Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum...

24
Renate Loll Ins%tute for Mathema%cs, Astrophysics and Par%cle Physics, Radboud University Quantum Ricci Curvature M∩, Belgrade 20 Sep 2017

Transcript of Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum...

Page 1: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

RenateLollIns%tuteforMathema%cs,AstrophysicsandPar%clePhysics,

RadboudUniversity

QuantumRicciCurvature

M∩𝚽,Belgrade20Sep2017

Page 2: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

ExploringspaceAmeatthePlanckscale

OurmaingoalistoconstructatheoryofQuantumGravity,afundamentalquantumtheoryunderlyingGeneralRela%vity.!Mytalktodayisaboutthenewconceptofquantumcurvature,a

quasilocalobservableinanonperturba%ve,Planckianregime,wherespace%meisnolongerdescribedbyasmoothmetricgμν(x).!Iwillexplaintheideainthecon%nuumandthenimplementiton

variouspiecewiselinear(PL)spaces,includingtheequilateralconfigura%onsof(Causal)DynamicalTriangula;ons.CDTisacandidatetheoryofquantumgravity,basedonanon-perturba%vepathintegral,whereour“quantumRiccicurvature”canbecalculatedinastraighOorwardway.However,theconceptisapplicablemuchmorewidely,andyouneednotknowaboutCDT.! ! (jointworkwithNilasKlitgaard,tobepublished)

Page 3: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

ThecaseforquantumobservablesEvenassumingwehadresolvedall“technicaldifficul%es”inspecificquantumgravitytheories,wes%llfacethekeyissueofhavingtoconstructmeaningfulobservablestoquan%fythephysicalquantumproper%esofgravityandspace%me(orwhateverremainsofthem)atthePlanckscale.ThesearepriortothedevelopmentofanytrueQGphenomenologyandshould!1.bepurelygeometrical(coordinate-invariant,background-indept.),2.havefinite,nonzeroexpecta%onvaluesintheensemble,3.bemeasurablereliablyinthewindowaccessibletoquan%ta%veevalua%on(simula%onorothernumericalmethods),

4.havea(semi-)classicallimit.!Wehavesuchobservables,e.g.inCDT,buttheyarerathercoarse(dynamicaldimensions,volumeprofiles)andshouldbecomple-mentedbyquan%%escarryingmorelocalgeometricinforma%on.

Page 4: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

•CDTquantumgravityisaperfectse^ngtostudysuchnonperturba%vequantumobservables.Itsregularizedpathintegral(“sumoverspace%mes”)isdefinedpurelygeometricallyintermsofsimplicialmanifoldsthataregluingsofiden%calD-dimensionalflatsimplices(➔“RandomGeometry”).Observablesareevaluatedquan%ta%velybyMonteCarlosimula%on.!•Sincelengthsandvolumescomeindiscreteunits,measuringis

oaenreducedtosimplecoun%ng.(C)DTgeometriesareof“Reggetype”,i.e.con%nuous,butwithcurvaturesingulari%es.!•Thislookslikeaconserva%vese^ng,butallowsfornonclassical

behaviourandnoncanonicalscaling.Infact,wehavelearnedthatsuchbehaviourisgenericandoaenpreventstheexistenceofaclassicallimitwhentheUV-cutoffaisremoved.

ThecaseforCDT

pieceofacausaltriangula%onin3D

aflat

a

abuildingblockin2D:

Page 5: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

•Curvatureisacrucialconceptindescribingclassicalspace%megeometry.Itisacomplex,derivedobject.Computa%onoftheRiemanntensorRκλμν[g,∂g,∂2g;x)requiresasmoothmetricg.!•Findingameaningfulno%onof“quantumcurvature”,applicableina

moregeneralcontext,hassofarreceivedlifleafen%on.(Notethatdefini%onsintermsofdeficitanglesareoflimitedusefulness.)!•Isthereaclassicalcharacteriza%onofcurvaturethatcanbeusedto

obtainacoarse-grained,robustandcomputableno%onofquantumcurvatureinnonperturba%vequantumgravity?!

