub.elsevier.com/S1744-165X(13)00070-X/sref53http://refhub.elsevier.com/S1744-165X(13)00070-X/sref53http://refhub.elsevier.com/S1744-165X(13)00070-X/sref54http://refhub.elsevier.com/S1744-165X(13)00070-X/sref54http://refhub.elsevier.com/S1744-165X(13)00070-X/sref54http://refhub.elsevier.com/S1744-165X(13)00070-X/sref54http://refhub.elsevier.com/S1744-165X(13)00070-X/sref55http://refhub.elsevier.com/S1744-165X(13)00070-X/sref55http://refhub.elsevier.com/S1744-165X(13)00070-X/sref55http://refhub.elsevier.com/S1744-165X(13)00070-X/sref55http://refhub.elsevier.com/S1744-165X(13)00070-X/sref55http://refhub.elsevier.com/S1744-165X(13)00070-X/sref55http://refhub.elsevier.com/S1744-165X(13)00070-X/sref55http://refhub.elsevier.com/S1744-165X(13)00070-X/sref56http://refhub.elsevier.com/S1744-165X(13)00070-X/sref56http://refhub.elsevier.com/S1744-165X(13)00070-X/sref56http://refhub.elsevier.com/S1744-165X(13)00070-X/sref56http://refhub.elsevier.com/S1744-165X(13)00070-X/sref57http://refhub.elsevier.com/S1744-165X(13)00070-X/sref57http://refhub.elsevier.com/S1744-165X(13)00070-X/sref57http://refhub.elsevier.com/S1744-165X(13)00070-X/sref57http://refhub.elsevier.com/S1744-165X(13)00070-X/sref57http://refhub.elsevier.com/S1744-165X(13)00070-X/sref58http://refhub.elsevier.com/S1744-165X(13)00070-X/sref58http://refhub.elsevier.com/S1744-165X(13)00070-X/sref58http://refhub.elsevier.com/S1744-165X(13)00070-X/sref58http://refhub.elsevier.com/S1744-165X(13)00070-X/sref59http://refhub.elsevier.com/S1744-165X(13)00070-X/sref59http://refhub.elsevier.com/S1744-165X(13)00070-X/sref59http://refhub.elsevier.com/S1744-165X(13)00070-X/sref59http://refhub.elsevier.com/S1744-165X(13)00070-X/sref59http://refhub.elsevier.com/S1744-165X(13)00070-X/sref60http://refhub.elsevier.com/S1744-165X(13)00070-X/sref60http://refhub.elsevier.com/S1744-165X(13)00070-X/sref60http://refhub.elsevier.com/S1744-165X(13)00070-X/sref61http://refhub.elsevier.com/S1744-165X(13)00070-X/sref61http://refhub.elsevier.com/S1744-165X(13)00070-X/sref61http://refhub.elsevier.com/S1744-165X(13)00070-X/sref62http://refhub.elsevier.com/S1744-165X(13)00070-X/sref62http://refhub.elsevier.com/S1744-165X(13)00070-X/sref62http://refhub.elsevier.com/S1744-165X(13)00070-X/sref62http://refhub.elsevier.com/S1744-165X(13)00070-X/sref62http://refhub.elsevier.com/S1744-165X(13)00070-X/sref63http://refhub.elsevier.com/S1744-165X(13)00070-X/sref63http://refhub.elsevier.com/S1744-165X(13)00070-X/sref63http://refhub.elsevier.com/S1744-165X(13)00070-X/sref63http://refhub.elsevier.com/S1744-165X(13)00070-X/sref63http://refhub.elsevier.com/S1744-165X(13)00070-X/sref63http://refhub.elsevier.com/S1744-165X(13)00070-X/sref64http://refhub.elsevier.com/S1744-165X(13)00070-X/sref64http://refhub.elsevier.com/S1744-165X(13)00070-X/sref64http://refhub.elsevier.com/S1744-165X(13)00070-X/sref64http://refhub.elsevier.com/S1744-165X(13)00070-X/sref64