Thecaseforcurvature

Page 6: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

•Curvatureisacrucialconceptindescribingclassicalspace%megeometry.Itisacomplex,derivedobject.Computa%onoftheRiemanntensorRκλμν[g,∂g,∂2g;x)requiresasmoothmetricg.!•Findingameaningfulno%onof“quantumcurvature”,applicableina

moregeneralcontext,hassofarreceivedlifleafen%on.(Notethatdefini%onsintermsofdeficitanglesareoflimitedusefulness.)!•Isthereaclassicalcharacteriza%onofcurvaturethatcanbeusedto

obtainacoarse-grained,robustandcomputableno%onofquantumcurvatureinnonperturba%vequantumgravity?YES.!•N.B.:weareworkinginaRiemanniancontext(“aaerWickrota%on”)

Thecaseforcurvature

Page 7: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

Thekeyidea(classical):

δvεw εw’p

qq’

p’

v,wunitvectorsatp,v⊥wε,δ>0w’istheparalleltransportofwalongvp’=expp(δv),q=expp(εw),⇒thereisauniquepointq’=expp’(εw')

OnaD-dimensionalmanifold(M,gμν),comparethedistanceoftwosmall(D-1)-sphereswiththedistanceδoftheircentres.!Step1:

thenwehave

whereK(v,w)isthesec8onalcurvaturecorrespondingto(v,w),

K(v, w) =<R(v, w)w, v>

<v, v><w,w> � <v,w>2

d(q, q0) = �⇣1� ✏2

2K(v, w) +O(✏3 + �✏2)

⌘, ✏, � ! 0

Page 8: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

εwε

εδv

M

εw’p

SεpSεp’

qq’

p’

d(S✏p, S

✏p0) :=

1

vol(S✏p)

Z

S✏p

d

D�1q

ph d(q, q0),

Step2:!LetSεpdenotetheε-sphereofallpointsatgeodesicdistanceεfromitscentrep.Thenthespheredistancetoanotherε-sphereSεp’whosecentrep’liesatadistanced(p,p’)=δ,andwhosepointsareobtainedbyparalleltransportisdefinedby

whichforsmallδ,εisgivenby

d(S✏p, S

✏p0) = �

✓1� ✏2

2DRic(v, v) +O(✏3 + �✏2)

◆,

whereRic(v,v)istheRiccicurvatureofthevectorv,i.e.theaverageofthesec%onalcurvatureK(v,w)overalltwo-planescontainingv.

(noteuniqueassocia%onq↔q’)

Page 9: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

Thisformula,

d(S✏p, S

✏p0) = �

✓1� ✏2

2DRic(v, v) +O(✏3 + �✏2)

◆,

capturesourkeystatement:“OnaD-dim.manifoldwithposi%ve(nega%ve)Riccicurvature,thedistancebetweentwonearby(D-1)-spheresissmaller(larger)thanthedistancebetweentheircentres.”!Thisobserva%onisthestar%ngpointforOllivier’s“coarseRiccicurvature”(Y.Ollivier,J.Funct.Anal.256(2009)810-864).[→c.f.workbyC.Trugenberger,G.Bianconi(“QGfromgraphs”)]!However,hisdefini%oninvolves“transportdistance”(inabsenceofparalleltransport),whichisverydifficulttocomputeinprac%ce.!Instead,wearelookingforano%onof“quantumRiccicurvature”whichiscomputable,scalable(alsoworksfornon-infinitesimalscales)androbust.

Page 10: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

DefiningquantumRiccicurvature

d̄(S✏p, S

✏p0) :=

1

vol(S✏p)

1

vol(S✏p0)

Z

S✏p

d

D�1q

ph

Z

S✏p0

d

D�1q

0ph

0d(q, q0),

Ourclassicalstar%ngpointistheaveragesphere“distance”

whichusesonlyvolumeanddistancemeasurements,andthereforecanbeimplementedstraighOorwardlyongeneralmetricspaces.!Wethensetε=δ,correspondingtooverlappingspheres,anddefinethe“quantumRiccicurvatureKqatscaleδ”by

d̄(S�p , S

�p0)

�= cq(1�Kq(p, p

0)), � = d(p, p0), cq > 0,

wherecqappearstobeanon-universalconstantdependingonthespaceunderconsidera%on.WehaveevaluatedKqonclassicalmodelspaces,andtesteditonavarietyof(mainly2D)PLspaces(flatregular%lings,“nice”and“not-so-nice”triangula%ons).

Page 11: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

Behaviouronconstantlycurvedmodelspaces

¯d(S�p , S

�p0)

�=

8<

:

1.5746 flat space

1.5746� 0.1440( �⇢ )2+ h.o. spherical case

1.5746 + 0.1440( �⇢ )2+ h.o. hyperbolic case

d(S✏p, S

✏p0)

�=

8<

:

1 flat space

1� 14 (

✏⇢ )

2+ h.o. spherical case

1 +

14 (

✏⇢ )

2+ h.o. hyperbolic case

Normalizedspheredistancefor2Dmodelspaces,forsmallε,δ:

ThisisconsistentwiththegeneralformulagivenaboveforRic=1/ρ2.!Normalizedaveragespheredistancefor2Dmodelspaces,forε=δandsmallε,δ:

Thisisqualita%velysimilartothespheredistanceresultsforε=δ.

Page 12: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

Behaviouronconstantlycurvedmodelspaces

¯d(S�p , S

�p0)

�=

8<

:

1.5746 flat space

1.5746� 0.1440( �⇢ )2+ h.o. spherical case

1.5746 + 0.1440( �⇢ )2+ h.o. hyperbolic case

d(S✏p, S

✏p0)

�=

8<

:

1 flat space

1� 14 (

✏⇢ )

2+ h.o. spherical case

1 +

14 (

✏⇢ )

2+ h.o. hyperbolic case

Normalizedspheredistancefor2Dmodelspaces,forsmallε,δ:

ThisisconsistentwiththegeneralformulagivenaboveforRic=1/ρ2.!Normalizedaveragespheredistancefor2Dmodelspaces,forε=δandsmallε,δ:

Thisisqualita%velysimilartothespheredistanceresultsforε=δ.

new

Page 13: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 1 2 3 4 5 60

1

2

3

4

5

6

��

� �

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 60

1

2

3

4

5

6

��

� �

0.5

1.0

1.5

2.0

2.5

3.0

Behaviouronconstantlycurvedmodelspaces

Comparingspheredistanceandaveragespheredistanceforany(δ,ε).Observethequalitativesimilaritiesalongthediagonalsδ=ε.

flatcase sphericalcase

new new

Page 14: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

averagespheredistanceinthecon%nuum(2D)

normalizedaveragespheredistanceinthecon%nuum(2D)

Behaviouronconstantlycurvedmodelspaces

d̄/�

sphere:Kq>0

flatspace:Kq=0

hyperbolicspace:Kq<0

�= cq(1�Kq)recall

0 1 2 3 4 5 6 �0

5

10

15

d hyperbolicspace

flatspace

sphere

0 1 2 3 4 5 6 �0.0

0.5

1.0

1.5

2.0

2.5

d

(aaerse^ngε=δ)

Page 15: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

Wemeasurednormalizedaveragespheredistancesforregularflatla^cesin2Dand3D.

Example:spheredistanceona2Dsquarela^ce(δ=3)

Theirtypicalbehaviouris

d̄/�

-correc%ons

(cqnotuniversal).

“Nice”spacesI:regulartriangulaAons

�� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

0 5 10 15 20�1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

d

�squarela^cein2D!hexagonalla^cein2D

d̄/� = cq +1

�2

Page 16: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

Howcanweconstructequilateralrandomgeometriesthatare“close”toagivensmoothclassicalgeometry?

Page 17: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

“Nice”spacesII:DelaunaytriangulaAons

ADelaunaytriangula%onisatriangula%onTofafinitepointsetP⊂R2(thever%cesofT)ifthecircumcircleofeverytrianglecontainsnopointsofPinitsinterior.Itmaximizestheminimumangleandavoidsthin,elongatedtriangles

1. generatePusingPoissondiscsamplingona2Dconstantlycurvedspace(plane,sphere,hyperboloid)

2. constructtheDelaunaytriangula%onofP

3. setalledgelengthsto1

Ourprocedure:

Page 18: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

HownicearetheresulAngPLspaces?

Ourconstruc%ongeneratesrandomtriangula%onswithmild(small-scale)localcurvaturefluctua%ons.