http://refhub.elsevier.com/S1744-165X(13)00070-X/sref64http://refhub.elsevier.com/S1744-165X(13)00070-X/sref65http://refhub.elsevier.com/S1744-165X(13)00070-X/sref65http://refhub.elsevier.com/S1744-165X(13)00070-X/sref65http://refhub.elsevier.com/S1744-165X(13)00070-X/sref66http://refhub.elsevier.com/S1744-165X(13)00070-X/sref66http://refhub.elsevier.com/S1744-165X(13)00070-X/sref66http://refhub.elsevier.com/S1744-165X(13)00070-X/sref66http://refhub.elsevier.com/S1744-165X(13)00070-X/sref67http://refhub.elsevier.com/S1744-165X(13)00070-X/sref67http://refhub.elsevier.com/S1744-165X(13)00070-X/sref67http://refhub.elsevier.com/S1744-165X(13)00070-X/sref68http://refhub.elsevier.com/S1744-165X(13)00070-X/sref68http://refhub.elsevier.com/S1744-165X(13)00070-X/sref68http://refhub.elsevier.com/S1744-165X(13)00070-X/sref68http://refhub.elsevier.com/S1744-165X(13)00070-X/sref68http://refhub.elsevier.com/S1744-165X(13)00070-X/sref68http://refhub.elsevier.com/S1744-165X(13)00070-X/sref67http://refhub.elsevier.com/S1744-165X(13)00070-X/sref67http://refhub.elsevier.com/S1744-165X(13)00070-X/sref67http://refhub.elsevier.com/S1744-165X(13)00070-X/sref66http://refhub.elsevier.com/S1744-165X(13)00070-X/sref66http://refhub.elsevier.com/S1744-165X(13)00070-X/sref66http://refhub.elsevier.com/S1744-165X(13)00070-X/sref65http://refhub.elsevier.com/S1744-165X(13)00070-X/sref65http://refhub.elsevier.com/S1744-165X(13)00070-X/sref65http://refhub.elsevier.com/S1744-165X(13)00070-X/sref64http://refhub.elsevier.com/S1744-165X(13)00070-X/sref64http://refhub.elsevier.com/S1744-165X(13)00070-X/sref64http://refhub.elsevier.com/S1744-165X(13)00070-X/sref64http://refhub.elsevier.com/S1744-165X(13)00070-X/sref63http://refhub.elsevier.com/S1744-165X(13)00070-X/sref63http://refhub.elsevier.com/S1744-165X(13)00070-X/sref63http://refhub.elsevier.com/S1744-165X(13)00070-X/sref63http://refhub.elsevier.com/S1744-165X(13)00070-X/sref62http://refhub.elsevier.com/S1744-165X(13)00070-X/sref62http://refhub.elsevier.com/S1744-165X(13)00070-X/sref62http://refhub.elsevier.com/S1744-165X(13)00070-X/sref62http://refhub.elsevier.com/S1744-165X(13)00070-X/sref62http://refhub.elsevier.com/S1744-165X(13)00070-X/sref61http://refhub.elsevier.com/S1744-165X(13)00070-X/sref61http://refhub.elsevier.com/S1744-165X(13)00070-X/sref61http://refhub.elsevier.com/S1744-165X(13)00070-X/sref60http://refhub.elsevier.com/S1744-165X(13)00070-X/sref60http://refhub.elsevier.com/S1744-165X(13)00070-X/sref60http://refhub.elsevier.com/S1744-165X(13)00070-X/sref59http://refhub.elsevier.com/S1744-165X(13)00070-X/sref59http://refhub.elsevier.com/S1744-165X(13)00070-X/sref59http://refhub.elsevier.com/S1744-165X(13)00070-X/sref59http://refhub.elsevier.com/S1744-165X(13)00070-X/sref58http://refhub.elsevier.com/S1744-165X(13)00070-X/sref58http://refhub.elsevier.com/S1744-165X(13)00070-X/sref58http://refhub.elsevier.com/S1744-165X(13)00070