Beforese^ngℓ=1:

probabilitydistribu%onofedgelengthsℓinaDelaunaytriangula%onofflatspace,N=6.2k

Beforeandaaer:

distribu%onofvertexorders(flatcase)

volumecofgeodesiccirclesofradiusδ:linearityimpliesflat-spacebehaviour

Aaer:

1.1minDist 1.3minDist 1.5minDist 1.7minDist 1.9minDist 2.1minDist 2.3minDistd0.00

0.02

0.04

0.06

0.08

dmin 2dmin

||

Page 19: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

MeasuringthequantumRiccicurvatureKq

comparisonofmeasurementsofthenormalizedaveragespheredistanced̄/�

Weobtainagoodmatchingwithcon%nuumresults,withdiscre%za%onartefactsconfinedtotheregion,andKq≈0elsewhere.� . 5

“flat”regular,hexagonalla^ce

recallthatd̄/� = cq(1 � Kq(�))

_

“flat”randomtriangula%on

flatcon%nuumspace

Page 20: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

normalizedaveragespheredistanceforrandomtriangula%onsmodelledonflatspaceandspheresofvarioussizes

d̄/�

Weobservegood“averagingproper%es”.

MeasuringthequantumRiccicurvature,ctd.

d̄/�

“hyperbolic”space(yellow)“flat”space(blue)

normalizedaveragespheredistanceforrandomtriangula%onsmodelledonflatandhyperbolicspace

_

_

Page 21: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

AtruequantumapplicaAonofRiccicurvature

• considera2Dtoymodelof(Euclidean)quantumgravity,with

!!!• nonperturba%vepathintegralovergeometrieswithfixedtopologyS2,solublevia“DynamicalTriangula%ons”

Z(Λ) =

!

geom. gDg e−Λ vol(g)

• pathintegralconfigura%onsarearbitrarygluingsof2Dequilateraltriangles;inthecon%nuumlimit,“typical”ensemblemembersarehighlynonclassical,fractalandnowheredifferen%ablegeometrieswithspectraldimension2andHausdorffdimension4!• thequantumdynamicsisgovernedbybranching“babyuniverses”

atypical“universe”inDTquantumgravityin2D

Page 22: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

Usingasystemof20.000triangles,wefoundasurprisinglygoodfitofthedatawiththoseofacon%nuumspherein4D(!),withposi%vecurvature.ThispointstoaveryrobustbehaviourofquantumRiccicurvature.(N.B.:theSδpingeneraldonotevenhavesphericaltopologyforδ>1,butaremultiplyconnected.)

QuantumRiccicurvaturein2DDTQGravity

Wehavemeasuredtheexpecta%onvalue!

ofthenormalizedaveragespheredistanceintheensembleof2DEuclideanDTquantumgravity.

hd̄(S�p , S

�p0)/�i

hd̄/�i

measureddata:bluecon%nuumsphere:yellow

Page 23: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

Summary

Wehavedefinedanovelno%onof“quantumRiccicurvatureatscaleδ”,basedontheaveragespheredistance,andhaveinves%gateditsproper%esinbothaclassicalandquantumcontext,mostlyontwo-dimensionalgeometries.Theresultslookpromising:!•theprescrip%onisstraighOorwardtoimplementonpiecewiseflat

spacesandisfeasiblecomputa%onally;!•onnicepiecewiseflatspaces,la^ceartefactscanbecontrolled

andsmoothresultsarereproducedonsufficientlylargescales;!•“robustness”hasbeenfoundinthecaseofthehighlyquantum-

fluctua%ngquantumensembleof2DEuclideanDTquantumgravity.!Thenextstepisanimplementa%onin4DCausalDynamical

Triangula%ons,anonperturba%vecandidatetheoryofquantumgravity,tounderstandandquan%fyitsquantumgeometry.

d̄(S�p , S

�p0)/�

Page 24: Quantum Ricci Curvature - mphys9.ipb.ac.rsmphys9.ipb.ac.rs/slides/Loll.pdf · The case for quantum observables Even assuming we had resolved all “technical difficul%es” in specific

Thankyou!

M∩𝚽,Belgrade20Sep2017