-X/sref58http://refhub.elsevier.com/S1744-165X(13)00070-X/sref57http://refhub.elsevier.com/S1744-165X(13)00070-X/sref57http://refhub.elsevier.com/S1744-165X(13)00070-X/sref57http://refhub.elsevier.com/S1744-165X(13)00070-X/sref57http://refhub.elsevier.com/S1744-165X(13)00070-X/sref57http://refhub.elsevier.com/S1744-165X(13)00070-X/sref56http://refhub.elsevier.com/S1744-165X(13)00070-X/sref56http://refhub.elsevier.com/S1744-165X(13)00070-X/sref56http://refhub.elsevier.com/S1744-165X(13)00070-X/sref56http://refhub.elsevier.com/S1744-165X(13)00070-X/sref55http://refhub.elsevier.com/S1744-165X(13)00070-X/sref55http://refhub.elsevier.com/S1744-165X(13)00070-X/sref55http://refhub.elsevier.com/S1744-165X(13)00070-X/sref55http://refhub.elsevier.com/S1744-165X(13)00070-X/sref54http://refhub.elsevier.com/S1744-165X(13)00070-X/sref54http://refhub.elsevier.com/S1744-165X(13)00070-X/sref54http://refhub.elsevier.com/S1744-165X(13)00070-X/sref54http://refhub.elsevier.com/S1744-165X(13)00070-X/sref53http://refhub.elsevier.com/S1744-165X(13)00070-X/sref53http://refhub.elsevier.com/S1744-165X(13)00070-X/sref53http://refhub.elsevier.com/S1744-165X(13)00070-X/sref53http://refhub.elsevier.com/S1744-165X(13)00070-X/sref52http://refhub.elsevier.com/S1744-165X(13)00070-X/sref52http://refhub.elsevier.com/S1744-165X(13)00070-X/sref52http://refhub.elsevier.com/S1744-165X(13)00070-X/sref52http://refhub.elsevier.com/S1744-165X(13)00070-X/sref52http://www.resus.org.au/http://refhub.elsevier.com/S1744-165X(13)00070-X/sref50http://refhub.elsevier.com/S1744-165X(13)00070-X/sref50http://refhub.elsevier.com/S1744-165X(13)00070-X/sref50http://refhub.elsevier.com/S1744-165X(13)00070-X/sref50http://refhub.elsevier.com/S1744-165X(13)00070-X/sref49http://refhub.elsevier.com/S1744-165X(13)00070-X/sref49http://refhub.elsevier.com/S1744-165X(13)00070-X/sref49http://refhub.elsevier.com/S1744-165X(13)00070-X/sref49http://refhub.elsevier.com/S1744-165X(13)00070-X/sref49http://refhub.elsevier.com/S1744-165X(13)00070-X/sref48http://refhub.elsevier.com/S1744-165X(13)00070-X/sref48http://refhub.elsevier.com/S1744-165X(13)00070-X/sref48http://refhub.elsevier.com/S1744-165X(13)00070-X/sref48http://refhub.elsevier.com/S1744-165X(13)00070-X/sref47http://refhub.elsevier.com/S1744-165X(13)00070-X/sref47http://refhub.elsevier.com/S1744-165X(13)00070-X/sref47http://refhub.elsevier.com/S1744-165X(13)00070-X/sref46http://refhub.elsevier.com/S1744-165X(13)00070-X/sref46http://refhub.elsevier.com/S1744-165X(13)00070-X/sref46http://refhub.elsevier.com/S1744-165X(13)00070-X/sref46http://refhub.elsevier.com/S1744-165X(13)00070-X/sref45http://refhub.elsevier.com/S1744-165X(13)00070-X/sref45http://refhub.elsevier.com/S1744-165X(13)00070-X/sref45http://refhub.elsevier.com/S1744-165X(13)00070-X/sref45http://refhub.elsevier.com/S1744-165X(13)00070-X/sref44http://refhub.elsevier.com/S1744-165X(13)00070-X/sref44http://refhub.elsevier.com/S1744-165X(13)00070-X/sref44http://refhub.elsevier.com/S1744-165X(13)00070-X/sref44http://refhub.elsevier.com/S1744-165X(13)00070-X/sref44http://refhub.elsevier.com/S1744-165X(13)00070-X/sref43http://refhub.elsevier.com/S1744-165X(13)00070-X/sref43http://refhub.elsevier.com/S1744-165X(13)00070-X/sref43http://refhub.elsevier.com/S1744-165X(13)00070-X/sref43http://refhub.elsevier.com/S1744-165X(13)00070-X/sref42http://refhub.elsevier.com/S1744-165X(13)00070-X/sref42http://refhub.elsevier.com/S1744-165X(13)00070-X/sref42http://refhub.elsevier.com/S1744-165X(13)00070-X/sref41http://refhub.elsevier.com/S1744-165X(13)00070-X/sref41http://refhub.elsevier.com/S1744-165X(13)00070-X/sref41http://refhub.elsevier.com/S1744-165X(13)00070-X/sref40http://refhub.elsevier.com/S1744-165X(13)00070-X/sref40http://refhub.elsevier.com/S1744-165X(13)00070-X/sref40http://refhub.elsevier.com/S1744-165X(13)00070-X/sref39http://refhub.elsevier.com/S1744-165X(13)00070-X/sref39http://refhub.elsevier.com/S1744-165X(13)00070-X/sref39http://refhub.elsevier.com/S1744-165X(13)00070-X/sref39http://refhub.elsevier.com/S1744-165X(13)00070-X/sref38http://refhub.elsevier.com/S1744-165X(13)00070-X/sref38http://refhub.elsevier.com/S1744-165X(13)00070-X/sref38http://refhub.elsevier.com/S1744-165X(13)00070-X/sref37http://refhub.elsevier.com/S1744-165X(13)00070-X/sref37http://refhub.elsevier.com/S1744-165X(13)00070-X/sref37http://refhub.elsevier.com/S1744-165X(13)00070-X/sref37http://refhub.elsevier.com/S1744-165X(13)00070-X/sref36http://refhub.elsevier.com/S1744-165X(13)00070-X/sref36http://refhub.elsevier.com/S1744-165X(13)00070-X/sref36http://refhub.elsevier.com/S1744-165X(13)00070-X/sref35http://refhub.elsevier.com/S1744-165X(13)00070-X/sref35http://refhub.elsevier.com/S1744-165X(13)00070-X/sref34http://refhub.elsevier.com/S1744-165X(13)00070-X/sref34http://refhub.elsevier.com/S1744-165X(13)00070-X/sref34http://refhub.elsevier.com/S1744-165X(13)00070-X/sref34http://refhub.elsevier.com/S1744-165X(13)00070-X/sref33http://refhub.elsevier.com/S1744-165X(13)00070-X/sref33http://refhub.elsevier.com/S1744-165X(13)00070-X/sref33http://refhub.elsevier.com/S1744-165X(13)00070-X/sref32http://refhub.elsevier.com/S1744-165X(13)00070-X/sref32http://refhub.elsevier.com/S1744-165X(13)00070-X/sref32http://refhub.elsevier.com/S1744-165X(13)00070-X/sref31http://refhub.elsevier.com/S1744-165X(13)00070-X/sref31http://refhub.elsevier.com/S1744-165X(13)00070-X/sref31http://refhub.elsevier.com/S1744-165X(13)00070-X/sref30http://refhub.elsevier.com/S1744-165X(13)00070-X/sref30http://refhub.elsevier.com/S1744-165X(13)00070-X/sref30http://refhub.elsevier.com/S1744-165X(13)00070-X/sref30http://refhub.elsevier.com/S1744-165X(13)00070-X/sref29http://refhub.elsevier.com/S1744-165X(13)00070-X/sref29http://refhub.elsevier.com/S1744-165X(13)00070-X/sref29http://refhub.elsevier.com/S1744-165X(13)00070-X/sref29